JPH11325661A - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JPH11325661A
JPH11325661A JP10139344A JP13934498A JPH11325661A JP H11325661 A JPH11325661 A JP H11325661A JP 10139344 A JP10139344 A JP 10139344A JP 13934498 A JP13934498 A JP 13934498A JP H11325661 A JPH11325661 A JP H11325661A
Authority
JP
Japan
Prior art keywords
expansion valve
adjusting screw
refrigerant
valve body
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10139344A
Other languages
Japanese (ja)
Inventor
Kimimichi Yano
公道 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP10139344A priority Critical patent/JPH11325661A/en
Publication of JPH11325661A publication Critical patent/JPH11325661A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Landscapes

  • Temperature-Responsive Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the weight of expansion valve members which are used for an air conditioner and controls the flow of a refrigerant and educe the manhour in processing. SOLUTION: An expansion valve 101 has a power element part 36' above the main body 30, and the working of a diaphragm 36a is transmitted to the valve disc 32b through a working rod 36f so as to adjust the opening of an orifice 32a. A refrigerant is put in from a passage 32, and is sent to the side of an outlet port 322 through an orifice 32a. The valve disc 32b s supported by a valve member 32c, and is energized in the direction of closing the orifice 32a through a pressure spring 32d. An adjusting screw 391 is a resinous one, and is screwed into the main body 30 by a thread part 391b. The end of the pressure spring 32d is supported by the support 391f of an opening 391e. The hexagonal hole 391j of the adjusting screw 391 is made at the bottom of a recess 191h, and it restricts the thickness-biased part of the resinous adjusting screw 391 to its minimum, thus the accuracy in molding is raised.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空気調和装置、冷凍
装置などに用いられ、冷媒の流量を制御する膨張弁に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an expansion valve used for an air conditioner, a refrigeration system, etc., for controlling a flow rate of a refrigerant.

【0002】[0002]

【従来の技術】従来広く用いられているボックス型膨張
弁を自動車等の空気調和装置の冷凍サイクル中に配置し
た状態の縦断面図を図3に、またそのA方向から見た概
略斜視図を図4に示す。図3及び図4において、膨張弁
10は角柱の例えばアルミニウム製の弁本体30と、冷
媒サイクル11においてコンデンサ5、レシーバ6から
エバポレータ8に向かう冷媒の通る第一の通路32、及
びエバポレータ8からコンプレッサ4に向かう冷媒の通
る第二の通路34が弁本体30に上下に離間して形成さ
れている。さらに、第一の通路32に設けられたオリフ
ィス32a及び弁室35と、このオリフィス32aを通
過する冷媒量を制御する通路32の上流側に配置された
球状の弁体32bと、弁体32bをオリフィス32a方
向に弁部材32cを介して押圧するばね32dの調節ね
じ39を有する。調節ねじ39は弁本体30の下部の端
面より第一の通路32の弁室35に連通する装着穴30
aに進退可能にねじ込まれており、Oリング39aが調
節ねじ39に装着され、弁本体30と気密状態が確保さ
れている。この調節ねじ39と押圧ばね32dとによ
り、弁体32bのオリフィス32aに対する開口度が調
節される。
2. Description of the Related Art FIG. 3 is a longitudinal sectional view showing a state in which a box-type expansion valve which has been widely used in the past is arranged in a refrigeration cycle of an air conditioner of an automobile or the like, and a schematic perspective view thereof as viewed from a direction A. As shown in FIG. 3 and 4, the expansion valve 10 has a prismatic valve body 30 made of, for example, aluminum, a condenser 5 in the refrigerant cycle 11, a first passage 32 through which refrigerant flows from the receiver 6 to the evaporator 8, and a compressor from the evaporator 8 to the compressor. A second passage 34 through which the refrigerant flowing toward 4 passes is formed in the valve body 30 so as to be vertically separated. Further, an orifice 32a and a valve chamber 35 provided in the first passage 32, a spherical valve body 32b disposed upstream of the passage 32 that controls the amount of refrigerant passing through the orifice 32a, and a valve body 32b The spring 32d has an adjusting screw 39 for pressing the spring 32d in the direction of the orifice 32a via the valve member 32c. The adjusting screw 39 is provided in the mounting hole 30 communicating with the valve chamber 35 of the first passage 32 from the lower end face of the valve body 30.
The O-ring 39a is mounted on the adjusting screw 39 so that the valve body 30 is airtightly sealed. The opening degree of the valve body 32b with respect to the orifice 32a is adjusted by the adjusting screw 39 and the pressing spring 32d.

【0003】なお、321はレシーバ6から送り出され
て、エバポレータ8に向かう冷媒が流入する入口ポート
であり、入口ポート321に弁室35が連続しており、
322はエバポレータ8に流入する冷媒の出口ポートで
ある。また、図4において、50は膨張弁を取り付ける
ためのボルト孔であり、弁本体30の下部は薄肉化され
ている。弁本体30にはエバポレータ8の出口温度に応
じて、弁体32bに対して駆動力を与えてオリフィス3
2aの開閉を行うために小径の孔37と、この孔37よ
り径が大径の孔38が、第2の通路34を貫通してオリ
フィス32aと同軸に形成され、弁本体30の上端には
感熱部となるパワーエレメント部36が固定されるねじ
孔361が形成されている。
[0003] Reference numeral 321 denotes an inlet port through which the refrigerant sent out from the receiver 6 and flowing toward the evaporator 8 flows, and the valve chamber 35 is continuous with the inlet port 321.
322 is an outlet port for the refrigerant flowing into the evaporator 8. In FIG. 4, reference numeral 50 denotes a bolt hole for attaching an expansion valve, and the lower portion of the valve body 30 is thinned. A driving force is applied to the valve body 30 to the valve body 32b in accordance with the outlet temperature of the evaporator 8 so that the orifice 3
A hole 37 having a smaller diameter and a hole 38 having a larger diameter than the hole 37 are formed coaxially with the orifice 32a through the second passage 34 at the upper end of the valve body 30 to open and close the valve body 2a. A screw hole 361 to which the power element portion 36 serving as a heat sensitive portion is fixed is formed.

【0004】パワーエレメント部36は、ステンレス製
のダイアフラム36aと、このダイアフラム36aを挾
んで互いに溶接により密着して設けられ、その上下に二
つの気密な感温室を形成する上部圧力作動室36b、及
び下部圧力作動室36cをそれぞれ構成する上カバー3
6dと下カバー36hと、上部圧力作動室36bにダイ
アフラム駆動流体となる所定冷媒を封入するための封切
管36iとを備え、下カバー36hはパッキン40を介
してねじ孔361に螺着される。下部圧力作動室36c
は、オリフィス32aの中心線に対して、同心的に形成
された均圧孔36eを介して第2の通路34に連通され
ている。第2の通路34には、エバポレータ8からの冷
媒蒸気が流れ、通路34は気相冷媒の通路となり、その
冷媒蒸気の圧力が均圧孔36eを介して下部圧力作動室
36cに負荷されている。なお、342はエバポレータ
8から送り出される冷媒の入る入口ポート、341はコ
ンプレッサ4へ送り出される冷媒の出口となる出口ポー
トである。また、図4では、封切管36iを省略して示
している。
The power element section 36 is provided with a stainless steel diaphragm 36a and an upper pressure working chamber 36b which is provided in close contact with each other with the diaphragm 36a therebetween by welding and forms two airtight temperature sensing chambers above and below the diaphragm. Upper cover 3 which constitutes each lower pressure working chamber 36c
6d, a lower cover 36h, and a sealing tube 36i for sealing a predetermined refrigerant serving as a diaphragm driving fluid in the upper pressure working chamber 36b. The lower cover 36h is screwed into the screw hole 361 via the packing 40. Lower pressure working chamber 36c
Is connected to the second passage 34 via a pressure equalizing hole 36e formed concentrically with the center line of the orifice 32a. Refrigerant vapor from the evaporator 8 flows through the second passage 34, and the passage 34 serves as a passage for a gas-phase refrigerant, and the pressure of the refrigerant vapor is applied to the lower pressure working chamber 36c via the equalizing hole 36e. . In addition, 342 is an inlet port into which the refrigerant sent from the evaporator 8 enters, and 341 is an outlet port as an outlet of the refrigerant sent to the compressor 4. In FIG. 4, the sealing tube 36i is omitted.

【0005】さらに下部圧力作動室36c内にダイアフ
ラム36aの下面中央部に当接する大径の皿状に形成さ
れた頂部37gを有し、かつ第2の通路34を貫通して
大径の孔38内に摺動可能に配置されて、エバポレータ
8の冷媒出口温度を下部圧力作動室36cへ伝達すると
共に、上部圧力作動室36b及び下部圧力作動室36c
の圧力差に伴うダイアフラム36aの変位に応じて、大
径38内を摺動して駆動力を与えるアルミ製の感温棒3
6fと、小径の孔37内に摺動可能に配置されて、感温
棒36fの変位に応じて弁体32bを付勢手段32dの
弾性力に抗して押圧する感温棒36fより細径のステン
レス製の作動棒37fからなり、感温棒36fの頂部3
7gは、ダイアフラム36aの受け部としてダイアフラ
ム36aの下面に当接し、感温棒36fの下端は作動棒
37fの上端と当接し、作動棒37fの下端は弁体32
bと当接しており、感温棒36fと作動棒37fとで弁
体駆動棒が構成されている。
Further, the lower pressure working chamber 36c has a large-diameter dish-shaped top portion 37g in contact with the center of the lower surface of the diaphragm 36a, and the large-diameter hole 38 penetrates through the second passage 34. And slidably disposed therein, to transmit the refrigerant outlet temperature of the evaporator 8 to the lower pressure operating chamber 36c, and also to transmit the refrigerant pressure to the upper pressure operating chamber 36b and the lower pressure operating chamber 36c.
The aluminum temperature sensing rod 3 that slides in the large diameter 38 to provide a driving force in accordance with the displacement of the diaphragm 36a due to the pressure difference
6f and a smaller diameter than the temperature sensing rod 36f which is slidably disposed in the small diameter hole 37 and presses the valve body 32b against the elastic force of the urging means 32d according to the displacement of the temperature sensing rod 36f. Of the temperature sensing rod 36f.
7g contacts the lower surface of the diaphragm 36a as a receiving portion of the diaphragm 36a, the lower end of the temperature sensing rod 36f contacts the upper end of the operating rod 37f, and the lower end of the operating rod 37f is
b, and the valve drive rod is constituted by the temperature sensing rod 36f and the operating rod 37f.

【0006】したがって、均圧孔36eには、ダイアフ
ラム36aの下面から第1の通路32のオリフィス32
aまで延出した弁体駆動棒が、同心的に配置されている
ことになる。なお、作動棒37fの部分37eは、オリ
フィス32aの内径より細く形成されて、オリフィス3
2a内を挿通し、冷媒はオリフィス32a内を通過す
る。また、感温棒36fには第1の通路32と、第2の
通路34との気密性を確保するための密封部材としてO
リング36gが備えられている。
Therefore, the orifice 32 of the first passage 32 is inserted into the pressure equalizing hole 36e from the lower surface of the diaphragm 36a.
That is, the valve body drive rod extending to a is concentrically arranged. The portion 37e of the operating rod 37f is formed thinner than the inner diameter of the orifice 32a.
The refrigerant passes through the inside of the orifice 32a. Further, the temperature sensing rod 36f has an O as a sealing member for ensuring airtightness between the first passage 32 and the second passage 34.
A ring 36g is provided.

【0007】圧力作動ハウジング36dの上方の圧力作
動室36b中には、公知のダイアフラム駆動流体が充填
されていて、ダイアフラム駆動流体には第2の通路34
や第2の通路34に連通されている均圧孔36eに露出
された弁体駆動棒及びダイアフラム36aを介して、第
2の通路34を流れているエバポレータ8の冷媒出口か
らの冷媒の熱が伝達される。
A known diaphragm driving fluid is filled in the pressure operating chamber 36b above the pressure operating housing 36d, and a second passage 34 is provided in the diaphragm driving fluid.
And the heat of the refrigerant from the refrigerant outlet of the evaporator 8 flowing through the second passage 34 through the valve drive rod and the diaphragm 36a exposed to the pressure equalizing hole 36e communicating with the second passage 34. Is transmitted.

【0008】上方の圧力作動室36b中のダイアフラム
駆動流体は、上記伝達された熱に対応してガス化し、圧
力をダイアフラム36aの上面に負荷する。ダイアフラ
ム36aは上記上面に負荷されたダイアフラム駆動ガス
の圧力と、ダイアフラム36aの下面に負荷された圧力
との差により上下に変位する。ダイアフラム36aの中
心部の上下への変位は、弁体駆動棒を介して弁体32b
に伝達され弁体32bをオリフィス32aの弁座に対し
て接近または離間させる。この結果、冷媒流量が制御さ
れることとなる。
[0008] The diaphragm driving fluid in the upper pressure working chamber 36b gasifies in response to the transferred heat, and applies pressure to the upper surface of the diaphragm 36a. The diaphragm 36a is displaced up and down due to the difference between the pressure of the diaphragm driving gas applied to the upper surface and the pressure applied to the lower surface of the diaphragm 36a. The displacement of the center of the diaphragm 36a up and down is controlled by the valve body 32b via the valve body drive rod.
To move the valve body 32b toward or away from the valve seat of the orifice 32a. As a result, the flow rate of the refrigerant is controlled.

【0009】即ち、エバポレータ8の出口側つまりエバ
ポレータから送り出される低圧の気相冷媒の温度が上部
圧力作動室36bに伝達されるため、その温度に応じて
上部圧力作動室36bの圧力が変化し、エバポレータ8
の出口温度が上昇する。つまりエバポレータの熱負荷が
増加すると、上部圧力作動室86bの圧力が高くなり、
それに応じて感温棒36fつまり弁体駆動棒が下方へ駆
動されて弁体32bを下げるため、オリフィス32aの
開度が大きくなる。これによりエバポレータ8への冷媒
の供給量が多くなり、エバポレータ8の温度を低下させ
る。逆に、エバポレータ8から送り出される冷媒の温度
が低下する。つまりエバポレータの熱負荷が減少する
と、弁体32bが上記と逆方向に駆動され、オリフィス
32aの開度が小さくなり、エバポレータへの冷媒の供
給量が少なくなり、エバポレータ8の温度を上昇させる
のである。
That is, since the temperature of the low-pressure gas-phase refrigerant sent from the outlet side of the evaporator 8, that is, from the evaporator, is transmitted to the upper pressure working chamber 36b, the pressure of the upper pressure working chamber 36b changes according to the temperature. Evaporator 8
Outlet temperature rises. That is, when the heat load of the evaporator increases, the pressure of the upper pressure working chamber 86b increases,
Accordingly, the temperature sensing rod 36f, that is, the valve body drive rod is driven downward to lower the valve body 32b, so that the opening degree of the orifice 32a increases. Thus, the supply amount of the refrigerant to the evaporator 8 increases, and the temperature of the evaporator 8 decreases. Conversely, the temperature of the refrigerant sent from the evaporator 8 decreases. That is, when the heat load of the evaporator decreases, the valve element 32b is driven in the opposite direction to the above, the opening degree of the orifice 32a decreases, the supply amount of the refrigerant to the evaporator decreases, and the temperature of the evaporator 8 increases. .

【0010】さらに、従来の膨張弁として、図3に示す
封切管36iの代りに、図5に示す如く、栓体36kを
用いて所定冷媒を封入したものも知られており、例えば
ステンレス製の栓体36kが、ステンレス製の上カバー
36dに形成された穴36jを塞ぐように挿入され、栓
体36kは穴36jに溶接により固着されているのであ
る。
[0010] Further, as a conventional expansion valve, a type in which a predetermined refrigerant is sealed using a plug 36k as shown in FIG. 5 instead of the sealing tube 36i shown in FIG. 3 is known. The plug 36k is inserted so as to close the hole 36j formed in the stainless steel upper cover 36d, and the plug 36k is fixed to the hole 36j by welding.

【0011】かかる図5の従来の膨張弁10’において
は、パワーエレメント部36’における所定冷媒の封入
が栓体36kにより行われている点が、図4の膨張弁と
異なるのみであり、他の構成は図4と同一であるので、
同一または均等部分には同一の符号を付して説明を省略
している。なお、図5においては、冷凍サイクルを省略
して示している。
The conventional expansion valve 10 'of FIG. 5 differs from the expansion valve of FIG. 4 only in that a predetermined refrigerant is sealed in the power element portion 36' by a plug 36k. Is the same as that of FIG.
The same or equivalent parts are denoted by the same reference numerals and description thereof is omitted. In FIG. 5, the refrigeration cycle is omitted.

【0012】而して、従来の図3及び図5に示す膨張弁
においては、調節ねじ39は、金属製例えばアルミニウ
ム製であり、図6(a)及び図6(b)に示す斜視図の
如く略円筒形状をなし、弁本体30の装着穴30aに進
退可能にねじ込まれるための外周部に形成されたねじ部
39bと、Oリング39aが装着される溝部39cと、
ねじ部39bと溝部39cとの間に形成された段部39
dと、押圧ばね32dの下端部が挿入される開口部39
eと、開口部39eに挿入されたばね32dの端部を支
持する支持部39fと、調節ねじの底部をなす端部39
gの中央部に形成された六角穴39hとからなり、六角
穴39hは工具の係合部として作用し、この穴に工具、
例えば六角レンチを挿入することによって調節ねじ39
を弁本体30に螺合させるのである。この工具の係合部
は、六角穴のほかに種々の形状が選択できる。また、調
節ねじ39は、開口部39e側がねじ部39b側より径
小となる如く略円筒形状に形成されて、溝部39cにO
リング39aが装着されている。なお、図6(a)及び
図6(b)は、それぞれ開口部39e及び底部39gの
方向から見た斜視図である。
In the conventional expansion valve shown in FIGS. 3 and 5, the adjusting screw 39 is made of metal, for example, aluminum, and the adjusting screw 39 is made of a perspective view shown in FIGS. 6 (a) and 6 (b). It has a substantially cylindrical shape as described above, a screw portion 39b formed on an outer peripheral portion for being screwed into the mounting hole 30a of the valve body 30 so as to be able to advance and retreat, and a groove portion 39c to which the O-ring 39a is mounted.
Step 39 formed between screw 39b and groove 39c
d and an opening 39 into which the lower end of the pressing spring 32d is inserted.
e, a support 39f for supporting the end of the spring 32d inserted into the opening 39e, and an end 39 forming the bottom of the adjusting screw.
g of a hexagonal hole 39h formed in the center of the g. The hexagonal hole 39h acts as an engagement portion of the tool.
For example, by inserting a hex wrench,
Is screwed into the valve body 30. Various shapes other than a hexagonal hole can be selected for the engaging portion of the tool. The adjusting screw 39 is formed in a substantially cylindrical shape so that the diameter of the opening 39e is smaller than the diameter of the screw 39b.
A ring 39a is mounted. FIGS. 6A and 6B are perspective views seen from the direction of the opening 39e and the bottom 39g, respectively.

【0013】[0013]

【発明が解決しようとする課題】ところで、従来の膨張
弁において、軽量化、加工工数の低減化のため、調節ね
じ39をアルミ合金から樹脂にすることが考えられる。
しかしながら、従来の調節ねじを樹脂にした場合には、
その形状に肉厚部また肉薄部が存在する。即ち、上記溝
部近傍は肉薄部であり、工具の係合部近傍は肉厚部であ
るという所謂偏肉部の形状となり、樹脂の成形後の冷却
速度の差が生じ、形状の寸法にバラツキが発生するとい
う問題がある。この寸法バラツキは、特に調節ねじの外
周に形成されたねじ部においては、調節不能となること
も生じる。本発明は、上記のような問題点に鑑みなされ
たもので、その目的とするところは、膨張弁の調節ねじ
の樹脂化に際し、偏肉部を低減し、安価で軽量化された
膨張弁を提供することにある。
By the way, in the conventional expansion valve, it is conceivable that the adjusting screw 39 is made of resin from aluminum alloy in order to reduce the weight and the number of processing steps.
However, when the conventional adjusting screw is made of resin,
The shape has a thick part or a thin part. That is, the vicinity of the groove portion is a thin portion, and the vicinity of the engagement portion of the tool is a thick portion, that is, a so-called uneven thickness portion, which causes a difference in cooling rate after molding of the resin, and the size of the shape varies. There is a problem that occurs. This dimensional variation may not be able to be adjusted, especially in a thread portion formed on the outer periphery of the adjusting screw. The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an inexpensive and lightweight expansion valve that reduces uneven thickness portions when resinizing an adjustment screw of the expansion valve. To provide.

【0014】[0014]

【課題を解決するための手段】前記の目的を達成すべ
く、本発明に係る膨張弁は、エバポレータから送り出さ
れる冷媒の温度変化により、感温室内に封入された冷媒
により弁体のオリフィスに対する開口度を制御する膨張
弁において、上記弁体の開口度を調節する調節ねじが樹
脂製であると共に、上記樹脂の偏肉部を減少させる手段
を具備していることを特徴とする。また、本発明に係る
膨張弁は、上記手段が、上記調整ねじの端部に形成され
た凹部であることを特徴とする。
In order to achieve the above-mentioned object, an expansion valve according to the present invention is provided with an opening to an orifice of a valve element due to a change in temperature of a refrigerant discharged from an evaporator by a refrigerant sealed in a temperature-sensitive chamber. The expansion valve for controlling the degree is characterized in that the adjusting screw for adjusting the opening degree of the valve body is made of resin and is provided with means for reducing the uneven thickness portion of the resin. The expansion valve according to the present invention is characterized in that the means is a concave portion formed at an end of the adjusting screw.

【0015】さらに本発明に係る膨張弁は、レシーバか
らエバポレータに向かう冷媒の通る第一の通路及びエバ
ポレータからコンプレッサに向かう冷媒の通る第二の通
路を有する弁本体の上端部に設けられた感温室内のダイ
アフラムの変位に応じて弁体を駆動すると共に、上記弁
体の開口度を調節する圧縮ばねの押圧力を調整する調整
ねじを進退可能に上記弁本体の下端部に取り付けた温度
膨張弁において、上記調整ねじが樹脂製であると共に、
その端部に形成された凹部を有し、上記凹部内に所定工
具の係合部を具備していることを特徴とする。
Further, an expansion valve according to the present invention is a temperature sensing chamber provided at an upper end of a valve body having a first passage through which a refrigerant flows from a receiver to an evaporator and a second passage through which a refrigerant flows from an evaporator to a compressor. A temperature expansion valve, which drives a valve body in accordance with the displacement of a diaphragm in the inside and adjusts an adjusting screw for adjusting a pressing force of a compression spring for adjusting an opening degree of the valve body so as to advance and retreat to a lower end portion of the valve body. In the above, the adjusting screw is made of resin,
It has a recess formed at the end thereof, and is provided with an engagement portion for a predetermined tool in the recess.

【0016】さらにまた本発明に係る膨張弁は、上記樹
脂がグラスファイバ入りポリフェニリンサルファイドで
あることを特徴とする。従って、本発明によれば、樹脂
製の調節ねじに偏肉部を低減させる手段を具備したの
で、偏肉部を最少限にとどめることが可能となり、成形
後の寸法バラツキが減少し、成形精度の向上を図ること
ができ、かつ軽量で安価な膨張弁とすることができる。
また、本発明によれば、膨張弁は樹脂製の調節ねじの偏
肉部が、その端部に設けた凹部により低減されるので、
簡単な構成で安価に製造することができる。
Still further, an expansion valve according to the present invention is characterized in that the resin is polyphenylene sulfide containing glass fiber. Therefore, according to the present invention, since the resin adjustment screw is provided with a means for reducing the uneven thickness portion, the uneven thickness portion can be minimized, the dimensional variation after molding is reduced, and the molding accuracy is reduced. And an expansion valve that is lightweight and inexpensive.
Further, according to the present invention, since the uneven thickness portion of the resin adjustment screw is reduced by the concave portion provided at the end of the expansion valve,
It can be manufactured at a low cost with a simple configuration.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は、本発明に係る一実施の形
態の膨張弁の構成を示す断面図であり、図5に示す従来
の膨張弁10’とは調節ねじ391が異なるのみであ
り、他の構成は図5と同一であり、同一の機能を奏する
ので、同一又は均等部分には同じ符号を付して説明を省
略する。図1の膨張弁101において、391は樹脂
製、例えばグラスファイバー入りポリフェニリンサルフ
ァイト製の調節ねじであり、この調節ねじ391は図2
(a)及び図2(b)に示す斜視図の如く略円筒形状を
なし、図1の膨張弁101の弁本体30の装置穴30a
に進退可能に螺着されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a configuration of an expansion valve according to an embodiment of the present invention. Only the adjustment screw 391 is different from the conventional expansion valve 10 ′ shown in FIG. 5, the same or equivalent parts are denoted by the same reference numerals and description thereof is omitted. In the expansion valve 101 of FIG. 1, reference numeral 391 denotes an adjustment screw made of resin, for example, polyphenylene sulfide containing glass fiber.
As shown in the perspective views of FIGS. 2 (a) and 2 (b), it has a substantially cylindrical shape, and the device hole 30a of the valve body 30 of the expansion valve 101 of FIG.
It is screwed so that it can advance and retreat.

【0018】図2において、調節ねじ391は、その外
周部にねじ部391bと、Oリング39aが装置される
溝部391cと、ねじ部391bと溝部391cとの間
に形成された段部391dを有する。調整ねじ391の
一方の端部は、押圧ばね32dの下端部が挿入される開
口部391eと、開口部391eに挿入された押圧ばね
32dの端部を支持する支持部391fを有する。調整
ねじ391の他端部は、調節ねじ391の底部をなす端
部391gに形成された凹部391hと、この凹部39
1hの底部391i(図1に示す)に形成された内部の
角穴、例えば六角穴391jとを有し、六角穴391j
は工具の係合部として作用し、六角穴391jに六角レ
ンチが係合し、調節ねじ391が回転操作され、弁本体
300の装着穴30a内を上下動する。かくして、調節
ねじ391に凹部391hが形成されることにより、凹
部391hは樹脂製の調節ねじ391の偏肉部を減少さ
せる手段となり、特に六角穴391jの係合部近傍にお
いては肉薄部に形成されるので、樹脂製調節ねじ391
の所謂偏肉部は減少されることとなる。この結果、樹脂
製調節ねじ391を、全体として偏肉部の減少した構成
とすることができる。なお、図2(a)及び図2(b)
はそれぞれ開口部391e及び底部391gの方向から
見た斜視図である。
In FIG. 2, the adjusting screw 391 has a screw portion 391b, a groove portion 391c in which the O-ring 39a is provided, and a step portion 391d formed between the screw portion 391b and the groove portion 391c on its outer peripheral portion. . One end of the adjusting screw 391 has an opening 391e into which the lower end of the pressing spring 32d is inserted, and a support 391f that supports the end of the pressing spring 32d inserted into the opening 391e. The other end of the adjusting screw 391 has a concave portion 391h formed at an end portion 391g serving as a bottom of the adjusting screw 391, and a concave portion 391h.
1h has an internal square hole formed in a bottom portion 391i (shown in FIG. 1), for example, a hexagonal hole 391j.
Acts as an engagement portion of a tool, a hexagon wrench engages with the hexagonal hole 391j, the adjusting screw 391 is rotated, and moves up and down in the mounting hole 30a of the valve body 300. Thus, by forming the concave portion 391h in the adjusting screw 391, the concave portion 391h becomes a means for reducing the uneven thickness portion of the resin adjusting screw 391, and is particularly formed in a thin portion near the engaging portion of the hexagonal hole 391j. Therefore, the adjustment screw 391 made of resin
The so-called uneven thickness portion is reduced. As a result, the resin adjustment screw 391 can be configured to have a reduced thickness uneven portion as a whole. 2 (a) and 2 (b).
Are perspective views seen from the directions of the opening 391e and the bottom 391g, respectively.

【0019】かかる樹脂製の調節ねじ391と押圧ばね
32dとにより、図1の膨張弁101のオリフィス32
aに対する開口度が調節されるのであり、膨張弁101
は、従来の膨張弁10’と同じ機能を奏することにな
る。
The orifice 32 of the expansion valve 101 shown in FIG. 1 is formed by the resin adjusting screw 391 and the pressing spring 32d.
The opening degree with respect to a is adjusted.
Has the same function as the conventional expansion valve 10 '.

【0020】以上のように、本実施の形態によれば、樹
脂製の調節ねじ391において、偏肉部を減少せしめた
構成にしたので、樹脂の成形後の冷却速度の差が生じ難
く、寸法バラツキを低減でき、安価で軽量化された膨張
弁とすることができる。さらに、樹脂製の調節ねじを用
いた膨張弁にあって、従来の膨張弁と同様に精度良くオ
リフィス32aに対する開口度を調節できる。
As described above, according to the present embodiment, the resin adjustment screw 391 has a configuration in which the uneven thickness portion is reduced, so that a difference in cooling rate after molding of the resin hardly occurs. Variation can be reduced, and an inexpensive and lightweight expansion valve can be obtained. Further, in an expansion valve using a resin adjustment screw, the degree of opening with respect to the orifice 32a can be adjusted with high accuracy as in a conventional expansion valve.

【0021】また、本実施の形態では、図5に示す従来
の膨張弁10’を用いて説明したが、本発明は、図3に
示す従来の膨張弁10において調節ねじ39を図2に示
す如く、樹脂製の調節ねじに偏肉部を低減させる手段を
具備せしめ、調節ねじに偏肉部を減少せしめた構成とす
ることができるのは勿論である。
Although the present embodiment has been described using the conventional expansion valve 10 'shown in FIG. 5, in the present invention, the adjusting screw 39 in the conventional expansion valve 10 shown in FIG. 3 is shown in FIG. As described above, it is a matter of course that the resin adjusting screw may be provided with a means for reducing the uneven thickness portion, and the adjusting screw may be reduced in the uneven thickness portion.

【0022】[0022]

【発明の効果】以上説明したことから明らかなように、
本発明の膨張弁は、調節ねじを樹脂製とすると共に、そ
の偏肉部を減少させる手段を具備せしめたので、偏肉部
の低減した樹脂製の調節ねじにより膨張弁を構成できる
こととなり、軽量化が可能となると共に安価に製造でき
る。また、成形後の温度冷却の速度が各部で等しくなる
ので、樹脂製の調節ねじを用いても製品の寸法精度を向
上させることができる。したがって、樹脂製の調節ねじ
を用いた膨張弁にあって、調節ねじの偏肉部を減少させ
て寸法バラツキを低減したので、精度良くオリフィスの
開口度を調節できる。
As is apparent from the above description,
The expansion valve of the present invention is made of a resin adjustment screw, and is provided with a means for reducing the uneven thickness portion. Therefore, the expansion valve can be formed by the resin adjustment screw having a reduced uneven thickness portion, and the light weight is reduced. In addition, it can be manufactured at a low cost. In addition, since the rate of temperature cooling after molding becomes equal in each part, the dimensional accuracy of the product can be improved even if a resin adjustment screw is used. Therefore, in the expansion valve using the adjusting screw made of resin, since the uneven thickness of the adjusting screw is reduced to reduce the dimensional variation, the opening degree of the orifice can be adjusted with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る一実施の形態の膨張弁の構成を示
す断面図。
FIG. 1 is a sectional view showing a configuration of an expansion valve according to an embodiment of the present invention.

【図2】図1の膨張弁の調節ねじの構造を示すもので、
(a)は開口部から見た斜視図、(b)は底部から見た
斜視図。
FIG. 2 shows the structure of an adjusting screw of the expansion valve of FIG. 1;
(A) is a perspective view seen from an opening, and (b) is a perspective view seen from a bottom.

【図3】従来の膨張弁の構成を示す断面図。FIG. 3 is a cross-sectional view showing a configuration of a conventional expansion valve.

【図4】図3の膨張弁の概略斜視図。FIG. 4 is a schematic perspective view of the expansion valve of FIG. 3;

【図5】従来の他の膨張弁の構成を示す断面図。FIG. 5 is a sectional view showing the configuration of another conventional expansion valve.

【図6】図3及び図5の膨張弁の調節ねじの構造を示す
もので、(a)は開口部から見た斜視図、(b)は底部
から見た斜視図。
6A and 6B show the structure of an adjusting screw of the expansion valve of FIGS. 3 and 5, wherein FIG. 6A is a perspective view as viewed from an opening, and FIG. 6B is a perspective view as viewed from a bottom.

【符号の説明】[Explanation of symbols]

391 調節ねじ 391b ねじ部 391c 溝部 391e 開口部 391h 凹部 391j 角穴 391 Adjusting screw 391b Screw part 391c Groove part 391e Opening part 391h Concave part 391j Square hole

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 エバポレータから送り出される冷媒の温
度変化により、感温室内に封入された冷媒により弁体の
オリフィスに対する開口度を制御する膨張弁において、
上記弁体の開口度を調節する調節ねじが樹脂製であると
共に、上記樹脂の偏肉部を減少させる手段を具備してい
ることを特徴とする膨張弁。
An expansion valve for controlling an opening degree of a valve body to an orifice by a refrigerant sealed in a temperature-sensitive chamber by a change in temperature of a refrigerant sent from an evaporator.
An expansion valve, characterized in that an adjusting screw for adjusting the opening degree of the valve body is made of resin, and is provided with means for reducing the uneven thickness portion of the resin.
【請求項2】 上記手段が、上記調整ねじの端部に形成
された凹部であることを特徴とする請求項1記載の膨張
弁。
2. The expansion valve according to claim 1, wherein said means is a recess formed at an end of said adjusting screw.
【請求項3】 レシーバからエバポレータに向かう冷媒
の通る第一の通路及びエバポレータからコンプレッサに
向かう冷媒の通る第二の通路を有する弁本体の上端部に
設けられた感温室内のダイアフラムの変位に応じて弁体
を駆動すると共に、上記弁体の開口度を調節する圧縮ば
ねの押圧力を調整する調整ねじを進退可能に上記弁本体
の下端部に取り付けた温度膨張弁において、 上記調整ねじが樹脂製であると共に、その端部に形成さ
れた凹部を有し、上記凹部内に所定工具の係合部を具備
していることを特徴とする膨張弁。
3. According to a displacement of a diaphragm in a temperature-sensitive chamber provided at an upper end of a valve body having a first passage through which a refrigerant flows from the receiver to the evaporator and a second passage through which the refrigerant flows from the evaporator to the compressor. A temperature expansion valve in which an adjusting screw for adjusting a pressing force of a compression spring for adjusting an opening degree of the valve body is attached to a lower end portion of the valve body so as to be able to advance and retreat. An expansion valve having a concave portion formed at an end thereof and having an engaging portion for a predetermined tool in the concave portion.
【請求項4】 上記樹脂がグラスファイバ入りポリフェ
ニリンサルファイトであることを特徴とする請求項1乃
至3のいずれか1項に記載の膨張弁。
4. The expansion valve according to claim 1, wherein the resin is glass fiber-containing polyphenylene sulfite.
JP10139344A 1998-05-21 1998-05-21 Expansion valve Pending JPH11325661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10139344A JPH11325661A (en) 1998-05-21 1998-05-21 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10139344A JPH11325661A (en) 1998-05-21 1998-05-21 Expansion valve

Publications (1)

Publication Number Publication Date
JPH11325661A true JPH11325661A (en) 1999-11-26

Family

ID=15243153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10139344A Pending JPH11325661A (en) 1998-05-21 1998-05-21 Expansion valve

Country Status (1)

Country Link
JP (1) JPH11325661A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1302733A1 (en) * 2001-10-10 2003-04-16 TGK CO., Ltd. Expansion valve
US9145042B2 (en) 2010-04-26 2015-09-29 Toyota Jidosha Kabushiki Kaisha Air conditioning apparatus for a vehicle
JP2020143855A (en) * 2019-03-07 2020-09-10 株式会社不二工機 Expansion valve
JP2020165441A (en) * 2019-03-28 2020-10-08 株式会社鷺宮製作所 Temperature expansion valve and refrigeration cycle system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1302733A1 (en) * 2001-10-10 2003-04-16 TGK CO., Ltd. Expansion valve
US6612503B2 (en) 2001-10-10 2003-09-02 Tgk Co., Ltd. Expansion valve
US9145042B2 (en) 2010-04-26 2015-09-29 Toyota Jidosha Kabushiki Kaisha Air conditioning apparatus for a vehicle
JP2020143855A (en) * 2019-03-07 2020-09-10 株式会社不二工機 Expansion valve
JP2020165441A (en) * 2019-03-28 2020-10-08 株式会社鷺宮製作所 Temperature expansion valve and refrigeration cycle system

Similar Documents

Publication Publication Date Title
CN1161577C (en) Modular thermal expansion valve and cartridge therefor
JP5991802B2 (en) Valve device
KR19980079358A (en) Thermostatic expansion valve
US6092733A (en) Expansion valve
JP3785229B2 (en) Expansion valve
KR100725972B1 (en) Temperature expansion valve
KR19980032164A (en) Expansion valve
JPH11325660A (en) Expansion valve
KR100572763B1 (en) Expansion valve
US6612503B2 (en) Expansion valve
US20050120741A1 (en) Expansion valve
JPH0926235A (en) Expansion valve
JPH11325661A (en) Expansion valve
JP2001199230A (en) Temperature expansiion valve
JP2000304381A (en) Temperature expansion valve
JP2001012824A (en) Control valve
JP4294155B2 (en) Temperature expansion valve
JPH09159324A (en) Expansion valve
JP4743926B2 (en) Expansion valve
JPH10122706A (en) Expansion valve
JP4081295B2 (en) Expansion valve
JP2000346494A (en) Temperature type expansion valve
JPH11325307A (en) Temperature expansion valve
JP2002267291A (en) Thermal expansion valve
JP2000111208A (en) Temperature system of expansion valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106