JPH1131512A - Fluororesin dispersed solution, manufacture thereof and manufacture of hydrogen storage alloy electrode using the dispersed solution - Google Patents

Fluororesin dispersed solution, manufacture thereof and manufacture of hydrogen storage alloy electrode using the dispersed solution

Info

Publication number
JPH1131512A
JPH1131512A JP9182856A JP18285697A JPH1131512A JP H1131512 A JPH1131512 A JP H1131512A JP 9182856 A JP9182856 A JP 9182856A JP 18285697 A JP18285697 A JP 18285697A JP H1131512 A JPH1131512 A JP H1131512A
Authority
JP
Japan
Prior art keywords
fluororesin
hydrogen storage
storage alloy
slurry
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9182856A
Other languages
Japanese (ja)
Other versions
JP4179648B2 (en
Inventor
Tadashi Ise
忠司 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP18285697A priority Critical patent/JP4179648B2/en
Publication of JPH1131512A publication Critical patent/JPH1131512A/en
Application granted granted Critical
Publication of JP4179648B2 publication Critical patent/JP4179648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dispersed liquid that can distribute fluororesin uniformly on the surface of a hydrogen storage alloy electrode, and distribute fluororesin uniformly on the surface of the hydrogen storage alloy electrode using this dispersed liquid. SOLUTION: A fluororesin dispersed liquid manufacturing method is provided with a process of dispersing fluororesin powder in an organic solvent, and a process of dispersing the organic solvent with a fluororesin powder dispersed therein, in an aqueous solution. The fluororesin powder is uniformly dispersed in the aqueous solution to obtain a fluororesin dispersed liquid. In this method, the fluororesin is dispersed in the organic solvent so as to prevent the generation of aggregation of fluororesin, and the affinity for a water soluble binding agent is improved because of its turning into an oil drop-in-water type dispersed liquid The fluororesin dispersed solution can therefore be mixed uniformly with hydrogen storage alloy powder and applied uniformly to a hydrogen storage alloy electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フッ素樹脂分散液
およびその製造方法ならびにこのフッ素樹脂分散液を用
いた水素吸蔵合金電極の製造方法に係り、特に、水素吸
蔵合金電極に撥水性を付与するために添加するフッ素樹
脂分散液およびその製造方法ならびにこの製造方法によ
り得られたフッ素樹脂分散液を水素吸蔵合金電極に添加
して同水素吸蔵合金電極に撥水性を付与する水素吸蔵合
金電極の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluororesin dispersion, a method for producing the same, and a method for producing a hydrogen storage alloy electrode using the fluororesin dispersion, and particularly to imparting water repellency to the hydrogen storage alloy electrode. Of a fluororesin dispersion to be added for the production of the hydrogen storage alloy electrode, and a fluororesin dispersion obtained by the production method being added to the hydrogen storage alloy electrode to impart water repellency to the hydrogen storage alloy electrode It is about the method.

【0002】[0002]

【従来の技術】近年、携帯用電子・通信機器の急速な普
及により従来に増して高性能な蓄電池が要請されてい
る。このような背景にあって、従来のニッケル−カドミ
ウム蓄電池、鉛蓄電池より軽量かつ高容量で高エネルギ
ー密度が得られ、しかもクリーンな蓄電池となることか
ら負極に水素吸蔵合金を用いたニッケル−水素蓄電池が
注目されるようになった。
2. Description of the Related Art In recent years, with the rapid spread of portable electronic and communication equipment, there has been a demand for higher performance storage batteries than ever. Against this background, a nickel-hydrogen storage battery using a hydrogen-absorbing alloy for the negative electrode can provide a lighter weight, higher capacity, higher energy density and higher energy density than conventional nickel-cadmium storage batteries and lead storage batteries. Came to attention.

【0003】このようなニッケル−水素蓄電池において
は、正極側で容量が規制されるようになされているの
で、電池を充電すると、まず容量の小さい正極が満充電
となり、さらに充電を続けると過充電状態となって、正
極から酸素ガスが発生する。正極より発生した酸素ガス
は負極で消費されて水(H2O)が生成される。この生
成された水は負極表面が親水性であると、負極表面が濡
れた状態となって、酸素ガスの負極表面への拡散が阻害
され、酸素ガスの負極での消費速度が遅くなる。このた
め、電池内圧が上昇し、安全弁が作動して電池内のガス
を放出するとともに、電解液も電池外へ漏出する。その
結果、セパレータ中の電解液が枯渇し、電池のサイクル
特性が低下するという問題があった。
In such a nickel-hydrogen storage battery, the capacity is regulated on the positive electrode side. Thus, when the battery is charged, the positive electrode having a small capacity is first fully charged, and when the battery is further charged, it is overcharged. In this state, oxygen gas is generated from the positive electrode. Oxygen gas generated from the positive electrode is consumed by the negative electrode to generate water (H 2 O). When the surface of the negative electrode is hydrophilic, the generated water is in a wet state on the surface of the negative electrode, diffusion of oxygen gas to the surface of the negative electrode is inhibited, and the consumption rate of oxygen gas at the negative electrode is reduced. As a result, the internal pressure of the battery increases, the safety valve operates to release the gas in the battery, and the electrolyte also leaks out of the battery. As a result, there has been a problem that the electrolyte in the separator is depleted and the cycle characteristics of the battery deteriorate.

【0004】このようなことから、水素吸蔵合金粉末に
撥水性を付与するフッ素樹脂を混合したり、フッ素樹脂
を水素吸蔵合金電極に塗布して撥水処理を施すことが提
案されるようになった。この撥水処理により、酸素ガ
ス、電解液および水素吸蔵合金表面の、いわゆる気相、
液相、固相の3相界面が形成され、酸素ガスの消費反応
が円滑に行われるようになる。
In view of the above, it has been proposed to mix a hydrogen storage alloy powder with a fluororesin which imparts water repellency, or to apply a fluororesin to the hydrogen storage alloy electrode to perform a water repellency treatment. Was. By this water repellent treatment, the so-called gas phase on the surface of the oxygen gas, the electrolytic solution and the hydrogen storage alloy,
A three-phase interface of a liquid phase and a solid phase is formed, and the oxygen gas consumption reaction can be smoothly performed.

【0005】このような撥水処理を施すに際しては、フ
ッ素樹脂を分散させる必要がある。例えば、フッ素樹脂
を有機溶剤に分散させて有機フッ素樹脂分散液とした
り、フッ素樹脂を水中に分散させて水溶性フッ素樹脂分
散液とし、このようなフッ素樹脂分散液と水素吸蔵合金
粉末と水溶性結着剤とを混合して水素吸蔵合金電極とし
たり、あるいは水素吸蔵合金電極の表面にこのようなフ
ッ素樹脂分散液を塗布するようにしている。
In performing such a water-repellent treatment, it is necessary to disperse a fluororesin. For example, a fluororesin is dispersed in an organic solvent to form an organic fluororesin dispersion, or a fluororesin is dispersed in water to form a water-soluble fluororesin dispersion. A hydrogen storage alloy electrode is prepared by mixing with a binder, or such a fluororesin dispersion is applied to the surface of the hydrogen storage alloy electrode.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、一般的
に、水素吸蔵合金粉末は水溶性結着剤とともに用いられ
るので、有機フッ素樹脂分散液を用いる場合、有機フッ
素樹脂分散液は水溶性結着剤と均一に混合することが難
しく、また有機フッ素樹脂分散液を水素吸蔵合金電極の
表面に均一に塗布することが難しいため、水素吸蔵合金
電極に不均一な撥水相が形成されて、充分な酸素ガス消
費反応が行われないという問題を生じるとともに、有機
溶剤のみで水素吸蔵合金電極を作製することは製造設備
が複雑になって、水素吸蔵合金電極の製造コストが上昇
するという問題も生じた。
However, since the hydrogen storage alloy powder is generally used together with a water-soluble binder, when an organic fluororesin dispersion is used, the organic fluororesin dispersion is generally dissolved in a water-soluble binder. And it is difficult to uniformly apply the organic fluororesin dispersion to the surface of the hydrogen storage alloy electrode, so that a non-uniform water-repellent phase is formed on the hydrogen storage alloy electrode. In addition to the problem that the oxygen gas consumption reaction is not performed, the production of the hydrogen-absorbing alloy electrode using only the organic solvent complicates the production equipment and raises the problem that the production cost of the hydrogen-absorbing alloy electrode increases. .

【0007】一方、水溶性フッ素樹脂分散液を用いる
と、フッ素樹脂は疎水性であるため、水中に均一に分散
させることが難しく、また水溶性フッ素樹脂分散液は凝
集を起こしやすいために、水素吸蔵合金電極の表面に均
一に塗布することが難しく、撥水性が不均一となって充
分に酸素ガス消費反応が行われないという問題も生じ
た。
On the other hand, when a water-soluble fluororesin dispersion is used, it is difficult to uniformly disperse it in water because the fluororesin is hydrophobic, and the water-soluble fluororesin dispersion is liable to agglomerate. It is difficult to apply uniformly on the surface of the occlusion alloy electrode, and the water repellency becomes non-uniform, which causes a problem that the oxygen gas consumption reaction is not sufficiently performed.

【0008】このようなことから、フッ素樹脂を界面活
性剤によって水中に分散させたフッ素樹脂の水性ディス
パージョンと有機溶剤との混合溶液に水素吸蔵合金負極
を浸漬もしはこの混合溶液を水素吸蔵合金負極表面に塗
着するようにしたものが特開平8−88003号公報に
おいて提案された。
For this reason, the hydrogen-absorbing alloy negative electrode is immersed in a mixed solution of an aqueous dispersion of a fluorocarbon resin in which water is dispersed with a surfactant and an organic solvent, or the mixed solution is hydrogen-absorbed. One coated on the surface of the negative electrode has been proposed in JP-A-8-88003.

【0009】この特開平8−88003号公報において
提案された方法においては、界面活性剤によって水中に
分散させたフッ素樹脂の水性ディスパージョンに有機溶
剤を混合させると、均一に分散しているフッ素樹脂同士
を凝集させることができる。このため、水素吸蔵合金粒
子間の隙間にフッ素樹脂が入り込みにくくなって電極表
面の水素吸蔵合金粒子上に付着し、電極内部に混合溶液
が浸透しにくくなる。したがって、電極表面に確実に撥
水性を付与でき、電極の空孔をフッ素樹脂が閉塞せず、
均一な充放電反応が進行するようになるというものであ
る。
In the method proposed in Japanese Patent Application Laid-Open No. Hei 8-88803, when an organic solvent is mixed with an aqueous dispersion of a fluororesin dispersed in water with a surfactant, the fluororesin uniformly dispersed is obtained. They can be aggregated. For this reason, the fluororesin hardly enters the gaps between the hydrogen storage alloy particles, adheres to the hydrogen storage alloy particles on the electrode surface, and the mixed solution hardly permeates inside the electrode. Therefore, it is possible to reliably impart water repellency to the electrode surface, and the pores of the electrode are not blocked by the fluororesin,
That is, a uniform charge / discharge reaction proceeds.

【0010】しかしながら、上記特開平8−88003
号公報において提案された方法においても、フッ素樹脂
が水中に分散し、この水中に分散したフッ素樹脂が有機
溶剤に分散しているため、フッ素樹脂は水素吸蔵合金電
極の表面に不均一に分布することとなって充分な酸素ガ
ス消費反応が行われないという問題を生じた。
[0010] However, Japanese Patent Application Laid-Open No. H8-88003 describes
In the method proposed in Japanese Patent Application Laid-Open Publication No. H10-157, the fluororesin is dispersed in water, and the fluororesin dispersed in the water is dispersed in the organic solvent, so that the fluororesin is unevenly distributed on the surface of the hydrogen storage alloy electrode. As a result, there was a problem that a sufficient oxygen gas consumption reaction was not performed.

【0011】そこで、本発明は上記問題点に鑑みてなさ
れたものであり、フッ素樹脂を水素吸蔵合金電極の表面
に均一に分布させることができる分散液を得るととも
に、この分散液を用いてフッ素樹脂を水素吸蔵合金電極
の表面に均一に分布させるようにすることにある。
In view of the above, the present invention has been made in view of the above problems, and provides a dispersion capable of uniformly dispersing a fluororesin on the surface of a hydrogen-absorbing alloy electrode. An object of the present invention is to uniformly distribute the resin on the surface of the hydrogen storage alloy electrode.

【0012】[0012]

【課題を解決するための手段およびその作用・効果】本
発明は、水素吸蔵合金電極に撥水性を付与するために添
加するフッ素樹脂分散液であって、上記課題を解決する
ために、請求項1に記載の発明においては、有機溶剤中
に均一に分散させたフッ素樹脂粉末と、このフッ素樹脂
粉末が均一に分散した有機溶剤を均一に分散させた水溶
液とを含有するようにしている。
SUMMARY OF THE INVENTION The present invention relates to a fluororesin dispersion added for imparting water repellency to a hydrogen storage alloy electrode. In the invention described in 1, the fluororesin powder uniformly dispersed in the organic solvent and the aqueous solution in which the organic solvent in which the fluororesin powder is uniformly dispersed are uniformly dispersed are contained.

【0013】このような分散液は、有機溶剤中にフッ素
樹脂が分散しているため、フッ素樹脂の凝集が生じるこ
とがなく、かつ水中油滴型分散液となっていることから
水溶性結着剤との親和性がよくなり、均一に水素吸蔵合
金粉末と混合できるようになるとともに、均一に水素吸
蔵合金電極に塗布することが可能となって、このような
水素吸蔵合金粉末を用いた電極の酸素ガス吸収能力が格
段に向上する。また、水中油滴型分散液は水溶液として
取り扱うことができるため、その取り扱いが簡単になっ
て、この種の水素吸蔵合金電極の製造が容易となる。
In such a dispersion, since the fluororesin is dispersed in the organic solvent, no aggregation of the fluororesin occurs, and since the dispersion is an oil-in-water type dispersion, a water-soluble binder is formed. The affinity with the agent is improved, and it becomes possible to uniformly mix with the hydrogen storage alloy powder, and it is possible to uniformly apply the hydrogen storage alloy powder to the electrode. Greatly improves the oxygen gas absorption capacity. Further, since the oil-in-water dispersion can be handled as an aqueous solution, the handling is simplified, and the production of this type of hydrogen storage alloy electrode is facilitated.

【0014】請求項2に記載の発明においては、上述の
水溶液は界面活性剤を含有するようにしている。界面活
性剤は水中油滴型分散剤となるため、水溶液に界面活性
剤を含有させることにより、フッ素樹脂を均一に分散さ
せた有機溶剤(有機溶剤油滴)は水溶液に均一に分散す
ることとなって、有機溶剤油滴の凝集が起こりにくいた
め、より均一に水素吸蔵合金粉末と混合できるようにな
るとともに、より均一に水素吸蔵合金電極に塗布するこ
とが可能となって、このような水素吸蔵合金粉末を用い
た電極の酸素ガス吸収能力が一層向上する。
[0014] In the second aspect of the present invention, the above-mentioned aqueous solution contains a surfactant. Since the surfactant is an oil-in-water type dispersant, by adding the surfactant to the aqueous solution, the organic solvent (organic solvent oil droplets) in which the fluororesin is uniformly dispersed can be uniformly dispersed in the aqueous solution. This makes it difficult for the oil droplets of the organic solvent to agglomerate, so that it can be more uniformly mixed with the hydrogen storage alloy powder and can be more uniformly applied to the hydrogen storage alloy electrode. The oxygen gas absorbing ability of the electrode using the storage alloy powder is further improved.

【0015】請求項3に記載の発明においては、上述の
水溶液は水溶性結着剤を含有するようにしている。水溶
性結着剤に水溶液を含有させると水溶液の粘度が増大す
るため、これを水素吸蔵合金電極に塗布しても電極の内
部まで浸透し過ぎることが抑制されるので、このような
水素吸蔵合金粉末を用いた電極の酸素ガス吸収能力がさ
らに向上する。
In the third aspect of the present invention, the above-mentioned aqueous solution contains a water-soluble binder. When an aqueous solution is contained in a water-soluble binder, the viscosity of the aqueous solution increases, so that even if the aqueous solution is applied to a hydrogen storage alloy electrode, it is suppressed from excessively penetrating into the inside of the electrode. The oxygen gas absorbing ability of the electrode using the powder is further improved.

【0016】また、本発明は、水素吸蔵合金電極に撥水
性を付与するために添加するフッ素樹脂分散液の製造方
法であって、上記課題を解決するために、請求項4に記
載の発明においては、有機溶剤中にフッ素樹脂粉末を分
散させる工程と、このフッ素樹脂粉末を分散させた有機
溶剤を水溶液に分散させる工程とを備え、フッ素樹脂粉
末を水溶液に均一に分散させてフッ素樹脂分散液とする
ようにしている。
The present invention also relates to a method for producing a fluororesin dispersion to be added for imparting water repellency to a hydrogen storage alloy electrode. Comprises a step of dispersing the fluororesin powder in an organic solvent, and a step of dispersing the organic solvent in which the fluororesin powder is dispersed in an aqueous solution. And so on.

【0017】このように分散液を製造すると、有機溶剤
中にフッ素樹脂が分散しているため、フッ素樹脂に凝集
が生じることが防止できるようになるとともに、水中油
滴型分散液となるため、水溶性結着剤との親和性が向上
する。そのため、水素吸蔵合金粉末と均一に混合できる
ようになるとともに、水素吸蔵合金電極に均一に塗布す
ることが可能となるので、酸素ガス吸収能力が格段に向
上した水素吸蔵合金粉末を用いた電極を製造することが
可能になる。また、水中油滴型分散液は水溶液として取
り扱うことができるため、その取り扱いが簡単になっ
て、この種の水素吸蔵合金電極の製造が容易となる。
When the dispersion is produced in this manner, since the fluororesin is dispersed in the organic solvent, it is possible to prevent the flocculation of the fluororesin from occurring, and to form an oil-in-water type dispersion. The affinity with the water-soluble binder is improved. Therefore, it becomes possible to mix the hydrogen storage alloy powder uniformly with the hydrogen storage alloy powder, and it becomes possible to apply the hydrogen storage alloy powder uniformly to the hydrogen storage alloy electrode. It becomes possible to manufacture. Further, since the oil-in-water dispersion can be handled as an aqueous solution, the handling is simplified, and the production of this type of hydrogen storage alloy electrode is facilitated.

【0018】請求項5に記載の発明においては、上述の
水溶液に界面活性剤を添加するようにしている。界面活
性剤は水中油滴型分散剤となるため、水溶液に界面活性
剤を含有させることにより、フッ素樹脂を均一に分散さ
せた有機溶剤(有機溶剤油滴)は水溶液に均一に分散す
ることとなって、有機溶剤油滴の凝集が起こりにくいた
め、より均一に水素吸蔵合金粉末と混合できるようにな
るとともに、より均一に水素吸蔵合金電極に塗布するこ
とが可能となって、このような水素吸蔵合金粉末を用い
た電極の酸素ガス吸収能力が一層向上する。
In the invention according to claim 5, a surfactant is added to the aqueous solution. Since the surfactant is an oil-in-water type dispersant, by adding the surfactant to the aqueous solution, the organic solvent (organic solvent oil droplets) in which the fluororesin is uniformly dispersed can be uniformly dispersed in the aqueous solution. This makes it difficult for the oil droplets of the organic solvent to agglomerate, so that it can be more uniformly mixed with the hydrogen storage alloy powder and can be more uniformly applied to the hydrogen storage alloy electrode. The oxygen gas absorbing ability of the electrode using the storage alloy powder is further improved.

【0019】請求項6に記載の発明においては、上述の
水溶液に水溶性結着剤を添加するようにしている。水溶
液に水溶性結着剤を含有させると水溶液の粘度が増大す
るため、これを水素吸蔵合金電極に塗布しても電極の内
部まで浸透し過ぎることが抑制されるので、このような
水素吸蔵合金粉末を用いた電極の酸素ガス吸収能力がさ
らに向上する。
In the invention according to claim 6, a water-soluble binder is added to the above-mentioned aqueous solution. When a water-soluble binder is contained in the aqueous solution, the viscosity of the aqueous solution increases, so that even if the solution is applied to the hydrogen-absorbing alloy electrode, it is suppressed from excessively penetrating into the inside of the electrode. The oxygen gas absorbing ability of the electrode using the powder is further improved.

【0020】さらに、本発明は、フッ素樹脂分散液を水
素吸蔵合金粉末に混合して水素吸蔵合金電極に撥水性を
付与する水素吸蔵合金電極の製造方法であって、上記課
題を解決するために、請求項7に記載の発明において
は、フッ素樹脂粉末を均一に分散させた有機溶剤を水溶
液に均一に分散させてフッ素樹脂分散液とする分散工程
と、この分散工程により得られたフッ素樹脂分散液と水
素吸蔵合金粉末と水溶性結着剤とを混練してスラリーと
するスラリー工程と、このスラリー工程により得られた
スラリーを集電体に塗着する塗着工程と、この塗着工程
により集電体に塗着されたスラリーを乾燥する乾燥工程
と、この乾燥工程により乾燥された水素吸蔵電極を圧延
する圧延工程とを備えるようにしている。
Further, the present invention relates to a method for producing a hydrogen storage alloy electrode for imparting water repellency to a hydrogen storage alloy electrode by mixing a fluororesin dispersion liquid with the hydrogen storage alloy powder. In the invention according to claim 7, a dispersion step of uniformly dispersing an organic solvent in which a fluororesin powder is uniformly dispersed in an aqueous solution to obtain a fluororesin dispersion, and a dispersion of the fluororesin obtained by the dispersion step A slurry step of kneading the liquid, the hydrogen storage alloy powder and the water-soluble binder to form a slurry, a coating step of coating the slurry obtained in the slurry step on a current collector, A drying step of drying the slurry applied to the current collector and a rolling step of rolling the hydrogen storage electrode dried in the drying step are provided.

【0021】このように分散液を製造した後、この分散
液と水素吸蔵合金粉末と水溶性結着剤とを混練してスラ
リーとすると、有機溶剤中にフッ素樹脂が分散している
ため、フッ素樹脂に凝集が生じることなく水素吸蔵合金
粉末に均一に分散するようになる。また、この分散液は
水中油滴型分散液となるため、水溶性結着剤との親和性
も向上する。このため、フッ素樹脂と水素吸蔵合金粉末
と水溶性結着剤とが均一に混合できるようになるので、
酸素ガス吸収能力が格段に向上した水素吸蔵合金電極を
製造することが可能になる。また、水中油滴型分散液は
水溶液として取り扱うことができるため、その取り扱い
が簡単になって、この種の水素吸蔵合金電極の製造が容
易になる。
After the dispersion liquid is manufactured as described above, the dispersion liquid, the hydrogen storage alloy powder, and the water-soluble binder are kneaded to form a slurry. Since the fluororesin is dispersed in the organic solvent, The resin is uniformly dispersed in the hydrogen storage alloy powder without causing aggregation. Further, since this dispersion is an oil-in-water dispersion, the affinity with the water-soluble binder is also improved. For this reason, since it becomes possible to uniformly mix the fluororesin, the hydrogen storage alloy powder, and the water-soluble binder,
It becomes possible to manufacture a hydrogen storage alloy electrode having a remarkably improved oxygen gas absorption capacity. Further, since the oil-in-water dispersion can be handled as an aqueous solution, the handling is simplified, and the production of this type of hydrogen storage alloy electrode is facilitated.

【0022】また、本発明は、フッ素樹脂分散液を水素
吸蔵合金電極に塗布して同水素吸蔵合金電極に撥水性を
付与する水素吸蔵合金電極の製造方法であって、上記課
題を解決するために、請求項8に記載の発明において
は、フッ素樹脂粉末を均一に分散させた有機溶剤を水溶
液に均一に分散させてフッ素樹脂分散液とする分散工程
と、水素吸蔵合金粉末と水溶性結着剤とを混練してスラ
リーとするスラリー工程と、このスラリー工程により得
られたスラリーを集電体に塗着する塗着工程と、この塗
着工程により集電体に塗着されたスラリー上に先の分散
工程により得られたフッ素樹脂分散液を塗着する分散液
塗着工程と、スラリーおよび同スラリー上に塗着された
フッ素樹脂分散液を乾燥する乾燥工程と、この乾燥工程
により乾燥された水素吸蔵電極を圧延する圧延工程とを
備えるようにしている。
Another object of the present invention is to provide a method for producing a hydrogen storage alloy electrode in which a fluororesin dispersion is applied to a hydrogen storage alloy electrode to impart water repellency to the hydrogen storage alloy electrode. In the invention according to claim 8, a dispersion step of uniformly dispersing an organic solvent in which the fluororesin powder is uniformly dispersed in an aqueous solution to obtain a fluororesin dispersion liquid, and a water-soluble binding to the hydrogen storage alloy powder A slurry step of kneading the agent with the slurry, a coating step of coating the slurry obtained by the slurry step on the current collector, and a slurry step of coating the slurry on the current collector by the coating step. The dispersion liquid application step of applying the fluororesin dispersion liquid obtained in the previous dispersion step, the drying step of drying the slurry and the fluororesin dispersion liquid applied on the slurry, and the drying step Water So that and a rolling step of rolling the absorbing electrode.

【0023】このように分散液を製造し、スラリー工程
により得られたスラリーを集電体に塗着した後、このス
ラリー上にフッ素樹脂分散液を塗着すると、フッ素樹脂
は有機溶剤中に均一分散しているのでフッ素樹脂に凝集
が生じることなくスラリー上に均一に塗布されることと
なる。そのため、水素吸蔵合金電極上に均一にフッ素樹
脂が分布することとなって、酸素ガス吸収能力が格段に
向上した水素吸蔵合金電極を製造することが可能にな
る。
After the dispersion liquid is manufactured as described above, the slurry obtained by the slurry process is applied to the current collector, and then the fluororesin dispersion liquid is applied on the slurry, whereby the fluororesin is uniformly dispersed in the organic solvent. Since they are dispersed, they are uniformly applied on the slurry without aggregation of the fluororesin. For this reason, the fluororesin is uniformly distributed on the hydrogen storage alloy electrode, and it is possible to manufacture a hydrogen storage alloy electrode having a remarkably improved oxygen gas absorption capacity.

【0024】請求項9に記載の発明においては、上述の
フッ素樹脂分散液にガス吸収触媒を添加するようにして
いる。フッ素樹脂が分散液に均一に分散していると、こ
の分散液にガス吸収触媒を添加して混合すると、フッ素
樹脂と水素吸蔵合金とガス吸収触媒とが互いに接触する
接触面積が増大するようになるため、この水素吸蔵合金
電極の酸素ガスの吸収能力が格段に向上するようにな
る。
In the ninth aspect of the present invention, a gas absorption catalyst is added to the fluororesin dispersion. When the fluororesin is uniformly dispersed in the dispersion, a gas absorption catalyst is added to and mixed with the dispersion so that the contact area between the fluororesin, the hydrogen storage alloy, and the gas absorption catalyst is increased. Therefore, the ability of the hydrogen storage alloy electrode to absorb oxygen gas is significantly improved.

【0025】[0025]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

a.フッ素樹脂分散液の作製 (1)実施例1 シクロヘキサン(有機溶剤)にフッ素樹脂、例えばポリ
テトラフルオロエチレン(PTFE)を15重量%分散
させた有機中分散液を作製する。この有機中分散液70
重量%をホモジナイザー(機械的攪拌、超音波照射など
により2液相を混合分散してエマルジョンとする装置)
を用いて30重量%の水中に分散させてフッ素樹脂分散
液を作製する。このようにして作製されたフッ素樹脂分
散液を実施例1のフッ素樹脂分散液Aとする。
a. Preparation of Fluororesin Dispersion (1) Example 1 An organic dispersion in which 15% by weight of a fluororesin, for example, polytetrafluoroethylene (PTFE) is dispersed in cyclohexane (organic solvent) is prepared. This organic dispersion 70
Weight% homogenizer (device for mixing and dispersing two liquid phases by mechanical stirring, ultrasonic irradiation, etc. to form an emulsion)
Is dispersed in 30% by weight of water to prepare a fluororesin dispersion. The fluororesin dispersion thus prepared is referred to as a fluororesin dispersion A of Example 1.

【0026】(2)実施例2 シクロヘキサンにフッ素樹脂、例えばポリテトラフルオ
ロエチレン(PTFE)を15重量%分散させた有機中
分散液を作製する。この有機中分散液70重量%をホモ
ジナイザー(機械的攪拌、超音波照射などにより2液相
を混合分散してエマルジョンとする装置)を用いて、4
重量%の界面活性剤(ポリオキシエチレンソルビタンモ
ノラウラート(キシダ化学製,商品名:Tween2
0))を含有する30重量%の水中に分散させてフッ素
樹脂分散液を作製する。このようにして作製されたフッ
素樹脂分散液を実施例2のフッ素樹脂分散液Bとする。
(2) Example 2 An organic dispersion in which a fluororesin, for example, polytetrafluoroethylene (PTFE) is dispersed at 15% by weight in cyclohexane is prepared. 70% by weight of this organic dispersion is homogenized using a homogenizer (a device for mixing and dispersing two liquid phases by mechanical stirring, ultrasonic irradiation or the like to form an emulsion).
% By weight of a surfactant (polyoxyethylene sorbitan monolaurate (trade name: Tween2, manufactured by Kishida Chemical Co., Ltd.)
0)) is dispersed in 30% by weight of water to prepare a fluororesin dispersion. The fluororesin dispersion thus prepared is referred to as a fluororesin dispersion B of Example 2.

【0027】(3)実施例3 上述のフッ素樹脂分散液Aに10重量%のカーボン粉末
(ガス吸収触媒)を混合したものを実施例3のフッ素樹
脂分散液Cとする。
(3) Example 3 A mixture of the fluororesin dispersion A described above and 10% by weight of carbon powder (gas absorption catalyst) is referred to as a fluororesin dispersion C of Example 3.

【0028】(4)実施例4 上述のフッ素樹脂分散液Aに10重量%のニッケル粉末
(ガス吸収触媒)を混合したものを実施例4のフッ素樹
脂分散液Dとする。
(4) Example 4 A mixture of the above-mentioned fluororesin dispersion liquid A and 10% by weight of nickel powder (gas absorption catalyst) is referred to as a fluororesin dispersion liquid D of Example 4.

【0029】(5)実施例5 上述のフッ素樹脂分散液Aに5重量%のカーボン粉末
(ガス吸収触媒)と5重量%のニッケル粉末(ガス吸収
触媒)を混合したものを実施例5のフッ素樹脂分散液E
とする。
(5) Example 5 A mixture of 5% by weight of carbon powder (gas absorbing catalyst) and 5% by weight of nickel powder (gas absorbing catalyst) in the above-mentioned fluororesin dispersion liquid A was mixed with fluorine of Example 5. Resin dispersion liquid E
And

【0030】(6)実施例6 上述のフッ素樹脂分散液Bに10重量%のカーボン粉末
(ガス吸収触媒)を混合したものを実施例6のフッ素樹
脂分散液Fとする。
(6) Example 6 A mixture of the above-mentioned fluororesin dispersion B and 10% by weight of carbon powder (gas absorption catalyst) is referred to as a fluororesin dispersion F of Example 6.

【0031】(7)実施例7 上述のフッ素樹脂分散液Bに10重量%のニッケル粉末
(ガス吸収触媒)を混合したものを実施例7のフッ素樹
脂分散液Gとする。
(7) Example 7 A mixture of the fluororesin dispersion B described above and 10% by weight of nickel powder (gas absorption catalyst) is referred to as a fluororesin dispersion G of Example 7.

【0032】(8)実施例8 上述のフッ素樹脂分散液Bに5重量%のカーボン粉末
(ガス吸収触媒)と5重量%のニッケル粉末(ガス吸収
触媒)を混合したものを実施例8のフッ素樹脂分散液H
とする。
(8) Example 8 A mixture of 5% by weight of carbon powder (gas absorbing catalyst) and 5% by weight of nickel powder (gas absorbing catalyst) in the above-mentioned fluororesin dispersion B was mixed with fluorine of Example 8. Resin dispersion liquid H
And

【0033】(9)比較例1 シクロヘキサンにフッ素樹脂、例えばポリテトラフルオ
ロエチレン(PTFE)を15重量%分散させたものを
比較例1のフッ素樹脂分散液Iとする。
(9) Comparative Example 1 A fluororesin dispersion liquid I of Comparative Example 1 was prepared by dispersing a fluororesin, for example, polytetrafluoroethylene (PTFE) at 15% by weight in cyclohexane.

【0034】(10)比較例2 水に4重量%の界面活性剤(ポリオキシエチレンソルビ
タンモノラウラート(キシダ化学製,商品名:Twee
n20))とフッ素樹脂、例えばポリテトラフルオロエ
チレン(PTFE)を15重量%分散させたものを比較
例2のフッ素樹脂分散液Jとする。
(10) Comparative Example 2 4% by weight of a surfactant (polyoxyethylene sorbitan monolaurate (manufactured by Kishida Chemical Co., trade name: Tween) in water
n20)) and 15% by weight of a fluororesin, for example, polytetrafluoroethylene (PTFE) dispersed therein, is referred to as a fluororesin dispersion J of Comparative Example 2.

【0035】(11)比較例3 水に4重量%の界面活性剤(ポリオキシエチレンソルビ
タンモノラウラート(キシダ化学製,商品名:Twee
n20))とフッ素樹脂、例えばポリテトラフルオロエ
チレン(PTFE)を15重量%分散させて水中分散液
を作製する。この水中分散液50重量%とシクロヘキサ
ン50重量%を混合したものを比較例3のフッ素樹脂分
散液Kとする。
(11) Comparative Example 3 4% by weight of a surfactant (polyoxyethylene sorbitan monolaurate (manufactured by Kishida Chemical, trade name: Tween) in water
n20)) and a fluororesin, for example, polytetrafluoroethylene (PTFE) at 15% by weight, to prepare a dispersion in water. A mixture of 50% by weight of this dispersion in water and 50% by weight of cyclohexane is referred to as a fluororesin dispersion K of Comparative Example 3.

【0036】b.負極の作製 (1)実施例1 ミッシュメタル(Mm:希土類元素の混合物)、ニッケ
ル、コバルト、アルミニウム、およびマンガンを元素比
で1:3.2:1.0:0.2:0.6の比率で混合
し、この混合物をアルゴンガス雰囲気の高周波誘導炉で
誘導加熱して合金溶湯となす。この合金溶湯を公知の方
法で冷却し、組成式Mm1.0Ni3.2Co1.0Al0.2Mn
0.6で表される水素吸蔵合金のインゴットを作製する。
この水素吸蔵合金インゴットを機械的に粉砕し、平均粒
子径が約100μmの水素吸蔵合金粉末となし、この水
素吸蔵合金粉末に水溶性結着剤、例えばポリエチレンオ
キサイド(PEO)1重量%と、上述のフッ素樹脂分散
液A(水素吸蔵合金に対してフッ素樹脂固形分が1重量
%となる)と、適量の水を加えて混練して水素吸蔵合金
スラリーを作製する。このスラリーをパンチングメタル
に塗布し、乾燥した後、厚み0.4mmに圧延して実施
例1の水素吸蔵合金負極を作製する。
B. Production of Negative Electrode (1) Example 1 Mish metal (Mm: mixture of rare earth elements), nickel, cobalt, aluminum and manganese in an element ratio of 1: 3.2: 1.0: 0.2: 0.6 The mixture is mixed in a ratio, and the mixture is induction-heated in a high-frequency induction furnace in an argon gas atmosphere to form a molten alloy. The molten alloy is cooled by a known method, and the composition formula is Mm 1.0 Ni 3.2 Co 1.0 Al 0.2 Mn.
A hydrogen storage alloy ingot represented by 0.6 is produced.
The hydrogen storage alloy ingot is mechanically pulverized to form a hydrogen storage alloy powder having an average particle diameter of about 100 μm. The hydrogen storage alloy powder is mixed with a water-soluble binder, for example, 1 wt% of polyethylene oxide (PEO) and And a suitable amount of water and kneaded with a fluororesin dispersion liquid A (the fluororesin solid content is 1% by weight based on the hydrogen storage alloy) to prepare a hydrogen storage alloy slurry. This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce the hydrogen storage alloy negative electrode of Example 1.

【0037】(2)実施例2 実施例1と同様に作製した水素吸蔵合金粉末に水溶性結
着剤、例えばポリエチレンオキサイド(PEO)1重量
%と、上述のフッ素樹脂分散液B(水素吸蔵合金に対し
てフッ素樹脂固形分が1重量%となる)と、適量の水を
加えて混練して水素吸蔵合金スラリーを作製する。この
スラリーをパンチングメタルに塗布し、乾燥した後、厚
み0.4mmに圧延して実施例2の水素吸蔵合金負極を
作製する。
(2) Example 2 A hydrogen-absorbing alloy powder prepared in the same manner as in Example 1 was mixed with a water-soluble binder, for example, 1% by weight of polyethylene oxide (PEO), and the above-mentioned fluororesin dispersion B (hydrogen-absorbing alloy) The solid content of the fluororesin becomes 1% by weight), and an appropriate amount of water is added and kneaded to prepare a hydrogen storage alloy slurry. This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode of Example 2.

【0038】(3)実施例3 実施例1と同様に作製した水素吸蔵合金粉末に水溶性結
着剤、例えばポリエチレンオキサイド(PEO)1重量
%と、上述のフッ素樹脂分散液C(水素吸蔵合金に対し
てフッ素樹脂固形分が1重量%となる)と、適量の水を
加えて混練して水素吸蔵合金スラリーを作製する。この
スラリーをパンチングメタルに塗布し、乾燥した後、厚
み0.4mmに圧延して実施例3の水素吸蔵合金負極を
作製する。
(3) Example 3 A hydrogen-absorbing alloy powder prepared in the same manner as in Example 1 was mixed with a water-soluble binder, for example, 1% by weight of polyethylene oxide (PEO), and the above-mentioned fluororesin dispersion C (hydrogen-absorbing alloy). The solid content of the fluororesin becomes 1% by weight), and an appropriate amount of water is added and kneaded to prepare a hydrogen storage alloy slurry. This slurry was applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode of Example 3.

【0039】(4)実施例4 実施例1と同様に作製した水素吸蔵合金粉末に水溶性結
着剤、例えばポリエチレンオキサイド(PEO)1重量
%と、上述のフッ素樹脂分散液D(水素吸蔵合金に対し
てフッ素樹脂固形分が1重量%となる)と、適量の水を
加えて混練して水素吸蔵合金スラリーを作製する。この
スラリーをパンチングメタルに塗布し、乾燥した後、厚
み0.4mmに圧延して実施例4の水素吸蔵合金負極を
作製する。
(4) Example 4 A hydrogen-absorbing alloy powder prepared in the same manner as in Example 1 was mixed with a water-soluble binder, for example, 1% by weight of polyethylene oxide (PEO), and the above-mentioned fluororesin dispersion D (hydrogen-absorbing alloy). The solid content of the fluororesin becomes 1% by weight), and an appropriate amount of water is added and kneaded to prepare a hydrogen storage alloy slurry. The slurry was applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode of Example 4.

【0040】(5)実施例5 実施例1と同様に作製した水素吸蔵合金粉末に水溶性結
着剤、例えばポリエチレンオキサイド(PEO)1重量
%と、上述のフッ素樹脂分散液E(水素吸蔵合金に対し
てフッ素樹脂固形分が1重量%となる)と、適量の水を
加えて混練して水素吸蔵合金スラリーを作製する。この
スラリーをパンチングメタルに塗布し、乾燥した後、厚
み0.4mmに圧延して実施例5の水素吸蔵合金負極を
作製する。
(5) Example 5 A hydrogen-absorbing alloy powder prepared in the same manner as in Example 1 was mixed with a water-soluble binder, for example, 1% by weight of polyethylene oxide (PEO), and the above-mentioned fluororesin dispersion E (hydrogen-absorbing alloy). The solid content of the fluororesin becomes 1% by weight), and an appropriate amount of water is added and kneaded to prepare a hydrogen storage alloy slurry. This slurry was applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode of Example 5.

【0041】(6)実施例6 実施例1と同様に作製した水素吸蔵合金粉末に水溶性結
着剤、例えばポリエチレンオキサイド(PEO)1重量
%と、上述のフッ素樹脂分散液F(水素吸蔵合金に対し
てフッ素樹脂固形分が1重量%となる)と、適量の水を
加えて混練して水素吸蔵合金スラリーを作製する。この
スラリーをパンチングメタルに塗布し、乾燥した後、厚
み0.4mmに圧延して実施例6の水素吸蔵合金負極を
作製する。
(6) Example 6 A hydrogen-absorbing alloy powder prepared in the same manner as in Example 1 was mixed with a water-soluble binder, for example, 1% by weight of polyethylene oxide (PEO), and the above-mentioned fluororesin dispersion F (hydrogen-absorbing alloy). The solid content of the fluororesin becomes 1% by weight), and an appropriate amount of water is added and kneaded to prepare a hydrogen storage alloy slurry. This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode of Example 6.

【0042】(7)実施例7 実施例1と同様に作製した水素吸蔵合金粉末に水溶性結
着剤、例えばポリエチレンオキサイド(PEO)1重量
%と、上述のフッ素樹脂分散液G(水素吸蔵合金に対し
てフッ素樹脂固形分が1重量%となる)と、適量の水を
加えて混練して水素吸蔵合金スラリーを作製する。この
スラリーをパンチングメタルに塗布し、乾燥した後、厚
み0.4mmに圧延して実施例7の水素吸蔵合金負極を
作製する。
(7) Example 7 A hydrogen-absorbing alloy powder prepared in the same manner as in Example 1 was mixed with a water-soluble binder, for example, 1% by weight of polyethylene oxide (PEO), and the above-mentioned fluororesin dispersion G (hydrogen-absorbing alloy). The solid content of the fluororesin becomes 1% by weight), and an appropriate amount of water is added and kneaded to prepare a hydrogen storage alloy slurry. This slurry was applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode of Example 7.

【0043】(8)実施例8 実施例1と同様に作製した水素吸蔵合金粉末に水溶性結
着剤、例えばポリエチレンオキサイド(PEO)1重量
%と、上述のフッ素樹脂分散液H(水素吸蔵合金に対し
てフッ素樹脂固形分が1重量%となる)と、適量の水を
加えて混練して水素吸蔵合金スラリーを作製する。この
スラリーをパンチングメタルに塗布し、乾燥した後、厚
み0.4mmに圧延して実施例8の水素吸蔵合金負極を
作製する。
(8) Example 8 A hydrogen-absorbing alloy powder prepared in the same manner as in Example 1 was mixed with a water-soluble binder, for example, 1% by weight of polyethylene oxide (PEO), and the above-mentioned fluororesin dispersion H (hydrogen-absorbing alloy). The solid content of the fluororesin becomes 1% by weight), and an appropriate amount of water is added and kneaded to prepare a hydrogen storage alloy slurry. This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode of Example 8.

【0044】(9)実施例9 実施例1と同様に作製した水素吸蔵合金粉末に水溶性結
着剤、例えばポリエチレンオキサイド(PEO)0.5
%重量と、適量の水を加えて混練して水素吸蔵合金スラ
リーを作製する。このスラリーをパンチングメタルに塗
布し、乾燥した後、厚み0.4mmに圧延して水素吸蔵
合金負極を作製する。このようにして作製した水素吸蔵
合金負極の表面に上述のフッ素樹脂分散液A(水素吸蔵
合金に対してフッ素樹脂固形分が1重量%となる)にポ
リエチレンオキサイド(PEO)0.5%重量を混合し
たスラリーを塗布し、乾燥して実施例9の水素吸蔵合金
負極とする。
(9) Example 9 A water-soluble binder, for example, polyethylene oxide (PEO) 0.5 was added to the hydrogen storage alloy powder produced in the same manner as in Example 1.
% Hydrogen and an appropriate amount of water are added and kneaded to prepare a hydrogen storage alloy slurry. This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode. 0.5% by weight of polyethylene oxide (PEO) was added to the surface of the thus prepared hydrogen storage alloy negative electrode in the above-mentioned fluororesin dispersion A (the fluororesin solid content was 1% by weight with respect to the hydrogen storage alloy). The mixed slurry was applied and dried to obtain a hydrogen storage alloy negative electrode of Example 9.

【0045】(10)実施例10 実施例1と同様に作製した水素吸蔵合金粉末に水溶性結
着剤、例えばポリエチレンオキサイド(PEO)0.5
重量%と、適量の水を加えて混練して水素吸蔵合金スラ
リーを作製する。このスラリーをパンチングメタルに塗
布し、乾燥した後、厚み0.4mmに圧延して水素吸蔵
合金負極を作製する。このようにして作製した水素吸蔵
合金負極の表面に上述のフッ素樹脂分散液B(水素吸蔵
合金に対してフッ素樹脂固形分が1重量%となる)にポ
リエチレンオキサイド(PEO)0.5%重量を混合し
たスラリーを塗布し、乾燥して実施例10の水素吸蔵合
金負極とする。
(10) Example 10 A water-soluble binder, for example, polyethylene oxide (PEO) 0.5 was added to the hydrogen storage alloy powder prepared in the same manner as in Example 1.
A hydrogen storage alloy slurry is prepared by adding and mixing the weight% and an appropriate amount of water. This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode. 0.5% by weight of polyethylene oxide (PEO) was added to the above-mentioned fluororesin dispersion B (the fluororesin solid content was 1% by weight with respect to the hydrogen storage alloy) on the surface of the hydrogen storage alloy negative electrode thus produced. The mixed slurry was applied and dried to obtain a hydrogen storage alloy negative electrode of Example 10.

【0046】(11)実施例11 実施例1と同様に作製した水素吸蔵合金粉末に水溶性結
着剤、例えばポリエチレンオキサイド(PEO)1重量
%と、適量の水を加えて混練して水素吸蔵合金スラリー
を作製する。このスラリーをパンチングメタルに塗布
し、乾燥した後、厚み0.4mmに圧延して水素吸蔵合
金負極を作製する。このようにして作製した水素吸蔵合
金負極の表面に上述のフッ素樹脂分散液C(水素吸蔵合
金に対してフッ素樹脂固形分が1重量%となる)にポリ
エチレンオキサイド(PEO)0.5%重量を混合した
スラリーを塗布し、乾燥して実施例11の水素吸蔵合金
負極とする。
(11) Example 11 A hydrogen-absorbing alloy powder prepared in the same manner as in Example 1 was mixed with a water-soluble binder, for example, 1% by weight of polyethylene oxide (PEO) and an appropriate amount of water, and kneaded. Prepare an alloy slurry. This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode. 0.5% by weight of polyethylene oxide (PEO) was added to the surface of the thus-prepared hydrogen storage alloy negative electrode in the fluororesin dispersion liquid C (the fluororesin solid content was 1% by weight with respect to the hydrogen storage alloy). The mixed slurry was applied and dried to obtain a hydrogen storage alloy negative electrode of Example 11.

【0047】(12)実施例12 実施例1と同様に作製した水素吸蔵合金粉末に水溶性結
着剤、例えばポリエチレンオキサイド(PEO)1重量
%と、適量の水を加えて混練して水素吸蔵合金スラリー
を作製する。このスラリーをパンチングメタルに塗布
し、乾燥した後、厚み0.4mmに圧延して水素吸蔵合
金負極を作製する。このようにして作製した水素吸蔵合
金負極の表面に上述のフッ素樹脂分散液D(水素吸蔵合
金に対してフッ素樹脂固形分が1重量%となる)にポリ
エチレンオキサイド(PEO)0.5%重量を混合した
スラリーを塗布し、乾燥して実施例12の水素吸蔵合金
負極とする。
(12) Example 12 A hydrogen-absorbing alloy powder prepared in the same manner as in Example 1 was mixed with a water-soluble binder, for example, 1% by weight of polyethylene oxide (PEO) and an appropriate amount of water, and kneaded. Prepare an alloy slurry. This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode. 0.5% by weight of polyethylene oxide (PEO) was added to the above-mentioned fluororesin dispersion D (the fluororesin solid content was 1% by weight with respect to the hydrogen-absorbing alloy) on the surface of the hydrogen-absorbing alloy negative electrode thus produced. The mixed slurry was applied and dried to obtain a hydrogen storage alloy negative electrode of Example 12.

【0048】(13)実施例13 実施例1と同様に作製した水素吸蔵合金粉末に水溶性結
着剤、例えばポリエチレンオキサイド(PEO)1重量
%と、適量の水を加えて混練して水素吸蔵合金スラリー
を作製する。このスラリーをパンチングメタルに塗布
し、乾燥した後、厚み0.4mmに圧延して水素吸蔵合
金負極を作製する。このようにして作製した水素吸蔵合
金負極の表面に上述のフッ素樹脂分散液E(水素吸蔵合
金に対してフッ素樹脂固形分が1重量%となる)にポリ
エチレンオキサイド(PEO)0.5%重量を混合した
スラリーを塗布し、乾燥して実施例13の水素吸蔵合金
負極とする。
(13) Example 13 A hydrogen-absorbing alloy powder prepared in the same manner as in Example 1 was mixed with a water-soluble binder, for example, 1% by weight of polyethylene oxide (PEO) and an appropriate amount of water, and kneaded. Prepare an alloy slurry. This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode. 0.5% by weight of polyethylene oxide (PEO) was added to the surface of the thus prepared hydrogen storage alloy negative electrode in the above-mentioned fluororesin dispersion E (the fluororesin solid content was 1% by weight with respect to the hydrogen storage alloy). The mixed slurry was applied and dried to obtain a hydrogen storage alloy negative electrode of Example 13.

【0049】(14)実施例14 実施例1と同様に作製した水素吸蔵合金粉末に水溶性結
着剤、例えばポリエチレンオキサイド(PEO)1重量
%と、適量の水を加えて混練して水素吸蔵合金スラリー
を作製する。このスラリーをパンチングメタルに塗布
し、乾燥した後、厚み0.4mmに圧延して水素吸蔵合
金負極を作製する。このようにして作製した水素吸蔵合
金負極の表面に上述のフッ素樹脂分散液F(水素吸蔵合
金に対してフッ素樹脂固形分が1重量%となる)にポリ
エチレンオキサイド(PEO)0.5%重量を混合した
スラリーを塗布し、乾燥して実施例14の水素吸蔵合金
負極とする。
(14) Example 14 A hydrogen-absorbing alloy powder prepared in the same manner as in Example 1 was mixed with a water-soluble binder, for example, 1% by weight of polyethylene oxide (PEO) and an appropriate amount of water, and kneaded. Prepare an alloy slurry. This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode. 0.5% by weight of polyethylene oxide (PEO) was added to the surface of the thus prepared hydrogen storage alloy negative electrode in the above-mentioned fluororesin dispersion F (the fluororesin solid content was 1% by weight with respect to the hydrogen storage alloy). The mixed slurry was applied and dried to obtain a hydrogen storage alloy negative electrode of Example 14.

【0050】(15)実施例15 実施例1と同様に作製した水素吸蔵合金粉末に水溶性結
着剤、例えばポリエチレンオキサイド(PEO)1重量
%と、適量の水を加えて混練して水素吸蔵合金スラリー
を作製する。このスラリーをパンチングメタルに塗布
し、乾燥した後、厚み0.4mmに圧延して水素吸蔵合
金負極を作製する。このようにして作製した水素吸蔵合
金負極の表面に上述のフッ素樹脂分散液G(水素吸蔵合
金に対してフッ素樹脂固形分が1重量%となる)にポリ
エチレンオキサイド(PEO)0.5%重量を混合した
スラリーを塗布し、乾燥して実施例15の水素吸蔵合金
負極とする。
(15) Example 15 A hydrogen-absorbing alloy powder prepared in the same manner as in Example 1 was mixed with a water-soluble binder, for example, 1% by weight of polyethylene oxide (PEO) and an appropriate amount of water, and kneaded. Prepare an alloy slurry. This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode. 0.5% by weight of polyethylene oxide (PEO) was added to the surface of the thus prepared hydrogen storage alloy negative electrode in the above-mentioned fluororesin dispersion G (the fluororesin solid content was 1% by weight with respect to the hydrogen storage alloy). The mixed slurry was applied and dried to obtain a hydrogen storage alloy negative electrode of Example 15.

【0051】(16)実施例16 実施例1と同様に作製した水素吸蔵合金粉末に水溶性結
着剤、例えばポリエチレンオキサイド(PEO)1重量
%と、適量の水を加えて混練して水素吸蔵合金スラリー
を作製する。このスラリーをパンチングメタルに塗布
し、乾燥した後、厚み0.4mmに圧延して水素吸蔵合
金負極を作製する。このようにして作製した水素吸蔵合
金負極の表面に上述のフッ素樹脂分散液H(水素吸蔵合
金に対してフッ素樹脂固形分が1重量%となる)にポリ
エチレンオキサイド(PEO)0.5%重量を混合した
スラリーを塗布し、乾燥して実施例16の水素吸蔵合金
負極とする。
(16) Example 16 A hydrogen-absorbing alloy powder prepared in the same manner as in Example 1 was mixed with a water-soluble binder, for example, 1% by weight of polyethylene oxide (PEO) and an appropriate amount of water, and kneaded. Prepare an alloy slurry. This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode. 0.5% by weight of polyethylene oxide (PEO) was added to the surface of the thus-prepared hydrogen storage alloy negative electrode in the fluororesin dispersion liquid H (the fluororesin solid content was 1% by weight with respect to the hydrogen storage alloy). The mixed slurry was applied and dried to obtain a hydrogen storage alloy negative electrode of Example 16.

【0052】(17)実施例17 実施例1と同様に作製した水素吸蔵合金粉末に水溶性結
着剤、例えばポリエチレンオキサイド(PEO)1重量
%と、適量の水を加えて混練して水素吸蔵合金スラリー
を作製する。このスラリーをパンチングメタルに塗布
し、乾燥した後、厚み0.4mmに圧延して水素吸蔵合
金負極を作製する。上述のフッ素樹脂分散液B(水素吸
蔵合金に対してフッ素樹脂固形分が1重量%となる)を
塗布し、乾燥して実施例17の水素吸蔵合金負極とす
る。
(17) Example 17 A hydrogen-absorbing alloy powder prepared in the same manner as in Example 1 was mixed with a water-soluble binder, for example, 1% by weight of polyethylene oxide (PEO) and an appropriate amount of water, and kneaded. Prepare an alloy slurry. This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode. The above-mentioned fluororesin dispersion liquid B (the fluororesin solid content is 1% by weight with respect to the hydrogen storage alloy) is applied and dried to obtain a hydrogen storage alloy negative electrode of Example 17.

【0053】(18)比較例1 実施例1と同様に作製した水素吸蔵合金粉末にポリエチ
レンオキサイド(PEO)1重量%と、上述のフッ素樹
脂分散液I(水素吸蔵合金に対してフッ素樹脂固形分が
1重量%となる)と、適量の水を加えて混練して水素吸
蔵合金スラリーを作製する。このスラリーをパンチング
メタルに塗布し、乾燥した後、厚み0.4mmに圧延し
て比較例1の水素吸蔵合金負極を作製する。
(18) Comparative Example 1 1% by weight of polyethylene oxide (PEO) was added to a hydrogen storage alloy powder prepared in the same manner as in Example 1, and the above-mentioned fluororesin dispersion liquid I (solid content of the fluororesin relative to the hydrogen storage alloy) Is 1% by weight), and an appropriate amount of water is added and kneaded to prepare a hydrogen storage alloy slurry. This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode of Comparative Example 1.

【0054】(19)比較例2 実施例1と同様に作製した水素吸蔵合金粉末にポリエチ
レンオキサイド(PEO)1重量%と、上述のフッ素樹
脂分散液J(水素吸蔵合金に対してフッ素樹脂固形分が
1重量%となる)と、適量の水を加えて混練して水素吸
蔵合金スラリーを作製する。このスラリーをパンチング
メタルに塗布し、乾燥した後、厚み0.4mmに圧延し
て比較例2の水素吸蔵合金負極を作製する。
(19) Comparative Example 2 1% by weight of polyethylene oxide (PEO) was added to the hydrogen storage alloy powder prepared in the same manner as in Example 1, Is 1% by weight), and an appropriate amount of water is added and kneaded to prepare a hydrogen storage alloy slurry. This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode of Comparative Example 2.

【0055】(20)比較例3 実施例1と同様に作製した水素吸蔵合金粉末にポリエチ
レンオキサイド(PEO)1重量%と、上述のフッ素樹
脂分散液K(水素吸蔵合金に対してフッ素樹脂固形分が
1重量%となる)と、適量の水を加えて混練して水素吸
蔵合金スラリーを作製する。このスラリーをパンチング
メタルに塗布し、乾燥した後、厚み0.4mmに圧延し
て比較例3の水素吸蔵合金負極を作製する。
(20) Comparative Example 3 1% by weight of polyethylene oxide (PEO) was added to the hydrogen-absorbing alloy powder prepared in the same manner as in Example 1, and the above-mentioned fluororesin dispersion liquid K (the fluororesin solid content with respect to the hydrogen-absorbing alloy) Is 1% by weight), and an appropriate amount of water is added and kneaded to prepare a hydrogen storage alloy slurry. This slurry was applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode of Comparative Example 3.

【0056】(21)比較例4 実施例1と同様に作製した水素吸蔵合金粉末にポリエチ
レンオキサイド(PEO)1重量%と、1重量%のフッ
素樹脂粉末(L)と、適量の水を加えて混練して水素吸
蔵合金スラリーを作製する。このスラリーをパンチング
メタルに塗布し、乾燥した後、厚み0.4mmに圧延し
て比較例4の水素吸蔵合金負極を作製する。
(21) Comparative Example 4 1% by weight of polyethylene oxide (PEO), 1% by weight of a fluororesin powder (L) and an appropriate amount of water were added to a hydrogen storage alloy powder prepared in the same manner as in Example 1. The mixture is kneaded to produce a hydrogen storage alloy slurry. This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode of Comparative Example 4.

【0057】(22)比較例5 実施例1と同様に作製した水素吸蔵合金粉末にポリエチ
レンオキサイド(PEO)0.5重量%と、適量の水を
加えて混練して水素吸蔵合金スラリーを作製する。この
スラリーをパンチングメタルに塗布し、乾燥した後、厚
み0.4mmに圧延して水素吸蔵合金負極を作製する。
このようにして作製した水素吸蔵合金負極の表面に上述
のフッ素樹脂分散液I(水素吸蔵合金に対してフッ素樹
脂固形分が1重量%となる)にポリエチレンオキサイド
(PEO)0.5%重量を混合したスラリーを塗布し、
乾燥して比較例5の水素吸蔵合金負極とする。
(22) Comparative Example 5 A hydrogen storage alloy slurry is prepared by adding 0.5% by weight of polyethylene oxide (PEO) and an appropriate amount of water to a hydrogen storage alloy powder prepared in the same manner as in Example 1, and kneading the mixture. . This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode.
0.5% by weight of polyethylene oxide (PEO) was added to the above-mentioned fluororesin dispersion liquid I (the fluororesin solid content was 1% by weight with respect to the hydrogen-absorbing alloy) on the surface of the hydrogen storage alloy negative electrode thus produced. Apply the mixed slurry,
Drying was performed to obtain a hydrogen storage alloy negative electrode of Comparative Example 5.

【0058】(23)比較例6 実施例1と同様に作製した水素吸蔵合金粉末にポリエチ
レンオキサイド(PEO)0.5重量%と、適量の水を
加えて混練して水素吸蔵合金スラリーを作製する。この
スラリーをパンチングメタルに塗布し、乾燥した後、厚
み0.4mmに圧延して水素吸蔵合金負極を作製する。
このようにして作製した水素吸蔵合金負極の表面に上述
のフッ素樹脂分散液J(水素吸蔵合金に対してフッ素樹
脂固形分が1重量%となる)にポリエチレンオキサイド
(PEO)0.5%重量を混合したスラリーを塗布し、
乾燥して比較例6の水素吸蔵合金負極とする。
(23) Comparative Example 6 A hydrogen storage alloy slurry is prepared by adding 0.5% by weight of polyethylene oxide (PEO) and an appropriate amount of water to a hydrogen storage alloy powder prepared in the same manner as in Example 1 and kneading the mixture. . This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode.
0.5% by weight of polyethylene oxide (PEO) was added to the fluororesin dispersion J (the fluororesin solid content was 1% by weight with respect to the hydrogen storage alloy) on the surface of the hydrogen storage alloy negative electrode thus prepared. Apply the mixed slurry,
Drying was performed to obtain a hydrogen storage alloy negative electrode of Comparative Example 6.

【0059】(24)比較例7 実施例1と同様に作製した水素吸蔵合金粉末にポリエチ
レンオキサイド(PEO)0.5重量%と、適量の水を
加えて混練して水素吸蔵合金スラリーを作製する。この
スラリーをパンチングメタルに塗布し、乾燥した後、厚
み0.4mmに圧延して水素吸蔵合金負極を作製する。
このようにして作製した水素吸蔵合金負極の表面に上述
のフッ素樹脂粉末K(水素吸蔵合金に対してフッ素樹脂
固形分が1重量%となる)にポリエチレンオキサイド
(PEO)0.5%重量を混合したスラリーを塗布し、
乾燥して比較例7の水素吸蔵合金負極とする。
(24) Comparative Example 7 A hydrogen storage alloy slurry is prepared by adding 0.5% by weight of polyethylene oxide (PEO) and an appropriate amount of water to the hydrogen storage alloy powder prepared in the same manner as in Example 1, and kneading the mixture. . This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode.
0.5% by weight of polyethylene oxide (PEO) is mixed with the above-mentioned fluororesin powder K (the fluororesin solid content is 1% by weight with respect to the hydrogen-absorbing alloy) on the surface of the hydrogen-absorbing alloy negative electrode thus produced. And apply the slurry
Drying was performed to obtain a hydrogen storage alloy negative electrode of Comparative Example 7.

【0060】(25)比較例8 実施例1と同様に作製した水素吸蔵合金粉末にポリエチ
レンオキサイド(PEO)0.5重量%と、適量の水を
加えて混練して水素吸蔵合金スラリーを作製する。この
スラリーをパンチングメタルに塗布し、乾燥した後、厚
み0.4mmに圧延して水素吸蔵合金負極を作製する。
このようにして作製した水素吸蔵合金負極の表面に1重
量%のフッ素樹脂粉末を塗布し、乾燥して比較例8の水
素吸蔵合金負極とする。
(25) Comparative Example 8 A hydrogen storage alloy slurry is prepared by adding 0.5% by weight of polyethylene oxide (PEO) and an appropriate amount of water to a hydrogen storage alloy powder prepared in the same manner as in Example 1, and kneading the mixture. . This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode.
The surface of the thus-prepared hydrogen storage alloy negative electrode was coated with 1% by weight of a fluororesin powder and dried to obtain a hydrogen storage alloy negative electrode of Comparative Example 8.

【0061】(26)比較例9 実施例1と同様に作製した水素吸蔵合金粉末にポリエチ
レンオキサイド(PEO)1重量%と、1重量%のフッ
素樹脂粉末と、適量の水を加えて混練して水素吸蔵合金
スラリーを作製する。このスラリーをパンチングメタル
に塗布し、乾燥した後、厚み0.4mmに圧延して比較
例9の水素吸蔵合金負極を作製する。
(26) Comparative Example 9 1% by weight of polyethylene oxide (PEO), 1% by weight of a fluororesin powder, and an appropriate amount of water were added to a hydrogen storage alloy powder produced in the same manner as in Example 1 and kneaded. Prepare a hydrogen storage alloy slurry. This slurry is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode of Comparative Example 9.

【0062】c.ニッケル電極の作製 水酸化ニッケルを主成分とする活物質スラリーを多孔度
95%で、厚み1.6mmの発泡ニッケルからなる基板
に充填し、PTFE(ポリテトラフルオロエチレン)水
溶液に浸漬した後、乾燥を行う。乾燥後、厚み0.60
mmとなるように圧延を行い非焼結式ニッケル正極を作
製した。
C. Preparation of Nickel Electrode An active material slurry containing nickel hydroxide as a main component is filled into a 1.6 mm thick substrate made of foamed nickel having a porosity of 95%, immersed in an aqueous PTFE (polytetrafluoroethylene) solution, and then dried. I do. After drying, thickness 0.60
mm to obtain a non-sintered nickel positive electrode.

【0063】d.電池の作製 上述のように作製した実施例1〜17および比較例1〜
9の水素吸蔵合金負極と非焼結式ニッケル正極とをポリ
プロピレン製不織布のセパレータを介して卷回して、渦
巻状の電極群を作製した後、この電極群を外装缶に挿入
する。その後、外装缶内に電解液として30重量%の水
酸化カリウム水溶液を注入し、更に外装缶を封口して、
ニッケル−水素蓄電池を組み立てる。このようにして作
製した電池の理論容量は1000mAHとなる。なお、
実施例1〜17の水素吸蔵合金負極を用いたニッケル−
水素蓄電池をそれぞれ1〜17の電池とし、比較例1〜
9の水素吸蔵合金負極を用いたニッケル−水素蓄電池を
それぞれ18〜26の電池とする。
D. Production of Battery Examples 1 to 17 and Comparative Examples 1 to 1 produced as described above.
After winding the hydrogen storage alloy negative electrode of No. 9 and the non-sintered nickel positive electrode through a polypropylene nonwoven fabric separator to produce a spiral electrode group, this electrode group is inserted into an outer can. Thereafter, a 30% by weight aqueous solution of potassium hydroxide was poured as an electrolytic solution into the outer can, and the outer can was sealed.
Assemble the nickel-hydrogen storage battery. The theoretical capacity of the battery manufactured in this way is 1000 mAH. In addition,
Nickel using the hydrogen storage alloy negative electrodes of Examples 1 to 17
The hydrogen storage batteries were respectively 1 to 17 batteries, and Comparative Examples 1 to
Nickel-hydrogen storage batteries using the hydrogen storage alloy negative electrode of No. 9 are referred to as batteries 18 to 26, respectively.

【0064】e.電池の活性化 上述のように作成した1〜26のニッケル−水素蓄電池
を室温で0.1Cの充電電流で16時間充電した後、
0.2Cの放電電流で電池電圧が1.0Vになるまで放
電させた後、1時間休止するサイクルを3サイクル繰り
返してニッケル−水素蓄電池を活性化する。
E. Battery activation After charging the nickel-hydrogen storage batteries 1 to 26 prepared as described above at room temperature with a charging current of 0.1 C for 16 hours,
After discharging the battery with a discharge current of 0.2 C until the battery voltage reaches 1.0 V, a cycle of resting for 1 hour is repeated three cycles to activate the nickel-hydrogen storage battery.

【0065】f.電池内圧の測定 上述のようにして活性化した1〜26のニッケル−水素
蓄電池を1000mAで充電電流で1.5時間充電した
後の電池内圧を測定すると以下の表1に示すような結果
となった。
F. Measurement of battery internal pressure When the nickel-hydrogen storage batteries 1 to 26 activated as described above were charged at 1000 mA with a charging current for 1.5 hours, the battery internal pressure was measured, and the results shown in Table 1 below were obtained. Was.

【0066】[0066]

【表1】 [Table 1]

【0067】上記表1より以下のことが明らかとなっ
た。即ち、フッ素樹脂が無添加の負極を用いた電池26
より、フッ素樹脂を極板の内部あるいは表面に添加した
電池18〜25の内圧は低下するが、それほど内圧低下
の効果は大きくない。その理由は次のように考えること
ができる。比較例18と22(分散液Iを用いたもの)
の問題点は、フッ素樹脂が有機溶剤中に分散しているた
め、有機溶剤は水溶性糊料(PEO)と混合したときに
均一に混合できないため、フッ素樹脂の混合または塗布
が不均一となり、内圧低減効果が十分でない。また、比
較例19と23(分散液Jを用いたもの)の問題点は、
フッ素樹脂の分散が十分でないことによる。フッ素樹脂
は疎水性のため、水中に分散しにくく、凝集を起こしや
すい。そのために分散剤(界面活性剤)を用いている
が、疎水性の有機溶剤に分散させた方が良好である。
The following is clear from Table 1 above. That is, the battery 26 using the negative electrode to which no fluorine resin was added was used.
As a result, the internal pressure of the batteries 18 to 25 in which the fluororesin is added to the inside or the surface of the electrode plate is reduced, but the effect of lowering the internal pressure is not so large. The reason can be considered as follows. Comparative Examples 18 and 22 (Using Dispersion I)
The problem is that because the fluororesin is dispersed in the organic solvent, the organic solvent cannot be mixed uniformly when mixed with the water-soluble paste (PEO), so that the mixing or application of the fluororesin becomes uneven, The effect of reducing the internal pressure is not sufficient. In addition, the problems of Comparative Examples 19 and 23 (using dispersion J) are as follows.
This is due to insufficient dispersion of the fluororesin. Because the fluororesin is hydrophobic, it is difficult to disperse in water and easily causes aggregation. For this purpose, a dispersant (surfactant) is used, but it is better to disperse it in a hydrophobic organic solvent.

【0068】さらに、比較例20と24(分散液Kを用
いたもの)の問題点は、フッ素樹脂が水中に分散してい
ること、およびこの水中に分散したフッ素樹脂を有機溶
剤に混合していることから、スラリー混合時、あるいは
負極表面への塗着時にフッ素樹脂が不均一に分布するこ
とにより、内圧低減効果が十分ではない。また、比較例
21と25(フッ素樹脂粉末Lを用いたもの)の問題点
は、フッ素樹脂を粉末状態で混合したり、あるいはフッ
素樹脂粉末を負極表面へ塗着するため、フッ素樹脂が不
均一に分布することにより、内圧低減効果が十分ではな
い。
The problems of Comparative Examples 20 and 24 (using dispersion K) are that the fluororesin is dispersed in water and that the fluororesin dispersed in water is mixed with an organic solvent. Therefore, the effect of reducing the internal pressure is not sufficient due to the uneven distribution of the fluororesin during the mixing of the slurry or the application to the negative electrode surface. Further, the problems of Comparative Examples 21 and 25 (using the fluororesin powder L) are that the fluororesin is mixed in a powder state or the fluororesin powder is applied to the negative electrode surface. , The effect of reducing the internal pressure is not sufficient.

【0069】これに対して、実施例のフッ素樹脂分散液
を用いた電池1〜17の内圧低減効果は大きい。まず、
実施例1と9は、有機溶剤中にフッ素樹脂が分散してい
るため、フッ素樹脂の凝集が起こらず、水中油滴型分散
液となっているために水溶性結着剤(PEO)との親和
性が良く、均一に混合、塗布することができるためと考
えることができる。そして、水中油滴型分散液は水溶液
として取り扱うことができるため、取り扱いが容易とな
る。
On the other hand, the batteries 1 to 17 using the fluororesin dispersions of the examples have a large internal pressure reducing effect. First,
In Examples 1 and 9, since the fluororesin is dispersed in the organic solvent, the flocculation of the fluororesin does not occur, and since the dispersion is an oil-in-water type dispersion, the dispersion with the water-soluble binder (PEO) It can be considered that the compound has good affinity and can be uniformly mixed and applied. Since the oil-in-water dispersion can be handled as an aqueous solution, the handling becomes easy.

【0070】実施例2と10は、さらに内圧低減効果は
大きい。これは水中油滴型分散剤(界面活性剤)により
有機溶剤油滴の凝集が起こりにくいため、より均一に混
合、塗布することができるためと考えることができる。
実施例3〜8と11〜16は、ガス吸収触媒(カーボン
あるいはニッケル)を混合しているために、さらに内圧
低減効果は大きい。これはフッ素樹脂が均一に分散して
いるため、水素吸蔵合金とフッ素樹脂と触媒の接触面積
が増加するためと考えることができる。
In the second and tenth embodiments, the effect of reducing the internal pressure is further increased. This can be considered because the oil-in-water type dispersant (surfactant) hardly causes the oil droplets of the organic solvent to agglomerate, so that they can be more uniformly mixed and applied.
In Examples 3 to 8 and 11 to 16, since the gas absorption catalyst (carbon or nickel) is mixed, the effect of reducing the internal pressure is further increased. This can be attributed to the fact that the fluororesin is uniformly dispersed, which increases the contact area between the hydrogen storage alloy, the fluororesin, and the catalyst.

【0071】なお、実施例17と実施例2との比較で分
かるように、水溶性結着剤(PEO)を添加すると、内
圧低減効果が大きくなるということができる。これは、
フッ素樹脂分散液に水溶性結着剤(PEO)を添加する
と、フッ素樹脂分散液の粘度が増大し、フッ素樹脂が負
極内部まで浸透しすぎることが抑制されるためと考える
ことができる。
As can be seen from a comparison between Example 17 and Example 2, it can be said that the addition of a water-soluble binder (PEO) increases the effect of reducing the internal pressure. this is,
It can be considered that when the water-soluble binder (PEO) is added to the fluororesin dispersion, the viscosity of the fluororesin dispersion increases and the fluororesin is prevented from permeating too far into the negative electrode.

【0072】なお、上述した実施形態においては、有機
溶剤としてシクロヘキサンを用いる例について説明した
が、有機溶剤としては、これ以外にシクロヘプタン、ヘ
プタン、トルエン、ヘキサン等を用いるようにしてもよ
い。
In the above embodiment, an example in which cyclohexane is used as the organic solvent has been described. However, as the organic solvent, cycloheptane, heptane, toluene, hexane or the like may be used.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金電極に撥水性を付与するた
めに添加するフッ素樹脂分散液であって、 有機溶剤中に均一に分散させたフッ素樹脂粉末と、 前記フッ素樹脂粉末が均一に分散した前記有機溶剤を均
一に分散させた水溶液とを含有することを特徴とするフ
ッ素樹脂分散液。
1. A fluororesin dispersion added to impart water repellency to a hydrogen storage alloy electrode, wherein the fluororesin powder is uniformly dispersed in an organic solvent, and the fluororesin powder is uniformly dispersed. An aqueous solution in which the organic solvent is uniformly dispersed.
【請求項2】 前記水溶液は界面活性剤を含有すること
を特徴とする請求項1に記載のフッ素樹脂分散液。
2. The fluororesin dispersion according to claim 1, wherein the aqueous solution contains a surfactant.
【請求項3】 前記水溶液は水溶性結着剤を含有するこ
とを特徴とする請求項1または請求項2に記載のフッ素
樹脂分散液。
3. The fluororesin dispersion according to claim 1, wherein the aqueous solution contains a water-soluble binder.
【請求項4】 水素吸蔵合金電極に撥水性を付与するた
めに添加するフッ素樹脂分散液の製造方法であって、 有機溶剤中にフッ素樹脂粉末を分散させる工程と、 前記フッ素樹脂粉末を分散させた有機溶剤を水溶液に分
散させる工程とを備え、前記フッ素樹脂粉末を前記水溶
液に均一に分散させてフッ素樹脂分散液とすることを特
徴とするフッ素樹脂分散液の製造方法。
4. A method for producing a fluororesin dispersion to be added for imparting water repellency to a hydrogen storage alloy electrode, comprising the steps of: dispersing a fluororesin powder in an organic solvent; Dispersing the organic solvent in an aqueous solution, wherein the fluororesin powder is uniformly dispersed in the aqueous solution to obtain a fluororesin dispersion.
【請求項5】 前記水溶液に界面活性剤を添加したこと
を特徴とする請求項4に記載のフッ素樹脂分散液の製造
方法。
5. The method according to claim 4, wherein a surfactant is added to the aqueous solution.
【請求項6】 前記水溶液に水溶性結着剤を添加したこ
とを特徴とする請求項4または請求項5に記載のフッ素
樹脂分散液の製造方法。
6. The process for producing a fluororesin dispersion according to claim 4, wherein a water-soluble binder is added to the aqueous solution.
【請求項7】 フッ素樹脂分散液を水素吸蔵合金粉末に
混合して水素吸蔵合金電極に撥水性を付与する水素吸蔵
合金電極の製造方法であって、 フッ素樹脂粉末を均一に分散させた有機溶剤を水溶液に
均一に分散させてフッ素樹脂分散液とする分散工程と、 前記分散工程により得られたフッ素樹脂分散液と水素吸
蔵合金粉末と水溶性結着剤とを混練してスラリーとする
スラリー工程と、 前記スラリー工程により得られたスラリーを集電体に塗
着する塗着工程と、 前記塗着工程により集電体に塗着されたスラリーを乾燥
する乾燥工程と、 前記乾燥工程により乾燥された水素吸蔵電極を圧延する
圧延工程とを備えたことを特徴とする水素吸蔵合金電極
の製造方法。
7. A method for producing a hydrogen-absorbing alloy electrode for imparting water repellency to a hydrogen-absorbing alloy electrode by mixing a fluororesin dispersion liquid with the hydrogen-absorbing alloy powder, comprising: an organic solvent in which the fluororesin powder is uniformly dispersed. Dispersing uniformly in an aqueous solution to obtain a fluororesin dispersion, and a slurry process of kneading the fluororesin dispersion obtained in the dispersion step, a hydrogen storage alloy powder, and a water-soluble binder to form a slurry An application step of applying the slurry obtained in the slurry step to the current collector; a drying step of drying the slurry applied to the current collector in the application step; and a drying step of drying in the drying step. And a rolling step of rolling the hydrogen storage electrode.
【請求項8】 フッ素樹脂分散液を水素吸蔵合金電極に
塗布して同水素吸蔵合金電極に撥水性を付与する水素吸
蔵合金電極の製造方法であって、 フッ素樹脂粉末を均一に分散させた有機溶剤を水溶液に
均一に分散させてフッ素樹脂分散液とする分散工程と、 水素吸蔵合金粉末と水溶性結着剤とを混練してスラリー
とするスラリー工程と、 前記スラリー工程により得られたスラリーを集電体に塗
着する塗着工程と、 前記塗着工程により集電体に塗着されたスラリー上に前
記分散工程により得られたフッ素樹脂分散液を塗着する
分散液塗着工程と、 前記スラリーおよび同スラリー上に塗着された前記フッ
素樹脂分散液を乾燥する乾燥工程と、 前記乾燥工程により乾燥された水素吸蔵電極を圧延する
圧延工程とを備えたことを特徴とする水素吸蔵合金電極
の製造方法。
8. A method for producing a hydrogen storage alloy electrode in which a fluororesin dispersion liquid is applied to a hydrogen storage alloy electrode to impart water repellency to the hydrogen storage alloy electrode, the method comprising uniformly dispersing a fluororesin powder. A dispersion step of uniformly dispersing the solvent in the aqueous solution to obtain a fluororesin dispersion liquid; a slurry step of kneading the hydrogen storage alloy powder and the water-soluble binder to form a slurry; and a slurry obtained by the slurry step. A coating step of coating the current collector, and a dispersion liquid coating step of coating the fluororesin dispersion obtained in the dispersion step on the slurry coated on the current collector in the coating step, A hydrogen storage step, comprising: a drying step of drying the slurry and the fluororesin dispersion applied on the slurry; and a rolling step of rolling the hydrogen storage electrode dried in the drying step. Manufacturing method of alloy electrode.
【請求項9】 前記フッ素樹脂分散液にガス吸収触媒を
添加したことを特徴とする請求項7または請求項8に記
載の水素吸蔵合金電極の製造方法。
9. The method for producing a hydrogen storage alloy electrode according to claim 7, wherein a gas absorption catalyst is added to the fluororesin dispersion.
JP18285697A 1997-07-08 1997-07-08 Polytetrafluoroethylene dispersion, method for producing the same, and method for producing a hydrogen storage alloy electrode using the dispersion Expired - Fee Related JP4179648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18285697A JP4179648B2 (en) 1997-07-08 1997-07-08 Polytetrafluoroethylene dispersion, method for producing the same, and method for producing a hydrogen storage alloy electrode using the dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18285697A JP4179648B2 (en) 1997-07-08 1997-07-08 Polytetrafluoroethylene dispersion, method for producing the same, and method for producing a hydrogen storage alloy electrode using the dispersion

Publications (2)

Publication Number Publication Date
JPH1131512A true JPH1131512A (en) 1999-02-02
JP4179648B2 JP4179648B2 (en) 2008-11-12

Family

ID=16125658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18285697A Expired - Fee Related JP4179648B2 (en) 1997-07-08 1997-07-08 Polytetrafluoroethylene dispersion, method for producing the same, and method for producing a hydrogen storage alloy electrode using the dispersion

Country Status (1)

Country Link
JP (1) JP4179648B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327387A (en) * 2003-04-28 2004-11-18 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery and method for manufacturing negative electrode plate
JP2019175616A (en) * 2018-03-27 2019-10-10 Fdk株式会社 Negative electrode for nickel hydrogen secondary battery, and nickel hydrogen secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220158150A1 (en) * 2020-11-13 2022-05-19 Licap Technologies, Inc. Dry electrode manufacture with composite binder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139255A (en) * 1985-12-11 1987-06-22 Matsushita Electric Ind Co Ltd Manufacture of hydrogen absorbing electrode
JPS63195960A (en) * 1987-02-09 1988-08-15 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery
JPH04249067A (en) * 1991-01-31 1992-09-04 Furukawa Battery Co Ltd:The Manufacture of hydrogen storage electrode
JPH0513075A (en) * 1991-07-03 1993-01-22 Matsushita Electric Ind Co Ltd Hydrogen storage alloy electrode and manufacture thereof
JPH0888003A (en) * 1994-09-19 1996-04-02 Sanyo Electric Co Ltd Manufacture of hydrogen storage alloy electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139255A (en) * 1985-12-11 1987-06-22 Matsushita Electric Ind Co Ltd Manufacture of hydrogen absorbing electrode
JPS63195960A (en) * 1987-02-09 1988-08-15 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery
JPH04249067A (en) * 1991-01-31 1992-09-04 Furukawa Battery Co Ltd:The Manufacture of hydrogen storage electrode
JPH0513075A (en) * 1991-07-03 1993-01-22 Matsushita Electric Ind Co Ltd Hydrogen storage alloy electrode and manufacture thereof
JPH0888003A (en) * 1994-09-19 1996-04-02 Sanyo Electric Co Ltd Manufacture of hydrogen storage alloy electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327387A (en) * 2003-04-28 2004-11-18 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery and method for manufacturing negative electrode plate
JP4524998B2 (en) * 2003-04-28 2010-08-18 パナソニック株式会社 Nickel-hydrogen storage battery
JP2019175616A (en) * 2018-03-27 2019-10-10 Fdk株式会社 Negative electrode for nickel hydrogen secondary battery, and nickel hydrogen secondary battery

Also Published As

Publication number Publication date
JP4179648B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
US9755226B2 (en) Nickel-hydrogen storage battery and battery pack
JP3191751B2 (en) Alkaline storage battery and surface treatment method for positive electrode active material thereof
JP3386634B2 (en) Alkaline storage battery
JP4179648B2 (en) Polytetrafluoroethylene dispersion, method for producing the same, and method for producing a hydrogen storage alloy electrode using the dispersion
JP3402785B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
EP1137087A2 (en) Alkaline storage battery and positive electrode used for the alkaline storage battery
JP2004327387A (en) Nickel-hydrogen storage battery and method for manufacturing negative electrode plate
JP2007095334A (en) Hydrogen storage alloy electrode, method of manufacturing same and alkaline storage battery
JP2004506300A (en) Battery cathode
JP3678109B2 (en) Nickel-hydrogen storage battery and method for producing hydrogen storage alloy negative electrode used therefor
JP2629258B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP4859354B2 (en) A hydrogen storage alloy electrode for an alkaline storage battery, an alkaline storage battery using the electrode, and a method for producing the electrode.
JPH08287906A (en) Hydrogen storage alloy electrode
JP4366722B2 (en) Nickel hydroxide active material for alkaline storage battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JP7128069B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery provided with this positive electrode
JP2000058062A (en) Non-sintered nickel positive electrode for alkaline storage battery
JPH10241678A (en) Manufacture of electrode hydrogen-storage alloy powder and hydrogen-storage alloy electrode
JPH01267960A (en) Hydrogen absorption alloy electrode and its manufacture
EP3547417A1 (en) Negative electrode for nickel-hydrogen secondary battery, and nickel-hydrogen secondary battery
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JPH04162353A (en) Seal alkaline secondary battery
JP2562640B2 (en) Cadmium electrode for alkaline storage battery
JPH08130010A (en) Manufacture of nickel electrode for nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees