JPH11312586A - Organic electroluminescent element - Google Patents

Organic electroluminescent element

Info

Publication number
JPH11312586A
JPH11312586A JP10108850A JP10885098A JPH11312586A JP H11312586 A JPH11312586 A JP H11312586A JP 10108850 A JP10108850 A JP 10108850A JP 10885098 A JP10885098 A JP 10885098A JP H11312586 A JPH11312586 A JP H11312586A
Authority
JP
Japan
Prior art keywords
group
substituent
aromatic
atom
organic electroluminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10108850A
Other languages
Japanese (ja)
Inventor
Akiko Ichinosawa
晶子 市野澤
Tomoyuki Ogata
朋行 緒方
Yoshiharu Sato
佳晴 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10108850A priority Critical patent/JPH11312586A/en
Publication of JPH11312586A publication Critical patent/JPH11312586A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Quinoline Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance blue purity, increase heat resistance, and keep stable blue luminescent characteristics for a long time by including an aromatic diamine compound a luminescent layer. SOLUTION: The luminescent layer of a luminescent element contains a compound represented by the formula. In the formula, Ar<1> and Ar<2> each represents an aromatic hydrocarbon group or an aromatic heterocyclic group which may be independent and have a substitutional group. R<1> to R<18> represent an alkyl group, an aralkyl group, an alkenyl group, an amine group, an amide group, an alkoxy carbonyl group, an alkoxy group, which may independently have a hydrogen atom, a halogen atom, a carboxyl group, a hydroxyl group, or a substitutional group, an aromatic hydrocarbon group which may have a substitutional group, or an aromatic heterocyclic group which may have a substitutional group. X represents divalent aromatic ring residue, which may have a substitutional group, and is preferably selected from among a phenylene group, biphenylene group, or a terphenylene group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機電界発光素子
に関する。詳しくは、特定の芳香族ジアミンを含有する
発光層を有する有機電界発光素子に関する。本発明の有
機電界発光素子は、色純度の良好な青色発光が達成で
き、また安定性が向上しているので、フラットパネル・
ディスプレイやマルチカラー表示素子、或いは面発光体
としての特徴を生かした光源等への応用が期待される。
[0001] The present invention relates to an organic electroluminescent device. More specifically, the present invention relates to an organic electroluminescent device having a light emitting layer containing a specific aromatic diamine. The organic electroluminescent device of the present invention can achieve blue light emission with good color purity and improved stability.
It is expected to be applied to a display, a multi-color display element, or a light source utilizing the features of a surface light emitter.

【0002】[0002]

【従来の技術】従来、薄膜型の電界発光(EL)素子と
しては、無機材料のII〜VI族化合物半導体であるZn
S、CaS、SrS等に、発光中心であるMnや希土類
元素(Eu、Ce、Tb、Sm等)をドープしたものが
一般的であるが、上記の無機材料から作製したEL素子
は、 1)交流駆動が必要(50〜1000Hz)、 2)駆動電圧が高い(〜200V)、 3)フルカラー化が困難(特に青色が問題)、 4)周辺駆動回路のコストが高い、 という問題点を有している。
2. Description of the Related Art Conventionally, as a thin film type electroluminescent (EL) element, Zn, which is a group II-VI compound semiconductor of an inorganic material, is used.
In general, S, CaS, SrS, and the like are doped with Mn or a rare earth element (Eu, Ce, Tb, Sm, or the like) which is a luminescence center. However, EL devices manufactured from the above inorganic materials include: 1) AC drive is required (50-1000 Hz), 2) High drive voltage (up to 200 V), 3) It is difficult to achieve full color (especially blue), 4) Cost of peripheral drive circuit is high. ing.

【0003】しかし、近年、上記問題点の改良のため、
有機薄膜を用いたEL素子の開発が行われるようになっ
た。特に、発光効率を高めるために電極からのキャリア
ー注入の効率向上を目的とした電極種類の最適化を行
い、芳香族ジアミンから成る正孔輸送層と8−ヒドロキ
シキノリンのアルミニウム錯体から成る発光層を設けた
有機電界発光素子の開発(Appl.Phys.Let
t.,51巻,913頁,1987年)により、従来の
アントラセン等の単結晶を用いた電界発光素子と比較し
て発光効率の大幅な改善がなされ、実用特性に近づいて
いる。また、例えば、8−ヒドロキシキノリンのアルミ
ニウム錯体をホスト材料として、クマリン等のレーザ用
蛍光色素をドープすること(J.Appl.Phy
s.,65巻,3610頁,1989年)により、発光
効率の向上や発光波長の変換等も行われている。上記の
様な低分子材料を用いた電界発光素子の他にも、発光層
の材料として、ポリ(p−フェニレンビニレン)(Na
ture,347巻,539頁,1990年他)、ポリ
[2−メトキシ−5−(2−エチルヘキシルオキシ)−
1,4−フェニレンビニレン](Appl.Phys.
Lett.,58巻,1982頁,1991年 他)、
ポリ(3−アルキルチオフェン)(Jpn.J.App
l.Phys,30巻,L1938頁,1991年
他)等の高分子材料を用いた電界発光素子の開発や、ポ
リビニルカルバゾール等の高分子に低分子の発光材料と
電子移動材料を混合した素子(応用物理,61巻,10
44頁,1992年)の開発も行われている。
However, in recent years, in order to improve the above problems,
Development of EL devices using organic thin films has been started. In particular, the electrode type was optimized for the purpose of improving the efficiency of carrier injection from the electrode in order to increase the luminous efficiency, and the hole transport layer composed of an aromatic diamine and the luminescent layer composed of an aluminum complex of 8-hydroxyquinoline were used. Of an organic electroluminescent device provided (Appl. Phys. Let
t. , Vol. 51, p. 913, 1987), the luminous efficiency is greatly improved as compared with a conventional electroluminescent device using a single crystal such as anthracene or the like, and the practical characteristics are approached. Further, for example, doping a fluorescent dye for laser such as coumarin using an aluminum complex of 8-hydroxyquinoline as a host material (J. Appl. Phys.
s. , 65, 3610, 1989), improvement of luminous efficiency, conversion of luminous wavelength, and the like are also performed. In addition to the electroluminescent device using a low molecular material as described above, poly (p-phenylenevinylene) (Na
cure, 347, 539, 1990 et al.), poly [2-methoxy-5- (2-ethylhexyloxy)-
1,4-phenylenevinylene] (Appl. Phys.
Lett. 58, 1982, 1991, etc.),
Poly (3-alkylthiophene) (Jpn. J. App
l. Phys, 30, L1938, 1991
Development of an electroluminescent device using a polymer material such as E.C. and others, and a device in which a low molecular light emitting material and an electron transfer material are mixed with a polymer such as polyvinyl carbazole (Applied Physics, Vol. 61, 10
44, 1992).

【0004】[0004]

【発明が解決しようとする課題】有機電界発光素子をフ
ラットパネル・ディスプレイ等の表示素子に応用するた
めには、素子の信頼性を十分に確保する必要がある。し
かしながら、従来の有機電界発光素子では耐熱性が不十
分であり、素子の環境温度やプロセス温度の上昇により
電流−電圧特性が高電圧側にシフトしたり、素子駆動時
の局所的なジュール発熱により寿命が低下したり、非発
光部分(ダークスポット)の発生及び増加等の劣化が避
けられなかった。特に、青色発光素子に関しては、8−
ヒドロキシキノリンのアルミニウム錯体を用いた緑色発
光素子と比較して、素子の安定性が劣っているのが現状
である。上記の素子劣化の主原因は、有機層の薄膜形状
の劣化である。この薄膜形状の劣化は、素子駆動時の発
熱等による有機非晶質薄膜の結晶化(又は凝集)等に起
因すると考えられている。この耐熱性の低さは材料のガ
ラス転移温度(以下Tgと略記する)の低さに由来する
と考えられる。Tgは一般的に融点と直線相関がある。
青色発光素子の発光層に用いられる化合物は、パイ電子
共役を拡げられないという制約から、分子量が低く融点
及びTgが低い材料が多い。また、化学的にも十分安定
とは言えないのが現状である。
In order to apply an organic electroluminescent device to a display device such as a flat panel display, it is necessary to ensure sufficient reliability of the device. However, the heat resistance of the conventional organic electroluminescent device is insufficient, and the current-voltage characteristic shifts to a higher voltage side due to an increase in the ambient temperature or process temperature of the device, or local Joule heat generated when the device is driven. Deterioration such as shortening of service life and generation and increase of non-light emitting portions (dark spots) was inevitable. In particular, regarding the blue light emitting element, 8-
At present, the stability of the device is inferior to that of a green light-emitting device using an aluminum complex of hydroxyquinoline. The main cause of the above device deterioration is deterioration of the thin film shape of the organic layer. It is considered that the deterioration of the thin film shape is caused by crystallization (or aggregation) of the organic amorphous thin film due to heat generated during driving of the element. This low heat resistance is considered to be due to the low glass transition temperature (hereinafter abbreviated as Tg) of the material. Tg generally has a linear correlation with the melting point.
Many of the compounds used for the light emitting layer of the blue light emitting element have a low molecular weight and a low melting point and low Tg because of the restriction that pi electron conjugation cannot be expanded. At present, it is not sufficiently stable chemically.

【0005】これまで、青色有機電界発光素子に用いら
れた化合物としては、アントラセン(Jpn.J.Ap
pl.Phys.,27巻,L269頁,1988
年)、テトラフェニルブタジエン、ペンタフェニルシク
ロペンタジエン(Appl.Phys.,Lett.,
56巻,799頁,1990年)、ジスチリルベンゼン
誘導体(日本化学会誌,1162頁,1992年)、オ
キサジアゾール誘導体(Jpn.J.Appl.Phy
s.,31巻,1812頁,1992年;日本化学会
誌,1540頁,1991年)、アゾメチン亜鉛錯体
(Jpn.J.Appl.Phys.,32巻,L51
1頁,1993年)、ベンズアゾール金属錯体(特開平
8−81472号公報)、混合配位子アルミニウム錯体
(特開平5−198377号公報;特開平5−1983
78号公報;特開平5−214332号公報;特開平6
−172751号公報)、N,N′−ジフェニル−N,
N′−(3−メチルフェニル)−1,1′−ビフェニル
−4,4′−ジアミン(Jpn.J.Appl.Phy
s.,32巻,L917頁,1993年)、ポリビニル
カルバゾール(Appl.Phys.Lett.,63
巻,2627頁,1993年)、1,2,4−トリアゾ
ール誘導体(Chem.Lett.,47頁,1996
年)、アミノピレン二量体(Jpn.J.Appl.P
hys.,35巻,4819頁,1996年)、ジスチ
リルビフェニル誘導体(応用物理,62巻,1015
頁,1993年;Appl.Phys.Lett.,6
7巻,3853頁,1995年)、シロール誘導体
(J.Am.Chem.Soc.,118巻,1197
4頁,1996年)等が報告されている。上記の青色発
光材料のなかで、素子特性がよく検討されている代表的
化合物を以下に示す。
[0005] Compounds used in blue organic electroluminescent devices include anthracene (Jpn. J. Ap.).
pl. Phys. 27, L269, 1988.
Year), tetraphenylbutadiene, pentaphenylcyclopentadiene (Appl. Phys., Lett.,
56, 799, 1990), distyrylbenzene derivative (Journal of the Chemical Society of Japan, p. 1162, 1992), oxadiazole derivative (Jpn. J. Appl. Phy.
s. , 31, 1812, 1992; Journal of the Chemical Society of Japan, 1540, 1991), azomethine zinc complex (Jpn. J. Appl. Phys., 32, L51).
1, 1993), a benzazole metal complex (JP-A-8-81472), a mixed-ligand aluminum complex (JP-A-5-198377; JP-A-5-1983).
JP-A-78-214; JP-A-5-214332; JP-A-6-214332
-172751), N, N'-diphenyl-N,
N '-(3-methylphenyl) -1,1'-biphenyl-4,4'-diamine (Jpn. J. Appl. Phys.
s. 32, L917, 1993), polyvinyl carbazole (Appl. Phys. Lett., 63).
Vol., P. 2627, 1993), 1,2,4-triazole derivatives (Chem. Lett., P. 47, 1996).
Year), aminopyrene dimer (Jpn.J. Appl.P
hys. , 35, 4819, 1996), distyrylbiphenyl derivatives (Applied Physics, 62, 1015).
1993; Appl. Phys. Lett. , 6
7, 3853, 1995), silole derivatives (J. Am. Chem. Soc., 118, 1197).
4, p. 1996). Among the blue light-emitting materials described above, typical compounds whose device characteristics are well studied are shown below.

【0006】[0006]

【化7】 Embedded image

【0007】[0007]

【化8】 Embedded image

【0008】[0008]

【化9】 Embedded image

【0009】ジスチリルビフェニル誘導体(B−1)
は、蛍光強度が強く素子に用いた時にもエキサイプレッ
クスを形成せず、青色発光が報告されているが(App
l.Phys.Lett.,67巻,3853頁,19
95年)、薄膜状態でのイオン化ポテンシャルが5.9
eVと高く、正孔輸送層から正孔が注入しにくく、ま
た、ELスペクトルでは480nm付近に発光極大を有
するブロードなピークを示し、青色の色純度がよくない
という問題がある。この色純度はドーピングを行っても
改善されていない。ビス(2−メチル−8−キノリノラ
ト)(p−フェニルフェライト)アルミニウム錯体(B
−2)も青色の色純度が不十分で、ペリレンをドープす
ることで色純度は改善されるものの、駆動時の安定性が
実用レベルには達していない(特開平5−198377
号公報)。芳香族ジアミンであるN,N′−ジフェニル
−N,N′−(3−メチルフェニル)−1,1′−ビフ
ェニル−4,4′−ジアミン(通常TPDと呼ばれる)
は、正孔阻止層としてのトリアゾール誘導体層と組み合
わせた時に464nmに発光ピークを有するELスペク
トルを示すが(Jpn.J.Appl.Phys.,3
2巻,L917頁,1993年)、TPDのTgは63
℃と低いために結晶化等の熱的不安定性を有する。車載
用に表示素子の高温特性から、Tgの値として85℃以
上が要求される。上述の理由から、青色有機電界発光素
子は実用化に向けて、発光の色純度の問題と、更には素
子の耐熱性及び駆動寿命に大きな問題を抱えているのが
実状である。有機電界発光素子の青色純度が改善され
ず、耐熱性と駆動特性が不安定なことは、フルカラー化
のフラットパネル・ディスプレイ等の表示素子として望
ましくない特性である。本発明は、青色純度が高く、且
つ耐熱性を有し、長期間に亘り安定な青色発光特性を維
持することができる有機電界発光素子を提供することを
目的とする。
Distyrilbiphenyl derivative (B-1)
Has a high fluorescence intensity and does not form an exciplex even when used in a device, and emits blue light.
l. Phys. Lett. , 67, 3853, 19
1995), ionization potential in thin film state is 5.9
Because of its high eV, it is difficult to inject holes from the hole transport layer. In addition, the EL spectrum shows a broad peak having a light emission maximum near 480 nm, and the blue color purity is poor. This color purity is not improved by doping. Bis (2-methyl-8-quinolinolato) (p-phenylferrite) aluminum complex (B
-2), the color purity of blue is also insufficient. Although the color purity is improved by doping with perylene, the stability at the time of driving does not reach a practical level (Japanese Patent Laid-Open No. 5-198377).
No.). N, N'-diphenyl-N, N '-(3-methylphenyl) -1,1'-biphenyl-4,4'-diamine which is an aromatic diamine (commonly called TPD)
Shows an EL spectrum having an emission peak at 464 nm when combined with a triazole derivative layer as a hole blocking layer (Jpn. J. Appl. Phys., 3).
2, L917, 1993), and the Tg of TPD is 63.
Due to its low temperature of ℃, it has thermal instability such as crystallization. From the high temperature characteristics of display elements for use in vehicles, a value of Tg of 85 ° C. or higher is required. For the above-mentioned reason, the blue organic electroluminescent device has a problem of color purity of light emission and a serious problem in heat resistance and driving life of the device for practical use. The fact that the blue purity of the organic electroluminescent device is not improved and the heat resistance and the driving characteristics are unstable are undesirable characteristics as a display device such as a full-color flat panel display. An object of the present invention is to provide an organic electroluminescent device having high blue purity, heat resistance, and capable of maintaining stable blue light emitting characteristics for a long period of time.

【0010】[0010]

【課題を解決するための手段】本発明者らは、かかる実
状に鑑み鋭意検討した結果、青色蛍光を有し、且つ高い
Tgを有する特定の芳香族ジアミン化合物を含有する発
光層を用いることにより上記課題を解決し得ることを見
出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have made intensive studies in view of the above situation, and as a result, have found that the use of a light emitting layer containing a specific aromatic diamine compound having a blue fluorescence and a high Tg has been proposed. The present inventors have found that the above problems can be solved, and have completed the present invention.

【0011】即ち、本発明の要旨は、基板上に、陽極及
び陰極に挟持された正孔輸送層、発光層及び電子輸送層
を少なくとも含む有機電界発光素子であって、前記発光
層が下記一般式(I)で表わされる化合物を含有するこ
とを特徴とする有機電界発光素子、
That is, the gist of the present invention is an organic electroluminescent device including at least a hole transporting layer, a light emitting layer and an electron transporting layer sandwiched between an anode and a cathode on a substrate. An organic electroluminescent device comprising a compound represented by the formula (I),

【0012】[0012]

【化10】 Embedded image

【0013】(式中、Ar1 及びAr2 は、各々独立し
て、各々置換基を有していてもよい、芳香族炭化水素基
又は芳香族複素環基を示し、R1 ないしR18は、各々独
立して、水素原子、ハロゲン原子、カルボキシル基、水
酸基、又は、各々置換基を有していてもよい、アルキル
基、アラルキル基、アルケニル基、アミノ基、アミド
基、アルコキシカルボニル基、アルコキシ基、置換基を
有していてもよい芳香族炭化水素基又は置換基を有して
いてもよい芳香族複素環基を示し、Xは、置換基を有し
ていてもよい二価の芳香族環残基を示す)にある。
[0013] (wherein, Ar 1 and Ar 2 are independently each may have a substituent group, an aromatic hydrocarbon group or an aromatic heterocyclic group, to no R 1 R 18 is Each independently a hydrogen atom, a halogen atom, a carboxyl group, a hydroxyl group, or an alkyl group, an aralkyl group, an alkenyl group, an amino group, an amide group, an alkoxycarbonyl group, and an alkoxy group, each of which may have a substituent. A group, an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent, and X represents a divalent aromatic group which may have a substituent Group ring residue).

【0014】[0014]

【発明の実施の形態】以下、前記一般式(I)を用いた
本発明の有機電界発光素子について、図面を参照しなが
ら説明する。図1は本発明に用いられる一般的な有機電
界発光素子の構造例を模式的に示す断面図であり、1は
基板、2は陽極、4は正孔輸送層、5は発光層、7は電
子輸送層、8は陰極を各々表わす。基板1は有機電界発
光素子の支持体となるものであり、石英やガラスの板、
金属板や金属箔、プラスチックフィルムやシート等が用
いられる。特にガラス板や、ポリエステル、ポリメタク
リレート、ポリカーボネート、ポリスルホン等の透明な
合成樹脂の板が好ましい。合成樹脂基板を使用する場合
にはガスバリア性に留意する必要がある。基板のガスバ
リヤ性が低すぎると、基板を通過する外気により有機電
界発光素子が劣化することがあるので好ましくない。こ
のため、合成樹脂基板のいずれか片側若しくは両側に緻
密なシリコン酸化膜等を設けてガスバリア性を確保する
方法も好ましい方法の一つである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an organic electroluminescent device of the present invention using the above general formula (I) will be described with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing an example of the structure of a general organic electroluminescent device used in the present invention, wherein 1 is a substrate, 2 is an anode, 4 is a hole transport layer, 5 is a light emitting layer, and 7 is The electron transport layer 8 represents a cathode. The substrate 1 serves as a support for the organic electroluminescent device, and is made of a quartz or glass plate,
A metal plate, a metal foil, a plastic film, a sheet, or the like is used. Particularly, a glass plate or a plate of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate, and polysulfone is preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too low, the organic air-emitting device may be deteriorated by outside air passing through the substrate, which is not preferable. Therefore, a method of providing a dense silicon oxide film or the like on one or both sides of the synthetic resin substrate to secure gas barrier properties is also one of the preferable methods.

【0015】基板1上には陽極2が設けられるが、陽極
2は正孔輸送層4への正孔注入の役割を果たすものであ
る。この陽極は、通常、アルミニウム、金、銀、ニッケ
ル、パラジウム、白金等の金属、インジウム及び/又は
スズの酸化物等の金属酸化物、ヨウ化銅等のハロゲン化
金属、カーボンブラック、或いは、ポリ(3−メチルチ
オフェン)、ポリピロール、ポリアニリン等の導電性高
分子等により構成される。陽極2の形成は通常、スパッ
タリング法、真空蒸着法等により行われることが多い。
また、銀等の金属微粒子、ヨウ化銅等の微粒子、カーボ
ンブラック、導電性の金属酸化物微粒子、導電性高分子
微粉末等の場合には、適当なバインター樹脂溶液に分散
し、基板1上に塗布することにより陽極2を形成するこ
ともできる。更に、導電性高分子の場合は電解重合によ
り直接基板1上に薄膜を形成したり、基板1上に導電性
高分子を塗布して陽極2を形成することもできる(Ap
pl.Phys.Lett.,60巻,2711頁,1
992年)。陽極2は異なる物質で積層して形成するこ
とも可能である。陽極2の厚みは、必要とする透明性に
より異なる。透明性が必要とされる場合は、可視光の透
過率を、通常、60%以上、好ましくは80%以上とす
ることが望ましく、この場合、厚みは、通常、5〜10
00nm、好ましくは10〜500nm程度である。不
透明でよい場合は陽極2は基板1と同一でもよい。ま
た、更には上記の陽極2の上に異なる導電材料を積層す
ることも可能である。
An anode 2 is provided on a substrate 1, and the anode 2 plays a role of injecting holes into a hole transport layer 4. This anode is usually made of a metal such as aluminum, gold, silver, nickel, palladium and platinum, a metal oxide such as an oxide of indium and / or tin, a metal halide such as copper iodide, carbon black, or poly. (3-methylthiophene), conductive polymers such as polypyrrole and polyaniline. Usually, the formation of the anode 2 is often performed by a sputtering method, a vacuum evaporation method, or the like.
In the case of fine particles of metal such as silver, fine particles of copper iodide or the like, carbon black, fine particles of a conductive metal oxide, fine particles of a conductive polymer, or the like, they are dispersed in an appropriate binder resin solution and To form the anode 2. Further, in the case of a conductive polymer, a thin film can be formed directly on the substrate 1 by electrolytic polymerization, or the conductive polymer can be applied on the substrate 1 to form the anode 2 (Ap).
pl. Phys. Lett. 60, 2711, 1
992). The anode 2 can be formed by laminating different materials. The thickness of the anode 2 depends on the required transparency. When transparency is required, it is desirable that the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness is usually 5 to 10%.
00 nm, preferably about 10 to 500 nm. If opaque, the anode 2 may be the same as the substrate 1. Further, it is also possible to laminate a different conductive material on the anode 2.

【0016】陽極2の上には正孔輸送層4が設けられ
る。正孔輸送層の材料に要求される条件としては、陽極
からの正孔注入効率が高く、且つ、注入された正孔を効
率よく輸送することができる材料であることが必要であ
る。そのためには、イオン化ポテンシャルが小さく、可
視光の光に対して透明性が高く、しかも正孔移動度が大
きく、更に安定性に優れ、トラップとなる不純物が製造
時や使用時に発生しにくいことが要求される。上記の一
般的要求以外は、車載表示用の応用を考えた場合、素子
には更に耐熱性が要求される。従って、Tgとして85
℃以上の値を有する材料が望ましい。
On the anode 2, a hole transport layer 4 is provided. As a condition required for the material of the hole transport layer, it is necessary that the material has a high hole injection efficiency from the anode and can efficiently transport the injected holes. Therefore, the ionization potential is small, the transparency to visible light is high, the hole mobility is large, the stability is further improved, and impurities serving as traps are hardly generated at the time of manufacture or use. Required. In addition to the above general requirements, when considering applications for in-vehicle display, the element is required to have further heat resistance. Therefore, Tg is 85
A material having a value of at least C is desirable.

【0017】このような正孔輸送材料としては、例え
ば、1,1−ビス(4−ジ−p−トリルアミノフェニ
ル)シクロヘキサン等の第三級芳香族アミン単位を連結
した芳香族ジアミン化合物(特開昭59−194393
号公報)、4,4′−ビス[N−(1−ナフチル)−N
−フェニルアミノ]ビフェニルで代表される二個以上の
第三級アミンを含み二個以上の縮合芳香族環が窒素原子
に置換した芳香族アミン(特開平5−234681号公
報)、トリフェニルベンゼンの誘導体でスターバースト
構造を有する芳香族トリアミン(米国特許第4,92
3,744号明細書)、N,N′−ジフェニル−N,
N′−ビス(3−メチルフェニル)ビフェニル−4,
4′−ジアミン等の芳香族ジアミン(米国特許第4,7
64,625号明細書)、分子全体として立体的に非対
称なトリフェニルアミン誘導体(特開平4−12927
1号公報)、ピレニル基に芳香族ジアミノ基が複数個置
換した化合物(特開平4−175395号公報)、エチ
レン基で第三級芳香族アミン単位を連結した芳香族ジア
ミン(特開平4−264189号公報)、スチリル構造
を有する芳香族ジアミン(特開平4−290851号公
報)、チオフェン基で芳香族第三級アミン単位を連結し
たもの(特開平4−304466号公報)、スターバー
スト型芳香族トリアミン(特開平4−308688号公
報)、ベンジルフェニル化合物(特開平4−36415
3号公報)、フルオレン基で第三級アミンを連結したも
の(特開平5−25473号公報)、トリアミン化合物
(特開平5−239455号公報)、ビスジピリジルア
ミノビフェニル(特開平5−320634号公報)、
N,N,N−トリフェニルアミン誘導体(特開平6−1
972号公報)、フェノキサジン構造を有する芳香族ジ
アミン(特開平7−138562号公報)、ジアミノフ
ェニルフェナントリジン誘導体(特開平7−25247
4号公報)、シラザン化合物(米国特許第4,950,
950号明細書)、シラナミン誘導体(特開平6−49
079号公報)、ホスファミン誘導体(特開平6−25
659号公報)、キナクリドン化合物等が挙げられる。
これらの化合物は、単独で用いてもよいし、必要に応じ
て、各々、混合して用いてもよい。
As such a hole transporting material, for example, aromatic diamine compounds linked with tertiary aromatic amine units such as 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane (particularly, Kaisho 59-194393
Publication), 4,4'-bis [N- (1-naphthyl) -N
[Phenylamino] biphenyl, aromatic amines containing two or more tertiary amines and two or more condensed aromatic rings substituted with nitrogen atoms (JP-A-5-234681); Aromatic triamines having a starburst structure in derivatives (US Pat. No. 4,92
3,744), N, N'-diphenyl-N,
N'-bis (3-methylphenyl) biphenyl-4,
Aromatic diamines such as 4'-diamine (U.S. Pat.
No. 64,625), a triphenylamine derivative which is sterically asymmetric as a whole molecule (JP-A-4-12927).
No. 1), a compound in which a pyrenyl group is substituted with a plurality of aromatic diamino groups (JP-A-4-175395), and an aromatic diamine in which a tertiary aromatic amine unit is linked by an ethylene group (JP-A-4-264189). Japanese Patent Application Laid-Open No. 4-290466), aromatic diamines having a styryl structure (Japanese Patent Application Laid-Open No. Hei 4-290851), those obtained by linking aromatic tertiary amine units with thiophene groups (Japanese Patent Application Laid-Open No. 4-304466), starburst type aromatics Triamines (JP-A-4-308688) and benzylphenyl compounds (JP-A-4-36415)
No. 3), a compound in which a tertiary amine is linked by a fluorene group (Japanese Patent Application Laid-Open No. 5-25473), a triamine compound (Japanese Patent Application Laid-Open No. 5-239455), and a bisdipyridylaminobiphenyl (Japanese Patent Application Laid-Open No. 5-320634). ),
N, N, N-triphenylamine derivatives (Japanese Unexamined Patent Publication No.
No. 972), aromatic diamines having a phenoxazine structure (JP-A-7-138562), diaminophenylphenanthridine derivatives (JP-A-7-25247).
No. 4), silazane compounds (US Pat. No. 4,950,
950), silanamine derivatives (JP-A-6-49)
079), phosphamine derivatives (JP-A-6-25)
659) and quinacridone compounds.
These compounds may be used alone, or may be used as a mixture as necessary.

【0018】上記の化合物以外に、正孔輸送層の材料と
して、ポリビニルカルバゾールやポリシラン(App
l.Phys.Lett.,59巻,2760頁,19
91年)、ポリフォスファゼン(特開平5−31094
9号公報)、ポリアミド(特開平5−310949号公
報)、ポリビニルトリフェニルアミン(特開平7−53
953号公報)、トリフェニルアミン骨格を有する高分
子(特開平4−133065号公報)、トリフェニルア
ミン単位をメチレン基等で連結した高分子(Synth
etic Metals,55〜57巻,4163頁,
1993年)、芳香族アミンを含有するポリメタクリレ
ート(J.Polym.Sci.,Polym.Che
m.Ed.,21巻,969頁,1983年)等の高分
子材料が挙げられる。
In addition to the above compounds, polyvinyl carbazole and polysilane (App
l. Phys. Lett. 59, 2760, 19
1991), polyphosphazene (JP-A-5-31094)
No. 9), polyamide (JP-A-5-310949), polyvinyl triphenylamine (JP-A-7-53).
No. 953), a polymer having a triphenylamine skeleton (Japanese Patent Laid-Open No. 4-133065), and a polymer in which triphenylamine units are linked by a methylene group (Synth
etic Metals, 55-57, 4163,
1993), polymethacrylates containing aromatic amines (J. Polym. Sci., Polym. Che.
m. Ed. , 21, 969, 1983).

【0019】正孔輸送層4は塗布法或いは真空蒸着法に
より前記陽極2上に積層することにより形成される。塗
布法の場合は、正孔輸送材料を一種又は二種以上と、必
要により正孔のトラップにならないバインダー樹脂や塗
布性改良剤等の添加剤とを添加し、溶解して塗布溶液を
調製し、スピンコート法等の方法により陽極2上に塗布
し、乾燥して正孔輸送層4を形成する。バインダー樹脂
としては、ポリカーボネート、ポリアリレート、ポリエ
ステル等が挙げられる。バインダー樹脂は添加量が多い
と正孔移動度を低下させるので、少ない方が望ましく、
通常、50重量%以下が好ましい。
The hole transport layer 4 is formed by laminating on the anode 2 by a coating method or a vacuum evaporation method. In the case of the coating method, one or more hole transport materials and, if necessary, an additive such as a binder resin or a coating property improving agent which does not trap holes are added and dissolved to prepare a coating solution. Is applied on the anode 2 by a method such as spin coating, and dried to form the hole transport layer 4. Examples of the binder resin include polycarbonate, polyarylate, and polyester. If the amount of the binder resin is large, the hole mobility is lowered, so that a smaller amount is preferable.
Usually, 50% by weight or less is preferable.

【0020】真空蒸着法の場合には、正孔輸送材料を真
空容器内に設置された坩堝に入れ、真空容器内に適当な
真空ポンプで10-6Torrにまで排気した後、坩堝を
加熱して、正孔輸送材料を蒸発させ、坩堝と向き合って
置かれた基板上1上の陽極2上に正孔輸送層4を形成さ
せる。正孔輸送層4の膜厚は、通常、10〜300n
m、好ましくは30〜100nmである。この様に薄い
膜を一様に形成するためには、一般に真空蒸着法がよく
用いられる。
In the case of the vacuum vapor deposition method, the hole transporting material is put into a crucible placed in a vacuum vessel, evacuated to 10 -6 Torr by a suitable vacuum pump in the vacuum vessel, and then the crucible is heated. Then, the hole transporting material is evaporated to form the hole transporting layer 4 on the anode 2 on the substrate 1 placed facing the crucible. The thickness of the hole transport layer 4 is usually 10 to 300 n.
m, preferably 30 to 100 nm. In order to uniformly form such a thin film, generally, a vacuum deposition method is often used.

【0021】陽極2と正孔輸送層4のコンタクトを向上
させるために、図3に示す様に、陽極バッファ層3を設
けることが考えられる。陽極バッファ層に用いられる材
料に要求される条件としては、陽極とのコンタクトがよ
く均一な薄膜が形成でき、熱的に安定、即ち、融点及び
ガラス転移温度が高く、融点としては300℃以上、ガ
ラス転移温度としては100℃以上が要求される。更
に、イオン化ポテンシャルが低く陽極からの正孔注入が
容易なこと、正孔移動度が大きいことが挙げられる。こ
の目的のために、これまでにポルフィリン誘導体やフタ
ロシアニン化合物(特開昭63−295695号公
報)、スターバースト型芳香族トリアミン(特開平4−
308688号公報)、ヒドラゾン化合物(特開平4−
320483号公報)、アルコキシ置換の芳香族ジアミ
ン誘導体(特開平4−220995号公報)、p−(9
−アントリル)−N,N−ジ−p−トリルアニリン(特
開平3−111485号公報)、ポリチエニレンビニレ
ンやポリ−p−フェニレンビニレン(特開平4−145
192号公報)、ポリアニリン(Appl.Phys.
Lett.,64巻,1245頁,1994年参照)等
の有機化合物や、スパッタ・カーボン膜(特開平8−3
1573号公報)や、バナジウム酸化物、ルテニウム酸
化物、モリブデン酸化物等の金属酸化物(第43回応用
物理学関係連合講演会、27a−SY−9,1996
年)が報告されている。
In order to improve the contact between the anode 2 and the hole transport layer 4, it is conceivable to provide an anode buffer layer 3 as shown in FIG. The conditions required for the material used for the anode buffer layer are that a uniform thin film can be formed with good contact with the anode and thermally stable, that is, the melting point and the glass transition temperature are high, and the melting point is 300 ° C. or more, A glass transition temperature of 100 ° C. or higher is required. In addition, the ionization potential is low, holes can be easily injected from the anode, and the hole mobility is high. To this end, porphyrin derivatives and phthalocyanine compounds (JP-A-63-29569) and star-burst-type aromatic triamines (JP-A-Hei.
308688), hydrazone compounds (Japanese Unexamined Patent Publication No.
No. 320483), an alkoxy-substituted aromatic diamine derivative (Japanese Patent Application Laid-Open No. 4-220995), p- (9
-Anthryl) -N, N-di-p-tolylaniline (JP-A-3-111485), polythienylenevinylene and poly-p-phenylenevinylene (JP-A-4-145)
192), polyaniline (Appl. Phys.
Lett. 64, p. 1245, 1994), and sputtered carbon films (JP-A-8-3).
No. 1573) and metal oxides such as vanadium oxide, ruthenium oxide, and molybdenum oxide (the 43rd Alliance Lecture Meeting on Applied Physics, 27a-SY-9, 1996)
Year) has been reported.

【0022】上記陽極バッファ層材料としてよく使用さ
れる化合物としては、ポルフィリン化合物又はフタロシ
アニン化合物が挙げられる。これらの化合物は中心金属
を有していてもよいし、無金属のものでもよい。好まし
いこれらの化合物の具体例としては、以下の化合物が挙
げられる: ポルフィン 5,10,15,20−テトラフェニル−21H,23
H−ポルフィン 5,10,15,20−テトラフェニル−21H,23
H−ポルフィンコバルト(II) 5,10,15,20−テトラフェニル−21H,23
H−ポルフィン銅(II) 5,10,15,20−テトラフェニル−21H,23
H−ポルフィン亜鉛(II) 5,10,15,20−テトラフェニル−21H,23
H−ポルフィンバナジウム(IV)オキシド 5,10,15,20−テトラ(4−ピリジル)−21
H,23H−ポルフィン 29H,31H−フタロシアニン 銅(II)フタロシアニン 亜鉛(II)フタロシアニン チタンフタロシアニンオキシド マグネシウムフタロシアニン 鉛フタロシアニン 銅(II)4,4′,4′′,4′′′−テトラアザ−2
9H,31H−フタロシアニン 陽極バッファ層の場合も、正孔輸送層と同様にして薄膜
形成可能であるが、無機物の場合には、更に、スパッタ
法や電子ビーム蒸着法、プラズマCVD法が用いられ
る。以上の様にして形成される陽極バッファ層3の膜厚
は、通常、3〜100nm、好ましくは10〜50nm
である。
Examples of the compound often used as the material of the anode buffer layer include a porphyrin compound and a phthalocyanine compound. These compounds may have a central metal or may be non-metallic. Specific examples of preferred such compounds include the following compounds: porphine 5,10,15,20-tetraphenyl-21H, 23
H-porphine 5,10,15,20-tetraphenyl-21H, 23
H-porphine cobalt (II) 5,10,15,20-tetraphenyl-21H, 23
H-porphine copper (II) 5,10,15,20-tetraphenyl-21H, 23
H-porphine zinc (II) 5,10,15,20-tetraphenyl-21H, 23
H-porphine vanadium (IV) oxide 5,10,15,20-tetra (4-pyridyl) -21
H, 23H-porphine 29H, 31H-phthalocyanine copper (II) phthalocyanine zinc (II) phthalocyanine titanium phthalocyanine oxide magnesium phthalocyanine lead phthalocyanine copper (II) 4,4 ′, 4 ″, 4 ″ ″-tetraaza-2
In the case of the 9H, 31H-phthalocyanine anode buffer layer, a thin film can be formed in the same manner as the hole transport layer. However, in the case of an inorganic substance, a sputtering method, an electron beam evaporation method, or a plasma CVD method is used. The thickness of the anode buffer layer 3 formed as described above is usually 3 to 100 nm, preferably 10 to 50 nm.
It is.

【0023】正孔輸送層4の上には発光層5が設けられ
る。本発明において、発光層5は、電界を与えられた電
極間において、陽極2から注入され正孔輸送層を通過し
て輸送された正孔と、陰極8から注入され電子輸送層7
を通過して輸送された電子を効率よく再結合させること
により青色発光する化合物より形成される。そのために
は、正孔輸送性と電子輸送性の両方を兼ね備え、しかも
正孔移動度及び電子移動度が大きく、更に安定性に優れ
トラップとなる不純物が製造時や使用時に発生しにくい
化合物であることが要求される。また、青色発光を可能
にするために、薄膜状態での蛍光波長が400〜500
nmの範囲にあることが必要である。本発明において
は、有機電界発光素子の発光層5に、前記一般式(I)
で表される化合物を含有させることにより、安定した青
色発光特性及び耐熱性の改善をもたらすことができる。
The light emitting layer 5 is provided on the hole transport layer 4. In the present invention, the light-emitting layer 5 includes, between the electrodes to which an electric field is applied, holes injected from the anode 2 and transported through the hole transport layer, and holes injected from the cathode 8 and the electron transport layer 7.
Is formed from a compound that emits blue light by efficiently recombining electrons transported through the compound. Therefore, it is a compound that has both hole transporting properties and electron transporting properties, has high hole mobility and electron mobility, and has excellent stability and is less likely to generate impurities that become traps during production or use. Is required. Further, in order to enable blue light emission, the fluorescence wavelength in a thin film state is 400 to 500.
It needs to be in the range of nm. In the present invention, the light emitting layer 5 of the organic electroluminescent device is provided with the above-mentioned general formula (I)
By containing the compound represented by the formula, stable blue light emission characteristics and improved heat resistance can be brought about.

【0024】本発明の有機電界発光素子は発光材料とし
て前記一般式(I)で表わされる化合物から選ばれた一
つ、又は、二つ以上の混合物から成ることを特徴とす
る。前記一般式(I)において、好ましくは、Ar1
びAr2 は、各々独立して、各々置換基を有していても
よい、フェニル基、ナフチル基、アントリル基、ビフェ
ニル基、ピリジル基又はチエニル基を示し、前記置換基
としては、ハロゲン原子;メチル基、エチル基等の炭素
数1〜6のアルキル基;ビニル基等のアルケニル基;メ
トキシ基、エトキシ基等の炭素数1〜6のアルコキシ
基;メトキシカルボニル基、エトキシカルボニル基等の
炭素数1〜6のアルコキシカルボニル基;フェノキシ
基、ベンジルオキシ基等のアリールオキシ基;ジエチル
アミノ基、ジイソプロピルアミノ基等のジアルキルアミ
ノ基;ジベンジルアミノ基、ジフェネチルアミノ基等の
ジアラルキルアミノ基を示す。特に好ましくは、各々置
換基を有していてもよい、フェニル基、ナフチル基から
選ばれる。R1 ないしR18は、好ましくは、各々独立し
て、水素原子;ハロゲン原子;水酸基;メチル基、エチ
ル基等の炭素数1〜6のアルキル基;α−ハロアルキル
基;ビニル基等のアルケニル基;フェニル基、ビフェニ
ル基等の芳香族炭化水素基;メトキシカルボニル基、エ
トキシカルボニル基等の炭素数1〜6のアルコキシカル
ボニル基;メトキシ基、エトキシ基等の炭素数1〜6の
アルコキシ基;フェノキシ基、ベンジルオキシ基等のア
リールオキシ基;ジエチルアミノ基、ジイソプロピルア
ミノ基等のジアルキルアミノ基;ジベンジルアミノ基、
ジフェニルアミノ基等のジアリールアミノ基であり、飽
和若しくは不飽和の脂肪族炭化水素基、芳香族炭化水素
基、アルコキシ基、アリールオキシ基、ジアルキルアミ
ノ基、ジアリールアミノ基は置換基を有していてもよ
い。特に好ましくは、メチル基、エチル基等の炭素数1
〜6のアルキル基、メトキシ基、エトキシ基等の炭素数
1〜6のアルコキシ基、フェニル基、ビフェニル基等の
芳香族炭化水素基から選ばれる。Xは、好ましくは、各
々置換基を有していてもよい、フェニレン基、ビフェニ
レン基、ターフェニレン基、アントリレン基、チエニレ
ン基及びナフチレン基から選ばれる。特に好ましくは、
フェニレン基、ビフェニレン基及びターフェニレン基か
ら選ばれる。一般式(I)で表わされる化合物は、例え
ば下記一般式(VI)で表わされるジアミン誘導体と、
The organic electroluminescent device according to the present invention is characterized in that the luminescent material comprises one selected from the compounds represented by the above general formula (I) or a mixture of two or more compounds. In the general formula (I), preferably, Ar 1 and Ar 2 are each independently a phenyl group, a naphthyl group, an anthryl group, a biphenyl group, a pyridyl group or a thienyl, each of which may have a substituent. A halogen atom; an alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; an alkenyl group such as a vinyl group; an alkoxy group having 1 to 6 carbon atoms such as a methoxy group and an ethoxy group. An alkoxycarbonyl group having 1 to 6 carbon atoms such as a methoxycarbonyl group and an ethoxycarbonyl group; an aryloxy group such as a phenoxy group and a benzyloxy group; a dialkylamino group such as a diethylamino group and a diisopropylamino group; a dibenzylamino group; And a diaralkylamino group such as a diphenethylamino group. Particularly preferably, it is selected from a phenyl group and a naphthyl group, each of which may have a substituent. R 1 to R 18 are preferably each independently a hydrogen atom; a halogen atom; a hydroxyl group; an alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; an α-haloalkyl group; An aromatic hydrocarbon group such as a phenyl group and a biphenyl group; an alkoxycarbonyl group having 1 to 6 carbon atoms such as a methoxycarbonyl group and an ethoxycarbonyl group; an alkoxy group having 1 to 6 carbon atoms such as a methoxy group and an ethoxy group; An aryloxy group such as a benzyloxy group; a dialkylamino group such as a diethylamino group or a diisopropylamino group; a dibenzylamino group;
A diarylamino group such as a diphenylamino group, and a saturated or unsaturated aliphatic hydrocarbon group, aromatic hydrocarbon group, alkoxy group, aryloxy group, dialkylamino group, diarylamino group has a substituent. Is also good. Particularly preferably, it has 1 carbon atom such as a methyl group or an ethyl group.
And C6 to C6 alkoxy groups such as methoxy and ethoxy groups, and aromatic hydrocarbon groups such as phenyl and biphenyl groups. X is preferably selected from a phenylene group, a biphenylene group, a terphenylene group, an anthrylene group, a thienylene group, and a naphthylene group, each of which may have a substituent. Particularly preferably,
It is selected from a phenylene group, a biphenylene group and a terphenylene group. The compound represented by the general formula (I) is, for example, a diamine derivative represented by the following general formula (VI):

【0025】[0025]

【化11】 Embedded image

【0026】下記一般式(VII)で表わされるヨード体An iodine compound represented by the following general formula (VII)

【0027】[0027]

【化12】 Embedded image

【0028】を、ウルマン(Ullmann)反応(O
rganic Synthesis,1巻,544頁)
にて反応させ、生成した下記一般式(VIII)で表わされ
る一置換体を
The Ullmann (Ollmann) reaction (O
rgnic Synthesis, 1, 544)
The resulting monosubstituted compound represented by the following general formula (VIII)

【0029】[0029]

【化13】 Embedded image

【0030】カラムクロマトグラフィで分離した後に、
下記一般式(IX)で表わされるヨード体と、同様に
After separation by column chromatography,
Similarly to the iodine form represented by the following general formula (IX),

【0031】[0031]

【化14】 Embedded image

【0032】ウルマン反応させて前記一般式(I)で表
わされる芳香族アミン化合物を得る。本発明において
は、前記一般式(I)に示す分子構造により、Tgを1
00℃以上と高くすることができ、この耐熱性の向上に
より容易には結晶化しない非晶質薄膜を与えることが可
能であり、正孔輸送層や電子輸送層等との間における分
子の相互拡散を100℃以上の高温下でも十分に抑制す
ることが出来る。前記一般式(I)で表わされる誘導体
の好ましい具体例を表−1から表−13に示すが、これ
らに限定されるものではない。表中、R1 ないしR18
ついて、置換基が特に表記されていない場合、水素原子
が置換している。
The aromatic amine compound represented by the general formula (I) is obtained by Ullmann reaction. In the present invention, Tg is 1 according to the molecular structure represented by the general formula (I).
The temperature can be as high as 00 ° C. or higher, and the improved heat resistance can provide an amorphous thin film that is not easily crystallized, and the mutual interaction of molecules between the hole transport layer, the electron transport layer, and the like can be provided. Diffusion can be sufficiently suppressed even at a high temperature of 100 ° C. or higher. Preferred specific examples of the derivative represented by the general formula (I) are shown in Tables 1 to 13, but are not limited thereto. In the table, with respect to R 1 to R 18 , when a substituent is not particularly indicated, a hydrogen atom is substituted.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【表5】 [Table 5]

【0038】[0038]

【表6】 [Table 6]

【0039】[0039]

【表7】 [Table 7]

【0040】[0040]

【表8】 [Table 8]

【0041】[0041]

【表9】 [Table 9]

【0042】[0042]

【表10】 [Table 10]

【0043】[0043]

【表11】 [Table 11]

【0044】[0044]

【表12】 [Table 12]

【0045】[0045]

【表13】 [Table 13]

【0046】前記一般式(I)から成る発光層5は、正
孔輸送層4と同様にして塗布法或いは真空蒸着法により
正孔輸送層4上に積層することにより形成される。但
し、塗布法の場合には既に薄膜形成されている正孔輸送
層を溶解させない溶媒を使用する必要がある。発光層5
の膜厚は、通常、5〜300nm、好ましくは10〜1
00nmである。この様に薄い膜を一様に形成するため
には、一般に真空蒸着法がよく用いられる。
The light emitting layer 5 of the general formula (I) is formed by laminating on the hole transport layer 4 by a coating method or a vacuum evaporation method in the same manner as the hole transport layer 4. However, in the case of the coating method, it is necessary to use a solvent that does not dissolve the hole transport layer already formed as a thin film. Light emitting layer 5
Is usually 5 to 300 nm, preferably 10 to 1 nm.
00 nm. In order to uniformly form such a thin film, generally, a vacuum deposition method is often used.

【0047】青色の発光効率を向上させると同時に色純
度を改善し、更に素子の駆動寿命を改善するためには、
前記発光層材料をホスト材料として、蛍光色素をドープ
することは有効な方法である。青色の蛍光を有するドー
プ色素として、ペリレン等の縮合多環芳香族環(特開平
5−198377号公報)、クマリン誘導体、ナフタル
酸イミド誘導体(特開平4−320486号公報)、芳
香族アミン誘導体(特開平8−199162号公報)等
が挙げられる。これらのドープ色素が、ホスト材料に含
有される割合は0.1〜10重量%の範囲にあることが
好ましい。勿論、緑色や赤色発光を得るために、緑色蛍
光色素や赤色蛍光色素をドープすることも可能である。
真空蒸着法で上記のドーピングを行う方法としては、共
蒸着による方法と蒸着源を予め所定の濃度で混合してお
く方法がある。上記各ドーパントが発光層中にドープさ
れる場合、発光層の膜厚方向において均一にドープされ
るが、膜厚方向において濃度分布があっても差支えな
い。例えば、正孔輸送層との界面近傍にのみドープした
り、逆に、電子輸送界面近傍にドープしてもよい。
In order to improve the luminous efficiency of blue light and the color purity at the same time, and further to improve the driving life of the device,
Doping a fluorescent dye using the light emitting layer material as a host material is an effective method. As doped dyes having blue fluorescence, condensed polycyclic aromatic rings such as perylene (Japanese Patent Laid-Open No. 5-198377), coumarin derivatives, naphthalic imide derivatives (Japanese Patent Laid-Open No. 4-320486), aromatic amine derivatives ( JP-A-8-199162). The content of these doped dyes in the host material is preferably in the range of 0.1 to 10% by weight. Of course, it is also possible to dope a green fluorescent dye or a red fluorescent dye in order to obtain green or red light emission.
As a method of performing the above-mentioned doping by a vacuum evaporation method, there are a method of co-evaporation and a method of previously mixing an evaporation source at a predetermined concentration. When each of the above dopants is doped in the light emitting layer, the dopant is uniformly doped in the thickness direction of the light emitting layer, but there may be a concentration distribution in the film thickness direction. For example, doping may be performed only near the interface with the hole transport layer, or conversely, doping may be performed near the electron transport interface.

【0048】発光層5の上には電子輸送層7が設けられ
る。電子輸送層7は、電界を与えられた電極間において
陰極から注入された電子を効率よく発光層5の方向に輸
送することができる化合物より形成される。電子輸送層
7に用いられる電子輸送性化合物としては、陰極8から
の電子注入効率が高く、且つ、注入された電子を効率よ
く輸送することができる化合物であることが必要であ
る。このような条件を満たす材料としては、8−ヒドロ
キシキノリンのアルミニウム錯体等の金属錯体(特開昭
59−194393号公報)、10−ヒドロキシベンゾ
[h]キノリンの金属錯体(特開平6−322362号
公報)、オキサジアゾール誘導体(特開平2−2167
91号公報)、ジスチリルビフェニル誘導体(特開平3
−231970号公報)、シロール誘導体(特開平9−
87616号公報)、3−又は5−ヒドロキシフラボン
金属錯体(Appl.Phys.Lett.,71巻,
3338頁,1997年)、ベンズオキサゾール金属錯
体(特開平6−336586号公報)、ベンゾチアゾー
ル金属錯体(特開平9−279134号公報)、トリス
ベンズイミダゾリルベンゼン(米国特許第5,645,
948号明細書)、キノキサリン化合物(特開平6−2
07169号公報)、フェナントロリン誘導体(特開平
5−331459号公報)、2−t−ブチル−9,10
−N,N′−ジシアノアントラキノンジイミン(Phy
s.Stat.Sol.(a),142巻,489頁,
1994年)、n型水素化非晶質炭化シリコン、n型硫
化亜鉛、n型セレン化亜鉛等が挙げられる。電子輸送層
7の膜厚は、通常、5〜200nm、好ましくは10〜
100nmである。
The electron transport layer 7 is provided on the light emitting layer 5. The electron transport layer 7 is formed of a compound capable of efficiently transporting electrons injected from the cathode between the electrodes to which an electric field is applied in the direction of the light emitting layer 5. The electron transporting compound used for the electron transporting layer 7 needs to be a compound having high electron injection efficiency from the cathode 8 and capable of efficiently transporting the injected electrons. Materials satisfying such conditions include metal complexes such as aluminum complex of 8-hydroxyquinoline (JP-A-59-194393) and metal complexes of 10-hydroxybenzo [h] quinoline (JP-A-6-322362). Gazette), oxadiazole derivatives (JP-A-2-2167)
No. 91), distyrylbiphenyl derivatives (Japanese Unexamined Patent Application Publication No.
231970), silole derivatives (Japanese Unexamined Patent Publication No.
87616), a metal complex of 3- or 5-hydroxyflavone (Appl. Phys. Lett., Vol. 71,
3338, 1997), benzoxazole metal complex (JP-A-6-336586), benzothiazole metal complex (JP-A-9-279134), trisbenzimidazolylbenzene (US Pat. No. 5,645,645).
948), quinoxaline compounds (JP-A-6-2
07169), a phenanthroline derivative (Japanese Patent Application Laid-Open No. 5-331559), 2-t-butyl-9,10
-N, N'-dicyanoanthraquinone diimine (Phy
s. Stat. Sol. (A), vol. 142, p. 489,
1994), n-type hydrogenated amorphous silicon carbide, n-type zinc sulfide, n-type zinc selenide, and the like. The film thickness of the electron transport layer 7 is usually 5 to 200 nm, preferably 10 to 200 nm.
100 nm.

【0049】有機電界発光素子の発光効率を更に向上さ
せる方法として、発光層5と電子輸送層7の間に正孔阻
止層6を積層することは大変効果的である(図2、図3
に構造を示す)。正孔阻止層6は、発光層から移動して
くる正孔を電子輸送層に注入するのを阻止する役割と、
陰極から注入された電子を効率よく発光層5の方向に輸
送することができる化合物より形成される。正孔阻止層
は正孔と電子を発光層内に閉じこめて、発光効率を向上
させる機能を有する。このような条件を満たす正孔阻止
層材料としては、以下の一般式(II)で表わされる混合
配位子錯体、
As a method for further improving the luminous efficiency of the organic electroluminescent device, it is very effective to laminate the hole blocking layer 6 between the light emitting layer 5 and the electron transport layer 7 (FIGS. 2 and 3).
Shows the structure). The hole blocking layer 6 has a role of blocking injection of holes moving from the light emitting layer into the electron transport layer,
It is formed of a compound capable of efficiently transporting electrons injected from the cathode toward the light emitting layer 5. The hole blocking layer has a function of confining holes and electrons in the light emitting layer and improving luminous efficiency. As a hole blocking layer material satisfying such conditions, a mixed ligand complex represented by the following general formula (II):

【0050】[0050]

【化15】 Embedded image

【0051】(式中、R19ないしR24は、各々独立し
て、水素原子、ハロゲン原子、アルキル基、アラルキル
基、アルケニル基、アリル基、シアノ基、アミノ基、ア
シル基、アルコキシカルボニル基、カルボキシル基、ア
ルコキシ基、アルキルスルホニル基、α−ハロアルキル
基、水酸基、置換基を有していてもよいアミド基、置換
基を有していてもよい芳香族炭化水素基又は置換基を有
していてもよい芳香族複素環基を表わし、MはAl原子
又はGa原子を示し、Zは下記一般式(IIa)、(II
b)又は(IIc)の基のいずれかを表わす)
(Wherein R 19 to R 24 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, an allyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, Carboxyl group, alkoxy group, alkylsulfonyl group, α-haloalkyl group, hydroxyl group, amide group optionally having substituent (s), aromatic hydrocarbon group optionally having substituent (s) or substituent (s) M represents an Al atom or a Ga atom; and Z represents the following general formula (IIa) or (II
(b) or (IIc)

【0052】[0052]

【化16】 Embedded image

【0053】(式中、YはSi、Ge又はSnのいずれ
かの原子を表わし、Ar3 ないしAr 7 は、各々独立し
て、置換基を有していてもよい芳香族炭化水素基又は置
換基を有していてもよい芳香族複素環基を表わす)
(Where Y is any of Si, Ge or Sn
Represents an atom ofThreeOr Ar 7Are independent
An aromatic hydrocarbon group or a substituent which may have a substituent
Represents an aromatic heterocyclic group which may have a substituent)

【0054】以下の一般式(III)で表わされる二核金属
錯体、
A binuclear metal complex represented by the following general formula (III):

【0055】[0055]

【化17】 Embedded image

【0056】(式中、R19ないしR24は、各々独立し
て、水素原子、ハロゲン原子、アルキル基、アラルキル
基、アルケニル基、アリル基、シアノ基、アミノ基、ア
シル基、アルコキシカルボニル基、カルボキシル基、ア
ルコキシ基、アルキルスルホニル基、α−ハロアルキル
基、水酸基、置換基を有していてもよいアミド基、置換
基を有していてもよい芳香族炭化水素基又は置換基を有
していてもよい芳香族複素環基を表わし、MはAl原子
又はGa原子を示す)
(Wherein R 19 to R 24 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, an allyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, Carboxyl group, alkoxy group, alkylsulfonyl group, α-haloalkyl group, hydroxyl group, amide group optionally having substituent (s), aromatic hydrocarbon group optionally having substituent (s) or substituent (s) Represents an aromatic heterocyclic group which may be substituted, and M represents an Al atom or a Ga atom)

【0057】以下の構造式(IV)で示される1,2,4
−トリアゾ−ル環を少なくとも一個有する化合物、
1,2,4 represented by the following structural formula (IV)
A compound having at least one triazole ring,

【0058】[0058]

【化18】 Embedded image

【0059】以下の一般式(V)で示されるスチリル化
合物が挙げられる。
A styryl compound represented by the following general formula (V) is exemplified.

【0060】[0060]

【化19】 Embedded image

【0061】(式中、Ar8 ないしAr12は、置換基を
有していてもよい芳香族炭化水素基又は置換基を有して
いてもよい芳香族複素環基を表わす)
(Wherein, Ar 8 to Ar 12 represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent)

【0062】前記一般式(II)で示される混合配位子錯
体の具体例として、ビス(2−メチル−8−キノリノラ
ト)(フェノラト)アルミニウム、ビス(2−メチル−
8−キノリノラト)(オルト−クレゾラト)アルミニウ
ム、ビス(2−メチル−8−キノリノラト)(メタ−ク
レゾラト)アルミニウム、ビス(2−メチル−8−キノ
リノラト)(パラ−クレゾラト)アルミニウム、ビス
(2−メチル−8−キノリノラト)(オルト−フェニル
フェノラト)アルミニウム、ビス(2−メチル−8−キ
ノリノラト)(メタ−フェニルフェノラト)アルミニウ
ム、ビス(2−メチル−8−キノリノラト)(パラ−フ
ェニルフェノラト)アルミニウム、ビス(2−メチル−
8−キノリノラト)(2,3−ジメチルフェノラト)ア
ルミニウム、ビス(2−メチル−8−キノリノラト)
(2,6−ジメチルフェノラト)アルミニウム、ビス
(2−メチル−8−キノリノラト)(3,4−ジメチル
フェノラト)アルミニウム、ビス(2−メチル−8−キ
ノリノラト)(3,5−ジメチルフェノラト)アルミニ
ウム、ビス(2−メチル−8−キノリノラト)(3,5
−ジ−tert−ブチルフェノラト)アルミニウム、ビ
ス(2−メチル−8−キノリノラト)(2,6−ジフェ
ニルフェノラト)アルミニウム、ビス(2−メチル−8
−キノリノラト)(2,4,6−トリフェニルフェノラ
ト)アルミニウム、ビス(2−メチル−8−キノリノラ
ト)(2,4,6−トリメチルフェノラト)アルミニウ
ム、ビス(2−メチル−8−キノリノラト)(2,3,
6−トリメチルフェノラト)アルミニウム、ビス(2−
メチル−8−キノリノラト)(2,3,5,6−テトラ
メチルフェノラト)アルミニウム、ビス(2−メチル−
8−キノリノラト)(1−ナフトラト)アルミニウム、
ビス(2−メチル−8−キノリノラト)(2−ナフトラ
ト)アルミニウム、ビス(2−メチル−8−キノリノラ
ト)(トリフェニルシラノラト)アルミニウム、ビス
(2−メチル−8−キノリノラト)(トリフェニルゲル
マノラト)アルミニウム、ビス(2−メチル−8−キノ
リノラト)(トリス(4,4−ビフェニル)シラノラ
ト)アルミニウム、ビス(2,4−ジメチル−8−キノ
リノラト)(オルト−フェニルフェノラト)アルミニウ
ム、ビス(2,4−ジメチル−8−キノリノラト)(パ
ラ−フェニルフェノラト)アルミニウム、ビス(2,4
−ジメチル−8−キノリノラト)(メタ−フェニルフェ
ノラト)アルミニウム、ビス(2,4−ジメチル−8−
キノリノラト)(3,5−ジメチルフェノラト)アルミ
ニウム、ビス(2,4−ジメチル−8−キノリノラト)
(3,5−ジ−tert−ブチルフェノラト)アルミニ
ウム、ビス(2−メチル−4−エチル−8−キノリノラ
ト)(パラ−クレゾラト)アルミニウム、ビス(2−メ
チル−4−メトキシ−8−キノリノラト)(パラ−フェ
ニルフェノラト)アルミニウム、ビス(2−メチル−5
−シアノ−8−キノリノラト)(オルト−クレゾラト)
アルミニウム、ビス(2−メチル−6−トリフルオロメ
チル−8−キノリノラト)(2−ナフトラト)アルミニ
ウム、ビス(2−メチル−キノリノラト)(フェノラ
ト)ガリウム、ビス(2−メチル−8−キノリノラト)
(オルト−クレゾラト)ガリウム、ビス(2−メチル−
8−キノリノラト)(パラ−フェニルフェノラト)ガリ
ウム、ビス(2−メチル−8−キノリノラト)(1−ナ
フトラト)ガリウム、ビス(2−メチル−8−キノリノ
ラト)(2−ナフトラト)ガリウム、ビス(2−メチル
−8−キノリノラト)(トリフェニルシラノラト)ガリ
ウム、ビス(2−メチル−8−キノリノラト)(トリス
(4,4−ビフェニル)シラノラト)ガリウム等が挙げ
られる。特に好ましくは、ビス(2−メチル−8−キノ
リノラト)(2−ナフトラト)アルミニウム、ビス(2
−メチル−8−キノリノラト)(トリフェニルシラノラ
ト)アルミニウムが挙げられる。
Specific examples of the mixed ligand complex represented by the general formula (II) include bis (2-methyl-8-quinolinolato) (phenolato) aluminum, bis (2-methyl-
8-quinolinolato) (ortho-cresolato) aluminum, bis (2-methyl-8-quinolinolato) (meta-cresolato) aluminum, bis (2-methyl-8-quinolinolato) (para-cresolato) aluminum, bis (2-methyl) -8-quinolinolato) (ortho-phenylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (meta-phenylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (para-phenylphenolato) Aluminum, bis (2-methyl-
8-quinolinolato) (2,3-dimethylphenolato) aluminum, bis (2-methyl-8-quinolinolato)
(2,6-dimethylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (3,4-dimethylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (3,5-dimethylphenolato) ) Aluminum, bis (2-methyl-8-quinolinolato) (3,5
-Di-tert-butylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (2,6-diphenylphenolato) aluminum, bis (2-methyl-8)
-Quinolinolato) (2,4,6-triphenylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (2,4,6-trimethylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (2,3
6-trimethylphenolato) aluminum, bis (2-
Methyl-8-quinolinolato) (2,3,5,6-tetramethylphenolato) aluminum, bis (2-methyl-
8-quinolinolato) (1-naphthrat) aluminum,
Bis (2-methyl-8-quinolinolato) (2-naphthrat) aluminum, bis (2-methyl-8-quinolinolato) (triphenylsilanolato) aluminum, bis (2-methyl-8-quinolinolato) (triphenylgermanola) G) aluminum, bis (2-methyl-8-quinolinolato) (tris (4,4-biphenyl) silanolato) aluminum, bis (2,4-dimethyl-8-quinolinolato) (ortho-phenylphenolato) aluminum, bis ( 2,4-dimethyl-8-quinolinolato) (para-phenylphenolato) aluminum, bis (2,4
-Dimethyl-8-quinolinolato) (meta-phenylphenolato) aluminum, bis (2,4-dimethyl-8-)
Quinolinolato) (3,5-dimethylphenolato) aluminum, bis (2,4-dimethyl-8-quinolinolato)
(3,5-di-tert-butylphenolato) aluminum, bis (2-methyl-4-ethyl-8-quinolinolato) (para-cresolato) aluminum, bis (2-methyl-4-methoxy-8-quinolinolato) (Para-phenylphenolato) aluminum, bis (2-methyl-5)
-Cyano-8-quinolinolato) (ortho-cresolate)
Aluminum, bis (2-methyl-6-trifluoromethyl-8-quinolinolato) (2-naphthrat) aluminum, bis (2-methyl-quinolinolato) (phenolato) gallium, bis (2-methyl-8-quinolinolato)
(Ortho-cresolato) gallium, bis (2-methyl-)
8-quinolinolato) (para-phenylphenololato) gallium, bis (2-methyl-8-quinolinolato) (1-naphthrat) gallium, bis (2-methyl-8-quinolinolato) (2-naphthrat) gallium, bis (2 -Methyl-8-quinolinolato) (triphenylsilanolato) gallium, bis (2-methyl-8-quinolinolato) (tris (4,4-biphenyl) silanolato) gallium and the like. Particularly preferably, bis (2-methyl-8-quinolinolato) (2-naphthrat) aluminum, bis (2
-Methyl-8-quinolinolato) (triphenylsilanolato) aluminum.

【0063】前記一般式(III)で表わされる二核金属錯
体の具体例として、ビス(2−メチル−8−キノラト)
アルミニウム−μ−オキソ−ビス(2−メチル−8−キ
ノリラト)アルミニウム、ビス(2,4−ジメチル−8
−キノリラト)アルミニウム−μ−オキソ−ビス(2,
4−ジメチル−8−キノリラト)アルミニウム、ビス−
(4−エチル−2−メチル−8−キノリラト)アルミニ
ウム−μ−オキソ−ビス(4−エチル−2−メチル−8
−キノリラト)アルミニウム、ビス(2−メチル−4−
メトキシキノリノラト)アルミニウム−μ−オキソ−ビ
ス(2−メチル−4−メトキシキノリノラト)アルミニ
ウム、ビス(5−シアノ−2−メチル−8−キノリノラ
ト)アルミニウム−μ−オキソ−ビス(5−シアノ−2
−メチル−8−キノリノラト)アルミニウム、ビス(5
−クロロ−2−メチル−8−キノリノラト)アルミニウ
ム−μ−オキソ−ビス(5−クロロ−2−メチル−8−
キノリノラト)アルミニウム、ビス(2−メチル−5−
トリフルオロメチル−8−キノリノラト)アルミニウム
−μ−オキソ−ビス(2−メチル−5−トリフルオロメ
チル−8−キノリノラト)アルミニウム等が挙げられ
る。特に好ましくは、ビス(2−メチル−8−キノリノ
ラト)アルミニウム−μ−オキソ−ビス(2−メチル−
8−キノリノラト)アルミニウムが挙げられる。前記構
造式(IV)で表わされる1,2,4−トリアゾール環を
少なくとも一個有する化合物の具体例を以下に示す。
As a specific example of the binuclear metal complex represented by the general formula (III), bis (2-methyl-8-quinolato)
Aluminum-μ-oxo-bis (2-methyl-8-quinolylato) aluminum, bis (2,4-dimethyl-8)
-Quinolinato) aluminum-μ-oxo-bis (2,
4-dimethyl-8-quinolinato) aluminum, bis-
(4-ethyl-2-methyl-8-quinolylato) aluminum-μ-oxo-bis (4-ethyl-2-methyl-8
-Quinolinato) aluminum, bis (2-methyl-4-)
(Methoxyquinolinolato) aluminum-μ-oxo-bis (2-methyl-4-methoxyquinolinolato) aluminum, bis (5-cyano-2-methyl-8-quinolinolato) aluminum-μ-oxo-bis (5- Cyano-2
-Methyl-8-quinolinolato) aluminum, bis (5
-Chloro-2-methyl-8-quinolinolato) aluminum-μ-oxo-bis (5-chloro-2-methyl-8-
Quinolinolato) aluminum, bis (2-methyl-5-
Trifluoromethyl-8-quinolinolato) aluminum-μ-oxo-bis (2-methyl-5-trifluoromethyl-8-quinolinolato) aluminum and the like. Particularly preferably, bis (2-methyl-8-quinolinolato) aluminum-μ-oxo-bis (2-methyl-
8-quinolinolato) aluminum. Specific examples of the compound having at least one 1,2,4-triazole ring represented by the structural formula (IV) are shown below.

【0064】[0064]

【化20】 Embedded image

【0065】前記一般式(V)で表わされるスチリル化
合物の具体例としては、例えば従来の青色発光材料で例
示したジスチリルビフェニル化合物(B−1)が挙げら
れる。正孔阻止層の膜厚は、通常、0.3〜100n
m、好ましくは0.5〜10nmである。正孔阻止層も
正孔輸送層と同様の方法で形成することができるが、通
常は真空蒸着法が用いられる。
As a specific example of the styryl compound represented by the general formula (V), for example, a distyrylbiphenyl compound (B-1) exemplified as a conventional blue light-emitting material can be given. The thickness of the hole blocking layer is usually 0.3 to 100 n.
m, preferably 0.5 to 10 nm. The hole blocking layer can be formed in the same manner as the hole transporting layer, but usually, a vacuum evaporation method is used.

【0066】陰極8は、電子輸送層7に電子を注入する
役割を果たす。陰極8として用いられる材料は、前記陽
極2に使用される材料を用いることが可能であるが、効
率よく電子注入を行なうには、仕事関数の低い金属が好
ましく、スズ、マグネシウム、インジウム、カルシウ
ム、アルミニウム、銀等の適当な金属又はそれらの合金
が用いられる。具体例としては、マグネシウム−銀合
金、マグネシウム−インジウム合金、アルミニウム−リ
チウム合金等の低仕事関数合金電極が挙げられる。更
に、陰極と発光層又は電子輸送層の界面にLiF、Li
2 O等の極薄膜(0.1〜5nm)を挿入することも、
素子の効率を向上させる有効な方法である(Appl.
Phys.Lett.,70巻,152頁,1997
年;IEEE Trans.Electron.Dev
ices,44巻,1245頁,1997年)。陰極8
の膜厚は通常、陽極2と同様である。低仕事関数金属か
ら成る陰極を保護する目的で、この上に更に、仕事関数
が高く大気に対して安定な金属層を積層することは素子
の安定性を増す。この目的のために、アルミニウム、
銀、ニッケル、クロム、金、白金等の金属が使われる。
The cathode 8 plays a role of injecting electrons into the electron transport layer 7. As the material used for the cathode 8, the material used for the anode 2 can be used, but for efficient electron injection, a metal having a low work function is preferable, and tin, magnesium, indium, calcium, A suitable metal such as aluminum or silver or an alloy thereof is used. Specific examples include a low work function alloy electrode such as a magnesium-silver alloy, a magnesium-indium alloy, and an aluminum-lithium alloy. Further, the interface between the cathode and the light emitting layer or the electron transport layer is LiF, LiF.
Inserting an ultra-thin film (0.1-5 nm) such as 2 O
This is an effective method for improving the efficiency of the device (Appl.
Phys. Lett. 70, 152, 1997.
Year; IEEE Trans. Electron. Dev
ices, 44, 1245, 1997). Cathode 8
Is usually the same as that of the anode 2. In order to protect the cathode made of a low work function metal, further laminating a metal layer having a high work function and being stable to the atmosphere increases the stability of the device. For this purpose, aluminum,
Metals such as silver, nickel, chromium, gold, and platinum are used.

【0067】尚、図1とは逆の構造、即ち、基板上に陰
極8、電子輸送層7、発光層5、正孔輸送層4、陽極2
の順に積層することも可能であり、既述したように少な
くとも一方が透明性の高い二枚の基板の間に本発明の有
機電界発光素子を設けることも可能である。同様に、図
2及び図3に示した前記各層構成とは逆の構造に積層す
ることも可能である。本発明の有機電界発光素子によれ
ば、色純度のよい青色発光が得られ、フルカラー或いは
マルチカラーの青色のサブ画素として機能するばかりで
なく、蛍光変換色素と組み合わせることによりフルカラ
ー表示素子を作製することも可能である(特開平3−1
52897号公報)。
The structure reverse to that of FIG. 1, ie, the cathode 8, the electron transport layer 7, the light emitting layer 5, the hole transport layer 4, the anode 2
And the organic electroluminescent device of the present invention can be provided between two substrates, at least one of which has high transparency, as described above. Similarly, it is also possible to laminate in a structure opposite to the above-mentioned respective layer constitutions shown in FIGS. According to the organic electroluminescent device of the present invention, blue light emission with good color purity is obtained, and not only functions as a full-color or multi-color blue sub-pixel, but also produces a full-color display device by combining with a fluorescent conversion dye. (Japanese Patent Laid-Open No. 3-1
No. 52897).

【0068】[0068]

【実施例】次に、本発明を合成例及び実施例によって更
に具体的に説明するが、本発明はその要旨を越えない限
り、以下の実施例の記載に限定されるものではない。
Next, the present invention will be described in more detail with reference to Synthesis Examples and Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.

【0069】[例示化合物(2)の製造例]N,N′−
ジフェニルベンジジン3.36g、9−ヨードフェナン
トレン7.61g、炭酸カリウム2.12g、銅粉1.
67g、18−クラウン−6−エーテル0.27gを3
5mlのニトロベンゼンに加え、窒素下、180℃で2
7時間反応させた。反応終了後、メタノール200ml
中に反応溶液を放出し、析出した濃茶色生成物をクロロ
ホルムに溶解させ、溶媒を留去し、メタノールで洗浄し
た。その後、シリカゲルを用いたカラムクロマトグラフ
ィーにより精製し、4.63gの黄色粉末状の物を得
た。収率は67%であった。この化合物の質量分析を行
ったところ分子量が688であり、FT−IR、 1H−
NMRにより、目的化合物(2)であることを確認し
た。融点を測定したところ283℃であった。また、セ
イコー電子社製DSC−20により示差熱分析測定した
ところTgは146℃と高い値を示した。化合物(2)
の構造を以下に示す。
[Production Example of Exemplified Compound (2)] N, N'-
3.36 g of diphenylbenzidine, 7.61 g of 9-iodophenanthrene, 2.12 g of potassium carbonate, and copper powder 1.
67 g, 18-crown-6-ether 0.27 g
Add 5 ml of nitrobenzene, and add
The reaction was performed for 7 hours. After completion of the reaction, methanol 200 ml
The reaction solution was discharged therein, and the precipitated dark brown product was dissolved in chloroform. The solvent was distilled off, and the residue was washed with methanol. Thereafter, purification was carried out by column chromatography using silica gel to obtain 4.63 g of a yellow powder. The yield was 67%. This compound was analyzed by mass spectrometry and found to have a molecular weight of 688, FT-IR and 1 H-
NMR confirmed that it was target compound (2). The melting point was measured and found to be 283 ° C. Further, Tg showed a high value of 146 ° C. as a result of differential thermal analysis measurement using DSC-20 manufactured by Seiko Instruments Inc. Compound (2)
The structure of is shown below.

【0070】[0070]

【化21】 Embedded image

【0071】実施例1 ガラス基板をアセトンで超音波洗浄、純水で水洗、イソ
プロピルアルコールで超音波洗浄、乾燥窒素で乾燥、U
V/オゾン洗浄を行った後、真空蒸着装置内に設置し
て、装置内の真空度が2×10-6Torr以下になるま
で油拡散ポンプを用いて排気した。例示化合物(2)を
セラミック坩堝に入れ、坩堝の周囲のタンタル線ヒータ
で加熱した蒸着を行った。この時の坩堝温度は、346
〜354℃の範囲で制御した。蒸着時の真空度は1.4
×10-6Torr(約1.9×10-4Pa)で、蒸着速
度0.3〜0.5nm/秒で膜厚91nmの一様で透明
な膜を得た。この薄膜試料のイオン化ポテンシャルを理
研計器(株)製の紫外線電子分析装置(AC−1)を用
いて測定したところ、5.22eVの値を示した。この
蒸着膜を水銀ランプ(波長350nm)で励起して測定
した蛍光測定の結果は、450nmで、青色蛍光を示し
た。また、この蒸着膜は大気中で120日間保存した後
も一様で結晶化は観測されず、蛍光性や蛍光強度は維持
された。
Example 1 A glass substrate was subjected to ultrasonic cleaning with acetone, water cleaning with pure water, ultrasonic cleaning with isopropyl alcohol, drying with dry nitrogen,
After performing the V / ozone cleaning, the apparatus was set in a vacuum evaporation apparatus, and evacuated using an oil diffusion pump until the degree of vacuum in the apparatus became 2 × 10 −6 Torr or less. Exemplified compound (2) was placed in a ceramic crucible, and vapor deposition was performed by heating with a tantalum wire heater around the crucible. The crucible temperature at this time was 346
The temperature was controlled in the range of 35354 ° C. The degree of vacuum during evaporation is 1.4
A uniform and transparent film having a film thickness of 91 nm was obtained at a deposition rate of 0.3 to 0.5 nm / sec at × 10 −6 Torr (about 1.9 × 10 −4 Pa). The ionization potential of this thin film sample was measured using an ultraviolet electron analyzer (AC-1) manufactured by Riken Keiki Co., Ltd., and showed a value of 5.22 eV. The result of fluorescence measurement obtained by exciting this vapor-deposited film with a mercury lamp (wavelength: 350 nm) showed blue fluorescence at 450 nm. The deposited film was uniform and no crystallization was observed even after storage in the air for 120 days, and the fluorescence and the fluorescence intensity were maintained.

【0072】比較例1 蒸着原料として例示化合物(2)に代えて、下記に示す
ビス(2−メチル−8−キノリノラト)(パラ−フェニ
ルフェノラト)アルミニウム(III)(B−2)
Comparative Example 1 Bis (2-methyl-8-quinolinolato) (para-phenylphenolato) aluminum (III) (B-2) shown below was used in place of Exemplified Compound (2) as a vapor deposition raw material.

【0073】[0073]

【化22】 Embedded image

【0074】を用いた他は実施例1と同様にして蒸着膜
を作製した。この薄膜試料のイオン化ポテンシャルを理
研計器(株)製の紫外線電子分析装置(AC−1)を用
いて測定したところ、5.35eVの値を示した。この
蒸着膜を水銀ランプ(波長350nm)で励起して測定
した蛍光測定の結果は、500nmで、青緑色蛍光を示
した。この蒸着膜は大気中で7日間保存したところ、膜
の透明性が失われ、蛍光性も失われた。また、ドット状
の欠陥も生じた。
A vapor deposition film was prepared in the same manner as in Example 1 except that the above was used. The ionization potential of this thin film sample was measured using an ultraviolet electron analyzer (AC-1) manufactured by Riken Keiki Co., Ltd., and showed a value of 5.35 eV. The result of fluorescence measurement obtained by exciting this vapor deposited film with a mercury lamp (wavelength: 350 nm) showed blue-green fluorescence at 500 nm. When this deposited film was stored in the air for 7 days, the transparency of the film was lost and the fluorescence was lost. In addition, dot-like defects also occurred.

【0075】実施例2 図2に示す構造を有する有機電界発光素子を以下の方法
で作製した。ガラス基板上にインジウム・スズ酸化物
(ITO)透明導電膜を120nm堆積したもの(ジオ
マテック社製;電子ビーム成膜品;シート抵抗15Ω)
を通常のフォトリソグラフ技術と塩酸エッチングを用い
て2mm幅のストライプにパターニングして陽極を形成
した。パターン形成したITO基板を、アセトンによる
超音波洗浄、純水による水洗、イソプロピルアルコール
による超音波洗浄の順で洗浄後、窒素ブローで乾燥さ
せ、最後に紫外線オゾン洗浄を行って、真空蒸着装置内
に設置した。上記装置の粗排気を油回転ポンプにより行
った後、装置内の真空度が2×10-6Torr(約2.
7×10-4Pa)以下になるまで液体窒素トラップを備
えた油拡散ポンプを用いて排気した。正孔輸送層材料と
して、以下に示す4,4′−ビス[N−(1−ナフチ
ル)−N−フェニルアミノ]ビフェニル(H−1)を
Example 2 An organic electroluminescent device having the structure shown in FIG. 2 was manufactured by the following method. Indium tin oxide (ITO) transparent conductive film deposited on a glass substrate with a thickness of 120 nm (Geomatec; electron beam filmed product; sheet resistance 15Ω)
Was patterned into 2 mm wide stripes using ordinary photolithographic techniques and hydrochloric acid etching to form anodes. The patterned ITO substrate is cleaned in the order of ultrasonic cleaning with acetone, water cleaning with pure water, and ultrasonic cleaning with isopropyl alcohol, dried with nitrogen blow, and finally cleaned with ultraviolet and ozone, and placed in a vacuum evaporation apparatus. installed. After the rough exhaust of the above apparatus is performed by an oil rotary pump, the degree of vacuum in the apparatus is 2 × 10 −6 Torr (about 2.10 Torr).
Evacuation was performed using an oil diffusion pump equipped with a liquid nitrogen trap until the pressure became 7 × 10 −4 Pa) or less. As a hole transport layer material, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (H-1) shown below is used.

【0076】[0076]

【化23】 Embedded image

【0077】セラミック坩堝に入れ、坩堝の周囲のタン
タル線ヒーターで加熱して蒸着を行った。この時の坩堝
の温度は、251〜270℃の範囲で制御した。蒸着時
の真空度は0.9×10-6Torr(約1.2×10-4
Pa)で、蒸着速度0.1〜0.5nm/秒で膜厚60
nmの正孔輸送層4を得た。次に、発光層5の材料とし
て、例示化合物(2)を上記正孔輸送層4の上に同様に
して蒸着を行った。この時の坩堝の温度は278〜30
4℃の範囲で制御した。蒸着時の真空度は6.5×10
-7Torr(約8.7×10-5Pa)で、蒸着速度0.
1〜0.4nm/秒で、膜厚は30nmであった。続い
て、正孔阻止層6の材料として、ビス(2−メチル−8
−キノリノラト)(トリフェニルシラノラト)アルミニ
ウム
It was placed in a ceramic crucible and heated by a tantalum wire heater around the crucible to perform vapor deposition. The temperature of the crucible at this time was controlled in the range of 251 to 270 ° C. The degree of vacuum at the time of vapor deposition is 0.9 × 10 −6 Torr (about 1.2 × 10 −4 Torr).
Pa) at a deposition rate of 0.1 to 0.5 nm / sec and a film thickness of 60
As a result, a hole transport layer 4 having a thickness of nm was obtained. Next, as a material of the light emitting layer 5, the exemplified compound (2) was vapor-deposited on the hole transport layer 4 in the same manner. The temperature of the crucible at this time is 278-30.
The temperature was controlled within a range of 4 ° C. The degree of vacuum during the deposition is 6.5 × 10
-7 Torr (approximately 8.7 × 10 -5 Pa) at a deposition rate of 0.
The film thickness was 30 nm at 1 to 0.4 nm / sec. Subsequently, bis (2-methyl-8) is used as a material for the hole blocking layer 6.
-Quinolinolato) (triphenylsilanolato) aluminum

【0078】[0078]

【化24】 Embedded image

【0079】を上記発光層5の上に同様にして蒸着を行
った。この時の坩堝の温度は180〜190℃の範囲で
制御した。蒸着時の真空度は7.0×10-7Torr
(約9.3×10-5Pa)で、蒸着速度0.1〜0.5
nm/秒で、膜厚は20nmであった。この化合物のイ
オン化ポテンシャルは5.5eVであった。更に、電子
輸送層7の材料としてアルミニウムの8−ヒドリキシキ
ノリン錯体(E−1)
Was deposited on the light emitting layer 5 in the same manner. At this time, the temperature of the crucible was controlled in the range of 180 to 190 ° C. The degree of vacuum during deposition is 7.0 × 10 −7 Torr
(About 9.3 × 10 −5 Pa) and a deposition rate of 0.1 to 0.5.
At nm / sec, the film thickness was 20 nm. The ionization potential of this compound was 5.5 eV. Further, as a material of the electron transport layer 7, an 8-hydroxyquinoline complex of aluminum (E-1)

【0080】[0080]

【化25】 Embedded image

【0081】を上記正孔阻止層6の上に同様にして蒸着
を行った。この時の坩堝の温度は303〜317℃の範
囲で制御した。蒸着時の真空度は7.0×10-7Tor
r(約9.3×10-5Pa)で、蒸着速度0.1〜0.
4nm/秒で、膜厚は25nmであった。上記の正孔輸
送層4から電子輸送層7を真空蒸着する時の基板温度は
室温に保持した。ここで、電子輸送層7までの蒸着を行
った素子を一度前記真空蒸着装置内より大気中に取り出
して、陰極蒸着用のマスクとして2mm幅のストライプ
状シャドーマスクを、陽極2のITOストライプとは直
交するように素子に密着させて、別の真空蒸着装置内に
設置して有機層と同様にして装置内の真空度が2×10
-6Torr(約2.7×10-4Pa)以下になるまで排
気した。陰極8として、先ず、フッ化マグネシウム(M
gF2 )をモリブデンボードを用いて、蒸着速度0.0
6nm/秒、真空度2.0×10-6Torr(約2.7
×10-4Pa)で、0.5nmの膜厚で電子輸送層7の
上に成膜した。次に、アルミニウムを同様にモリブデン
ボートにより加熱して、蒸着速度0.2〜0.8nm/
秒、真空度1×10-5Torr(約1.3×10-3
a)で膜厚40nmのアルミニウム層を形成した。更
に、その上に、陰極の導電性を高めるために銅を、同様
にモリブデンボードにより加熱して、蒸着速度0.3〜
1.0nm/秒、真空度8.0×10-6Torr(約
1.1×10-3Pa)で膜厚40nmの銅層を形成して
陰極8を完成させた。以上の三層型陰極8の蒸着時の基
板温度は室温に保持した。以上の様にして、2mm×2
mmのサイズの発光面積部分を有する有機電界発光素子
が得られた。この素子の発光特性として、発光開始電
圧、250mA/cm2 の電流密度での輝度、100c
d/m2 での発光効率、輝度−電流密度特性の傾きの各
値を表−14に示す。また、CIE色度座標(JIS
Z8701)でのx,yの値を表−14に示す。この素
子は一様な青色の発光を示し、発光のピーク波長は45
5nmで青色発光であった。長期間保存後も、駆動電圧
の顕著な上昇は見られず、発光効率の低下もなく、安定
した素子の保存安定性が得られた。駆動時間−輝度特性
を図4に示す。この素子を250mA/cm2 の定電流
で連続駆動したところ、40秒後での輝度は初期輝度の
58%であった。
Then, vapor deposition was performed on the hole blocking layer 6 in the same manner. At this time, the temperature of the crucible was controlled in the range of 303 to 317 ° C. The degree of vacuum during the deposition is 7.0 × 10 −7 Torr
r (about 9.3 × 10 −5 Pa) at a deposition rate of 0.1 to 0.1.
At 4 nm / sec, the film thickness was 25 nm. The substrate temperature during vacuum deposition of the electron transport layer 7 from the hole transport layer 4 was kept at room temperature. Here, the element on which the vapor deposition up to the electron transporting layer 7 has been performed is once taken out of the vacuum vapor deposition apparatus into the atmosphere, and a 2 mm wide stripe-shaped shadow mask is used as a cathode vapor deposition mask. It is closely attached to the element so as to be orthogonal to each other, installed in another vacuum deposition apparatus, and the degree of vacuum in the apparatus is set to 2 × 10
Evacuation was performed until the pressure became -6 Torr (about 2.7 × 10 -4 Pa) or less. As the cathode 8, first, magnesium fluoride (M
gF 2 ) using a molybdenum board at a deposition rate of 0.0
6 nm / sec, degree of vacuum 2.0 × 10 −6 Torr (about 2.7
(× 10 −4 Pa) at a thickness of 0.5 nm on the electron transport layer 7. Next, the aluminum was similarly heated by a molybdenum boat, and the deposition rate was 0.2 to 0.8 nm /
Second, degree of vacuum 1 × 10 −5 Torr (about 1.3 × 10 −3 P
In a), an aluminum layer having a thickness of 40 nm was formed. Furthermore, copper is further heated thereon by a molybdenum board to increase the conductivity of the cathode, and the deposition rate is 0.3 to
A 40 nm-thick copper layer was formed at 1.0 nm / sec and a degree of vacuum of 8.0 × 10 −6 Torr (about 1.1 × 10 −3 Pa) to complete the cathode 8. The substrate temperature during the deposition of the above three-layer cathode 8 was kept at room temperature. 2mm × 2
An organic electroluminescent device having a light-emitting area with a size of mm was obtained. The light emission characteristics of this device include a light emission start voltage, luminance at a current density of 250 mA / cm 2 , and 100 c
Table 14 shows the values of the luminous efficiency at d / m 2 and the slope of the luminance-current density characteristics. In addition, CIE chromaticity coordinates (JIS
Table 14 shows the values of x and y for Z8701). This device shows uniform blue light emission, and the peak wavelength of the light emission is 45.
It emitted blue light at 5 nm. Even after long-term storage, no remarkable rise in driving voltage was observed, and there was no decrease in luminous efficiency, and stable storage stability of the device was obtained. FIG. 4 shows driving time-luminance characteristics. When this device was continuously driven at a constant current of 250 mA / cm 2 , the luminance after 40 seconds was 58% of the initial luminance.

【0082】実施例3 発光層5中に青色蛍光色素であるペリレンExample 3 Perylene which is a blue fluorescent dye in the light emitting layer 5

【0083】[0083]

【化26】 Embedded image

【0084】を1.2%共蒸着ドープした他は実施例2
と同様にして有機電界発光素子を作製した。上記の素子
の発光特性の結果を表−14に示す。また、CIE色度
座標(JIS Z8701)でのx,yの値を表−14
に示す。ペリレンをドープしたことにより、色純度を殆
んど変化させずに発光効率が改善された。駆動時間−輝
度特性を図4に示す。この素子を250mA/cm2
定電流で連続駆動したところ、40秒後での輝度は初期
輝度の65%であり、ペリレンをドープしたことによ
り、素子の安定性が向上した。
Example 2 except that was doped 1.2%
In the same manner as in the above, an organic electroluminescent device was produced. Table 14 shows the results of the light emission characteristics of the above devices. Table 14 shows the values of x and y in the CIE chromaticity coordinates (JIS Z8701).
Shown in By doping perylene, the luminous efficiency was improved with little change in color purity. FIG. 4 shows driving time-luminance characteristics. When this device was continuously driven at a constant current of 250 mA / cm 2 , the brightness after 40 seconds was 65% of the initial brightness, and the stability of the device was improved by doping perylene.

【0085】比較例2 発光層5に例示化合物(2)に代えて、ビス(2−メチ
ル−8−キノリノラト)(パラ−フェニルフェノラト)
アルミニウム(III)(E−2)を用いた他は実施例2と
同様にして有機電界素子を作製した。この素子の発光特
性を表−14に示す。また、CIE色度座標(JIS
Z8701)でのx,yの値を表−14に示す。この素
子は青緑色発光であった。駆動時間−輝度特性を図4に
示す。この素子を250mA/cm2 の定電流で連続駆
動したところ、40秒後での輝度は初期輝度の44%に
低下した。
Comparative Example 2 Bis (2-methyl-8-quinolinolato) (para-phenylphenolate) was used in the light-emitting layer 5 in place of the exemplified compound (2).
An organic electric field device was manufactured in the same manner as in Example 2 except that aluminum (III) (E-2) was used. Table 14 shows the emission characteristics of this device. In addition, CIE chromaticity coordinates (JIS
Table 14 shows the values of x and y for Z8701). This device emitted blue-green light. FIG. 4 shows driving time-luminance characteristics. When the device was continuously driven at a constant current of 250 mA / cm 2 , the luminance after 40 seconds was reduced to 44% of the initial luminance.

【0086】比較例3 発光層5に例示化合物(2)に代えて、ビス(2−メチ
ル−8−キノリラト)アルミニウム−μ−オキソ−ビス
(2−メチル−8−キノリラト)アルミニウム(Ip
5.33eV)
Comparative Example 3 Bis (2-methyl-8-quinolylato) aluminum-μ-oxo-bis (2-methyl-8-quinolylato) aluminum (Ip) was used in the light-emitting layer 5 in place of the exemplified compound (2).
5.33 eV)

【0087】[0087]

【化27】 Embedded image

【0088】を用いた他は実施例2と同様にして有機電
界発光素子を作製した。CIE色度座標(JIS Z8
701)でのx,yの値は、v=0.26、y=0.4
1で、この素子は青緑色発光であった。
An organic electroluminescent device was produced in the same manner as in Example 2 except that the above was used. CIE chromaticity coordinates (JIS Z8
The values of x and y in 701) are v = 0.26 and y = 0.4
In 1, the device emitted blue-green light.

【0089】[0089]

【表14】 [Table 14]

【0090】[0090]

【発明の効果】本発明の有機電界発光素子によれば、特
定の芳香族アミンを含有する発光層を有するために、色
純度の良好な青色発光が達成でき、また安定性の向上し
た素子を得ることができる。従って、本発明による有機
電界発光素子はフラットパネル・ディスプレイ(例えば
OAコンピュータ用や壁掛けテレビ)やマルチカラー表
示素子、或いは面発光体としての特徴を生かした光源
(例えば、複写機の光源、液晶ディスプレイや計器類の
バックライト光源)、表示板、標識灯への応用が考えら
れ、特に、高耐熱性が要求される車載用、屋外用表示素
子としては、その技術的価値は大きいものである。
According to the organic electroluminescent device of the present invention, since the device has a light emitting layer containing a specific aromatic amine, blue light with good color purity can be achieved, and a device having improved stability can be obtained. Obtainable. Accordingly, the organic electroluminescent device according to the present invention can be used as a light source (for example, a light source of a copier, a liquid crystal display) such as a flat panel display (for example, for an OA computer or a wall-mounted television), a multi-color display device, or a surface light emitter. And light sources for backlights of instruments and the like, display boards, and marker lights. Particularly, as a display element for a vehicle or an outdoor which requires high heat resistance, its technical value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機電界発光素子の一例を示した模式
断面図。
FIG. 1 is a schematic sectional view showing an example of the organic electroluminescent device of the present invention.

【図2】本発明の有機電界発光素子の別の例を示した模
式断面図。
FIG. 2 is a schematic sectional view showing another example of the organic electroluminescent device of the present invention.

【図3】本発明の有機電界発光素子の別の例を示した模
式断面図。
FIG. 3 is a schematic sectional view showing another example of the organic electroluminescent device of the present invention.

【図4】駆動時間−輝度特性を表わしたグラフ。FIG. 4 is a graph showing driving time-luminance characteristics.

【符号の説明】[Explanation of symbols]

1 基板 2 陽極 3 陽極バッファ層 4 正孔輸送層 5 発光層 6 正孔阻止層 7 電子輸送層 8 陰極 DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Anode buffer layer 4 Hole transport layer 5 Emitting layer 6 Hole blocking layer 7 Electron transport layer 8 Cathode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07D 215/48 C07D 215/48 215/50 215/50 215/54 215/54 249/08 512 249/08 512 537 537 C09K 11/06 620 C09K 11/06 620 660 660 H05B 33/22 H05B 33/22 B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C07D 215/48 C07D 215/48 215/50 215/50 215/54 215/54 249/08 512 249/08 512 537 537 C09K 11 / 06 620 C09K 11/06 620 660 660 H05B 33/22 H05B 33/22 B

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、陽極及び陰極に挟持された正
孔輸送層、発光層及び電子輸送層を少なくとも含む有機
電界発光素子であって、前記発光層が下記一般式(I)
で表わされる化合物を含有することを特徴とする有機電
界発光素子。 【化1】 (式中、Ar1 及びAr2 は、各々独立して、各々置換
基を有していてもよい、芳香族炭化水素基又は芳香族複
素環基を示し、R1 ないしR18は、各々独立して、水素
原子、ハロゲン原子、カルボキシル基、水酸基、又は、
各々置換基を有していてもよい、アルキル基、アラルキ
ル基、アルケニル基、アミノ基、アミド基、アルコキシ
カルボニル基、アルコキシ基、置換基を有していてもよ
い芳香族炭化水素基又は置換基を有していてもよい芳香
族複素環基を示し、Xは、置換基を有していてもよい二
価の芳香族環残基を示す)
1. An organic electroluminescent device comprising at least a hole transporting layer, a light emitting layer and an electron transporting layer sandwiched between an anode and a cathode on a substrate, wherein the light emitting layer has the following general formula (I)
An organic electroluminescent device comprising a compound represented by the formula: Embedded image (Wherein, Ar 1 and Ar 2 each independently represent an aromatic hydrocarbon group or an aromatic heterocyclic group, each of which may have a substituent, and R 1 to R 18 are each independently And a hydrogen atom, a halogen atom, a carboxyl group, a hydroxyl group, or
An alkyl group, an aralkyl group, an alkenyl group, an amino group, an amide group, an alkoxycarbonyl group, an alkoxy group, an aromatic hydrocarbon group or a substituent, each of which may have a substituent; Represents an aromatic heterocyclic group which may have a substituent, and X represents a divalent aromatic ring residue which may have a substituent)
【請求項2】 前記一般式(I)において、Xが、各々
置換基を有していてもよい、フェニレン基、ビフェニレ
ン基、ターフェニレン基、アントリレン基又はナフチレ
ン基であることを特徴とする請求項1に記載の有機電界
発光素子。
2. In the general formula (I), X is a phenylene group, a biphenylene group, a terphenylene group, an anthrylene group or a naphthylene group, each of which may have a substituent. Item 2. The organic electroluminescent device according to Item 1.
【請求項3】 前記発光層と電子輸送層との間に、正孔
阻止層を設けたことを特徴とする請求項1に記載の有機
電界発光素子。
3. The organic electroluminescent device according to claim 1, wherein a hole blocking layer is provided between the light emitting layer and the electron transporting layer.
【請求項4】 正孔阻止層が、下記一般式(II)又は
(III)で表わされる金属錯体、下記構造式(IV)を少な
くとも一個含むトリアゾール誘導体及び下記一般式
(V)で表わされるスチリル化合物の少なくとも一種で
構成されることを特徴とする請求項3に記載の有機電界
発光素子。 【化2】 (式中、R19ないしR24は、各々独立して、水素原子、
ハロゲン原子、アルキル基、アラルキル基、アルケニル
基、アリル基、シアノ基、アミノ基、アシル基、アルコ
キシカルボニル基、カルボキシル基、アルコキシ基、ア
ルキルスルホニル基、α−ハロアルキル基、水酸基、置
換基を有していてもよいアミド基、置換基を有していて
もよい芳香族炭化水素基又は置換基を有していてもよい
芳香族複素環基を表わし、MはAl原子又はGa原子を
示し、Zは下記一般式(IIa)、(IIb)又は(IIc)
の基のいずれかを表わす。) 【化3】 (式中、YはSi、Ge又はSnのいずれかの原子を表
わし、Ar3 ないしAr 7 は、各々独立して、置換基を
有していてもよい芳香族炭化水素基又は置換基を有して
いてもよい芳香族複素環基を表わす) 【化4】 (式中、R19ないしR24は、各々独立して、水素原子、
ハロゲン原子、アルキル基、アラルキル基、アルケニル
基、アリル基、シアノ基、アミノ基、アシル基、アルコ
キシカルボニル基、カルボキシル基、アルコキシ基、ア
ルキルスルホニル基、α−ハロアルキル基、水酸基、置
換基を有していてもよいアミド基、置換基を有していて
もよい芳香族炭化水素基又は置換基を有していてもよい
芳香族複素環基を表わし、MはAl原子又はGa原子を
示す) 【化5】 【化6】 (式中、Ar8 ないしAr12は、各々独立して、置換基
を有していてもよい芳香族炭化水素基又は置換基を有し
ていてもよい芳香族複素環基を表わす)
4. The method according to claim 1, wherein the hole blocking layer has the following general formula (II) or
A metal complex represented by the formula (III),
At least one triazole derivative and the following general formula
At least one styryl compound represented by (V)
The organic electric field according to claim 3, wherein the organic electric field is constituted.
Light emitting element. Embedded image(Where R19Or Rtwenty fourIs independently a hydrogen atom,
Halogen atom, alkyl group, aralkyl group, alkenyl
Group, allyl group, cyano group, amino group, acyl group, alcohol
Xycarbonyl group, carboxyl group, alkoxy group,
Alkylsulfonyl group, α-haloalkyl group, hydroxyl group,
An amide group which may have a substituent,
May have an aromatic hydrocarbon group or a substituent
Represents an aromatic heterocyclic group, M represents an Al atom or a Ga atom
And Z represents the following general formula (IIa), (IIb) or (IIc)
Represents any of the groups )(Wherein, Y represents any atom of Si, Ge or Sn.
I, ArThreeOr Ar 7Is each independently a substituent
Having an aromatic hydrocarbon group or a substituent which may have
Represents an aromatic heterocyclic group which may be present)(Where R19Or Rtwenty fourIs independently a hydrogen atom,
Halogen atom, alkyl group, aralkyl group, alkenyl
Group, allyl group, cyano group, amino group, acyl group, alcohol
Xycarbonyl group, carboxyl group, alkoxy group,
Alkylsulfonyl group, α-haloalkyl group, hydroxyl group,
An amide group which may have a substituent,
May have an aromatic hydrocarbon group or a substituent
Represents an aromatic heterocyclic group, M represents an Al atom or a Ga atom
(Shown)Embedded image(Wherein, Ar8Or Ar12Is each independently a substituent
Having an aromatic hydrocarbon group or a substituent which may have
Represents an optionally substituted aromatic heterocyclic group)
【請求項5】 正孔阻止層の膜厚が、0.5〜30nm
の範囲にあることを特徴とする請求項3又は4に記載の
有機電界発光素子。
5. The film thickness of the hole blocking layer is 0.5 to 30 nm.
The organic electroluminescent device according to claim 3, wherein
JP10108850A 1998-02-26 1998-04-20 Organic electroluminescent element Pending JPH11312586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10108850A JPH11312586A (en) 1998-02-26 1998-04-20 Organic electroluminescent element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4483398 1998-02-26
JP10-44833 1998-02-26
JP10108850A JPH11312586A (en) 1998-02-26 1998-04-20 Organic electroluminescent element

Publications (1)

Publication Number Publication Date
JPH11312586A true JPH11312586A (en) 1999-11-09

Family

ID=26384796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10108850A Pending JPH11312586A (en) 1998-02-26 1998-04-20 Organic electroluminescent element

Country Status (1)

Country Link
JP (1) JPH11312586A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002030159A1 (en) * 2000-10-05 2002-04-11 Nippon Steel Chemical Co., Ltd. Organic electroluminescent devices
JP2003048868A (en) * 2001-08-01 2003-02-21 Mitsui Chemicals Inc Amine, method of producing the same, and organic electroluminescent element including the same
JP2004359671A (en) * 2003-05-14 2004-12-24 Mitsubishi Chemicals Corp Aluminum-mixed ligand complex compound, charge transport material, material for organic electroluminescent element, and organic electroluminescent element
WO2007102361A1 (en) 2006-03-07 2007-09-13 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
JP2009117853A (en) * 2001-08-29 2009-05-28 Trustees Of Princeton Univ Organic light emitting devices having carrier blocking layers comprising metal complexes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002030159A1 (en) * 2000-10-05 2002-04-11 Nippon Steel Chemical Co., Ltd. Organic electroluminescent devices
US6929872B2 (en) 2000-10-05 2005-08-16 Nippon Steel Chemical Co., Ltd. Organic electroluminescent devices
CN100390133C (en) * 2000-10-05 2008-05-28 新日铁化学株式会社 Organic electroluminescent devices
JP2003048868A (en) * 2001-08-01 2003-02-21 Mitsui Chemicals Inc Amine, method of producing the same, and organic electroluminescent element including the same
JP2009117853A (en) * 2001-08-29 2009-05-28 Trustees Of Princeton Univ Organic light emitting devices having carrier blocking layers comprising metal complexes
JP2012165022A (en) * 2001-08-29 2012-08-30 Trustees Of Princeton Univ Organic light emitting devices having carrier blocking layers comprising metal complexes
JP2004359671A (en) * 2003-05-14 2004-12-24 Mitsubishi Chemicals Corp Aluminum-mixed ligand complex compound, charge transport material, material for organic electroluminescent element, and organic electroluminescent element
WO2007102361A1 (en) 2006-03-07 2007-09-13 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same

Similar Documents

Publication Publication Date Title
JP4003299B2 (en) Organic electroluminescence device
JP4407102B2 (en) Anthracene compound, method for producing the same, and organic electroluminescent device
JPH11329734A (en) Organic electroluminescence element
JPH11242996A (en) Organic electroluminescent element
JP2000036390A (en) Organic electroluminescent element
JP2003031371A (en) Organic electroluminescent element and blue light emitting element
JP2004103467A (en) Organic electroluminescent element
JP2004014187A (en) Organic electroluminescent element
JPH10265478A (en) Imidazole metal complex and organic electric field luminous element using the same
JP4135411B2 (en) Asymmetric 1,4-phenylenediamine derivative and organic electroluminescence device using the same
JP4147621B2 (en) Organic electroluminescence device
JP3807018B2 (en) Organic electroluminescent device and fluorescent material
JP4734849B2 (en) Aluminum mixed ligand complex compound, charge transport material, organic electroluminescent element material, and organic electroluminescent element
JP2000003790A (en) Organic electroluminescent element
JPH11354284A (en) Organic electroluminescence element
JPH11302639A (en) Organic electroluminescent element
JP3903645B2 (en) Organic electroluminescence device
JP3772506B2 (en) Quinolinol derivative, metal complex thereof, and organic electroluminescence device using the same
JP3757583B2 (en) Organic electroluminescence device
JPH11312587A (en) Organic electroluminescent element
JPH11312586A (en) Organic electroluminescent element
JP4201917B2 (en) Metal complex compound and organic electroluminescence device using the same
JP3719328B2 (en) Fluorescent material and organic electroluminescent device using the same
JP2000243571A (en) Organic electroluminescent element
JP2004158216A (en) Organic electroluminescent element