JPH01266950A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPH01266950A
JPH01266950A JP9334288A JP9334288A JPH01266950A JP H01266950 A JPH01266950 A JP H01266950A JP 9334288 A JP9334288 A JP 9334288A JP 9334288 A JP9334288 A JP 9334288A JP H01266950 A JPH01266950 A JP H01266950A
Authority
JP
Japan
Prior art keywords
molten steel
mold
tundish
molten
immersion nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9334288A
Other languages
Japanese (ja)
Inventor
Takashi Kubo
孝 久保
Hironori Yamamoto
山本 裕則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9334288A priority Critical patent/JPH01266950A/en
Publication of JPH01266950A publication Critical patent/JPH01266950A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To secure stirring flow of molten steel in a mold and to prevent the development of stagnation on the molten steel surface by forming holes around submerged part of a submerged nozzle and circulating molten metal supplied from a tundish between opening part and the holes. CONSTITUTION:The molten steel 4 in the tundish 1 is discharged in a mold 20 from the opening part 12. At the submerged part in the molten steel 4 in this submerged nozzle 10, the holes 11 are formed. The molten steel 4 at outside of the submerged nozzle 10 is sucked to inside of the submerged nozzle 10 having low molten steel pressure through these holes 11. By this method, the molten steel flowing motion 15 developed as showing with the arrow marks 30, 31 in the mold 20. By this method, the molten steel 4 near the molten steel surface in the mold 20 is flowed and the stagnation of the molten steel 4 on the molten steel surface is eliminated. Therefore, the molten steel temp. near the molten steel surface is not dropped and the development of the cast slab fault caused by insufficient melting of the powder 21 is restrained. Further, float-up separation of the inclusion becomes good and the floated-up inclusion can be easily absorbed into the powder 21.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、浸漬ノズルを介してタンデイシュから鋳型
に溶湯を供給する連続鋳造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a continuous casting method in which molten metal is supplied from a tundish to a mold via a submerged nozzle.

[従来の技術] 鋼の連続鋳造においては、従来、タンディツシュの底壁
の溶鋼流出口部分に筒状の浸漬ノズルを設置し、例えば
、その先端の開口部から鋳型内に溶湯を連続的に注入す
る。鋳型の底からはダミーバーが挿入されており、鋳片
引抜き前にはこのダミーバの上端が鋳型の底を形成する
。そして、溶鋼を注入して鋳型内の溶鋼が所定高さにな
った時点でダミーバーを挟持しているピンチロールによ
り連続的にダミーバを下方に引抜く。この場合に、鋳型
は水冷されているので溶鋼がこの鋳型により冷却され、
更に、鋳型の下流にて冷却水がスプレーされて凝固し、
鋳片となる。
[Prior Art] Conventionally, in continuous steel casting, a cylindrical immersion nozzle is installed at the molten steel outlet part of the bottom wall of a tundish, and molten metal is continuously injected into the mold from the opening at its tip, for example. do. A dummy bar is inserted from the bottom of the mold, and the upper end of this dummy bar forms the bottom of the mold before the slab is pulled out. Then, when molten steel is poured into the mold and the molten steel in the mold reaches a predetermined height, the dummy bar is continuously pulled downward by pinch rolls holding the dummy bar. In this case, since the mold is water-cooled, the molten steel is cooled by this mold,
Furthermore, cooling water is sprayed downstream of the mold and solidifies.
It becomes a slab.

一方、定常状態において、浸漬ノズルの先端部は鋳型内
の溶鋼に浸漬されており、この状態で溶鋼を注入して溶
鋼が外気に接触して酸化することを防止している。また
、鋳型内の溶鋼湯面にはパウダが浮遊せしめられおり、
このパウダにより鋳型内の溶鋼の酸化を防止する。この
パウダは、更に、注入された溶鋼流により溶融されて鋳
型と凝固殻との間に流れ込み、これらの間の潤滑剤とし
て作用すると共に、注入流の攪拌力により鋳型に供給さ
れた溶鋼中の不純物を吸着する役割を有している。
On the other hand, in a steady state, the tip of the submerged nozzle is immersed in the molten steel in the mold, and in this state, molten steel is injected to prevent the molten steel from coming into contact with the outside air and being oxidized. In addition, powder is suspended on the surface of the molten steel in the mold.
This powder prevents oxidation of the molten steel in the mold. This powder is further melted by the injected molten steel flow, flows between the mold and the solidified shell, and acts as a lubricant between them, and also acts as a lubricant between the molten steel and the molten steel supplied to the mold by the stirring force of the injected flow. It has the role of adsorbing impurities.

[発明が解決しようとする問題点1 しかしながら、浸漬ノズル外壁の鋳型内の溶鋼場面に接
する部分は、浸漬時間が長くなると溶鋼及びパウダによ
り激しく浸蝕されてしまう。特に、多連鋳の場合には鋳
造が長時間に亘るため、鋳造中に浸漬ノズルを浸漬深さ
が増加する方向に3乃至4回移動させて溶鋼場面に接触
する部分を変化させてノズルの溶損を回避することが試
みられているが、浸漬ノズルの浸漬深さが増加すると、
浸漬ノズルから吐出した溶鋼流の攪拌力が弱くなり、溶
鋼湯面近傍で溶鋼のよどみが発生してしまう。
[Problem to be Solved by the Invention 1] However, the portion of the outer wall of the immersion nozzle that comes into contact with the molten steel in the mold is severely eroded by the molten steel and powder as the immersion time increases. In particular, in the case of multiple casting, since the casting process takes a long time, the immersion nozzle is moved three or four times in the direction of increasing immersion depth during casting to change the part that contacts the molten steel surface. Attempts have been made to avoid erosion, but as the immersion depth of the immersion nozzle increases,
The stirring power of the molten steel flow discharged from the immersion nozzle becomes weak, and stagnation of the molten steel occurs near the molten steel surface.

このような溶鋼のよどみが発生すると、湯面近傍で溶鋼
の温度・が低下し、パウダの溶融が不十分となってパウ
ダの流れ込み不良が発生ずる。このような状態において
は、パウダ流れ込みの不均一により溶鋼の抜熱が小鈎〜
となって溶鋼が不均一に凝固し、鋳片の表面付近に欠陥
が形成され、また、未凝固パウダが溶鋼中へ巻込まれて
鋳片内部に介在物欠陥が形成されてしまう。更に、溶鋼
のよどみにより溶鋼中の介在物の浮上が不十分どなり、
溶鋼中の介在物がパウダに十分に吸着されず、これら介
在物も鋳片の内部欠陥の原因となってしまう。
When such stagnation of molten steel occurs, the temperature of the molten steel decreases near the molten metal surface, and the powder is insufficiently melted, resulting in poor powder flow. Under these conditions, heat removal from the molten steel is limited due to uneven powder flow.
As a result, the molten steel solidifies non-uniformly, defects are formed near the surface of the slab, and unsolidified powder is drawn into the molten steel, resulting in the formation of inclusion defects inside the slab. Furthermore, due to stagnation of the molten steel, inclusions in the molten steel are not sufficiently floated.
Inclusions in the molten steel are not sufficiently adsorbed by the powder, and these inclusions also cause internal defects in the slab.

特に、凝固組織を均一な等軸晶に(“るために実施され
る低温鋳造の場合には、溶鋼温度が低いので、上述のよ
うな問題点が一層クローズアップされ、浸漬ノズルの浸
漬位置を深くすることが困難である。
In particular, in the case of low-temperature casting, which is carried out to transform the solidified structure into uniform equiaxed crystals, the molten steel temperature is low, so the above-mentioned problems are brought into closer focus, and the immersion position of the immersion nozzle is Difficult to deepen.

この発明は、斯かる事情に鑑みてなされたものであって
、鋳型内における溶鋼の攪拌流を確保することができ、
鋳型内溶鋼瀦面によどみを発生させず、欠陥が少ない鋳
片を製造することができる連続鋳造方法を提供すること
を目的とする。
This invention was made in view of the above circumstances, and is capable of ensuring a stirring flow of molten steel within the mold.
It is an object of the present invention to provide a continuous casting method that does not cause stagnation on the molten steel surface in a mold and can produce slabs with few defects.

1問題点を解決するための手段1 この発明に係る連続鋳造方法は、タンディツシュ内の底
壁に設けられた筒状の浸漬ノズルの先端部を鋳型内の溶
陽内に浸漬させ、浸漬ノズル先端の開口部からタンディ
ツシュ内の溶湯を連続的に鋳型に注入して連続鋳造する
連続鋳造方法であって、前記浸漬ノズルの浸漬部分周壁
に孔を形成し、タンディツシュから供給された溶湯を前
記開口部と前記孔との間で循環させることを特徴とする
Means for Solving Problem 1 1 The continuous casting method according to the present invention immerses the tip of a cylindrical immersion nozzle provided on the bottom wall of the tundish into the molten metal in the mold. A continuous casting method in which molten metal in a tundish is continuously injected into a mold from an opening in the tundish for continuous casting, the method comprising forming a hole in the peripheral wall of the immersed part of the immersion nozzle, and injecting the molten metal supplied from the tundish into the opening. and the hole.

[作用] この発明においては、浸漬ノズルの浸漬部分局壁に孔を
設け、浸漬ノズルの先端の開口部から溶湯を吐出させる
。浸漬ノズル内には溶湯が通流しているので、その中の
溶鋼圧力がその外側の圧力よりも低くなり、孔周囲の溶
湯が浸漬ノズル内に吸引される。これにより、鋳型内で
溶湯が流動し、鋳型内湯面にお(プる溶湯のよどみを解
消することができる。
[Operation] In this invention, a hole is provided in the local wall of the immersed part of the immersed nozzle, and the molten metal is discharged from the opening at the tip of the immersed nozzle. Since the molten metal flows through the immersion nozzle, the molten steel pressure therein becomes lower than the pressure outside the immersion nozzle, and the molten metal around the hole is sucked into the immersion nozzle. As a result, the molten metal flows within the mold, and stagnation of the molten metal flowing onto the molten metal surface in the mold can be eliminated.

[実施例] 以下、添付図面を参照してこの発明の実施例について具
体的に説明する。第1図はこの実施例を実施するための
設備を示す断面図である。タンディツシュ1は耐火物レ
ンガで形成された本体2とその上を覆う鉄皮3とで構成
されており、その内部に溶鋼4が貯留されている。タン
ディツシュ1の底壁には溶鋼流出口5が形成されており
、この溶鋼流出口5には、溶鋼流量調節用のスライデイ
ングノズル6が設置されており、このスライディングノ
ズル6の下端には円筒状の浸漬ノズル10がその長手方
向を鉛直にして取付けられている。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a sectional view showing equipment for carrying out this embodiment. The tandish 1 is composed of a main body 2 made of refractory bricks and an iron shell 3 covering the main body 2, and molten steel 4 is stored inside the main body 2. A molten steel outlet 5 is formed in the bottom wall of the tundish 1, and a sliding nozzle 6 for adjusting the flow rate of molten steel is installed in this molten steel outlet 5. A submerged nozzle 10 is installed with its longitudinal direction vertical.

この浸漬ノズル10は耐火物で形成されており、その先
端部に一対の孔11が形成されている。また、その先端
の開口部12は溶鋼吐出口となっている。
This immersion nozzle 10 is made of refractory material, and has a pair of holes 11 formed at its tip. Moreover, the opening 12 at the tip serves as a molten steel discharge port.

タンディツシュ1の下方には、鋳型20が配設されてお
り、浸漬ノズル10を介してタンディツシュ1内の溶鋼
4が鋳型20内に注入される。鋳型20は銅で形成され
ており、円筒状をなし、その鋳型内部に冷却水が循環さ
れるようになっている。前記浸漬ノズル10は、その先
端部が鋳型20の内部空間に挿入された状態で設置され
る。
A mold 20 is disposed below the tundish 1, and the molten steel 4 in the tundish 1 is injected into the mold 20 through the immersion nozzle 10. The mold 20 is made of copper and has a cylindrical shape, and cooling water is circulated inside the mold. The immersion nozzle 10 is installed with its tip inserted into the internal space of the mold 20.

そして、タンディツシュ1からの溶鋼4の注入により鋳
型20内の溶鋼湯面が上昇して所定高さの定常状態に達
した時点で、浸漬ノズル10の孔11を含む先端部分が
鋳型20内の溶鋼に浸漬されるようになっている。この
場合に、浸漬ノズル10は、最初に孔11の中心が場面
下方の所定位置に浸漬され、鋳造開始後所定時間経過後
に、浸漬ノズル10の浸漬深さを適当量増加させ、更に
、所定時間経過後に浸漬深さを増加させ、これを3乃至
4回繰返す。
When the molten steel level in the mold 20 rises due to the injection of the molten steel 4 from the tundish 1 and reaches a steady state of a predetermined height, the tip portion including the hole 11 of the immersion nozzle 10 is inserted into the molten steel in the mold 20. It is meant to be immersed in. In this case, the center of the hole 11 of the immersion nozzle 10 is first immersed in a predetermined position below the scene, and after a predetermined period of time has passed after the start of casting, the immersion depth of the immersion nozzle 10 is increased by an appropriate amount, and then the immersion depth of the immersion nozzle 10 is increased by an appropriate amount, and then the immersion depth of the immersion nozzle 10 is increased by an appropriate amount. After the lapse of time, increase the immersion depth and repeat this 3 to 4 times.

鋳型20内の溶鋼はその鋳型に隣接する部分が鋳型によ
り冷却されて凝固し、凝固殻21を形成する。また、鋳
型20内の溶鋼湯面上には、パウダ22が浮遊せしめら
れており、このパウダ22は鋳型20内の溶鋼の酸化を
防止し、また、溶融して鋳型20の内壁と凝固殻21と
の間に流れ込み、これらの間の潤滑性を高める。更に、
鋳型20内に供給された溶鋼中の介在物を吸着して溶鋼
を清浄化する。
A portion of the molten steel in the mold 20 adjacent to the mold is cooled by the mold and solidified to form a solidified shell 21 . Further, powder 22 is suspended on the surface of the molten steel in the mold 20, and this powder 22 prevents oxidation of the molten steel in the mold 20, and also melts the inner wall of the mold 20 and the solidified shell 22. Flows between the two to improve lubricity between them. Furthermore,
Inclusions in the molten steel supplied into the mold 20 are adsorbed to clean the molten steel.

次に、この実施例の動作について説明する。タンディツ
シュ1内の溶鋼4は、溶鋼流出口5から浸漬ノズル10
に向かって流出する。浸漬ノズル10を通流した溶鋼4
は、開口部12から鋳型20内に吐出する。この場合に
、浸漬ノズル1゜内は溶鋼が通流しているので、ノズル
10の浸漬部分の内側がその外側よりも情調圧力が低く
なる。
Next, the operation of this embodiment will be explained. The molten steel 4 in the tundish 1 is passed from the molten steel outlet 5 to the immersion nozzle 10.
flows towards. Molten steel 4 passed through the immersion nozzle 10
is discharged into the mold 20 from the opening 12. In this case, since molten steel flows through the immersed nozzle 1°, the pressure inside the immersed portion of the nozzle 10 is lower than that outside.

孔11は浸漬ノズル10の溶鋼中に浸漬された部分に形
成されているから、浸漬ノズル10の外側の孔11周囲
の溶鋼が、孔11を介して情調圧力が低い浸漬ノズル1
0の内側に吸引される。これにより、鋳型20内で矢印
30.31示すような溶鋼流動が発生する。このため、
浸漬ノズルの浸漬深さが大きくても鋳型20内の湯面近
傍の溶鋼が流動し、鋳型20内の湯面における溶鋼のよ
どみを解消することができる。従って、湯面近傍の溶鋼
の温度を低下させずに鋳造することができ、パウダ21
の溶融不良に起因する鋳片欠陥の発生を抑制することが
できる。また、この溶鋼流動により、鋳型に供給された
溶鋼に含有される介在物の浮上分離性が良好となり、こ
の浮上した介在物は容易にパウダ21に吸着されるので
、溶鋼を一層清浄化することができる。
Since the hole 11 is formed in the part of the immersion nozzle 10 immersed in the molten steel, the molten steel around the hole 11 on the outside of the immersion nozzle 10 flows through the hole 11 to the immersion nozzle 1 with a low ambient pressure.
It is attracted to the inside of 0. As a result, molten steel flows as shown by arrows 30 and 31 within the mold 20. For this reason,
Even if the immersion depth of the immersion nozzle is large, the molten steel near the molten metal surface in the mold 20 flows, and stagnation of the molten steel at the molten metal surface in the mold 20 can be eliminated. Therefore, it is possible to cast without lowering the temperature of the molten steel near the molten metal surface, and the powder 21
It is possible to suppress the occurrence of defects in slabs due to insufficient melting. In addition, this molten steel flow improves the ability to float and separate inclusions contained in the molten steel supplied to the mold, and the floating inclusions are easily adsorbed by the powder 21, so that the molten steel can be further cleaned. I can do it.

次に、この実施例に係る方法により連続鋳造した場合の
具体的な効果について説明する。第2図は、横軸に紡型
内湯面近傍における溶鋼温度を溶鋼凝固温度への上乗せ
分として示した値をとり、縦軸に浸漬ノズルの浸漬深さ
をとって、これらの間の関係を示すグラフ図である。図
中、丸印はこの実施例により鋳造した場合を示し、三角
印は従来の方法により鋳造した場合を示す。また、黒塗
りはパウダの溶融不良に起因する鋳片欠陥が発生したも
のを示し、白抜きはこのような欠陥が発生しなかったも
のを示す。この第2図示すように、従来方法により鋳造
した場合には、浸漬深さが増加するに従い、場面近傍の
溶鋼温度が低下し、浸漬深さが120mm以上で前述の
鋳片欠陥が発生した。これに対し、この実施例の場合に
は、浸漬ノズルの浸漬深さが120mm以上になっても
、場面近傍の溶鋼温度が比較的高く、上述のような鋳片
欠陥が発生しなかった。
Next, specific effects of continuous casting using the method according to this embodiment will be explained. In Figure 2, the horizontal axis shows the molten steel temperature near the surface of the spinning mold as an addition to the molten steel solidification temperature, and the vertical axis shows the immersion depth of the immersion nozzle, and the relationship between these is plotted. FIG. In the figure, circles indicate the case of casting according to this embodiment, and triangle marks indicate the case of casting according to the conventional method. Further, black areas indicate slab defects caused by insufficient melting of powder, and white areas indicate slab defects in which no such defects occurred. As shown in FIG. 2, when casting was performed by the conventional method, as the immersion depth increased, the temperature of the molten steel in the vicinity of the spot decreased, and the above-mentioned slab defects occurred when the immersion depth was 120 mm or more. On the other hand, in the case of this example, even when the immersion depth of the immersion nozzle was 120 mm or more, the molten steel temperature near the scene was relatively high, and the slab defects as described above did not occur.

[発明の効果] この発明によれば、浸漬ノズルの浸漬部周壁に孔を設け
たので、浸漬ノズルの開口部から吐出した溶湯がこの孔
から吸引され、鋳型内の溶湯が循環する。このため、鋳
型内湯面における溶湯のよどみが発生しにくくなり、パ
ウダの溶融不良に起因する鋳片欠陥を有効に抑制するこ
とができる。
[Effects of the Invention] According to the present invention, since the hole is provided in the peripheral wall of the immersion part of the immersion nozzle, the molten metal discharged from the opening of the immersion nozzle is sucked through the hole, and the molten metal in the mold is circulated. Therefore, stagnation of the molten metal at the surface of the molten metal in the mold is less likely to occur, and slab defects caused by insufficient melting of powder can be effectively suppressed.

また、このように溶湯が流動することにより、鋳型に供
給された溶湯に含有する介在物の浮上分離性が良好とな
り、介在物を有効にパウダに吸着させることができる。
In addition, as the molten metal flows in this manner, the inclusions contained in the molten metal supplied to the mold can be floated and separated easily, and the inclusions can be effectively adsorbed to the powder.

従って、この発明により鋳片の品質を著しく向上させる
ことができる。
Therefore, the quality of slabs can be significantly improved by this invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る方法を実施するための
設備を示す断面図、第2図はこの発明の効果を示すグラ
フ図である。 1;タンディツシュ、5;溶鋼流出口、10;浸漬ノズ
ル、11;孔、12:開口部、20;鋳型、21;パウ
FIG. 1 is a sectional view showing equipment for carrying out a method according to an embodiment of the invention, and FIG. 2 is a graph showing the effects of the invention. 1; tundish, 5; molten steel outlet, 10; immersion nozzle, 11; hole, 12: opening, 20; mold, 21; powder

Claims (1)

【特許請求の範囲】[Claims] タンディッシュ内の底壁に設けられた筒状の浸漬ノズル
の先端部を鋳型内の溶湯内に浸漬させ、浸漬ノズル先端
の開口部からタンディッシュ内の溶湯を連続的に鋳型に
注入して連続鋳造する連続鋳造方法において、前記浸漬
ノズルの浸漬部分周壁に孔を形成し、タンディッシュか
ら供給された溶湯を前記開口部と前記孔との間で循環さ
せることを特徴とする連続鋳造方法。
The tip of a cylindrical immersion nozzle installed on the bottom wall of the tundish is immersed in the molten metal in the mold, and the molten metal in the tundish is continuously injected into the mold from the opening at the tip of the immersion nozzle. A continuous casting method for casting, characterized in that a hole is formed in the peripheral wall of the immersed part of the immersion nozzle, and molten metal supplied from a tundish is circulated between the opening and the hole.
JP9334288A 1988-04-18 1988-04-18 Continuous casting method Pending JPH01266950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9334288A JPH01266950A (en) 1988-04-18 1988-04-18 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9334288A JPH01266950A (en) 1988-04-18 1988-04-18 Continuous casting method

Publications (1)

Publication Number Publication Date
JPH01266950A true JPH01266950A (en) 1989-10-24

Family

ID=14079595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9334288A Pending JPH01266950A (en) 1988-04-18 1988-04-18 Continuous casting method

Country Status (1)

Country Link
JP (1) JPH01266950A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2740367A1 (en) * 1995-10-30 1997-04-30 Usinor Sacilor NOZZLE FOR THE INTRODUCTION OF A LIQUID METAL INTO A CONTINUOUS CASTING LINGOTIERE OF METAL PRODUCTS, THE BOTTOM OF WHICH HAS ORIFICES
WO2015179680A3 (en) * 2014-05-21 2016-02-18 Novelis Inc. Mixing eductor nozzle and flow control device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2740367A1 (en) * 1995-10-30 1997-04-30 Usinor Sacilor NOZZLE FOR THE INTRODUCTION OF A LIQUID METAL INTO A CONTINUOUS CASTING LINGOTIERE OF METAL PRODUCTS, THE BOTTOM OF WHICH HAS ORIFICES
EP0771600A1 (en) * 1995-10-30 1997-05-07 Usinor Sacilor Immersion discharge nozzle with bottom orifices for the introduction of molten metal in a mould for continuous casting of metallic products
US5840206A (en) * 1995-10-30 1998-11-24 Thyssen Stahl Aktiengesellschaft Nozzle for introducing a liquid metal into a mold, for the continuous casting of metal products, the bottom of which has holes
WO2015179680A3 (en) * 2014-05-21 2016-02-18 Novelis Inc. Mixing eductor nozzle and flow control device
CN106457368A (en) * 2014-05-21 2017-02-22 诺维尔里斯公司 Mixing eductor nozzle and flow control device
JP2017515688A (en) * 2014-05-21 2017-06-15 ノベリス・インコーポレイテッドNovelis Inc. Mixing eductor nozzle and flow control device
KR20180095129A (en) * 2014-05-21 2018-08-24 노벨리스 인크. Mixing eductor nozzle and flow control device
US10118221B2 (en) 2014-05-21 2018-11-06 Novelis Inc. Mixing eductor nozzle and flow control device
JP2019150883A (en) * 2014-05-21 2019-09-12 ノベリス・インコーポレイテッドNovelis Inc. Mixing eductor nozzle and flow control device
US10464127B2 (en) 2014-05-21 2019-11-05 Novelis Inc. Non-contacting molten metal flow control
US10835954B2 (en) 2014-05-21 2020-11-17 Novelis Inc. Mixing eductor nozzle and flow control device
CN112570696A (en) * 2014-05-21 2021-03-30 诺维尔里斯公司 Mixing injector nozzle and flow control device
JP2021121448A (en) * 2014-05-21 2021-08-26 ノベリス・インコーポレイテッドNovelis Inc. Mixing eductor nozzle and flow control device
US11383296B2 (en) 2014-05-21 2022-07-12 Novelis, Inc. Non-contacting molten metal flow control
CN112570696B (en) * 2014-05-21 2022-07-19 诺维尔里斯公司 Mixing injector nozzle and flow control device

Similar Documents

Publication Publication Date Title
RU2296034C2 (en) Method for treating melt metals by means of moving electric arc
CN105682825A (en) Continuous casting method
JPH01266950A (en) Continuous casting method
JPH0131976B2 (en)
JP3018960B2 (en) Continuous casting method and its straight immersion nozzle
JP7389335B2 (en) Method for producing thin slabs
KR0123141Y1 (en) Anti-scaling device for twin roll strip coating apparatus
JPS61169147A (en) Continuous casting method
JP3546137B2 (en) Steel continuous casting method
JPS58188543A (en) Continuous casting device of steel plate
JPS6153143B2 (en)
JPH09168845A (en) Method for continuously casting molten metal free of inclusion and blow hole and apparatus therefor
JPS60196251A (en) Continuous casting method
JPS63212052A (en) Production of complex material by continuous casting
JPH03110043A (en) Vertical type continuous casting apparatus for metal
JPS60177939A (en) Method for starting casting in continuous casting
JPS63235050A (en) Submerged nozzle
SU1629144A1 (en) Device for uphill casting of horizontal ingots
JPH0292442A (en) Method for preventing nozzle clogging in continuous casting for molten steel
JPH0255643A (en) Method and nozzle for continuously casting metal strip
JPS63188462A (en) Continuous casting method
JPH06297099A (en) Float type molten metal distributing device for continuous casting metal
JPH11320035A (en) Method for continuously casting steel
JPS63235051A (en) Submerged nozzle
JPS62252649A (en) Divagating flow control method in mold for molten steel continuous casting