JPH11312631A - Illuminating optical device and aligner - Google Patents

Illuminating optical device and aligner

Info

Publication number
JPH11312631A
JPH11312631A JP10117434A JP11743498A JPH11312631A JP H11312631 A JPH11312631 A JP H11312631A JP 10117434 A JP10117434 A JP 10117434A JP 11743498 A JP11743498 A JP 11743498A JP H11312631 A JPH11312631 A JP H11312631A
Authority
JP
Japan
Prior art keywords
light beam
optical
light
delay element
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10117434A
Other languages
Japanese (ja)
Inventor
Masato Shibuya
眞人 渋谷
Osamu Tanitsu
修 谷津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10117434A priority Critical patent/JPH11312631A/en
Priority to US09/300,660 priority patent/US6238063B1/en
Publication of JPH11312631A publication Critical patent/JPH11312631A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an illuminating optical device, capable of sufficiently reducing coherence even in the case of using an excimer laser light source and to also provide exposure device using the optical device. SOLUTION: In an illuminating optical system, having a coherent light souruce formed by collecting many fine coherent element light sources and optical delay elements 4, 5 for dividing a beam generated from the coherent light source, transmitting one divided beam to a delay optical path and then returning the beam to the optical path again, an illuminating optical device for setting up the optical path length of the delay optical path of the optical delay element more than the available interference length of the fine coherent element light source is provided. An exposure device provided with the illuminating optical device, and its exposure method are also provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子を製造
する露光装置に関し、特に露光装置に用いられる照明光
学装置に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to an exposure apparatus for manufacturing a semiconductor device, and more particularly to an illumination optical apparatus used for the exposure apparatus.

【0002】[0002]

【従来の技術】従来の照明光学装置は、例えば、特開平
1−198759号公報に開示されたものがある。一般
に、レーザー光源の半値幅をΔλ、波長をλとすると、
時間的可干渉長(コヒーレンス長)tcは、 tc=λ2 /Δλ で与えられる。波長λ=248nmで半値幅Δλ=0.
8pmの場合は時間的コヒーレンス長tc=77mmと
なり、波長λ=248nmで半値幅Δλ=0.6pmの
場合は時間的コヒーレンス長tc=103mmになる。
そこで、従来では、図10に示されるように、光路中
に、ハーフミラー及び反射部材からなる光遅延素子を挿
入することで、コヒーレンス長以上の光路差を設け、可
干渉性(コヒーレンシー)の低減をはかっていた。光遅
延素子は、原理的には遅延光路中を無限回廻って光が出
てくるが、ハーフミラーの反射率や反射部材の反射率等
から、ハーフミラー反射率をを33%から50%程度に
設定することが一般的である。この様な反射率に設定す
ることで、1パーセント程度の光エネルギーまで取る
と、光遅延素子をおおむね2回から3回廻って出てくる
光まで使用することが出来る。
2. Description of the Related Art A conventional illumination optical device is disclosed, for example, in Japanese Patent Application Laid-Open No. 1-187759. Generally, assuming that the half width of the laser light source is Δλ and the wavelength is λ,
The temporal coherence length (coherence length) tc is given by tc = λ 2 / Δλ. At the wavelength λ = 248 nm, the half width Δλ = 0.
In the case of 8 pm, the temporal coherence length tc = 77 mm, and in the case of the wavelength λ = 248 nm and the half width Δλ = 0.6 pm, the temporal coherence length tc = 103 mm.
Conventionally, as shown in FIG. 10, an optical delay element composed of a half mirror and a reflecting member is inserted into an optical path to provide an optical path difference longer than the coherence length, thereby reducing coherence. Was being measured. In principle, an optical delay element emits light in an infinite number of turns in the delay optical path. However, the half mirror reflectivity is set to about 33% to 50% based on the reflectivity of the half mirror and the reflectivity of the reflecting member. It is common to set to By setting such a reflectivity, if light energy of about 1% is obtained, light that comes out of the optical delay element approximately two to three times can be used.

【0003】[0003]

【発明が解決しようとする課題】上述の様に、従来で
は、コヒーレンス長として、光源全体のスペクトル分布
から求めた値を用いていた。しかしながら、エキシマレ
ーザー光源を用い、一様な照明を得ようとした場合、上
述の様なコヒーレンシー低減手段を用いても、期待通り
の一様な照明が得られないことが判明した。
As described above, conventionally, a value obtained from the spectral distribution of the entire light source has been used as the coherence length. However, when it was attempted to obtain uniform illumination using an excimer laser light source, it was found that uniform illumination as expected could not be obtained even when the above-described coherency reduction means was used.

【0004】本発明は、上記の問題点に鑑み、エキシマ
レーザー光源を使用した場合でも、十分なコヒーレンシ
ーの低減を行うことのできる照明光学装置及びそれを用
いた露光装置を提供することを目的とする。
[0004] In view of the above problems, an object of the present invention is to provide an illumination optical apparatus capable of sufficiently reducing coherency even when an excimer laser light source is used, and an exposure apparatus using the same. I do.

【0005】[0005]

【課題を解決するための手段】本発明では、上記目的を
達成するために、微小コヒーレント素光源が多数集まっ
て形成されたコヒーレント光源と、該コヒーレント光源
からの光束を分割し、分割された一方の光束を遅延光路
に廻し、再び分割した光路に戻す光遅延素子と、を有す
る照明光学系において、前記光遅延素子の遅延光路の光
路長を、前記微小コヒーレント素光源の可干渉長以上に
設定する事を特徴とする照明光学装置を提供する。ま
た、この照明光学装置を備えた露光装置及び露光方法を
提供する。
According to the present invention, in order to achieve the above object, a coherent light source formed by gathering a large number of minute coherent elementary light sources, a light beam from the coherent light source is divided, and An optical delay element for turning the light flux to the delay optical path and returning to the split optical path again, wherein the optical path length of the delay optical path of the optical delay element is set to be equal to or longer than the coherence length of the micro coherent elementary light source. An illumination optical device is provided. Further, an exposure apparatus and an exposure method provided with the illumination optical device are provided.

【0006】更に、本発明では、コヒーレント光源と、
該コヒーレント光源からの光束を分割し、分割された一
方の光束を遅延光路に廻し、再び分割した光路に戻す光
遅延素子と、を有する照明光学系において、前記光遅延
素子は、光束を分割するための光束分割部材と、該光束
分割部材からの光束が入射する反射部材と、を有し、前
記光束分割部材の入射面は、前記反射部材の入射面に対
し直交するように配置されることを特徴とする照明光学
装置をも提供する。
Further, according to the present invention, a coherent light source;
An optical delay element that splits a light beam from the coherent light source, sends one of the split light beams to a delay optical path, and returns the split light beam to the split optical path again, wherein the optical delay element splits the light beam A light-splitting member, and a reflecting member to which a light beam from the light-splitting member is incident, wherein an incident surface of the light-splitting member is arranged to be orthogonal to an incident surface of the reflecting member. There is also provided an illumination optical device characterized by the above.

【0007】[0007]

【発明の実施の形態】エキシマレーザーは、スペクトル
分布の半値幅を狭くする為に、回折格子(グレーティン
グ)Gを用いている。この様に、グレーティングGを内
部に有しているレーザー光源の場合には、図9に示すよ
うに、分光部分の射出スリットS上(例えば、図9
(a)の+p/2、0、−p/2位置)に、波長分布が
生じる。つまり、分光部分の射出スリット上に形成され
た微小な光源のスペクトル分布が多数集まって、光源全
体のスペクトル分布が形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An excimer laser uses a diffraction grating (grating) G in order to narrow the half width of a spectrum distribution. As described above, in the case of the laser light source having the grating G therein, as shown in FIG.
A wavelength distribution occurs at (+ p / 2, 0, -p / 2 positions in (a)). That is, a large number of minute light source spectral distributions formed on the exit slit of the light splitting portion form a spectral distribution of the entire light source.

【0008】この様に、微小な素光源が多数集まって形
成されていると考えられる光源の場合で、隣合う微小な
光源が分離して観察できる空間分解能p(これはエキシ
マレーザーの発散角ωからおおよそ推定でき、p〜λ/
ωである)がスリット幅Pよりも細かい(小さい)とき
には、可干渉長を、この空間分解能内での波長分布Δλ
pから求まる可干渉長tcp tcp=λ2 /Δλp で考える必要がある。(ここで、tc<tcpであ
る。)その理由は、遅延素子によって、このスリットの
像が多数生成されると、遅延の光路長がスリットの全波
長分布から決まる可干渉長tcでしかない場合、各スリ
ット像の任意の空間分解能サイズからの光は互いに干渉
するからである。そしてこの干渉に因って被照射面上に
干渉縞やスペックルを発生する事になる。
As described above, in the case of a light source which is considered to be formed by gathering a large number of minute elementary light sources, the spatial resolution p (which is the divergence angle ω of the excimer laser) allows adjacent minute light sources to be separately observed. Can be roughly estimated from
ω) is smaller (smaller) than the slit width P, the coherence length is determined by the wavelength distribution Δλ within this spatial resolution.
It is necessary to consider the coherence length tcp obtained from p tcp tcp = λ 2 / Δλp. (Here, tc <tcp.) The reason is that when a large number of images of the slit are generated by the delay element, the delay optical path length is only the coherent length tc determined from the entire wavelength distribution of the slit. This is because light from an arbitrary spatial resolution size of each slit image interferes with each other. Then, interference fringes and speckles are generated on the irradiated surface due to the interference.

【0009】例えば、従来の技術のところで述べたエキ
シマレーザーの場合、半値幅Δλ=0.8pmの場合は
tcp=154mmとなり、半値幅Δλ=0.6pmの
場合はtcp=206mmになる。本発明では、光遅延
素子の遅延光路の光路長を、コヒーレント光源のスリッ
トの空間分解能内の光の波長分布で決まる可干渉長tc
pより長くする事により、または被照射面であるレチク
ルと共役な光源近傍の位置での空間分解能内の光の波長
分布で決まる可干渉長tcpより長くする事により、照
明むらを無くすことが出来る。
For example, in the case of the excimer laser described in the description of the prior art, when the half width Δλ = 0.8 pm, tcp = 154 mm, and when the half width Δλ = 0.6 pm, tcp = 206 mm. In the present invention, the optical path length of the delay optical path of the optical delay element is determined by the coherence length tc determined by the wavelength distribution of light within the spatial resolution of the slit of the coherent light source.
Illumination unevenness can be eliminated by making the length longer than p, or by making the length longer than the coherence length tcp determined by the wavelength distribution of light within the spatial resolution at a position near the light source conjugate with the reticle that is the irradiation surface. .

【0010】尚、上記説明では、分光部分の射出スリッ
ト上に波長分布が生じる、と説明したが、射出光束が波
長分布を生じるような特性となっいればよい。また、上
記説明では、エキシマレーザーを例に採ったが、エキシ
マレーザーのみならず、微視的にコヒーレント素光源が
多数集まって形成された特性のコヒーレント光源であれ
ば、本発明を適用することが有効であり、コヒーレンス
の低減を行うことができる。
In the above description, it is described that a wavelength distribution is generated on the exit slit of the beam splitting portion. However, it is sufficient that the emitted light beam has a characteristic that produces a wavelength distribution. In the above description, an excimer laser is taken as an example, but the present invention can be applied not only to an excimer laser but also to a coherent light source having a characteristic formed by gathering a large number of coherent elementary light sources microscopically. It is effective and can reduce coherence.

【0011】[0011]

【実施例】以下に、本発明による照明光学装置の基本的
配置の実施例を、図1を参照しながら説明する。ここに
示す実施例の照明光学装置は、光路順に、エキシマレー
ザー1、デポラライザー3、第1の光遅延素子4、第2
の光遅延素子5及びフライアイオプティカルインテグレ
ータ7を配置している。尚、これらの素子の間には、照
明光学装置のチャンバー内の空間を有効に活用するた
め、幾つかミラーが配置されており、光路は折り曲げら
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the basic arrangement of the illumination optical device according to the present invention will be described below with reference to FIG. The illumination optical device of the embodiment shown here includes an excimer laser 1, a depolarizer 3, a first optical delay element 4, a second optical delay
The optical delay element 5 and the fly-eye optical integrator 7 are arranged. Some mirrors are arranged between these elements in order to effectively utilize the space in the chamber of the illumination optical device, and the optical path is bent.

【0012】デポラライザー3は、図2に示すように、
偏光ビームスプリッタ31、34及び反射ミラー32、
33からなっている。偏光ビームスプリッタ31は入射
光線を、P偏光及びS偏光に分離して射出する。そし
て、P偏光は、偏光ビームスプリッタ31、偏光ビーム
スプリッタ34の順に進行し、S偏光は、偏光ビームス
プリッタ31、反射ミラー32、反射ミラー33、偏光
ビームスプリッタ31の順に進行する。ここで、偏光ビ
ームスプリッタ31及び34は、石英基板等に薄膜を施
し、入射角がほぼブリュースターアングル56.5度か
ら、薄膜の設計によっては65度近傍までなるように傾
けて使用し、主にS偏光を反射させP偏光を透過させ
る。さらに、反射したS偏光を、反射ミラー31で光路
を光路長が前記のスリットの空間分解能内の波長分布で
きまるコヒーレンス長tcp=154mm以上になる距
離分だけ離してある。そして、S及びPの両偏光は、ビ
ームスプリッタ34で再び同一光路に戻る。
The depolarizer 3 is, as shown in FIG.
Polarizing beam splitters 31, 34 and reflecting mirror 32,
It consists of 33. The polarization beam splitter 31 separates an incident light beam into P-polarized light and S-polarized light and emits the separated light. The P-polarized light travels in the order of the polarization beam splitter 31 and the polarization beam splitter 34, and the S-polarized light travels in the order of the polarization beam splitter 31, the reflection mirror 32, the reflection mirror 33, and the polarization beam splitter 31. Here, the polarizing beam splitters 31 and 34 are formed by applying a thin film to a quartz substrate or the like, and are used by being inclined so that the incident angle is substantially from 56.5 degrees to Brewster angle to near 65 degrees depending on the design of the thin film. To reflect S-polarized light and transmit P-polarized light. Further, the reflected S-polarized light is separated from the optical path by the reflecting mirror 31 by a distance such that the optical path length is equal to or longer than the coherence length tcp = 154 mm, which is a wavelength distribution within the spatial resolution of the slit. Then, both the S and P polarized lights return to the same optical path again by the beam splitter 34.

【0013】このデポラライザー3の働きでP偏光とS
偏光とは振幅の干渉作用が無くなるが、P偏光、S偏光
からそれぞれ派生した円偏光同士、楕円偏光同士も振幅
の干渉が無くなる。そのため、不図示のウエハ上でもデ
ポラライズされた状態が達成できる。デポラライザー3
の調整は、一般には、単体ではオートコリメータを使用
して、角度を合わせている。そのため反射ミラーの表面
にはエキシマ光を反射する反射膜を蒸着し、裏面には可
視光を反射する反射膜を蒸着する。この様な反射膜を蒸
着した反射ミラーを用いることで、従来のように、デポ
ラライザー部分を抜き出して調整し、再び光路中へ戻す
といった工程を無くすことができる。この様に、本実施
例中のデポラライザー3の調整は、光路に配置したまま
オートコリメータによる調整を行うことができる。偏光
度の調整は全体を光軸回りに回転させることで調整す
る。
By the operation of the depolarizer 3, P-polarized light and S-polarized light
The interference of the amplitude with the polarized light is eliminated, but the interference of the amplitude is also eliminated between the circularly polarized light and the elliptically polarized light respectively derived from the P-polarized light and the S-polarized light. Therefore, a depolarized state can be achieved even on a wafer (not shown). Depolarizer 3
In general, the angle is adjusted by using an autocollimator alone. Therefore, a reflective film that reflects excimer light is deposited on the surface of the reflective mirror, and a reflective film that reflects visible light is deposited on the back surface. By using a reflection mirror on which such a reflection film is deposited, it is possible to eliminate the step of extracting and adjusting the depolarizer portion and returning it to the optical path as in the related art. As described above, the adjustment of the depolarizer 3 in the present embodiment can be performed by the autocollimator while being arranged in the optical path. The degree of polarization is adjusted by rotating the whole around the optical axis.

【0014】光遅延素子4は、図3(a)に示すよう
に、ハーフミラー41及び3枚の反射ミラー41、4
2、43で構成され、ハーフミラー40を反射した光と
透過した光とで2dの光路差が生じるように配置されて
いる。このようにすれば、分割された波連において偏光
を除去でき、コヒーレンシーを低減できるようになるか
らである。また、本実施例では、ハーフミラー41を最
初に透過する光線を基本光線としている。ここで、ハー
フミラー41の反射率は、平均で33%から50%程度
である。
The optical delay element 4 includes a half mirror 41 and three reflection mirrors 41, 4 as shown in FIG.
The light reflected by the half mirror 40 and the light transmitted therethrough are arranged so that an optical path difference of 2d is generated. This is because the polarization can be removed from the divided wave train and the coherency can be reduced. In the present embodiment, a light ray that first transmits through the half mirror 41 is used as a basic light ray. Here, the reflectance of the half mirror 41 is about 33% to 50% on average.

【0015】さらに、第2の光遅延素子5は、図3
(b)に示すように、ハーフミラー51及び3枚の反射
ミラー52、53、53で構成され、6dの光路差が生
じるように設定してある。また、第1の光遅延素子4同
様に、ハーフミラー51を最初に透過する光線を基本光
線としている。このように、第1の光遅延素子4の遅延
光路長と第2の光遅延素子5の遅延光路長とを設定すれ
ば、表2に示すように、9つの分割光において光路差が
同一とならないように出来る。このように、ほぼ光を時
間的に、1パーセント以上の光なら、9分割することで
コヒーレンシーの低減がはかれる。0.1パーセント以
上の光なら、18分割することが好ましい。
Further, the second optical delay element 5 is provided in FIG.
As shown in (b), it is composed of a half mirror 51 and three reflecting mirrors 52, 53, 53, and is set so that an optical path difference of 6d is generated. Further, similarly to the first optical delay element 4, a light ray that first transmits through the half mirror 51 is used as a basic light ray. As described above, if the delay optical path length of the first optical delay element 4 and the delay optical path length of the second optical delay element 5 are set, as shown in Table 2, the optical path difference is the same in the nine divided lights. You can avoid it. In this way, if the light is substantially 1% or more in time, coherency can be reduced by dividing the light into nine. If the light is 0.1% or more, it is preferable to divide the light into 18 parts.

【0016】[0016]

【表1】 [Table 1]

【0017】さらに、図4に示すように、両光遅延素子
の光入射方位を第1と第2とで直交させ、しかも、一回
中を通るたびに角度θが付く様に設定すると、フライア
イ6に入射する光束は、ほぼ1パーセント以上で9つの
光に分割される。これによりエネルギーが低減されるだ
けでなく、ウエハ上でのスペックルをシフトさせる効果
がある。
Further, as shown in FIG. 4, when the light incidence directions of the two optical delay elements are set to be orthogonal to each other in the first and second directions, and are set so that the angle θ is given each time the light passes through the optical delay element, The luminous flux incident on the eye 6 is split into nine lights at approximately 1% or more. This not only reduces energy but also has the effect of shifting speckle on the wafer.

【0018】また、ハーフミラーの反射率はP偏光入射
とS偏光入射とでは異なるため、図5に示す様に、方位
を直交させることで、第1と第2の合成の反射率はP偏
光とS偏光とでほぼ同じになる。従って、フライアイに
入射する光束の偏光状態はあまり変化しないという効果
もある。さらに、図6に示す様に、直接光bと反射光c
及びdとで光のプロファイルが反転するようにしてある
ので、レーザー光のプロファイルを平均化する効果もあ
る。
Further, since the reflectance of the half mirror is different between P-polarized light incidence and S-polarized light incidence, as shown in FIG. 5, by making the directions orthogonal, the first and second combined reflectances become P-polarized light. And S-polarized light. Therefore, there is also an effect that the polarization state of the light beam incident on the fly eye does not change much. Further, as shown in FIG. 6, the direct light b and the reflected light c
And d, the light profile is inverted, so that there is also an effect of averaging the laser light profile.

【0019】第1の光遅延素子4及び第2の光遅延素子
5の反射ミラーは、表面に主波長であるエキシマ光を反
射し、裏面には例えば緑色などの可視光を主に反射する
薄膜が蒸着されている。これは、偏角を調整する時にオ
ートコリメーターを使用して調整するようにするため
で、調整時におのおののミラーを振って調整するが、調
整用の工具ミラーなどを用いると、交換する時にずれが
生じ、偏角が狂う恐れがある。エキシマ光と可視光を反
射するミラーを用いることで、交換する必要が無くな
る。
The reflecting mirrors of the first optical delay element 4 and the second optical delay element 5 reflect excimer light, which is the main wavelength, on the front surface and a thin film mainly reflecting visible light such as green on the back surface. Has been deposited. This is to adjust using the auto collimator when adjusting the declination.Each mirror is shaken at the time of adjustment, but if a tool mirror for adjustment is used, it will shift when replacing. May occur and the declination may go wrong. By using a mirror that reflects excimer light and visible light, there is no need for replacement.

【0020】また、KrFエキシマレーザーの場合は、
本願出願時点で、反射ミラーを使用できるが、ArFレ
ーザーやそれ以下の波長の光源の場合、反射率があまり
高くないので、ミラーを使用できない可能性がある。そ
の場合は、図7に示すように、ミラーの代わりに、蛍石
などの45度プリズム45、46、47、48、55、
56、57及び、58を用いて、全反射を利用して光路
を曲げてやればよい。ここで、図7(b)に示すよう
に、光遅延素子の中にリレーレンズ61及び62を配置
すると、角度ずれが生じても性能に大きな影響を与えな
い光学系を構成することができる。また、リレーレンズ
の代わりに、ミラー自身を凹面鏡にして、入り口、出口
を共役にしてやれば、同様に、角度ずれが生じても性能
に大きな影響を与えない光学系を構成することができ
る。
In the case of a KrF excimer laser,
At the time of filing the present application, a reflecting mirror can be used. However, in the case of an ArF laser or a light source having a wavelength shorter than that, there is a possibility that the mirror cannot be used because the reflectance is not so high. In that case, as shown in FIG. 7, instead of a mirror, a 45-degree prism 45, 46, 47, 48, 55,
The optical path may be bent using the total reflection by using 56, 57, and 58. Here, as shown in FIG. 7B, when the relay lenses 61 and 62 are arranged in the optical delay element, an optical system that does not greatly affect the performance even if an angle shift occurs can be configured. If the mirror itself is replaced by a concave mirror instead of the relay lens and the entrance and exit are conjugated, an optical system that does not greatly affect the performance even if an angle shift occurs can be constructed.

【0021】更に、詳細な、半導体素子を製造する露光
光装置全体の実施例を以下に示す。図9に示すように、
投影露光装置に配置された照明光学装置の基本配置は前
述の実施例の通りであるが、さらに詳しくは、デポララ
イーザー3と第1の光遅延素子4との間にリレーレンズ
2を設け、第2の光遅延素子6とフライアイオプティカ
ルインテグレータ7との間にエキスパンダー光学系6を
有し、フライアイオプティカルインテグレータ7の射出
側にはコンデンサーレンズ8が配置されている。
Further, a detailed embodiment of the entire exposure light apparatus for manufacturing a semiconductor element will be described below. As shown in FIG.
The basic arrangement of the illumination optical device arranged in the projection exposure apparatus is the same as in the above-described embodiment. More specifically, the relay lens 2 is provided between the depolarizer 3 and the first optical delay element 4, and the second An expander optical system 6 is provided between the optical delay element 6 and the fly-eye optical integrator 7, and a condenser lens 8 is arranged on the exit side of the fly-eye optical integrator 7.

【0022】ここで、エキスパンダー光学系6は、シリ
ンドリカルエキスパンダー及びエキスパンダーから構成
されており、エキシマレーザー1の矩形形状を正方形形
状にしている。また、フライアイオプティカルインテグ
レータ7は、第1フライアイ71と第2フライアイ72
とから構成されている。第1フライアイ71は長方形形
状のフライアイレンズ素子が規則的に配置されたもの
で、第2フライアイ72は、長方形形状のフライアイレ
ンズ素子が不規則的に配置されたものである。フライア
イオプティカルインテグレータ7を射出した光束は、コ
ンデンサーレンズ8によって、被照射面であるレチクル
9を均一にケーラー照明することになる。そして、投影
対物レンズ10を介して、露光面であるウエハ11がレ
チクル9と共役になっており、レチクル9のパターンが
ウエハ11面上に転写される。そのときの、倍率は、1
/4または1/5が好ましく、実際の露光は、レチクル
9及びウエハ11を走査して行う。
Here, the expander optical system 6 is composed of a cylindrical expander and an expander, and makes the rectangular shape of the excimer laser 1 a square shape. The fly-eye optical integrator 7 includes a first fly-eye 71 and a second fly-eye 72.
It is composed of The first fly-eye 71 has a rectangular fly-eye lens element arranged regularly, and the second fly-eye 72 has a rectangular fly-eye lens element arranged irregularly. The light beam emitted from the fly-eye optical integrator 7 is uniformly Koehler-illuminated by the condenser lens 8 on the reticle 9 to be irradiated. Then, the wafer 11 as an exposure surface is conjugate with the reticle 9 via the projection objective lens 10, and the pattern of the reticle 9 is transferred onto the surface of the wafer 11. At that time, the magnification is 1
/ 4 or 5 is preferable, and actual exposure is performed by scanning the reticle 9 and the wafer 11.

【0023】ここで、理想的には、スリットの空間分解
能内の光の波長分布で決まる可干渉長tcpより長くす
る事が望ましいが、被照射面と共役な光源近傍の位置で
の空間分解能内の光の波長分布で決まる可干渉長tcp
より長くする事でも良い。というのは、この共役面での
光源像が遅延素子によって重畳されるので、ここでの可
干渉距離tcpより長ければ、不要な干渉縞やスペック
ルは発生しないからである。また、ここでの可干渉距離
は、一般にはスリット上での可干渉距離よりも短いと考
えられ、より実際的な構成が達成できる。
Here, ideally, it is desirable to make the coherence length tcp longer than the coherence length tcp determined by the wavelength distribution of the light within the spatial resolution of the slit. Coherence length tcp determined by wavelength distribution of light
It may be longer. This is because, since the light source image on the conjugate plane is superimposed by the delay element, unnecessary interference fringes and speckles do not occur if the light source image is longer than the coherence distance tcp here. In addition, the coherence distance here is generally considered to be shorter than the coherence distance on the slit, and a more practical configuration can be achieved.

【0024】[0024]

【発明の効果】以上のように、本発明により、簡単な構
成でコヒーレンシーの低減を十分にに行える事が出来
る。また、エネルギー密度の低減も十分におこなえるこ
とになる。
As described above, according to the present invention, coherency can be sufficiently reduced with a simple configuration. In addition, the energy density can be sufficiently reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明による照明光学装置を示す図で
ある。
FIG. 1 is a diagram showing an illumination optical device according to the present invention.

【図2】図2は、本発明によるデポーラライザーを説明
した図である。
FIG. 2 is a diagram illustrating a depolarizer according to the present invention.

【図3】図3は、本発明による光遅延素子を説明した図
である。
FIG. 3 is a diagram illustrating an optical delay element according to the present invention.

【図4】図4は、本発明による光遅延素子の作用を説明
した図である。
FIG. 4 is a diagram illustrating the operation of the optical delay element according to the present invention.

【図5】図5は、本発明によるハーフミラーを示した図
である。
FIG. 5 is a diagram showing a half mirror according to the present invention.

【図6】図6は、本発明による光遅延素子の作用を説明
した図である。
FIG. 6 is a diagram for explaining the operation of the optical delay element according to the present invention.

【図7】図7は、45度プリズムを用いた実施例を示し
た図である。
FIG. 7 is a diagram showing an embodiment using a 45-degree prism.

【図8】図8は、本発明による露光装置を示した図であ
る。
FIG. 8 is a view showing an exposure apparatus according to the present invention.

【図9】図9は、エキシマレーザーの射出光分布を示し
た図である。
FIG. 9 is a diagram showing an emission light distribution of an excimer laser.

【図10】図10は、従来例の図である。FIG. 10 is a diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 エキシマレーザー 2 リレーレンズ 3 デポラライザ 4 第1の光遅延素子 5 第2の光遅延素子 6 エキスパンダー光学系 7 フライアイオプティカルインテグレータ 8 コンデンサーレンズ 9 レチクル 10 投影対物レンズ 11 ウエハ Reference Signs List 1 excimer laser 2 relay lens 3 depolarizer 4 first optical delay element 5 second optical delay element 6 expander optical system 7 fly-eye optical integrator 8 condenser lens 9 reticle 10 projection objective lens 11 wafer

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】微小コヒーレント素光源が多数集まって形
成されたコヒーレント光源と、 該コヒーレント光源からの光束を分割し、分割された一
方の光束を遅延光路に廻し、再び分割した光路に戻す光
遅延素子と、を有する照明光学系において、 前記光遅延素子の遅延光路の光路長を、前記微小コヒー
レント素光源の可干渉長以上に設定する事を特徴とする
照明光学装置。
1. A coherent light source formed by gathering a large number of minute coherent elementary light sources, an optical delay that splits a light beam from the coherent light source, sends one of the split light beams to a delay optical path, and returns the split light path to the split optical path again An illumination optical system comprising: an illumination optical system, wherein an optical path length of a delay optical path of the optical delay element is set to be equal to or longer than a coherence length of the minute coherent elementary light source.
【請求項2】前記光遅延素子は、光束が前記遅延光路を
一周する毎に、射出される光束の偏角を変化させること
を特徴とする請求項1記載の照明光学装置。
2. The illumination optical device according to claim 1, wherein the optical delay element changes the deflection angle of the emitted light beam each time the light beam makes one round of the delay optical path.
【請求項3】前記第1の光遅延素子から射出された光束
の偏角の方向と、前記第2の光遅延素子から射出された
光束の偏角の方向とが、異なることを特徴とする請求項
2記載の照明光学装置。
3. A light beam emitted from said first optical delay element and a light beam emitted from said second optical delay element are different in direction of deflection. The illumination optical device according to claim 2.
【請求項4】前記光遅延素子は、偏光ビームスプリッタ
ー及び複数の反射ミラーを有することを特徴とする請求
項1乃至3記載の照明光学装置。
4. The illumination optical device according to claim 1, wherein said optical delay element has a polarization beam splitter and a plurality of reflection mirrors.
【請求項5】前記デポラライザーのS偏光遅延距離をL
とすると、前記第1の光遅延素子は2n×L、第2の光
遅延素子が6n×L、第m番目の光遅延素子が2×m^
2×Lの遅延光路を有することを特徴とする請求項1乃
至4記載の照明光学装置。
5. The S-polarized light delay distance of the depolarizer is L
Then, the first optical delay element is 2n × L, the second optical delay element is 6n × L, and the m-th optical delay element is 2 × m ^.
The illumination optical device according to claim 1, further comprising a 2 × L delay optical path.
【請求項6】前記第1の光遅延素子は、光束を分割する
ための第1の光束分割部材と、該第1の光束分割部材か
らの光束が入射する第1の反射部材を有し、 前記第2の光遅延素子は、光束を分割するための第2の
光束分割部材と、該第2の光束分割部材からの光束が入
射する第2の反射部材を有し、 前記第1の光束分割部材の入射面は、前記第1の反射部
材の入射面に対し直交するように配置され、 前記第2の光束分割部材の入射面は、前記第2の反射部
材の入射面に対し直交するように配置されることを特徴
とする請求項1乃至5記載の照明光学装置。
6. The first optical delay element has a first light beam splitting member for splitting a light beam, and a first reflecting member on which a light beam from the first light beam splitting member enters. The second optical delay element includes a second light beam splitting member for splitting a light beam, and a second reflecting member to which a light beam from the second light beam splitting member enters, and wherein the first light beam The incident surface of the splitting member is arranged to be orthogonal to the incident surface of the first reflecting member, and the incident surface of the second light beam splitting member is orthogonal to the incident surface of the second reflecting member. The illumination optical device according to claim 1, wherein the illumination optical device is arranged as follows.
【請求項7】前記第1の光束分割部材は、第1のハーフ
ミラーであり、前記第2の光束分割部材は、第2のハー
フミラーであり、前記第1のハーフミラーと前記第2の
ハーフミラーとは、互いに直交するように設置されるこ
とを特徴とする請求項6記載の照明光学装置。
7. The first light beam splitting member is a first half mirror, the second light beam splitting member is a second half mirror, and the first half mirror and the second half mirror are connected to each other. The illumination optical device according to claim 6, wherein the half mirrors are installed so as to be orthogonal to each other.
【請求項8】前記偏光ビームスプリッター及び複数の反
射ミラーを有する光遅延素子全体を光軸に対して所望の
角度だけ傾けることにより、P及びS偏光を分離するこ
とを特徴とする請求項1乃至7記載の照明光学装置。
8. The P and S polarizations are separated by tilting the entire optical delay element having the polarization beam splitter and the plurality of reflection mirrors at a desired angle with respect to the optical axis. 8. The illumination optical device according to 7.
【請求項9】前記反射ミラーは、光線が入射する表面側
に、前記コヒーレント光源の使用波長を主に反射する薄
膜が形成され、裏面側に、別の波長を主に反射する薄膜
が形成されることを特徴とする請求項1乃至8記載の照
明光学装置。
9. The reflection mirror has a thin film mainly reflecting the wavelength used by the coherent light source formed on a front surface side on which light rays are incident, and a thin film mainly reflecting another wavelength formed on a rear surface side. 9. The illumination optical device according to claim 1, wherein:
【請求項10】前記光遅延素子は、石英または蛍石のプ
リズムを有し、全反射を利用して光路を曲げることを特
徴とする請求項1乃至9記載の照明光学装置。
10. The illumination optical device according to claim 1, wherein the optical delay element has a prism made of quartz or fluorite, and the optical path is bent using total reflection.
【請求項11】請求項1乃至10記載の照明光学装置
と、投影対物レンズと、物体と、基板と、を有すること
を特徴とする露光装置。
11. An exposure apparatus comprising: the illumination optical device according to claim 1; a projection objective lens; an object; and a substrate.
【請求項12】請求項1乃至10記載の照明光学装置に
よりマスクを照明し、前記マスクを投影光学系を用いて
ウエハ上に投影露光することを特徴とする露光方法。
12. An exposure method, wherein a mask is illuminated by the illumination optical device according to claim 1, and said mask is projected and exposed on a wafer using a projection optical system.
【請求項13】紫外線を放射する光源と、該光源からの
光束を折り曲げて、被照射面上へ光束を導くための反射
ミラーを有する照明光学装置の光路調整方法において、 前記光源から放射される波長と異なる第2の光源を用
い、 前記反射ミラーを微動調整し、 微動調整の終了後、前記第2の光源を取り外し、前記紫
外線を放射する光源に置き換え、 前記反射ミラーは、光線が入射する表面側に、前記光源
の使用波長を主に反射する薄膜が形成され、裏面側に、
別の波長を主に反射する薄膜が形成されていることを特
徴とする照明光学装置の光路調整方法。
13. A method for adjusting the optical path of an illumination optical apparatus having a light source that emits ultraviolet light and a reflecting mirror for bending a light beam from the light source and guiding the light beam onto an irradiated surface, wherein the light source emits the light beam. Using a second light source having a different wavelength, finely adjusting the reflection mirror, removing the second light source after completion of the fine adjustment, and replacing the second light source with a light source that emits ultraviolet light. On the front side, a thin film mainly reflecting the wavelength used by the light source is formed, and on the back side,
An optical path adjusting method for an illumination optical device, wherein a thin film mainly reflecting another wavelength is formed.
【請求項14】コヒーレント光源と、 該コヒーレント光源からの光束を分割し、分割された一
方の光束を遅延光路に廻し、再び分割した光路に戻す光
遅延素子と、を有する照明光学系において、 前記光遅延素子は、光束を分割するための光束分割部材
と、該光束分割部材からの光束が入射する反射部材と、
を有し、 前記光束分割部材の入射面は、前記反射部材の入射面に
対し直交するように配置されることを特徴とする照明光
学装置。
14. An illumination optical system comprising: a coherent light source; and an optical delay element that splits a light beam from the coherent light source, sends one of the split light beams to a delay optical path, and returns the split light beam to the split optical path again. The optical delay element, a light beam splitting member for splitting the light beam, a reflecting member to which the light beam from the light beam splitting member is incident,
An illumination optical device, comprising: an incident surface of the light beam splitting member, which is arranged to be orthogonal to an incident surface of the reflective member.
【請求項15】前記光遅延素子は、複数個配置されるこ
とを特徴とする請求項14記載の照明光学装置。
15. The illumination optical device according to claim 14, wherein a plurality of said optical delay elements are arranged.
JP10117434A 1998-04-27 1998-04-27 Illuminating optical device and aligner Pending JPH11312631A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10117434A JPH11312631A (en) 1998-04-27 1998-04-27 Illuminating optical device and aligner
US09/300,660 US6238063B1 (en) 1998-04-27 1999-04-27 Illumination optical apparatus and projection exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10117434A JPH11312631A (en) 1998-04-27 1998-04-27 Illuminating optical device and aligner

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007141206A Division JP4548449B2 (en) 2007-05-29 2007-05-29 Illumination optical apparatus and exposure apparatus
JP2007141207A Division JP4534210B2 (en) 2007-05-29 2007-05-29 Optical delay device, illumination optical device, exposure apparatus and method, and semiconductor device manufacturing method

Publications (1)

Publication Number Publication Date
JPH11312631A true JPH11312631A (en) 1999-11-09

Family

ID=14711560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10117434A Pending JPH11312631A (en) 1998-04-27 1998-04-27 Illuminating optical device and aligner

Country Status (1)

Country Link
JP (1) JPH11312631A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004930A (en) * 2006-06-06 2008-01-10 Asml Netherlands Bv Reflective loop system producing incoherent radiation
JP2008034813A (en) * 2006-06-14 2008-02-14 Asml Netherlands Bv System and method for generating unpolarized beam
WO2008090644A1 (en) 2007-01-22 2008-07-31 Central Glass Company, Limited Light source device
JP2009081438A (en) * 2007-09-24 2009-04-16 Asml Netherlands Bv Electromagnetic radiation pulse duration control apparatus and method
JP2009540567A (en) * 2006-06-05 2009-11-19 サイマー インコーポレイテッド Apparatus and method for stabilizing beam shape and symmetry for high energy pulsed laser applications
JP2010010701A (en) * 2002-12-03 2010-01-14 Nikon Corp Illumination optical system, exposure apparatus, and exposure method
JP2013134320A (en) * 2011-12-26 2013-07-08 Fujitsu Telecom Networks Ltd Excitation light source for raman amplification, raman amplifier, and optical transmission system
WO2013140521A1 (en) * 2012-03-19 2013-09-26 富士通株式会社 Polarization degree reduction device, light source device, optical amplification device, and excitation light source device for raman amplification
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
CN107884950A (en) * 2016-09-30 2018-04-06 美国科视数字***公司 A kind of device for reducing laser beam coherence
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US11025026B2 (en) 2017-01-26 2021-06-01 Gigaphoton Inc. Laser system

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010701A (en) * 2002-12-03 2010-01-14 Nikon Corp Illumination optical system, exposure apparatus, and exposure method
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2009540567A (en) * 2006-06-05 2009-11-19 サイマー インコーポレイテッド Apparatus and method for stabilizing beam shape and symmetry for high energy pulsed laser applications
JP2010187027A (en) * 2006-06-06 2010-08-26 Asml Netherlands Bv Reflective loop system producing incoherent radiation
JP2008004930A (en) * 2006-06-06 2008-01-10 Asml Netherlands Bv Reflective loop system producing incoherent radiation
JP2008034813A (en) * 2006-06-14 2008-02-14 Asml Netherlands Bv System and method for generating unpolarized beam
WO2008090644A1 (en) 2007-01-22 2008-07-31 Central Glass Company, Limited Light source device
JP2009081438A (en) * 2007-09-24 2009-04-16 Asml Netherlands Bv Electromagnetic radiation pulse duration control apparatus and method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2013134320A (en) * 2011-12-26 2013-07-08 Fujitsu Telecom Networks Ltd Excitation light source for raman amplification, raman amplifier, and optical transmission system
WO2013140521A1 (en) * 2012-03-19 2013-09-26 富士通株式会社 Polarization degree reduction device, light source device, optical amplification device, and excitation light source device for raman amplification
US9910221B2 (en) 2012-03-19 2018-03-06 Fujitsu Limited Polarization reducing apparatus, light source apparatus, optical amplifying apparatus, and excitation light source apparatus for raman amplification
US9411098B2 (en) 2012-03-19 2016-08-09 Fujitsu Limited Polarization reducing apparatus, light source apparatus, optical amplifying apparatus, and excitation light source apparatus for raman amplification
JPWO2013140521A1 (en) * 2012-03-19 2015-08-03 富士通株式会社 Polarization degree reducing device, light source device, optical amplification device, and excitation light source device for Raman amplification
CN104169759A (en) * 2012-03-19 2014-11-26 富士通株式会社 Polarization degree reduction device, light source device, optical amplification device, and excitation light source device for raman amplification
JP2018061005A (en) * 2016-09-30 2018-04-12 クリスティ デジタル システムズ ユーエスエイ インコーポレイテッド Apparatus for reducing coherence of laser beam
CN107884950A (en) * 2016-09-30 2018-04-06 美国科视数字***公司 A kind of device for reducing laser beam coherence
US11025026B2 (en) 2017-01-26 2021-06-01 Gigaphoton Inc. Laser system
US11682877B2 (en) 2017-01-26 2023-06-20 Gigaphoton Inc. Laser system

Similar Documents

Publication Publication Date Title
JP2536023B2 (en) Exposure apparatus and exposure method
JPH11312631A (en) Illuminating optical device and aligner
US6238063B1 (en) Illumination optical apparatus and projection exposure apparatus
JP3927753B2 (en) Exposure apparatus and device manufacturing method
US5153773A (en) Illumination device including amplitude-division and beam movements
TWI464539B (en) An optical unit, an illumination optical device, an exposure device, and an element manufacturing method
JP4065923B2 (en) Illumination apparatus, projection exposure apparatus including the illumination apparatus, projection exposure method using the illumination apparatus, and adjustment method of the projection exposure apparatus
US20060203341A1 (en) Polarization-optimized illumination system
US20040245439A1 (en) Optical imaging systems and methods using polarized illumination and coordinated pupil filter
JP2002520810A (en) Microlithographic illumination system with depolarizer
JP2590510B2 (en) Lighting equipment
JP4178098B2 (en) Optical system for projecting a pattern formed on a reticle onto a wafer, method for forming an image on a wafer, and method for optically transferring an image of a pattern onto a wafer
US9164370B2 (en) Exposure apparatus and device manufacturing method using original with phase-modulation diffraction grating to form interference pattern
JP4769788B2 (en) System for reducing the coherence of laser radiation
JP4534210B2 (en) Optical delay device, illumination optical device, exposure apparatus and method, and semiconductor device manufacturing method
JP2969718B2 (en) Illumination device and circuit manufacturing method using the same
JPH11174365A (en) Illumination optical device, exposure device provided therewith and exposure method
JP2565134B2 (en) Lighting optics
JP2000147382A (en) Polarization optical correction objective lens
JP4548449B2 (en) Illumination optical apparatus and exposure apparatus
JP2002057098A (en) Illumination optical device, aligner comprising the same, and method for fabricating microdevice
JPH0666246B2 (en) Illumination optics
JP2000223396A (en) Illuminating optical device and aligner provided with the device
JP2000223405A (en) Illuminating optical device and projection aligner provided therewith
JPH06215997A (en) Projection aligner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807