JPH11322308A - Production of compound metal oxide - Google Patents

Production of compound metal oxide

Info

Publication number
JPH11322308A
JPH11322308A JP10135017A JP13501798A JPH11322308A JP H11322308 A JPH11322308 A JP H11322308A JP 10135017 A JP10135017 A JP 10135017A JP 13501798 A JP13501798 A JP 13501798A JP H11322308 A JPH11322308 A JP H11322308A
Authority
JP
Japan
Prior art keywords
metal oxide
composite metal
phosphor
polyol
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10135017A
Other languages
Japanese (ja)
Inventor
Masato Kakihana
眞人 垣花
Toru Okubo
透 大久保
Tetsuji Iwama
哲治 岩間
Takeyoshi Matsumoto
武佳 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Original Assignee
Kasei Optonix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd filed Critical Kasei Optonix Ltd
Priority to JP10135017A priority Critical patent/JPH11322308A/en
Publication of JPH11322308A publication Critical patent/JPH11322308A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing ultrafine compound metal oxide particle having a single-phase structure at a low cost. SOLUTION: Plural kinds of metallic compounds are dissolved in an aqueous solution of a polyol to effect the reaction of the polyol with the metallic compounds. The metal complex produced by the reaction is gelled by removing water and the obtained compound metal oxide precursor is baked to produce the objective compound metal oxide. Preferably, the polyol is ethylene glycol and/or propylene glycol and the precursor is baked at temperatures of 400-1400 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複合金属酸化物の
製造方法に関し、単相化されて均一な化学組成を有する
超微粒子の複合金属酸化物を製造する方法に関する。
The present invention relates to a method for producing a composite metal oxide, and more particularly to a method for producing an ultrafine composite metal oxide having a single phase and a uniform chemical composition.

【0002】[0002]

【従来の技術】複合金属酸化物、特に、遷移金属に代表
される原子価の変化し易い金属を含む複合金属酸化物
は、蛍光体、磁性体、誘電体、光触媒、導電体、フィル
ター顔料等に利用されている。
2. Description of the Related Art Composite metal oxides, particularly composite metal oxides containing a metal whose valence is liable to change, such as transition metals, include fluorescent materials, magnetic materials, dielectric materials, photocatalysts, conductors, and filter pigments. It is used for

【0003】かかる複合金属酸化物は、例えば、蛍光体
の場合は、ディスプレー超高精細化に伴い、高度に単相
化され均一な化学組成を有し、かつ超微粒子に細分化さ
れたものが要求される。
[0003] In the case of phosphors, for example, in the case of phosphors, those having a high degree of single phase and a uniform chemical composition with the ultra-high definition of the display and being finely divided into ultra-fine particles may be used. Required.

【0004】従来、蛍光体は、構成金属元素を含む酸化
物などの原料を混合した後、1400℃以上の高温で焼
成することによって固体間反応で蛍光体を製造するのが
一般的であった(固相法)。しかし、この方法では固体
間反応を行うため高温で長時間焼成する必要があり、そ
の結果、蛍光体の粒子径が大きくなる。小粒径のものを
得るためにはさらに粉砕、分級等を行うが、これらの小
粒径化方法は粒子径を調整するのが難しく、収率も低
い。
Conventionally, a phosphor has generally been produced by a solid-to-solid reaction by mixing raw materials such as an oxide containing a constituent metal element and then firing the mixture at a high temperature of 1400 ° C. or higher. (Solid phase method). However, in this method, it is necessary to perform calcination at a high temperature for a long time in order to perform a solid-solid reaction, and as a result, the particle diameter of the phosphor increases. In order to obtain particles having a small particle size, pulverization, classification, and the like are further performed. However, in these methods for reducing the particle size, it is difficult to adjust the particle size, and the yield is low.

【0005】一方、複合金属酸化物の製造法には下記の
液相法も知られている。 (a)複数の有機酸金属塩を有機溶媒中に溶解し、次い
で、加熱して有機溶媒の一部を蒸発させてゲル状の複合
金属酸化物の前駆体を生成し、加熱分解して複合金属酸
化物を製造するクエン酸法(日本金属学会会報、第26
巻、第10号、pp.943〜949)、(b)複数の
金属塩の水溶液にアルカリや蓚酸などの沈殿化剤を添加
して金属の水酸化物や蓚酸塩などを共沈させ、得られた
沈殿物を焼成し酸化する共沈法、(c)複数の金属化合
物とアルコールを反応させて金属アルコキシドを生成
し、これを熱分解するアルコキシド法、(d)複数の金
属塩及び/又はアルコキシド、並びに、オキシカルボン
酸又はポリアミノキレート剤を含有する溶媒に、ポリオ
ールを添加して重合させる錯体重合法(特開平6−11
5934号公報)。
On the other hand, the following liquid phase method is also known as a method for producing a composite metal oxide. (A) dissolving a plurality of organic acid metal salts in an organic solvent, and then heating to evaporate a part of the organic solvent to form a gel-like composite metal oxide precursor, which is thermally decomposed to form a composite; Citric acid method for producing metal oxides (Journal of the Japan Institute of Metals, 26th edition)
Vol. 10, No. pp. 943-949), (b) A hydroxide or oxalate of a metal is coprecipitated by adding a precipitating agent such as alkali or oxalic acid to an aqueous solution of a plurality of metal salts, and the resulting precipitate is calcined and oxidized. (C) an alkoxide method of reacting a plurality of metal compounds with an alcohol to produce a metal alkoxide and thermally decomposing the metal alkoxide, (d) a plurality of metal salts and / or alkoxides, and oxycarboxylic acid or A complex polymerization method in which a polyol is added to a solvent containing a polyamino chelating agent to carry out polymerization (Japanese Patent Laid-Open No.
No. 5934).

【0006】これらの液相法のうち、(a)クエン酸法
及び(c)アルコキシド法は、原料中の有機溶媒を除去
するときの、各原料化合物の溶解度に差があるため、均
一な複合金属酸化物を得ることが難しく、複合金属酸化
物の製造を煩雑にしている。また、(b)共沈法は、共
沈の操作範囲が狭いため、適用できる金属元素が限定さ
れ、金属元素の組み合わせや金属元素の比率を自由に選
択することが難しいため、所望の複合金属酸化物を得る
ことができない。さらに、(d)錯体重合法は、均一な
組成の複合金属酸化物を得るために、得られた錯体を重
合するために有機物を多量に使用しなければならず、生
産性、製造コストの面から改善が求められている。
[0006] Among these liquid phase methods, the (a) citric acid method and (c) alkoxide method have a difference in the solubility of each raw material compound when the organic solvent in the raw material is removed. It is difficult to obtain a metal oxide, and the production of a composite metal oxide is complicated. Further, (b) the coprecipitation method has a narrow operation range of coprecipitation, so that applicable metal elements are limited, and it is difficult to freely select a combination of metal elements and a ratio of metal elements. Oxide cannot be obtained. Further, in the complex polymerization method (d), in order to obtain a composite metal oxide having a uniform composition, a large amount of an organic substance must be used to polymerize the obtained complex. Are required to improve.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明は、前
記の液相法の欠点を解消し、単相化されかつ超微粒子の
複合金属酸化物を低コストで製造する方法を提供しよう
とするものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned drawbacks of the liquid phase method and to provide a method for producing a single-phase and ultrafine composite metal oxide at low cost. Things.

【0008】[0008]

【課題を解決するための手段】本発明は、下記の構成を
採用することにより、前記の課題の解決に成功した。 (1) ポリオール水溶液中に複数の金属化合物を溶解し、
ポリオールと前記金属化合物を反応させて金属錯体を生
成し、水を除去してゲル化し、複合金属酸化物の前駆体
を製造した後、該前駆体を焼成することを特徴とする複
合金属酸化物の製造方法。
The present invention has succeeded in solving the above-mentioned problems by employing the following constitutions. (1) dissolving a plurality of metal compounds in a polyol aqueous solution,
Reacting a polyol with the metal compound to form a metal complex, removing water to form a gel, producing a precursor of the composite metal oxide, and then calcining the precursor. Manufacturing method.

【0009】(2) 前記ポリオールがエチレングリコール
及び/又はプロピレングリコールであることを特徴とす
る前記(1) 記載の複合金属酸化物の製造方法。 (3) 前記金属化合物が水溶性の炭酸塩、硝酸塩、硫酸
塩、又はカルボン酸塩であることを特徴とする前記(1)
又は(2) 記載の複合金属酸化物の製造方法。
(2) The method for producing a composite metal oxide according to (1), wherein the polyol is ethylene glycol and / or propylene glycol. (3) wherein the metal compound is a water-soluble carbonate, nitrate, sulfate, or carboxylate (1)
Or the method for producing a composite metal oxide according to (2).

【0010】(4) 前記金属錯体を150〜300℃の温
度でゲル化処理することを特徴とする前記(1) 〜(3) の
いづれか1つに記載の複合金属酸化物の製造方法。 (5) 前記前駆体を400〜1400℃の温度で焼成する
ことを特徴とする前記(1) 〜(4) のいづれか1つに記載
の複合金属酸化物の製造方法。
(4) The method for producing a composite metal oxide according to any one of (1) to (3), wherein the metal complex is subjected to a gelling treatment at a temperature of 150 to 300 ° C. (5) The method for producing a composite metal oxide according to any one of (1) to (4), wherein the precursor is calcined at a temperature of 400 to 1400 ° C.

【0011】(5) 前記複合金属酸化物の粒子径が50〜
800nmの範囲になるように焼成することを特徴とす
る前記(1) 〜(4) のいづれか1つに記載の複合金属酸化
物の製造方法。 (6) 前記複合金属酸化物が蛍光体であることを特徴とす
る前記(1) 〜(5) のいづれか1つに記載の複合金属酸化
物の製造方法。
(5) The composite metal oxide has a particle diameter of 50 to 50
The method for producing a composite metal oxide according to any one of the above (1) to (4), wherein the composite metal oxide is fired so as to have a range of 800 nm. (6) The method for producing a composite metal oxide according to any one of (1) to (5), wherein the composite metal oxide is a phosphor.

【0012】[0012]

【発明の実施の形態】本発明は、ポリオール水溶液中に
複数の金属化合物を溶解し反応させて金属錯体を生成
し、水を除去してゲル化し、複合金属酸化物の前駆体を
製造した後、該前駆体を焼成することにより、単相化さ
れかつ超微粒子の複合金属酸化物を低コストで製造する
ことを可能にした。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a precursor of a composite metal oxide by dissolving and reacting a plurality of metal compounds in an aqueous polyol solution to form a metal complex, removing water and gelling the complex. By firing the precursor, a single-phase and ultrafine composite metal oxide can be produced at low cost.

【0013】本発明で用いる複合金属酸化物、例えば、
蛍光体の場合の母体及び付活剤を構成する金属元素の化
合物は、前記金属元素の水溶性の炭酸塩、硝酸塩、硫酸
塩、カルボン酸塩(好ましくは炭素数1〜6のカルボン
酸塩、特に酢酸塩)等を使用することができる。その中
でも、硝酸塩、酢酸塩及びその他のカルボン酸塩が焼成
時の分解性の点から好ましい。
The composite metal oxide used in the present invention, for example,
In the case of the phosphor, the compound of the metal element constituting the host and the activator may be a water-soluble carbonate, nitrate, sulfate or carboxylate of the metal element (preferably a carboxylate having 1 to 6 carbon atoms, In particular, acetate) can be used. Among them, nitrates, acetates, and other carboxylate salts are preferable from the viewpoint of decomposability during firing.

【0014】本発明の複合金属酸化物を構成する金属元
素としては、Ti、V、Cr、Mn、Fe、Co、N
i、Cu、Zr、Nb、Mo、Hf、Ta、W等の遷移
金属、Ga、Ge、In、Sn、Sb、Tl、Pb、B
i、Po等の典型金属、及び、蛍光体の母体、付活剤に
使用されるGd、Eu、Tb、Sm、Pr、Ce、Yb
等の希土類(ランタノイド)金属を用いることができ
る。
The metal elements constituting the composite metal oxide of the present invention include Ti, V, Cr, Mn, Fe, Co, N
i, transition metal such as Cu, Zr, Nb, Mo, Hf, Ta, W, Ga, Ge, In, Sn, Sb, Tl, Pb, B
Typical metals such as i and Po, and Gd, Eu, Tb, Sm, Pr, Ce, and Yb used for the base material and activator of the phosphor
Rare earth (lanthanoid) metals such as

【0015】また、本発明で使用するポリオールとして
は、エチレングリコール(沸点;197℃)、プロピレ
ングリコール(沸点;188℃)、トリメチレングリコ
ール(沸点;210℃)、1,4−ブタジオール(沸
点;235℃)、1,5−ペンタジオール(沸点;24
1℃)、1,6−ヘキサンジオール(沸点;132℃)
等を挙げることができ、その中でも特に、均一性、コス
ト面でエチレングリコールが好ましかった。また、プロ
ピレングリコールが環境安全面では好ましい。
The polyols used in the present invention include ethylene glycol (boiling point: 197 ° C.), propylene glycol (boiling point: 188 ° C.), trimethylene glycol (boiling point: 210 ° C.), 1,4-butadiol (boiling point; 235 ° C.), 1,5-pentadiol (boiling point: 24
1 ° C), 1,6-hexanediol (boiling point: 132 ° C)
And the like. Among them, ethylene glycol is particularly preferred in terms of uniformity and cost. In addition, propylene glycol is preferable in terms of environmental safety.

【0016】また、ポリオールの総添加量は、複合金属
酸化物を構成する金属元素の全モル数に対して、0.5
〜30倍、好ましくは5〜10倍の範囲が適当である。
ポリオールの使用量が0.5倍より少ないと、ゲル化反
応が起こり難く、均一な化合物を形成しないおそれがあ
り、また、30倍モルを超えて使用しても、ポリオール
の添加効果が増大せず、複合金属酸化物の製造コストが
増加するので好ましくない。
The total amount of the polyol added is 0.5 to the total number of moles of the metal element constituting the composite metal oxide.
A range of 30 to 30 times, preferably 5 to 10 times is appropriate.
If the amount of the polyol is less than 0.5 times, the gelling reaction is unlikely to occur, and there is a possibility that a uniform compound is not formed. However, the production cost of the composite metal oxide increases, which is not preferable.

【0017】ゲル化処理は、金属元素イオン、ポリオー
ルを含む水を加熱して行うが、この時の温度は、ポリオ
ールの沸点を勘案して150〜300℃、好ましくは2
00〜250℃の範囲が適当である。また、適度に水分
を蒸発させた後に、スプレー乾燥、真空乾燥、凍結乾燥
等の手段を用いて複合金属酸化物の前駆体を得ることも
できる。
The gelation treatment is carried out by heating water containing metal element ions and polyol. The temperature at this time is 150 to 300 ° C. in consideration of the boiling point of the polyol, preferably 2 to 300 ° C.
The range of 00 to 250 ° C is appropriate. In addition, after evaporating water to an appropriate degree, a precursor of the composite metal oxide can be obtained by means of spray drying, vacuum drying, freeze drying or the like.

【0018】次に、前駆体を焼成して複合金属酸化物粉
末を得る。この時の焼成温度は、複合金属酸化物の種類
にもよるが、400〜1400℃、好ましくは700〜
1100℃の範囲が適当である。この焼成温度が400
℃未満では、前駆体を熱分解酸化させることができず、
1400℃を超えると、粒成長が異常に進行したり、構
成成分が蒸発して単相化しないおそれがある。また、焼
成雰囲気は、必ずしも空気中である必要はなく、必要に
応じて中性雰囲気や還元性雰囲気中で行ってもよい。
Next, the precursor is fired to obtain a composite metal oxide powder. The firing temperature at this time depends on the type of the composite metal oxide, but is 400 to 1400 ° C., preferably 700 to 1400 ° C.
A range of 1100 ° C. is appropriate. This firing temperature is 400
If the temperature is lower than ℃, the precursor cannot be thermally decomposed and oxidized,
If it exceeds 1400 ° C., there is a possibility that the grain growth may progress abnormally, or the constituent components may evaporate and not form a single phase. The firing atmosphere does not necessarily need to be in the air, and may be performed in a neutral atmosphere or a reducing atmosphere as needed.

【0019】また、本発明では、焼成温度、雰囲気等を
制御して複合金属酸化物の粒子径を50〜800nmに
調整することによって、均一な組成で単相の複合金属酸
化物粒子を得ることができ、特に、蛍光体粒子において
は、母体及び付活剤を構成する各金属元素が均一に混合
され、高純度で発光輝度や色調において、従来の固相法
で得られるものと優るとも劣らない超微粒子状の蛍光体
を低コストで製造することが可能になった。
Further, in the present invention, a single-phase composite metal oxide particle having a uniform composition is obtained by controlling the firing temperature, the atmosphere and the like to adjust the particle diameter of the composite metal oxide to 50 to 800 nm. In particular, in the phosphor particles, the respective metal elements constituting the matrix and the activator are uniformly mixed, and the emission luminance and color tone with high purity are inferior to those obtained by the conventional solid phase method. It has become possible to produce low-priced phosphors at low cost.

【0020】本発明の方法で製造される複合金属酸化物
は、例えば、以下の用途に適用することができる。 (1) 蛍光体: 青色発光蛍光体のBaMgAl1423:Eu、 緑色発光蛍光体のY3 Al5 12:Ce、Y3 Al5
12:Tb 赤色発光蛍光体のY2 3 :Eu等。 (2) ディスプレー用フィルター顔料:Al2 3 ・Co
O系顔料、Fe2 3 ・Al2 3 系顔料等。
The composite metal oxide produced by the method of the present invention can be applied to, for example, the following applications. (1) Phosphor: Blue light-emitting phosphor BaMgAl 14 O 23 : Eu, green light-emitting phosphor Y 3 Al 5 O 12 : Ce, Y 3 Al 5 O
12 : Tb red-emitting phosphor Y 2 O 3 : Eu and the like. (2) Display filter pigment: Al 2 O 3 .Co
O-based pigments, Fe 2 O 3 .Al 2 O 3 -based pigments and the like.

【0021】[0021]

【実施例】(実施例1)ビーカーに水を適当に入れ、1
0モル/kg の濃度になるようにエチレングリコールを加
えて完全に溶解するまで攪拌した。次に、この溶液に硝
酸イットリウム6水和物及び硝酸ユーロピウム6水和物
を順次加え、完全に溶解するまで攪拌して無色透明溶液
を得た。この溶液のY濃度は1.0モル/kg 、Eu濃度
は0.04モル/kg になるように添加した。
EXAMPLES (Example 1) A suitable amount of water was placed in a beaker.
Ethylene glycol was added to a concentration of 0 mol / kg, and the mixture was stirred until it was completely dissolved. Next, yttrium nitrate hexahydrate and europium nitrate hexahydrate were sequentially added to this solution, and the mixture was stirred until completely dissolved to obtain a colorless and transparent solution. The solution was added so that the Y concentration was 1.0 mol / kg and the Eu concentration was 0.04 mol / kg.

【0022】この溶液をビーカーごと200℃に保った
ホットプレート上に置き、蒸発乾固して複合金属酸化物
の前駆体を得た。この前駆体をアルミナボートに入れ、
電気炉を用い350℃で2時間加熱処理して非晶質のY
2 3 :Euを得た。その後、600℃で2時間大気中
で焼成してY2 3 :Eu赤色発光蛍光体を得た。この
蛍光体に対し、254nmの紫外線を照射した時の発光
色(CIE表色系で表した発光色度点)及び発光輝度、
並びにBET法による比表面積の測定値から換算した蛍
光体の粒度(BET法換算値)を求め、表1に結果を示
した。なお、発光輝度は下記の比較例1で得た蛍光体と
の相対値で示した。発光輝度は約60%以上であれば蛍
光体としての機能は発揮される。
This solution was placed on a hot plate maintained at 200 ° C. together with the beaker, and evaporated to dryness to obtain a precursor of a composite metal oxide. Put this precursor in an alumina boat,
Heat treatment at 350 ° C. for 2 hours using an electric furnace to obtain amorphous Y
2 O 3 : Eu was obtained. Then, it was fired in the air at 600 ° C. for 2 hours to obtain a Y 2 O 3 : Eu red light emitting phosphor. Emission color (emission chromaticity point expressed in CIE color system) and emission luminance when this phosphor is irradiated with ultraviolet light of 254 nm,
In addition, the particle size of the phosphor converted from the measured value of the specific surface area by the BET method (BET method converted value) was determined, and the results are shown in Table 1. The emission luminance was shown as a relative value with respect to the phosphor obtained in Comparative Example 1 below. If the light emission luminance is about 60% or more, the function as a phosphor is exhibited.

【0023】(実施例2)実施例1において、前駆体の
焼成温度を600℃から900℃に変更した以外は実施
例1と同様にしてY2 3 :Eu蛍光体を得た。得られ
た蛍光体について実施例1と同様に発光輝度、発光色及
びBET換算粒子径を測定して、結果を表1に示した。
Example 2 A Y 2 O 3 : Eu phosphor was obtained in the same manner as in Example 1 except that the firing temperature of the precursor was changed from 600 ° C. to 900 ° C. The emission luminance, emission color and BET-converted particle size of the obtained phosphor were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0024】(実施例3)実施例1において、前駆体の
焼成温度を600℃から1100℃に変更した以外は実
施例1と同様にしてY2 3 :Eu蛍光体を得た。得ら
れた蛍光体を実施例1と同様に発光輝度、発光色及びB
ET換算粒子径を測定して、結果を表1に示した。
Example 3 A Y 2 O 3 : Eu phosphor was obtained in the same manner as in Example 1 except that the firing temperature of the precursor was changed from 600 ° C. to 1100 ° C. The obtained phosphor was subjected to light emission luminance, light emission color and B light emission in the same manner as in Example 1.
The ET-equivalent particle size was measured, and the results are shown in Table 1.

【0025】(実施例4)実施例1において、前駆体の
焼成温度を600℃から1400℃に変更した以外は実
施例1と同様にしてY2 3 :Eu蛍光体を得た。得ら
れた蛍光体を実施例1と同様に発光輝度、発光色及びB
ET換算粒子径を測定して、結果を表1に示した。
Example 4 A Y 2 O 3 : Eu phosphor was obtained in the same manner as in Example 1 except that the firing temperature of the precursor was changed from 600 ° C. to 1400 ° C. The obtained phosphor was subjected to light emission luminance, light emission color and B light emission in the same manner as in Example 1.
The ET-equivalent particle size was measured, and the results are shown in Table 1.

【0026】(比較例1)原料混合物中の金属元素が実
施例1と同じ化学量論的組成になるように、Y23
びEu2 3 の酸化物粉末を計り取り、これにフッ化バ
リウムをフラックスとして添加・混合してアルミナ坩堝
に詰め、大気中、1500℃で2時間焼成してY
2 3 :Eu蛍光体を得た。得られた蛍光体について実
施例1と同様に発光輝度、発光色及びBET換算粒子径
を測定して、結果を表1に示した。
(Comparative Example 1) An oxide powder of Y 2 O 3 and Eu 2 O 3 was weighed out so that the metal element in the raw material mixture had the same stoichiometric composition as in Example 1, and was fluorinated. Barium fluoride was added and mixed as a flux, packed in an alumina crucible, and fired at 1500 ° C. for 2 hours in the air.
A 2 O 3 : Eu phosphor was obtained. The emission luminance, emission color and BET-converted particle size of the obtained phosphor were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0027】(比較例2)ビーカーに溶媒としてエチレ
ングリコール(EG)及びクエン酸(CA)をEG:C
A=40:10のモル比となるように秤り取り、これを
ホットスターラー上で約40℃に保ち、クエン酸(C
A)が完全に溶解するまで攪拌した。次に、この溶液に
原料金属化合物である、硝酸イットリウム6水和物及び
硝酸ユーロピウム6水和物を、EG:CA:Y:Eu=
40:10:1:0.04のモル比となるような割合で
順次加え、約40℃に保ったままこれらが完全に溶解す
るまで攪拌して無色透明な溶液を得た。
(Comparative Example 2) Ethylene glycol (EG) and citric acid (CA) were used as solvents in a beaker by EG: C
A: weigh out to a molar ratio of 40:10, keep it on a hot stirrer at about 40 ° C., and add citric acid (C
Stir until A) is completely dissolved. Next, yttrium nitrate hexahydrate and europium nitrate hexahydrate, which are raw metal compounds, were added to this solution with EG: CA: Y: Eu =
40: 10: 1: 0.04 were added sequentially in such a ratio as to give a molar ratio, and the mixture was stirred at 40 ° C. until these were completely dissolved to obtain a colorless and transparent solution.

【0028】この溶液をホットスターラー上で約130
℃で加熱攪拌して重合反応を進行させた。重合反応の進
行に伴い溶液の粘度が上昇し、数時間後に茶色のユーロ
ピウム(Eu)とイットリウム(Y)とを含む樹脂状固
体の錯体重合体が生成した。次に、この茶色の樹脂状固
体をマントルヒーターを用い350℃で数時間加熱し、
溶媒及び余分な有機物を除去しながらほぐし、黒色粉末
状固体を得た。この黒色粉末状固体をアルミナボートに
入れ、電気炉を用いて900℃で2時間焼成することに
よって、BET換算粒子径350nmのY2 3 :Eu
蛍光体を得た。得られたY2 3 :Eu蛍光体に対し、
実施例1の場合と同様に発光輝度、発光色並びにBET
換算粒子径を測定して、結果を表1に示した。
The solution was placed on a hot stirrer for about 130
The polymerization reaction was allowed to proceed by heating and stirring at ℃. With the progress of the polymerization reaction, the viscosity of the solution increased, and after several hours, a complex polymer of a resinous solid containing brown europium (Eu) and yttrium (Y) was formed. Next, this brown resinous solid was heated at 350 ° C. for several hours using a mantle heater,
The mixture was loosened while removing the solvent and excess organic substances to obtain a black powdery solid. This black powdery solid was placed in an alumina boat and calcined at 900 ° C. for 2 hours using an electric furnace, whereby Y 2 O 3 : Eu having a BET equivalent particle diameter of 350 nm was obtained.
A phosphor was obtained. With respect to the obtained Y 2 O 3 : Eu phosphor,
Light emission luminance, light emission color and BET as in the case of the first embodiment.
The converted particle size was measured, and the results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1から明らかなように、実施例の各蛍光
体の粒子径はいずれも1000nm(1μm)以下であ
り、本発明の製造方法により蛍光体を製造した場合、超
微粒子化された蛍光体を得ることができた。また、実施
例の各蛍光体の発光色はいずれも比較例1の従来法によ
る蛍光体と同色であり、発光輝度も60%以上の実用可
能な発光輝度を呈しているところから、組成的にも充分
単相化され、均一な化学組成を有しているものと推測さ
れる。また、比較例2の蛍光体は発光輝度レベル、発光
色及び粒子径に関しては各実施例の蛍光体と、特性的に
大差ない蛍光体が得られたが、有機物の使用量が多いた
め、製造コストその他の点で好ましいものではなかっ
た。
As is clear from Table 1, each of the phosphors of the examples has a particle size of 1000 nm (1 μm) or less, and when the phosphor is produced by the production method of the present invention, the ultrafine particles of the phosphor are produced. I got the body. In addition, the emission color of each phosphor of the example is the same as that of the phosphor of the comparative example 1 according to the conventional method, and the emission luminance is 60% or more, which is a practical emission luminance. Is presumed to be sufficiently single-phased and have a uniform chemical composition. In addition, the phosphor of Comparative Example 2 was substantially the same in terms of emission luminance level, emission color, and particle size as the phosphors of each of the Examples, but the amount of organic substances used was large. It was not favorable in terms of cost and other points.

【0031】[0031]

【発明の効果】本発明は、前記の構成を採用することに
より、単相化されかつ超微粒子の複合金属酸化物を低コ
ストで製造することが可能になった。
According to the present invention, by adopting the above-mentioned constitution, it has become possible to produce a single-phase and ultrafine composite metal oxide at low cost.

フロントページの続き (72)発明者 松本 武佳 神奈川県小田原市成田1060番地 化成オプ トニクス株式会社内Continued on the front page (72) Inventor Takeka Matsumoto 1060 Narita, Odawara-shi, Kanagawa Inside Kasei Optonics Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ポリオール水溶液中に複数の金属化合物
を溶解し、ポリオールと前記金属化合物を反応させて金
属錯体を生成し、水を除去してゲル化し、複合金属酸化
物の前駆体を製造した後、該前駆体を焼成することを特
徴とする複合金属酸化物の製造方法。
1. A precursor of a composite metal oxide was produced by dissolving a plurality of metal compounds in an aqueous solution of a polyol, reacting the polyol with the metal compound to form a metal complex, removing water and gelling. And baking the precursor thereafter.
【請求項2】 前記ポリオールがエチレングリコール及
び/又はプロピレングリコールであることを特徴とする
請求項1記載の複合金属酸化物の製造方法。
2. The method for producing a composite metal oxide according to claim 1, wherein the polyol is ethylene glycol and / or propylene glycol.
【請求項3】 前記前駆体を400〜1400℃の温度
で焼成することを特徴とする請求項1又は2記載の複合
金属酸化物の製造方法。
3. The method according to claim 1, wherein the precursor is calcined at a temperature of 400 to 1400 ° C.
【請求項4】 前記複合金属酸化物の粒子径が50〜8
00nmの範囲になるように焼成することを特徴とする
請求項1〜3のいづれか1項に記載の複合金属酸化物の
製造方法。
4. The composite metal oxide has a particle diameter of 50-8.
The method for producing a composite metal oxide according to any one of claims 1 to 3, wherein the firing is performed so as to be in a range of 00 nm.
【請求項5】 前記複合金属酸化物が蛍光体であること
を特徴とする請求項1〜4のいづれか1項に記載の複合
金属酸化物の製造方法。
5. The method for producing a composite metal oxide according to claim 1, wherein the composite metal oxide is a phosphor.
JP10135017A 1998-05-18 1998-05-18 Production of compound metal oxide Pending JPH11322308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10135017A JPH11322308A (en) 1998-05-18 1998-05-18 Production of compound metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10135017A JPH11322308A (en) 1998-05-18 1998-05-18 Production of compound metal oxide

Publications (1)

Publication Number Publication Date
JPH11322308A true JPH11322308A (en) 1999-11-24

Family

ID=15141994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10135017A Pending JPH11322308A (en) 1998-05-18 1998-05-18 Production of compound metal oxide

Country Status (1)

Country Link
JP (1) JPH11322308A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044303A1 (en) * 2000-11-30 2002-06-06 Chubu Chelest Co., Ltd. Process for producing fluorescent metal oxide material
JP2005239821A (en) * 2004-02-25 2005-09-08 Futaba Corp Method for manufacturing phosphor, phosphor, and fluorescent character display tube using the phosphor
WO2006004021A1 (en) * 2004-06-30 2006-01-12 Media Com International Co., Ltd. Light-storing compound and method for producing same
WO2006126392A1 (en) * 2005-05-23 2006-11-30 Keio University Fine particle and red fluorescence conversion medium using same
JP2008069323A (en) * 2006-09-15 2008-03-27 Keio Gijuku Method for producing finely particulate phosphor
JP2009508795A (en) * 2005-09-20 2009-03-05 エルジー・ケム・リミテッド Cerium carbonate powder and production method, cerium oxide powder produced therefrom and production method, and CMP slurry containing the same
JP2010521406A (en) * 2007-03-16 2010-06-24 エルジー・ケム・リミテッド Method for producing cerium carbonate powder
JP2012201714A (en) * 2011-03-24 2012-10-22 Utsunomiya Univ Production method of aluminum oxide fluorescent substance
US8361419B2 (en) 2005-09-20 2013-01-29 Lg Chem, Ltd. Cerium carbonate powder, method for preparing the same, cerium oxide powder made therefrom, method for preparing the same, and CMP slurry comprising the same
KR20220137048A (en) 2020-03-02 2022-10-11 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Amorphous composite metal oxide, garnet-type lithium composite metal oxide, sintered body, solid electrolyte layer, electrode for electrochemical device, electrochemical device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044303A1 (en) * 2000-11-30 2002-06-06 Chubu Chelest Co., Ltd. Process for producing fluorescent metal oxide material
US6899826B2 (en) 2000-11-30 2005-05-31 Chubu Chelest Co., Ltd. Process for producing fluorescent metal oxide material
JP2005239821A (en) * 2004-02-25 2005-09-08 Futaba Corp Method for manufacturing phosphor, phosphor, and fluorescent character display tube using the phosphor
WO2006004021A1 (en) * 2004-06-30 2006-01-12 Media Com International Co., Ltd. Light-storing compound and method for producing same
JP5009792B2 (en) * 2005-05-23 2012-08-22 学校法人慶應義塾 Fine particles and red fluorescence conversion medium using the same
WO2006126392A1 (en) * 2005-05-23 2006-11-30 Keio University Fine particle and red fluorescence conversion medium using same
JP2009508795A (en) * 2005-09-20 2009-03-05 エルジー・ケム・リミテッド Cerium carbonate powder and production method, cerium oxide powder produced therefrom and production method, and CMP slurry containing the same
JP4917098B2 (en) * 2005-09-20 2012-04-18 エルジー・ケム・リミテッド Cerium carbonate powder and production method, cerium oxide powder produced therefrom and production method, and CMP slurry containing the same
US8361419B2 (en) 2005-09-20 2013-01-29 Lg Chem, Ltd. Cerium carbonate powder, method for preparing the same, cerium oxide powder made therefrom, method for preparing the same, and CMP slurry comprising the same
JP2008069323A (en) * 2006-09-15 2008-03-27 Keio Gijuku Method for producing finely particulate phosphor
JP2010521406A (en) * 2007-03-16 2010-06-24 エルジー・ケム・リミテッド Method for producing cerium carbonate powder
JP2012201714A (en) * 2011-03-24 2012-10-22 Utsunomiya Univ Production method of aluminum oxide fluorescent substance
KR20220137048A (en) 2020-03-02 2022-10-11 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Amorphous composite metal oxide, garnet-type lithium composite metal oxide, sintered body, solid electrolyte layer, electrode for electrochemical device, electrochemical device

Similar Documents

Publication Publication Date Title
US6565771B1 (en) Process for producing aluminate-based phosphor
CN108137325B (en) Method for preparing zirconium phosphotungstate
Yongqing et al. Synthesis and characterization of Y2O3: Eu nanopowder via EDTA complexing sol–gel process
KR20110133499A (en) Aluminum oxide phosphor and method for producing same
US20030168636A1 (en) Oxide based phosphors
TW200406358A (en) Method for manufacturing highly-crystallized oxide powder
JPH11322308A (en) Production of compound metal oxide
JP5176084B2 (en) Method for producing metal oxide phosphor
JP6259609B2 (en) Upconversion type phosphor and method for producing the same
JP2004043216A (en) Method for manufacturing highly-crystallized double oxide powder
JP2007217202A (en) Method for producing complex metal oxide
JP5483898B2 (en) Method for producing oxide phosphor
KR101414948B1 (en) PROCESS FOR PRODUCTION OF Eu-ACTIVATED ALKALINE EARTH METAL SILICATE PHOSPHOR
JPH11181419A (en) Production of metal oxide-based fluophor
JP2000001672A (en) Luminous fluorescent particulate powder and its production
JP3833617B2 (en) Method for manufacturing illuminant
JPH1171103A (en) Precursor of composite metal oxide and production of composite metal oxide
JP2001234166A (en) Yttrium silicate fluorescent substance for low voltage drive and its preparation process
JP3956557B2 (en) Method for producing aluminate phosphor for phosphorescent material
CN101265408B (en) Samarium doping gadolinium aluminate base fluorescent powder body and preparation method thereof
JPH11314905A (en) Production of multiple metal oxide
JPS59164631A (en) Manufacture of oxysulfide of rare earth element
JP2008001908A (en) Composite nitride phosphor
Petrykin et al. Synthesis of BaAl2S4: Eu2+ electroluminescent material by the polymerizable complex method combined with CS2 sulfurization
JP2001220582A (en) Preparation process of aluminate phosphor