JPH11320035A - Method for continuously casting steel - Google Patents

Method for continuously casting steel

Info

Publication number
JPH11320035A
JPH11320035A JP13808198A JP13808198A JPH11320035A JP H11320035 A JPH11320035 A JP H11320035A JP 13808198 A JP13808198 A JP 13808198A JP 13808198 A JP13808198 A JP 13808198A JP H11320035 A JPH11320035 A JP H11320035A
Authority
JP
Japan
Prior art keywords
flow
molten steel
mold
sec
electromagnetic induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13808198A
Other languages
Japanese (ja)
Inventor
Hiroshi Harada
寛 原田
Eiichi Takeuchi
栄一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13808198A priority Critical patent/JPH11320035A/en
Publication of JPH11320035A publication Critical patent/JPH11320035A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a producing method of a continuously cast billet having a small cross sectional area, in which the surface characteristic is good and the equiaxed crystallization is progressed. SOLUTION: At the time of continuously casting molten steel for producing cast billet having a small cross section, an electromagnetic induction stirring device is disposed in a mold, and the molten steel is directly poured from a tundish nozzle 2 without using an immersion nozzle, and the circular flow and the molten steel pouring flow are controlled with the electromagnetic induction stirring device 5-1, 5-2 as the following inequality and are cast. Inequality; (U<2> /D)<((120×H×V<2> )/L<2> ), wherein, U is a flowing speed of the poured molten steel stream (cm/sec), D is the diameter of the tundish nozzle (cm), L is the diameter corresponding to the circle of the cast billet (cm), H is the height of coil in the electromagnetic induction stirring device and V is a flow speed of circular flow (cm/sec).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は長辺が200mm以
下の角鋳片または直径が200mm以下の丸鋳片を製造
する鋼の連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method of steel for producing a square slab having a long side of 200 mm or less or a round slab having a diameter of 200 mm or less.

【0002】[0002]

【従来の技術】図1は長辺が200mm以下の角鋳片ま
たは直径が200mm以下の丸鋳片の連続鋳造の説明図
で、(A)は縦断面の説明図、(B)は矢視イ−イ横断
面の説明図である。これ等の断面積が小さい角鋳片や丸
鋳片の連続鋳造では、浸漬ノズルを用いることなく、タ
ンディッシュノズル2から鋳型1に直接に溶鋼3を注入
する場合が多い。この際、タンディッシュ内の溶鋼3の
高さが例えば大きい場合は、タンディッシュ内の溶鋼3
の静圧により、タンディッシュノズル2から流下する注
入溶鋼流6の流速U(cm/秒)は大きく、また溶鋼の
静圧が小さい場合はUも小さい。注入溶鋼流6の流速U
は、溶鋼の静圧によって制御できるが、鋳片の引き抜き
速度から把握することもできる。尚タンディッシュノズ
ル2の出口の直径D(cm)は、注入溶鋼流6の注入流
の直径におおよそ等しい。
2. Description of the Related Art FIG. 1 is an explanatory view of continuous casting of a square slab having a long side of 200 mm or less or a round slab having a diameter of 200 mm or less, (A) is an explanatory view of a longitudinal section, and (B) is an arrow. It is explanatory drawing of an ii horizontal cross section. In the continuous casting of square cast pieces and round cast pieces having a small cross-sectional area, molten steel 3 is often directly injected from the tundish nozzle 2 into the mold 1 without using an immersion nozzle. At this time, if the height of the molten steel 3 in the tundish is large, for example,
, The flow rate U (cm / sec) of the molten steel flow 6 flowing down from the tundish nozzle 2 is large, and U is small when the static pressure of the molten steel is small. Flow velocity U of molten steel flow 6
Can be controlled by the static pressure of the molten steel, but can also be determined from the speed of drawing the slab. The diameter D (cm) of the outlet of the tundish nozzle 2 is approximately equal to the diameter of the injected molten steel flow 6.

【0003】図1で5−1,5−2は電磁誘導撹拌装置
の例である。例えば電磁誘導撹拌装置5−1は鋳型1の
内壁面に配され、移動磁場を形成する事により電磁誘導
撹拌装置5−1側の未凝固溶鋼を矢印7−1方向に移動
させる。また例えば5−1と対象の位置に配された電磁
誘導撹拌装置5−2は移動磁場を形成して5−2側の未
凝固溶鋼を矢印7−2方向に移動させる。矢印7−1方
向の溶鋼流と矢印7−2方向の溶鋼流によって、溶鋼に
は例えば右回りの水平な旋回流が形成される。
In FIG. 1, reference numerals 5-1 and 5-2 denote examples of an electromagnetic induction stirrer. For example, the electromagnetic induction stirrer 5-1 is disposed on the inner wall surface of the mold 1, and moves the unsolidified molten steel on the electromagnetic induction stirrer 5-1 side in the direction of arrow 7-1 by forming a moving magnetic field. In addition, for example, the electromagnetic induction stirrer 5-2 disposed at the target position with 5-1 forms a moving magnetic field to move the unsolidified molten steel on the 5-2 side in the direction of arrow 7-2. The molten steel flow in the direction of the arrow 7-1 and the molten steel flow in the direction of the arrow 7-2 form, for example, a clockwise horizontal swirling flow in the molten steel.

【0004】鋳型内の溶鋼のメニスカス8は、注入溶鋼
流6の直下は高温であるが、鋳型1と接触している外周
部は鋳型1により冷却されて低温である。浸漬ノズルを
用いることなくタンディッシュノズルから直接鋳型内に
溶鋼を注入する場合、一般的に潤滑材としてオイルが用
いられる。オイルを潤滑材として使用する場合、メニス
カス近傍での熱抵抗が小さく強冷却となりやすい。その
ため、メニスカス直上まで強固な凝固シェルが形成され
やすい。一方、タンディッシュノズルから直接鋳型内に
溶鋼を供給する場合、注入流の乱れや鋳型内湯面への注
入流の衝突時にスプラッシュを形成する。このスプラッ
シュの一部は鋳型壁、タンディッシュ等に衝突した後、
再度鋳型内に持ち込まれる。
The meniscus 8 of the molten steel in the mold has a high temperature immediately below the molten steel flow 6, but its outer peripheral portion in contact with the mold 1 is cooled by the mold 1 and has a low temperature. When pouring molten steel into a mold directly from a tundish nozzle without using an immersion nozzle, oil is generally used as a lubricant. When oil is used as the lubricant, the thermal resistance near the meniscus is small and the cooling tends to be strong. Therefore, a solid solidified shell is easily formed up to just above the meniscus. On the other hand, when the molten steel is supplied directly from the tundish nozzle into the mold, a splash is formed when the injected flow is disturbed or when the injected flow collides with the molten metal surface in the mold. After a part of this splash collides with the mold wall, tundish, etc.,
It is brought back into the mold.

【0005】鋳型内に再度持ち込まれたスプラッシュの
成分は鉄だけでなく湯面に浮遊しているスラグを含み、
かつ一旦大気中を浮遊するため酸化鉄でその周囲が取り
囲まれまた内部にポロシティを伴うものが多い。そのた
め、再度鋳型内に持ち込まれたスプラッシュの融点は高
くかつ密度は小さくなっている。このようにして再度鋳
型内に持ち込まれたスプラッシュは密度が小さいため、
鋳型内では湯面近傍に浮遊しやすい傾向にあると共に、
鋳型壁周囲では溶鋼温度が低いため溶融しずらい状況に
あるものと考えられる。
[0005] The components of the splash brought back into the mold include not only iron but also slag floating on the surface of the molten metal,
In addition, since it once floats in the atmosphere, its surroundings are often surrounded by iron oxide and often have porosity inside. Therefore, the melting point of the splash brought back into the mold is high and the density is low. The splash brought back into the mold in this way has a low density,
In the mold, it tends to float near the molten metal surface,
It is considered that the molten steel temperature around the mold wall is so low that it is difficult to melt.

【0006】このようなスプラッシュが鋳型壁に近づく
とメニスカス直上まで伸びた凝固シェルに容易に捕捉さ
れてしまう。一旦捕捉されると鋳片表面欠陥となり問題
となる。そのため、メニスカス部での異常凝固シェル形
成の防止、再度持ち込まれたスプラッシュの凝固シェル
への捕捉防止並びにスプラッシュの溶融を促進させる技
術が必要となる。
[0006] When such a splash approaches the mold wall, it is easily captured by the solidified shell extending just above the meniscus. Once caught, it becomes a slab surface defect and becomes a problem. Therefore, a technique for preventing abnormal solidification shell formation at the meniscus portion, preventing trapped splashes in the solidification shells, and promoting the melting of splashes is required.

【0007】また電磁誘導撹拌装置による旋回流は、凝
固シェル4に発生するデンドライトを分断し、分断され
たデンドライトは等軸晶の核となるために、電磁誘導撹
拌装置を用いると、鋳片の柱状晶の組織を改善し、等軸
晶化した組織の鋳片が得られるといわれている。しかし
従来は安定して高い等軸晶率が得られる旋回流に関する
統一した見解はない。
In addition, the swirling flow generated by the electromagnetic induction stirrer separates the dendrite generated in the solidified shell 4 and the separated dendrite becomes nuclei of equiaxed crystals. It is said that the structure of columnar crystals is improved, and a cast slab having a structure of equiaxed crystal is obtained. However, heretofore, there has been no unified opinion regarding swirling flows that can stably obtain a high equiaxed crystal ratio.

【0008】[0008]

【発明が解決しようとする課題】本発明はこれ等の問題
点を解決するもので、即ち連続鋳造において変動する旋
回流以外の変動要因を旋回流と関連づけて、鋳片の優れ
た表面性状と等軸晶化が従来よりも高い再現性で得られ
る鋼の連続鋳造方法の提供を課題としている。
SUMMARY OF THE INVENTION The present invention solves these problems. That is, the present invention relates to a swirl flow that relates to a fluctuation factor other than the swirl flow that fluctuates in continuous casting, thereby improving the excellent surface properties of the slab. It is an object of the present invention to provide a continuous casting method for steel in which equiaxed crystallization is obtained with higher reproducibility than before.

【0009】[0009]

【課題を解決するための手段】連続鋳造鋳型への溶鋼の
供給速度(トン/分)は、タンディッシュノズル径Dc
mとタンディッシュノズルから流出する注入溶鋼流の流
速U(cm/秒)によって決まる。尚注入溶鋼流の流速
Uは、例えばタンディッシュ内溶鋼の静圧によって制御
できる。本発明者等の知見によると、長辺が200mm
以下の角鋳片または直径が200mm以下の丸鋳片の連
続鋳造においては、溶鋼の供給速度(トン/分)が同じ
であってもDが小さくUが大きい場合は鋳片の表面性状
が悪く、等軸晶率が小さい。Dを大きくしUを小さくす
ると表面性状や等軸晶率が改善される。
The supply speed (ton / min) of molten steel to the continuous casting mold is determined by the tundish nozzle diameter Dc.
m and the flow rate U (cm / sec) of the molten steel flow flowing out of the tundish nozzle. The flow velocity U of the molten steel flow can be controlled, for example, by the static pressure of the molten steel in the tundish. According to the findings of the present inventors, the long side is 200 mm
In continuous casting of the following square slabs or round slabs having a diameter of 200 mm or less, if the D is small and the U is large, the surface properties of the slabs are poor even if the supply speed (ton / min) of the molten steel is the same. Low equiaxed crystal ratio. When D is increased and U is decreased, the surface properties and the equiaxed crystal ratio are improved.

【0010】また本発明者等の知見によると、電磁誘導
撹拌装置により形成する旋回流は、その旋回流速V(c
m/秒)が小さい場合は鋳片の表面性状が悪く、等軸晶
率が小さい。Vを大きくすると、鋳片の表面性状や等軸
晶率が改善される。
According to the findings of the present inventors, the swirling flow formed by the electromagnetic induction stirring device has a swirling flow velocity V (c
(m / sec) is small, the surface properties of the slab are poor and the equiaxed crystal ratio is small. When V is increased, the surface properties and the equiaxed crystal ratio of the slab are improved.

【0011】本発明者等は、DとUとVとに着目して検
討した結果、下記(1)式の如くにこれ等を制御する
と、鋳片の表面性状や等軸晶率が顕著に改善される事を
知得して本発明をなすに至った。即ち本発明は、長辺が
200mm以下の角鋳片または直径が200mm以下の
丸鋳片の連続鋳造に際し、鋳型内に設けた電磁誘導撹拌
装置により鋳型内の溶鋼に水平な旋回流を形成し、浸漬
ノズルを介さないでタンディッシュから鋳型に直接に溶
鋼を注入し、注入流と旋回流とを下記(1)式の如くに
制御して鋳造する事を特徴とする、鋼の連続鋳造方法で
ある。
The inventors of the present invention have focused on D, U and V, and as a result, when these factors are controlled as in the following equation (1), the surface properties and the equiaxed crystal ratio of the cast slab are remarkably increased. The inventor of the present invention has realized that the present invention can be improved. That is, the present invention forms a horizontal swirling flow in the molten steel in the mold by the electromagnetic induction stirrer provided in the mold during continuous casting of a square slab having a long side of 200 mm or less or a round slab having a diameter of 200 mm or less. A continuous casting method of steel, characterized by injecting molten steel directly from a tundish into a mold without passing through an immersion nozzle, and casting by controlling an injection flow and a swirling flow as in the following equation (1). It is.

【0012】 {U2/D}<{(120×H×V2)/L2}……………(1) 但しL:鋳片の円相当径(cm)、H:電磁誘導撹拌装
置のコイルの高さ。
{U 2 / D} <{(120 × H × V 2 ) / L 2 } (1) where L: equivalent diameter of cast slab (cm), H: electromagnetic induction stirrer Coil height.

【0013】[0013]

【発明の実施の形態および実施例】表1は、本発明者等
が行った鋳造試験とその結果の例である。番号1〜3は
12cm×12cmの角ビレットを2.8m/分の引抜
速度で鋳造した例である。この際にはD=2cmのタン
ディッシュノズルを用いたが(1)式から得られる旋回
流の流速Vは30cm/sec以上となる。番号1は操業旋
回流の流速が25cm/secで低過ぎるために、鋳片の表
面性状も等軸晶率も不十分である。操業旋回流の流速V
を30cm/sec以上にする事により、番号2及び3の如
く、表面性状も等軸晶率も改善される。
BEST MODE FOR CARRYING OUT THE INVENTION Table 1 shows examples of casting tests performed by the present inventors and the results thereof. Nos. 1 to 3 are examples in which a square billet of 12 cm × 12 cm was cast at a drawing speed of 2.8 m / min. In this case, a tundish nozzle of D = 2 cm was used, but the flow velocity V of the swirling flow obtained from the equation (1) is 30 cm / sec or more. In the case of No. 1, the flow rate of the operation swirling flow is 25 cm / sec, which is too low, so that the surface properties of the slab and the equiaxed crystal ratio are insufficient. Velocity of operating swirl flow V
The surface property and the equiaxed crystal ratio are improved as shown in Nos. 2 and 3 by setting the surface tension to 30 cm / sec or more.

【0014】表1の番号4〜5は、同じ寸法の角ビレッ
トを同じ引抜速度で鋳造した例であるが、この際にはD
=1.8cmのタンディッシュノズルを用いた。引抜速度
を番号1〜3と同じ2.8m/分に保つためにUは26
5cm/secとした。この際には(1)式から得られる旋
回流の流速Vは39cm/sec以上となる。この結果、番
号4〜5の30cm/sec〜35cm/secの操業旋回流では
不十分で、番号6にみられる如く、40cm/secとする
事によって好ましい結果が得られる。
Nos. 4 and 5 in Table 1 are examples in which square billets of the same dimensions were cast at the same drawing speed.
= 1.8 cm tundish nozzle was used. In order to keep the drawing speed at 2.8 m / min, which is the same as that of Nos. 1 to 3, U is 26.
5 cm / sec. At this time, the flow velocity V of the swirling flow obtained from the equation (1) is 39 cm / sec or more. As a result, the operation swirling flow of 30 cm / sec to 35 cm / sec of Nos. 4 to 5 is not sufficient, and as shown in No. 6, a preferable result can be obtained by setting it to 40 cm / sec.

【0015】[0015]

【表1】 [Table 1]

【0016】表1の番号7〜11は、直径が18cmの丸
鋳片を2.0m/分の引抜速度で鋳造した例である。番
号7〜9ではD=3cmのタンディッシュノズルを用いた
が、(1)式から得られる旋回流速Vは21cm/sec以
上となる。操業旋回流の流速Vが21cm/sec以下の番
号7〜8では好ましい結果が得られないが、番号9の2
5cm/secとする事によって好ましい結果が得られる。
番号10〜11はDが2.5cmのタンディッシュノズル
を用いた例であるが、この場合はUが173cm/secと
なり(1)式のVは33cm/sec以上となる。このため
操業旋回流の流速Vが33cm/sec以下である番号10
〜11では、好ましい結果が得られなかった。
Nos. 7 to 11 in Table 1 are examples in which round cast pieces having a diameter of 18 cm were cast at a drawing speed of 2.0 m / min. In Nos. 7 to 9, a tundish nozzle of D = 3 cm was used, but the swirl flow velocity V obtained from the equation (1) is 21 cm / sec or more. When the flow velocity V of the operating swirling flow is 21 cm / sec or less, the results are not preferable, but the preferable results cannot be obtained.
A favorable result can be obtained by setting it to 5 cm / sec.
Nos. 10 to 11 are examples using a tundish nozzle with D of 2.5 cm. In this case, U is 173 cm / sec, and V in equation (1) is 33 cm / sec or more. For this reason, the flow rate V of the operation swirling flow is 33 cm / sec or less.
In Nos. To 11, favorable results were not obtained.

【0017】表1の番号1〜3は注入溶湯流の流速Uが
小さい。この際は旋回流Vは小さくても好ましい結果が
得られる。一方番号4〜6はUが大きい。この際は大き
な旋回流速Vが必要となる。同様にNo7〜11におい
ても溶湯流の流速が大きくなると鋳片表面が不良となり
等軸晶率も不十分となる。このために大きな旋回流速が
必要となる。
Numbers 1 to 3 in Table 1 indicate that the flow velocity U of the molten metal flow is small. In this case, a favorable result can be obtained even if the swirling flow V is small. On the other hand, in numbers 4 to 6, U is large. In this case, a large swirl flow velocity V is required. Similarly, in Nos. 7 to 11, when the flow rate of the molten metal flow is increased, the surface of the slab becomes defective and the equiaxed crystal ratio becomes insufficient. This requires a large swirl flow velocity.

【0018】注入溶鋼流の流速Uが大きくなると鋳片表
面が不良になる理由は、注入流の乱れが大きくなりスプ
ラッシュの発生量が多くなることによる。そのため、鋳
型内に再度持ち込まれるスプラッシュの量自体が多くな
る。一方、鋳型内での状況については、注入流近傍では
高温の領域が形成されるものの鋳型内壁近傍ではやはり
強冷却となりメニスカス部で異常的に凝固シェルが形成
される状況は変わらない。また、鋳型内に再度持ち込ま
れるスプラッシュの性質はやはり高融点で低密度な物質
であり湯面近傍に浮遊している状況も変わらない。その
ため、注入流の流速に見合った撹拌流を作用させること
で、注入流の侵入深さを低減させることができ湯面近傍
への熱供給を促進すると共に温度分布を均一化させるこ
とができる。その結果、メニスカス部での異常的な凝固
シェル成長を抑制しかつスプラッシュの捕捉を防止でき
る。さらに、スプラッシュの捕捉が防止されるため、溶
融までの時間を確保することができ、鋳型内に再度持ち
込まれたスプラッシュを無害化することができるのであ
る。
The reason why the surface of the slab becomes defective when the flow velocity U of the injected molten steel flow is increased is that the turbulence of the injected flow is increased and the amount of splash generated is increased. Therefore, the amount of splash itself brought back into the mold increases. On the other hand, regarding the situation in the mold, a high-temperature region is formed near the injection flow, but the cooling is also strongly performed near the inner wall of the mold, and the situation where an abnormally solidified shell is formed in the meniscus portion remains unchanged. In addition, the nature of the splash brought back into the mold is also a substance having a high melting point and a low density, and the state of being suspended near the surface of the molten metal remains unchanged. Therefore, by applying a stirring flow corresponding to the flow velocity of the injection flow, the penetration depth of the injection flow can be reduced, the heat supply to the vicinity of the molten metal surface can be promoted, and the temperature distribution can be made uniform. As a result, abnormal growth of the solidified shell in the meniscus portion can be suppressed, and capture of splash can be prevented. Furthermore, since the capture of the splash is prevented, the time until melting can be secured, and the splash brought back into the mold can be rendered harmless.

【0019】また注入溶鋼流の流速Uが大きくなると等
軸晶化が不十分になる理由も詳かではないが、下記の如
くに想考される。即ち注入溶鋼流の流速Uが大きくなる
と、注入溶鋼流は鋳型内の溶鋼中に深く潜入する。溶鋼
中には旋回流により分断されたデンドライトがあるが、
この潜入した溶鋼流は高温であるため、等軸晶の核とな
るこの分断されたデンドライトを再溶解し消滅させる。
このために等軸晶化が不十分となる。
The reason why the equiaxed crystallization becomes insufficient when the flow velocity U of the injected molten steel flow becomes large is not clear, but is considered as follows. That is, when the flow velocity U of the molten steel flow increases, the molten steel flow sneaks deeply into the molten steel in the mold. In the molten steel, there are dendrites separated by swirling flow,
Since the infiltrated molten steel flow is at a high temperature, the separated dendrite, which is the core of the equiaxed crystal, is redissolved and disappears.
This results in insufficient equiaxed crystallization.

【0020】注入溶鋼流の流速Uが小さい場合は、注入
流の乱れは小さくスプラッシュの発生量自体が少なくな
る。しかしながら、メニスカス近傍での強冷却傾向や鋳
型内に再度持ち込まれるスプラッシュの性質は変わらな
いため、やはり注入流の流速に見合った撹拌流を作用さ
せ、注入流の侵入深さを低減させ湯面への熱供給並びに
温度分布の均一化を図ることで鋳片表面品位は大幅に向
上する。一方、凝固組織については侵入深さは浅いもの
の撹拌流を作用させることでさらに侵入深さを浅くしつ
つ、多数の等軸晶の核を形成することができ等軸晶化が
進んだ鋳片を得ることができる。
When the flow velocity U of the injected molten steel flow is small, the turbulence of the injected flow is small and the amount of splash itself is reduced. However, since the tendency of strong cooling in the vicinity of the meniscus and the nature of the splash brought back into the mold do not change, the agitation flow corresponding to the flow speed of the injection flow is also applied to reduce the penetration depth of the injection flow to the molten metal surface. The heat quality and uniformity of the temperature distribution greatly improve the quality of the slab surface. On the other hand, although the penetration depth of the solidified structure is shallow, the depth of penetration is further reduced by applying the agitated flow, and a large number of equiaxed nuclei can be formed while the penetration depth is further reduced. Can be obtained.

【0021】[0021]

【発明の効果】本発明を実施することにより、表面性状
が良好で、かつ等軸晶化が進んだ鋳片を製造する事がで
きる。
According to the present invention, it is possible to produce a slab having good surface properties and advanced equiaxed crystallization.

【図面の簡単な説明】[Brief description of the drawings]

【図1】小断面の角鋳片または丸鋳片の連続鋳造の説明
図。
FIG. 1 is an explanatory view of continuous casting of a square section or a round section having a small cross section.

【符号の説明】[Explanation of symbols]

1:鋳型、 2:タンディッシュノズル、 3:溶鋼、
4:凝固シェル、5−1(5−2):電磁誘導撹拌装
置、 6:注入溶鋼流、 7−1(7−2):電磁誘導
撹拌装置による水平な旋回流、 8:溶鋼のメニスカ
ス、 9:クラスター、 10:鋳型内に再度持ち込ま
れたスプラッシュ、 11:スプラッシュ。
1: mold, 2: tundish nozzle, 3: molten steel,
4: solidified shell, 5-1 (5-2): electromagnetic induction stirrer, 6: molten steel flow injected, 7-1 (7-2): horizontal swirling flow by the electromagnetic induction stirrer, 8: meniscus of molten steel, 9: cluster, 10: splash brought back into the mold, 11: splash.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】長辺が200mm以下の角鋳片または直径
が200mm以下の丸鋳片を製造する鋼の連続鋳造に際
し、鋳型内に設けた電磁誘導撹拌装置により鋳型内の溶
鋼に水平な旋回流を形成し、浸漬ノズルを介さないでタ
ンディッシュノズルから鋳型に直接に溶鋼を注入し、注
入流と旋回流とを下記(1)式の如くに制御して鋳造す
る事を特徴とする、鋼の連続鋳造方法。 {U2/D}<{(120×H×V2)/L2}……………(1) 但し U:注入溶鋼流の流速(cm/秒) D:タンディッシュノズルの直径(cm) L:鋳片の円相当径(cm) H:電磁誘導撹拌装置のコイルの高さ(cm) V:旋回流の流速(cm/秒)
(1) In the continuous casting of steel for producing a square slab having a long side of 200 mm or less or a round slab having a diameter of 200 mm or less, a horizontal rotation of molten steel in the mold by an electromagnetic induction stirrer provided in the mold. Forming a flow, injecting molten steel directly from a tundish nozzle into a mold without passing through an immersion nozzle, and casting by controlling the injection flow and the swirling flow as in the following equation (1). Continuous casting method for steel. {U 2 / D} <{(120 × H × V 2 ) / L 2 } (1) where U: flow velocity of injected molten steel flow (cm / sec) D: diameter of tundish nozzle (cm) L: equivalent circle diameter of cast slab (cm) H: height of coil of electromagnetic induction stirrer (cm) V: flow velocity of swirling flow (cm / sec)
JP13808198A 1998-05-20 1998-05-20 Method for continuously casting steel Pending JPH11320035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13808198A JPH11320035A (en) 1998-05-20 1998-05-20 Method for continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13808198A JPH11320035A (en) 1998-05-20 1998-05-20 Method for continuously casting steel

Publications (1)

Publication Number Publication Date
JPH11320035A true JPH11320035A (en) 1999-11-24

Family

ID=15213521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13808198A Pending JPH11320035A (en) 1998-05-20 1998-05-20 Method for continuously casting steel

Country Status (1)

Country Link
JP (1) JPH11320035A (en)

Similar Documents

Publication Publication Date Title
JPH0320295B2 (en)
JP2891270B2 (en) Spontaneous opening method of water pool in tundish
JPH11320035A (en) Method for continuously casting steel
JP3988538B2 (en) Manufacturing method of continuous cast slab
JP3257546B2 (en) Steel continuous casting method
US20090255642A1 (en) Stirrer
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
JP2555768B2 (en) Continuous metal casting apparatus and casting method
JP2004098127A (en) Method for continuously casting high quality stainless steel cast slab
JPH01266950A (en) Continuous casting method
JPH09168845A (en) Method for continuously casting molten metal free of inclusion and blow hole and apparatus therefor
JP2004106021A (en) Method for casting molten stainless steel using vertical-bending type continuous caster
JP2002079355A (en) Method for continuously casting steel
JPH0890172A (en) Production of small lot of cast slab in continuous casting
JPS6333160A (en) Continuous casting method
JPH0518743U (en) Immersion nozzle for continuous casting with shield cylinder
JP2001321907A (en) Method for producing continuous casting slab and continuous casting slab
JPH0852534A (en) Continuous casting method of semisolidified metal
JP3422946B2 (en) Continuous casting method and continuous casting slab of molten steel
JPH06297099A (en) Float type molten metal distributing device for continuous casting metal
JP2002178108A (en) Method for continuously casting steel
JPH09122833A (en) Method for concentrating solute on surface layer of cast slab in continuous casting
JPS62220255A (en) Continuous casting method
JP2002126856A (en) Continuous casting method and cast piece
JPH08300113A (en) Method for reducing non-metallic inclusion in continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060803

A977 Report on retrieval

Effective date: 20061218

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070109

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A02 Decision of refusal

Effective date: 20070814

Free format text: JAPANESE INTERMEDIATE CODE: A02