JP2000036390A - Organic electroluminescent element - Google Patents

Organic electroluminescent element

Info

Publication number
JP2000036390A
JP2000036390A JP11128841A JP12884199A JP2000036390A JP 2000036390 A JP2000036390 A JP 2000036390A JP 11128841 A JP11128841 A JP 11128841A JP 12884199 A JP12884199 A JP 12884199A JP 2000036390 A JP2000036390 A JP 2000036390A
Authority
JP
Japan
Prior art keywords
group
electron
injection layer
light emitting
hole injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11128841A
Other languages
Japanese (ja)
Other versions
JP4058842B2 (en
Inventor
Junji Kido
淳二 城戸
Yoshiharu Sato
佳晴 佐藤
Tomoyuki Ogata
朋行 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP12884199A priority Critical patent/JP4058842B2/en
Publication of JP2000036390A publication Critical patent/JP2000036390A/en
Application granted granted Critical
Publication of JP4058842B2 publication Critical patent/JP4058842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable low-voltage drive while improving light emitting efficiency, and improve heat resistance by including aromatic diamine-contained polyether having specified weight average molecular weight and the structure and an electron acceptable compound in a hole injection layer. SOLUTION: Ar1, Ar2, Ar3, Ar4, Ar5, Ar6, Ar7, Ar8, Ar9 means separate divalent aromatic cyclic residue capable of having a substituent group, and R1, R2, R3, R4 means aromatic cyclic group capable of having a substituent group or aromatic heterocyclic group, X and Y means direct bonding or connecting group expressed with formula III and having a repetition unit expressed with formulas I, II, and the electron acceptable compound is included in the aromatic diamine contained polyether having 1,000-1,000,000 of weight average molecular weight so as to form a hole injection layer of the light emitting element. Hole is generated by the movement of electric charge so as to improve the electrical conductivity, and electrical bond between the light emitting layer and the positive electrode is improved so that the drive voltage can be set low, and while stability in the case of continuous drive is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機電界発光素子に
関するものであり、詳しくは、有機化合物から成る発光
層に電界をかけて光を放出する薄膜型デバイスに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescent device, and more particularly, to a thin film device which emits light by applying an electric field to a light emitting layer made of an organic compound.

【0002】[0002]

【従来の技術】従来、薄膜型の電界発光(EL)素子と
しては、無機材料のII−VI族化合物半導体であるZn
S、CaS、SrS等に、発光中心であるMnや希土類
元素(Eu、Ce、Tb、Sm等)をドープしたものが
一般的であるが、上記の無機材料から作製したEL素子
は、 1)交流駆動が必要(一般に50〜1000Hz)、 2)駆動電圧が高い(一般に200V程度)、 3)フルカラー化が困難で特に青色に問題がある、 4)周辺駆動回路のコストが高い、 という問題点を有している。
2. Description of the Related Art Conventionally, as a thin film type electroluminescent (EL) element, Zn, which is a group II-VI compound semiconductor of an inorganic material, is used.
In general, S, CaS, SrS, and the like are doped with Mn or a rare earth element (Eu, Ce, Tb, Sm, or the like) which is a luminescence center. However, EL devices manufactured from the above inorganic materials include: 1) AC drive is required (generally 50 to 1000 Hz), 2) High drive voltage (generally about 200 V), 3) It is difficult to achieve full color, and there is a problem with blue in particular. 4) Cost of peripheral drive circuit is high. have.

【0003】しかし、近年、上記問題点の改良のため、
有機薄膜を用いたEL素子の開発が行われるようになっ
た。特に、発光効率を高めるため、電極からのキャリア
ー注入の効率向上を目的として電極の種類の最適化を行
い、芳香族ジアミンから成る正孔輸送層と8−ヒドロキ
シキノリンのアルミニウム錯体から成る発光層とを設け
た有機電界発光素子の開発(Appl. Phys. Lett., 51巻,
913頁,1987年)により、従来のアントラセン等の単結
晶を用いたEL素子と比較して発光効率の大幅な改善が
なされ、実用特性に近づいている。
However, in recent years, in order to improve the above problems,
Development of EL devices using organic thin films has been started. In particular, in order to enhance the luminous efficiency, the type of the electrode was optimized for the purpose of improving the efficiency of carrier injection from the electrode, and a hole transport layer composed of an aromatic diamine and a luminescent layer composed of an aluminum complex of 8-hydroxyquinoline were used. Of an organic electroluminescent device equipped with an organic layer (Appl. Phys. Lett., Vol. 51,
913, 1987), the luminous efficiency has been greatly improved as compared with the conventional EL device using a single crystal such as anthracene or the like, and the practical characteristics have been approached.

【0004】上記の様な低分子材料を用いた電界発光素
子の他にも、発光層の材料として、ポリ(p−フェニレ
ンビニレン)、ポリ[2-メトキシ-5-(2-エチルヘキシル
オキシ)-1,4-フェニレンビニレン]、ポリ(3-アルキル
チオフェン)等の高分子材料を用いた電界発光素子の開
発や、ポリビニルカルバゾール等の高分子に低分子の発
光材料と電子移動材料を混合した素子の開発も行われて
いる。
In addition to the electroluminescent device using a low molecular material as described above, poly (p-phenylenevinylene) and poly [2-methoxy-5- (2-ethylhexyloxy)- Development of electroluminescent devices using polymer materials such as 1,4-phenylenevinylene] and poly (3-alkylthiophene), and devices in which a low molecular light emitting material and an electron transfer material are mixed with a polymer such as polyvinyl carbazole Is also being developed.

【0005】ところで、有機電界発光素子の最大の課題
は、駆動時の寿命であり、駆動時の不安定性の現像とし
ては、発光輝度の低下、定電流駆動時の電圧上昇、非発
光部分(ダークスポット)の発生等が挙げられる。これ
らの不安定性の原因はいくつか存在するが、有機層の薄
膜形状の劣化が支配的である。この薄膜形状の劣化は、
素子駆動時の発熱による有機非晶質膜の結晶化(または
凝集)等に起因すると考えられている。特に、駆動電圧
の上昇については陽極と正孔輸送層のコンタクトが重要
である。
[0005] By the way, the biggest problem of the organic electroluminescent device is the life during driving, and the development of instability during driving includes a decrease in light emission luminance, a voltage increase during constant current driving, and a non-light emitting portion (dark). Spot). Although there are several causes of these instabilities, deterioration of the thin film shape of the organic layer is dominant. This deterioration of the thin film shape
This is considered to be caused by crystallization (or aggregation) of the organic amorphous film due to heat generated during element driving. In particular, the contact between the anode and the hole transport layer is important for increasing the drive voltage.

【0006】そこで、陽極と正孔輸送層のコンタクトを
向上させるために、両層の間に正孔注入層を設け、駆動
電圧を低下させることが検討されている。この正孔注入
層に用いられる材料に要求される条件としては、陽極と
のコンタクトがよく、均一な薄膜が形成でき、熱的に安
定、即ち、融点及びガラス転移温度Tgが高いこと、好ま
しくは 300℃以上の融点と 100℃以上のTgを有すること
が要求される。さらに、イオン化ポテンシャルが低く陽
極からの正孔注入が容易なこと、正孔移動度が大きいこ
とが挙げられる。
Therefore, in order to improve the contact between the anode and the hole transport layer, it has been studied to provide a hole injection layer between both layers to lower the driving voltage. The conditions required for the material used for the hole injection layer include good contact with the anode, formation of a uniform thin film, and thermal stability, that is, a high melting point and a high glass transition temperature Tg, preferably It is required to have a melting point of 300 ° C or higher and a Tg of 100 ° C or higher. In addition, the ionization potential is low, holes can be easily injected from the anode, and the hole mobility is high.

【0007】従来、正孔注入層の材料としても種々のも
のが検討されており、例えばポルフィリン誘導体やフタ
ロシアニン化合物(特開昭63−295695号公報)、スター
バスト型芳香族トリアミン(特開平4−308688号公
報)、ヒドラゾン化合物(特開平4−320483号公報)、
アルコキシ置換の芳香族ジアミン誘導体(特開平4−22
0995号公報)、p-(9-アントリル)-N,N-ジ-p- トリル
アニリン、ポリチエニレンビニレンやポリ−p−フェニ
レンビニレン、ポリアニリン等の有機化合物や、スパッ
タ・カーボン膜や、バナジウム酸化物、ルテニウム酸化
物、モリブデン酸化物等の金属酸化物などが報告されて
いる。
Conventionally, various materials have been studied as a material for the hole injection layer. For example, porphyrin derivatives and phthalocyanine compounds (Japanese Patent Application Laid-Open No. 63-295695), starburst type aromatic triamines (Japanese Patent Application Laid-Open No. 308688), hydrazone compounds (JP-A-4-320483),
Alkoxy-substituted aromatic diamine derivatives (Japanese Unexamined Patent Publication No.
0995), p- (9-anthryl) -N, N-di-p-tolylaniline, organic compounds such as polythienylenevinylene, poly-p-phenylenevinylene, polyaniline, sputtered carbon films, and vanadium Metal oxides such as oxides, ruthenium oxides and molybdenum oxides have been reported.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、陽極と
正孔輸送層との間に正孔注入層を挿入する方法におい
て、ポルフィリン誘導体やフタロシアニン化合物を正孔
注入層として用いた場合、これらの膜自体による光吸収
のためにスペクトルが変化したり、外観上着色して透明
でなくなるという問題がある。
However, when a porphyrin derivative or a phthalocyanine compound is used as the hole injection layer in the method of inserting the hole injection layer between the anode and the hole transport layer, these films themselves are not used. There is a problem that the spectrum is changed due to light absorption by the light source, or the external appearance is colored and becomes invisible.

【0009】スターバスト型芳香族トリアミン、ヒドラ
ゾン化合物、アルコキシ置換の芳香族ジアミン誘導体、
p-(9-アントリル)-N,N-ジ-p-トリルアニリン等では、イ
オン化ポテンシャルが低く透明性がよいという利点はあ
るものの、ガラス転移点や融点が低いために耐熱性に劣
り、連続駆動時の局所加熱に対する安定性が悪く、輝度
低下や電圧上昇が問題になる。
A star bust type aromatic triamine, a hydrazone compound, an alkoxy-substituted aromatic diamine derivative,
Although p- (9-anthryl) -N, N-di-p-tolylaniline has the advantage of low ionization potential and good transparency, it has poor heat resistance due to low glass transition point and melting point, and continuous The stability to local heating during driving is poor, and the problem of a decrease in luminance and an increase in voltage is a problem.

【0010】一方、ポリチエニレンビニレン、ポリ−p
−フェニレンビニレン、ポリアニリン等のポリマー系材
料では、駆動電圧の低電圧化と駆動寿命の改善に関する
報告はない。
On the other hand, polythienylenevinylene, poly-p
-For polymer materials such as phenylene vinylene and polyaniline, there is no report on lowering the driving voltage and improving the driving life.

【0011】有機電界発光素子の駆動時における電圧が
高いこと、そして、耐熱性を含めた安定性が低いこと
は、ファクシミリ、複写機、液晶ディスプレイのバック
ライト等の光源としては大きな問題であり、特にフルカ
ラーフラットパネル・ディスプレイ等の表示素子として
も望ましくない。
The high voltage at the time of driving the organic electroluminescent device and the low stability including heat resistance are serious problems as a light source for a facsimile, a copying machine, a backlight of a liquid crystal display, and the like. In particular, it is not desirable as a display element such as a full-color flat panel display.

【0012】従って、本発明は、低電圧、高発光効率で
駆動させることができ、かつ良好な耐熱性を有し、長期
間に亙って安定な発光特性を維持することができる有機
電界発光素子を提供することを目的とする。
Accordingly, the present invention provides an organic electroluminescent device which can be driven at low voltage and high luminous efficiency, has good heat resistance, and can maintain stable luminescent characteristics for a long period of time. It is intended to provide an element.

【0013】[0013]

【課題を解決するための手段】本発明の有機電界発光素
子は、基板上に、陽極及び陰極により挟持された発光層
が形成されると共に、該発光層と陽極との間に正孔注入
層が形成された有機電界発光素子において、該正孔注入
層が、下記一般式(I)または(II)で表わされる繰り
返し単位を有し、かつ、重量平均分子量が1,000〜1,00
0,000である芳香族ジアミン含有ポリエーテルと、電子
受容性化合物とを含有することを特徴とする。
According to the organic electroluminescent device of the present invention, a light emitting layer sandwiched between an anode and a cathode is formed on a substrate, and a hole injection layer is provided between the light emitting layer and the anode. Is formed, the hole injection layer has a repeating unit represented by the following general formula (I) or (II), and has a weight average molecular weight of 1,000 to 1,000.
It is characterized by containing an aromatic diamine-containing polyether of 0.000 and an electron-accepting compound.

【0014】[0014]

【化6】 Embedded image

【0015】[0015]

【化7】 Embedded image

【0016】(式中、Ar1,Ar2,Ar3,Ar4,Ar5
Ar6,Ar7,Ar8,Ar9は、各々独立して置換基を有し
ていてもよい2価の芳香族環残基を示し、R1,R2,R
3,R4は置換基を有していてもよい芳香族環基または芳
香族複素環基を示し、X及びYは直接結合、または下記
の連結基から選ばれる。)
(Wherein, Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 ,
Ar 6 , Ar 7 , Ar 8 , and Ar 9 each independently represent a divalent aromatic ring residue which may have a substituent, and R 1 , R 2 , R
3 , R 4 represents an aromatic ring group or an aromatic heterocyclic group which may have a substituent, and X and Y are selected from a direct bond or the following linking group. )

【0017】[0017]

【化8】 Embedded image

【0018】(式中、R′は置換基を有していてもよい
アルキレン基を示し、R″はアルキル基または置換基を
有していてもよい芳香族環基を示す。) 即ち、本発明者らは、従来の問題点を解決し、高温にお
いて安定な発光特性を維持できる有機電界発光素子を提
供するべく鋭意検討した結果、基板上に、陽極及び陰極
により挟持された発光層を有する有機電界発光素子にお
いて、陽極と発光層との間に、電子受容性化合物を含有
し、かつ、高いTgを有する芳香族ジアミン含有ポリエー
テルからなる正孔注入層を設けることで、上記課題を解
決することができることを見出し、本発明を完成するに
至った。
(In the formula, R ′ represents an alkylene group which may have a substituent, and R ″ represents an alkyl group or an aromatic ring group which may have a substituent.) The present inventors have solved the conventional problems, and as a result of diligent studies to provide an organic electroluminescent device that can maintain stable light emitting characteristics at high temperature, have a light emitting layer sandwiched between an anode and a cathode on a substrate. In the organic electroluminescent device, the above problem is solved by providing a hole injection layer made of an aromatic diamine-containing polyether containing an electron accepting compound and having a high Tg between an anode and a light emitting layer. And found that the present invention was completed.

【0019】本発明においては、正孔注入層に、100℃
以上のTgを有する芳香族ジアミン含有ポリエーテルと電
子受容性化合物を混合して用いることで、素子の発光特
性と耐熱性を同時に改善することを可能とした。即ち、
電子供与性の芳香族ジアミン含有ポリエーテルに電子受
容性化合物を混合することにより、電荷移動が起こり、
結果としてフリーキャリアである正孔が生成し、正孔注
入層の電気電導度が高くなる。発光層と陽極との電気的
接合が、本発明による正孔注入層を設けることで改善さ
れ、駆動電圧が低下すると同時に連続駆動時の安定性も
向上する。また、 100℃以上のガラス転移温度を有する
芳香族ジアミン含有ポリエーテルを正孔注入層の母体と
することにより、素子の耐熱性も大きく改善される。本
発明で用いる芳香族ジアミン含有ポリエーテルのガラス
転移温度は特に120℃以上、とりわけ150℃以上であるこ
とが好ましい。
In the present invention, 100 ° C.
By mixing and using the aromatic diamine-containing polyether having the above Tg and the electron-accepting compound, it was possible to simultaneously improve the light emitting characteristics and the heat resistance of the device. That is,
By mixing an electron-accepting compound with an electron-donating aromatic diamine-containing polyether, charge transfer occurs,
As a result, holes as free carriers are generated, and the electric conductivity of the hole injection layer is increased. The electrical connection between the light emitting layer and the anode is improved by providing the hole injection layer according to the present invention, and the driving voltage is reduced and the stability during continuous driving is also improved. Further, by using an aromatic diamine-containing polyether having a glass transition temperature of 100 ° C. or higher as the base of the hole injection layer, the heat resistance of the device is greatly improved. The glass transition temperature of the aromatic diamine-containing polyether used in the present invention is preferably at least 120 ° C, particularly preferably at least 150 ° C.

【0020】本発明において、正孔注入層の芳香族ジア
ミン含有ポリエーテルのイオン化ポテンシャルから電子
受容性化合物の電子親和力を引いた値は0.7eV以下で
あることが好ましく、また、正孔注入層中の電子受容性
化合物の含有量は、芳香族ジアミン含有ポリエーテルに
対して0.1〜50重量%の範囲であることが好ましい。
In the present invention, the value obtained by subtracting the electron affinity of the electron accepting compound from the ionization potential of the aromatic diamine-containing polyether in the hole injection layer is preferably 0.7 eV or less. Is preferably in the range of 0.1 to 50% by weight based on the aromatic diamine-containing polyether.

【0021】本発明において、電子受容性化合物は、下
記一般式(III)で表される化合物或いは、下記化合物
群から選ばれる化合物の少なくとも1種であることが好
ましい。
In the present invention, the electron accepting compound is preferably a compound represented by the following general formula (III) or at least one compound selected from the following compound group.

【0022】[0022]

【化9】 Embedded image

【0023】(式中、Zはハロゲン原子を示し、R5
水素原子、ハロゲン原子、置換基を有していてもよいア
ルキル基、シアノ基またはニトロ基を示す。)
(Wherein, Z represents a halogen atom, and R 5 represents a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, a cyano group or a nitro group.)

【0024】[0024]

【化10】 Embedded image

【0025】[0025]

【発明の実施の形態】以下に図面を参照して本発明の有
機電界発光素子の実施の形態を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the organic electroluminescent device of the present invention will be described in detail with reference to the drawings.

【0026】図1〜3は本発明の有機電界発光素子の実
施の形態を示す模式的な断面図であり、1は基板、2は
陽極、3は正孔注入層、4は正孔輸送層、5は発光層、
6は電子輸送層、7は陰極を各々表わす。
1 to 3 are schematic sectional views showing an embodiment of the organic electroluminescent device of the present invention, wherein 1 is a substrate, 2 is an anode, 3 is a hole injection layer, and 4 is a hole transport layer. 5 is a light emitting layer,
6 represents an electron transport layer, and 7 represents a cathode.

【0027】基板1は有機電界発光素子の支持体となる
ものであり、石英やガラスの板、金属板や金属箔、プラ
スチックフィルムやシートなどが用いられる。特にガラ
ス板や、ポリエステル、ポリメタクリレート、ポリカー
ボネート、ポリスルホンなどの透明な合成樹脂の板が好
ましい。合成樹脂基板を使用する場合にはガスバリア性
に留意する必要がある。基板のガスバリヤ性が低すぎる
と、基板を通過する外気により有機電界発光素子が劣化
することがあるので好ましくない。このため、合成樹脂
基板のどちらか片側もしくは両側に緻密なシリコン酸化
膜等を設けてガスバリア性を確保する方法も好ましい方
法の一つである。
The substrate 1 serves as a support for the organic electroluminescent device, and is made of a quartz or glass plate, a metal plate or a metal foil, a plastic film or a sheet, or the like. Particularly, a glass plate or a plate of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate, and polysulfone is preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too low, the organic air-emitting device may be deteriorated by outside air passing through the substrate, which is not preferable. Therefore, a method of providing a dense silicon oxide film or the like on one or both sides of the synthetic resin substrate to ensure gas barrier properties is also a preferable method.

【0028】基板1上には陽極2が設けられる。陽極2
は正孔注入層3への正孔注入の役割を果たすものであ
る。この陽極2は、通常、アルミニウム、金、銀、ニッ
ケル、パラジウム、白金等の金属、インジウム及び/ま
たはスズの酸化物などの金属酸化物、ヨウ化銅などのハ
ロゲン化金属、カーボンブラック等により構成される。
陽極2の形成は通常、スパッタリング法、真空蒸着法な
どにより行われることが多い。また、銀などの金属微粒
子、ヨウ化銅などの微粒子、カーボンブラック、導電性
の金属酸化物微粒子等を適当なバインダー樹脂溶液に分
散し、基板1上に塗布することにより陽極2を形成する
こともできる。陽極2は異なる物質で積層して形成する
ことも可能である。陽極2の厚みは、必要とする透明性
により異なる。透明性が必要とされる場合は、可視光の
透過率を、通常60%以上、好ましくは80%以上とするこ
とが望ましく、この場合、厚みは、通常10〜1000nm、好
ましくは20〜500nm 程度である。不透明でよい場合は陽
極2は基板1と同一でもよい。また、上記の陽極2の上
に異なる導電材料を積層することも可能である。
An anode 2 is provided on a substrate 1. Anode 2
Plays a role of injecting holes into the hole injection layer 3. The anode 2 is usually made of a metal such as aluminum, gold, silver, nickel, palladium, and platinum; a metal oxide such as an oxide of indium and / or tin; a metal halide such as copper iodide; and carbon black. Is done.
Usually, the formation of the anode 2 is often performed by a sputtering method, a vacuum evaporation method, or the like. Further, the anode 2 is formed by dispersing metal fine particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, and the like in an appropriate binder resin solution and applying the dispersion on the substrate 1. Can also. The anode 2 can be formed by laminating different materials. The thickness of the anode 2 depends on the required transparency. When transparency is required, the transmittance of visible light is usually at least 60%, preferably at least 80%. In this case, the thickness is usually about 10 to 1000 nm, preferably about 20 to 500 nm. It is. If opaque, the anode 2 may be the same as the substrate 1. It is also possible to stack different conductive materials on the anode 2.

【0029】本発明では、図1〜3の素子構造において
は、陽極2の上に正孔注入層3が設けられる。この正孔
注入層3に用いられる材料に要求される条件としては、
陽極2からの正孔注入効率が高く、かつ、注入された正
孔を効率よく輸送することができる材料であることが挙
げられる。そのためには、イオン化ポテンシャルが小さ
く、可視光の光に対して透明性が高く、しかも正孔移動
度が大きく、さらに安定性に優れ、トラップとなる不純
物が製造時や使用時に発生しにくいことが要求される。
上記の一般的な要求条件以外に、車載表示用の応用を考
えた場合、さらに 100℃以上の耐熱性が要求される。
In the present invention, a hole injection layer 3 is provided on the anode 2 in the element structure shown in FIGS. Conditions required for the material used for the hole injection layer 3 include:
It is a material having a high hole injection efficiency from the anode 2 and capable of efficiently transporting the injected holes. For that purpose, the ionization potential is small, the transparency to visible light is high, the hole mobility is large, the stability is high, and impurities serving as traps are unlikely to be generated during production or use. Required.
In addition to the above general requirements, when considering applications for vehicle display, heat resistance of 100 ° C or more is required.

【0030】本発明の有機電界発光素子は、正孔注入層
が、前記一般式(I)または(II)で表わされる繰り返
し単位を有する、重量平均分子量1,000〜1,000,000の芳
香族ジアミン含有ポリエーテルと、電子受容性化合物を
含有することを特徴とする。
The organic electroluminescent device of the present invention is characterized in that the hole injection layer has an aromatic diamine-containing polyether having a weight average molecular weight of 1,000 to 1,000,000 and having a repeating unit represented by the general formula (I) or (II). And an electron accepting compound.

【0031】本発明においては、この100℃以上のTgを
有する芳香族ジアミン含有ポリエーテルと電子受容性化
合物を混合して用いることで、素子の発光特性と耐熱性
を同時に改善することを可能とした。即ち、電子供与性
の芳香族ジアミン含有ポリエーテルに電子受容性化合物
を混合することにより、電荷移動が起こり、結果として
フリーキャリアである正孔が生成し、正孔注入層の電気
電導度が高くなる。このため、このような正孔注入層を
設けることで、発光層と陽極との電気的接合が改善さ
れ、駆動電圧が低下すると同時に連続駆動時の安定性も
向上する。また、100℃以上のガラス転移温度を有する
芳香族ジアミン含有ポリエーテルを正孔注入層の母体と
することにより、素子の耐熱性も大きく改善される。本
発明で用いる芳香族ジアミン含有ポリエーテルのガラス
転移温度は特に120℃以上、とりわけ150℃以上であるこ
とが好ましい。
In the present invention, by using a mixture of the aromatic diamine-containing polyether having a Tg of 100 ° C. or more and an electron-accepting compound, it is possible to simultaneously improve the luminous characteristics and heat resistance of the device. did. That is, by mixing the electron-accepting compound with the electron-donating aromatic diamine-containing polyether, charge transfer occurs, as a result, holes serving as free carriers are generated, and the electric conductivity of the hole injection layer is high. Become. For this reason, by providing such a hole injection layer, the electrical junction between the light emitting layer and the anode is improved, and the driving voltage is reduced, and at the same time, the stability during continuous driving is also improved. Further, by using an aromatic diamine-containing polyether having a glass transition temperature of 100 ° C. or higher as a base of the hole injection layer, the heat resistance of the element is greatly improved. The glass transition temperature of the aromatic diamine-containing polyether used in the present invention is preferably at least 120 ° C, particularly preferably at least 150 ° C.

【0032】前記一般式(I)および(II)において、
Ar1〜Ar9は、好ましくは、各々独立して置換基を有し
ていてもよい2価のベンゼン環、ナフタレン環、アント
ラセン環、ビフェニルであり、前記置換基としてはハロ
ゲン原子;メチル基、エチル基等の炭素数1〜6のアル
キル基;ビニル基等のアルケニル基;メトキシカルボニ
ル基、エトキシカルボニル基等の炭素数1〜6のアルコ
キシカルボニル基;メトキシ基、エトキシ基等の炭素数
1〜6のアルコキシ基;フェノキシ基、ベンジルオキシ
基などのアリールオキシ基;ジエチルアミノ基、ジイソ
プロピルアミノ基等のジアルキルアミノ基が挙げられ
る。前記置換基としては、好ましくは炭素数1〜3のア
ルキル基が、特に好ましくはメチル基が挙げられる。
In the above general formulas (I) and (II),
Ar 1 to Ar 9 are preferably a divalent benzene ring, a naphthalene ring, an anthracene ring, or a biphenyl, each of which may independently have a substituent, wherein the substituent is a halogen atom; a methyl group; An alkyl group having 1 to 6 carbon atoms such as an ethyl group; an alkenyl group such as a vinyl group; an alkoxycarbonyl group having 1 to 6 carbon atoms such as a methoxycarbonyl group and an ethoxycarbonyl group; 6, an alkoxy group; an aryloxy group such as a phenoxy group and a benzyloxy group; and a dialkylamino group such as a diethylamino group and a diisopropylamino group. As the substituent, an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is particularly preferable.

【0033】R1〜R4は、好ましくは、各々独立して置
換基を有していてもよいフェニル基、ナフチル基、アン
トリル基、ピリジル基、トリアジル基、ピラジル基、キ
ノキサリル基、チエニル基、ビフェニル基であり、前記
置換基としてはハロゲン原子;メチル基、エチル基等の
炭素数1〜6のアルキル基;ビニル基等のアルケニル
基;メトキシカルボニル基、エトキシカルボニル基等の
炭素数1〜6のアルコキシカルボニル基;メトキシ基、
エトキシ基等の炭素数1〜6のアルコキシ基;フェノキ
シ基、ベンジルオキシ基などのアリールオキシ基;ジエ
チルアミノ基、ジイソプロピルアミノ基等のジアルキル
アミノ基が挙げられる。
R 1 to R 4 are preferably a phenyl group, a naphthyl group, an anthryl group, a pyridyl group, a triazyl group, a pyrazyl group, a quinoxalyl group, a thienyl group, each of which may independently have a substituent. A biphenyl group, wherein the substituent is a halogen atom; an alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; an alkenyl group such as a vinyl group; and a 1 to 6 carbon atom such as a methoxycarbonyl group and an ethoxycarbonyl group. An alkoxycarbonyl group; a methoxy group,
An alkoxy group having 1 to 6 carbon atoms such as an ethoxy group; an aryloxy group such as a phenoxy group and a benzyloxy group; and a dialkylamino group such as a diethylamino group and a diisopropylamino group.

【0034】X及びYは直接結合または以下に示す連結
基から選ばれる。
X and Y are selected from a direct bond or a linking group shown below.

【0035】[0035]

【化11】 Embedded image

【0036】上記連結基において、R′は、好ましくは
メチレン基、ジメチルメチレン基、エチレン基、プロピ
レン基であり、R″は、好ましくはメチル基、エチル基
等の炭素数1〜6のアルキル基;フェニル基、ナフチル
基、アントリル基、トリル基等の芳香族環基である。
In the above linking group, R 'is preferably a methylene group, a dimethylmethylene group, an ethylene group or a propylene group, and R "is preferably an alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group. An aromatic ring group such as a phenyl group, a naphthyl group, an anthryl group and a tolyl group;

【0037】前記一般式(I)及び(II)で表される化
合物は、例えば、城戸らの方法(Polymers for Advance
d Technologies, 7巻,31頁,1996年;特開平9−1887
56号公報)に開示されている経路で合成される。
The compounds represented by the general formulas (I) and (II) can be prepared, for example, by the method of Kido et al. (Polymers for Advance).
d Technologies, 7, 31 pages, 1996; JP-A-9-1887
No. 56).

【0038】前記一般式(I)で表される、本発明の芳
香族ジアミン含有ポリエーテルが有する繰り返し単位の
好ましい具体例を表1〜表3に示すが、これらに限定す
るものではない。
Preferred specific examples of the repeating unit represented by the general formula (I) and contained in the aromatic diamine-containing polyether of the present invention are shown in Tables 1 to 3, but are not limited thereto.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】また、前記一般式(II)で表される、本発
明の芳香族ジアミン含有ポリエーテルが有する繰り返し
単位の好ましい具体例を表4,表5に示すが、これらに
限定するものではない。
Preferred specific examples of the repeating unit of the aromatic diamine-containing polyether of the present invention represented by the general formula (II) are shown in Tables 4 and 5, but are not limited thereto. .

【0043】[0043]

【表4】 [Table 4]

【0044】[0044]

【表5】 [Table 5]

【0045】上述の芳香族ジアミン含有ポリエーテルと
組み合わせて用いる電子受容性化合物としては、該芳香
族ジアミン含有ポリエーテルとの間で電荷移動を起こす
ものであればよいが、本発明者が鋭意検討した結果、芳
香族ジアミン含有ポリエーテルのイオン化ポテンシャ
ル:IP(ポリエーテル)と、電子受容性化合物(アク
セプタ)の電子親和力:EA(アクセプタ)の2つの物
性値が、 IP(ポリエーテル)−EA(アクセプタ)≦ 0.7eV の関係式で表される場合に本発明の目的に有効であるこ
とを見出した。
The electron-accepting compound used in combination with the above-mentioned aromatic diamine-containing polyether may be any as long as it causes charge transfer with the aromatic diamine-containing polyether. As a result, two physical property values of the ionization potential of the aromatic diamine-containing polyether: IP (polyether) and the electron affinity of the electron-accepting compound (acceptor): EA (acceptor) are expressed by IP (polyether) -EA ( It has been found that, when represented by the relational expression of (acceptor) ≦ 0.7 eV, it is effective for the purpose of the present invention.

【0046】このことを図4のエネルギー準位図を用い
て説明する。一般に、イオン化ポテンシャル及び電子親
和力は真空準位を基準として決定される。イオン化ポテ
ンシャルは物質のHOMO(最高被占分子軌道)レベル
にある電子を真空準位に放出するのに必要なエネルギー
で定義され、電子親和力は真空準位にある電子が物質の
LUMO(最低空分子軌道)レベルに落ちて安定化する
エネルギーで定義される。本発明において、図4に示す
芳香族ジアミン含有ポリエーテルのHOMOレベルのイ
オン化ポテンシャルと、電子受容性化合物のLUMOレ
ベルの電子親和力の差が 0.7eV以下であることが好まし
い。イオン化ポテンシャルは光電子分光法で直接測定さ
れるか、電気化学的に測定した酸化電位を基準電極に対
して補正しても求められる。後者の方法の場合は、例え
ば、飽和甘コウ電極(SCE)を基準電極として用いた
とき、 イオン化ポテンシャル=酸化電位(vs.SCE)+4.3 eV で表される("Molecular Semiconductors", Springer-V
erlag, 1985年、98頁)。電子親和力は、上述のイオン
化ポテンシャルから光学的バンドギャップを差し引いて
求められるか、電気化学的な還元電位から上記の式で同
様に求められる。
This will be described with reference to the energy level diagram of FIG. Generally, the ionization potential and the electron affinity are determined based on the vacuum level. The ionization potential is defined as the energy required to release electrons at the HOMO (highest occupied molecular orbital) level of a substance to a vacuum level, and the electron affinity is determined by the LUMO (lowest empty molecule) of the substance at a vacuum level. Orbit) is defined as the energy that falls to a level and stabilizes. In the present invention, the difference between the ionization potential at the HOMO level of the aromatic diamine-containing polyether shown in FIG. 4 and the electron affinity at the LUMO level of the electron-accepting compound is preferably 0.7 eV or less. The ionization potential is directly measured by photoelectron spectroscopy, or can be obtained by correcting an electrochemically measured oxidation potential with respect to a reference electrode. In the case of the latter method, for example, when a saturated sweet pepper electrode (SCE) is used as a reference electrode, ionization potential = oxidation potential (vs. SCE) +4.3 eV (“Molecular Semiconductors”, Springer- V
erlag, 1985, p. 98). The electron affinity can be obtained by subtracting the optical band gap from the above-mentioned ionization potential, or similarly from the above-mentioned formula from the electrochemical reduction potential.

【0047】前記イオン化ポテンシャルと電子親和力の
関係式は、酸化電位と還元電位を用いて、 ポリエーテルの酸化電位−アクセプタの還元電位≦ 0.7
eV と表現することもできる。
The relational expression between the ionization potential and the electron affinity is obtained by using the oxidation potential and the reduction potential as follows: oxidation potential of polyether−reduction potential of acceptor ≦ 0.7.
It can also be expressed as eV.

【0048】正孔注入層中の電子受容性化合物の芳香族
ジアミン含有ポリエーテルに対する含有量は、通常0.1
〜50重量%、特に1〜30重量%の範囲にあることが好ま
しい。
The content of the electron accepting compound in the hole injection layer with respect to the aromatic diamine-containing polyether is usually 0.1%.
Preferably it is in the range of from 50 to 50% by weight, especially from 1 to 30% by weight.

【0049】電子受容性化合物としては、上記の関係を
満たすものであれば特に限定はされないが、好ましく
は、以下に示す一般式(III)で表される化合物から選
ばれる。
The electron accepting compound is not particularly limited as long as it satisfies the above relationship, but is preferably selected from compounds represented by the following general formula (III).

【0050】[0050]

【化12】 Embedded image

【0051】上記一般式(III)において、Zは好まし
くは塩素、フッ素、臭素等のハロゲン原子であり、R5
は好ましくは、水素原子;塩素、フッ素、臭素等のハロ
ゲン原子;メチル基、エチル基等の炭素数1〜6のアル
キル基;トリフロロメチル基等のハロアルキル基;シア
ノ基;ニトロ基である。置換位置は中心窒素原子に対し
てオルト位、メタ位、パラ位のいずれでもよい。
[0051] In the general formula (III), Z is preferably chlorine, fluorine, halogen atom such as bromine, R 5
Is preferably a hydrogen atom; a halogen atom such as chlorine, fluorine and bromine; an alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; a haloalkyl group such as a trifluoromethyl group; a cyano group; The substitution position may be any of the ortho, meta and para positions with respect to the central nitrogen atom.

【0052】前記一般式(III)で表される電子受容性
化合物の具体例としては、以下に示す化合物が挙げられ
る。
Specific examples of the electron accepting compound represented by the general formula (III) include the following compounds.

【0053】[0053]

【化13】 Embedded image

【0054】電子受容性化合物の他の好ましい例を、以
下に省略名とともに示す。
Other preferred examples of the electron accepting compound are shown below with their abbreviations.

【0055】[0055]

【化14】 Embedded image

【0056】本発明において、芳香族ジアミン含有ポリ
エーテルと電子受容性化合物とを含有する正孔注入層3
は通常塗布法により前記陽極2上に形成される。例え
ば、前記一般式(I)または(II)で表されるポリエー
テルと電子受容性化合物の所定量に、必要により正孔の
トラップにならないバインダー樹脂や塗布性改良剤など
の添加剤等を添加し、溶解して塗布溶液を調製し、スピ
ンコート法やディップコート法などの方法により陽極2
上に塗布し、乾燥して正孔注入層3を形成する。
In the present invention, the hole injection layer 3 containing the aromatic diamine-containing polyether and the electron-accepting compound is used.
Is usually formed on the anode 2 by a coating method. For example, if necessary, an additive such as a binder resin which does not trap holes or an additive such as a coating improver is added to a predetermined amount of the polyether represented by the above general formula (I) or (II) and the electron accepting compound. And dissolve to prepare a coating solution. The anode 2 is formed by a method such as spin coating or dip coating.
It is applied on top and dried to form the hole injection layer 3.

【0057】このようにして形成される正孔注入層3の
膜厚は、通常5〜1000 nm、好ましくは10〜500 nmであ
る。
The thickness of the hole injection layer 3 thus formed is usually 5 to 1000 nm, preferably 10 to 500 nm.

【0058】正孔注入層3の上には発光層5が設けられ
る。発光層5は、電界を与えられた電極間において陰極
7から注入された電子と正孔注入層3から輸送された正
孔を効率よく再結合し、かつ、再結合により効率よく発
光する材料から形成される。
The light emitting layer 5 is provided on the hole injection layer 3. The light emitting layer 5 is made of a material that efficiently recombines electrons injected from the cathode 7 and holes transported from the hole injection layer 3 between the electrodes to which an electric field is applied, and emits light efficiently by the recombination. It is formed.

【0059】このような条件を満たす材料としては、8
−ヒドロキシキノリンのアルミニウム錯体などの金属錯
体(特開昭59−194393号公報)、10-ヒドロキシベンゾ
[h]キノリンの金属錯体(特開平6−322362号公報)、
ビススチリルベンゼン誘導体(特開平1−245087号公
報、同2−222484号公報)、ビススチリルアリーレン誘
導体(特開平2−247278号公報)、(2-ヒドロキシフェ
ニル)ベンゾチアゾールの金属錯体(特開平8−315983
号公報)、シロール誘導体等が挙げられる。これらの発
光層材料は、通常は真空蒸着法により正孔注入層3上に
積層形成される。
As a material satisfying such conditions, 8
Metal complexes such as aluminum complexes of -hydroxyquinoline (JP-A-59-194393);
[h] quinoline metal complex (JP-A-6-322362),
Bisstyrylbenzene derivatives (Japanese Patent Application Laid-Open Nos. 1-245087 and 2-222484), bisstyrylarylene derivatives (Japanese Patent Application Laid-Open No. 2-247278), and metal complexes of (2-hydroxyphenyl) benzothiazole (Japanese Patent Application Laid-open No. −315983
Publication), silole derivatives and the like. These light emitting layer materials are usually formed on the hole injection layer 3 by vacuum evaporation.

【0060】素子の発光効率を向上させるとともに発光
色を変える目的で、例えば、8−ヒドロキシキノリンの
アルミニウム錯体をホスト材料として、クマリン等のレ
ーザ用蛍光色素をドープすること(J. Appl. Phys., 65
巻, 3610頁, 1989年)等が行われている。この方法の利
点は、 1)高効率の蛍光色素により発光効率が向上、 2)蛍光色素の選択により発光波長が可変、 3)濃度消光を起こす蛍光色素も使用可能、 4)薄膜性のわるい蛍光色素も使用可能、 等が挙げられる。
For the purpose of improving the luminous efficiency of the device and changing the luminescent color, for example, doping a fluorescent dye for laser such as coumarin using an aluminum complex of 8-hydroxyquinoline as a host material (J. Appl. Phys. , 65
Vol. 3610, 1989). The advantages of this method are: 1) improved luminous efficiency by high-efficiency fluorescent dye, 2) variable emission wavelength by selecting fluorescent dye, 3) fluorescent dye which causes concentration quenching can be used, 4) fluorescent light with poor thin film property Dyes can also be used.

【0061】素子の駆動寿命を改善する目的において
も、前記発光層材料をホスト材料として、蛍光色素をド
ープすることは有効である。例えば、8−ヒドロキシキ
ノリンのアルミニウム錯体などの金属錯体をホスト材料
として、ルブレンに代表されるナフタセン誘導体(特開
平4−335087号公報)、キナクリドン誘導体(特開平5
− 70773号公報)、ペリレン等の縮合多環芳香族環(特
開平5−198377号公報)を、ホスト材料に対して 0.1〜
10重量%ドープすることにより、素子の発光特性、特に
駆動安定性を大きく向上させることができる。発光層の
ホスト材料に上記ナフタセン誘導体、キナクリドン誘導
体、ペリレン等の蛍光色素をドープする方法としては、
共蒸着による方法と蒸着源を予め所定の濃度で混合して
おく方法がある。
For the purpose of improving the driving life of the device, it is effective to dope a fluorescent dye by using the light emitting layer material as a host material. For example, using a metal complex such as an aluminum complex of 8-hydroxyquinoline as a host material, a naphthacene derivative represented by rubrene (Japanese Patent Laid-Open No. 4-335087) and a quinacridone derivative (Japanese Patent Laid-Open No.
No. 70773), condensed polycyclic aromatic rings such as perylene (JP-A-5-198377) are added to the host material in an amount of 0.1 to 0.1%.
By doping at 10% by weight, the light emitting characteristics of the device, particularly the driving stability, can be greatly improved. As a method of doping a fluorescent dye such as the naphthacene derivative, quinacridone derivative, or perylene into the host material of the light-emitting layer,
There are a method of co-evaporation and a method of mixing evaporation sources at a predetermined concentration in advance.

【0062】高分子系の発光層材料としては、先に挙げ
たポリ(p-フェニレンビニレン)、ポリ[2-メトキシ-5
-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレ
ン]、ポリ(3-アルキルチオフェン)等の高分子材料
や、ポリビニルカルバゾール等の高分子に発光材料と電
子移動材料を混合した系等が挙げられる。これらの材料
は正孔注入層と同様にスピンコートやディップコート等
の方法により正孔注入層3上に塗布して薄膜形成される このようにして形成される発光層5の膜厚は、通常10〜
200 nm、好ましくは30〜100 nmである。
Examples of the polymer-based light emitting layer materials include poly (p-phenylenevinylene) and poly [2-methoxy-5] described above.
-(2-ethylhexyloxy) -1,4-phenylenevinylene], a polymer material such as poly (3-alkylthiophene), a system in which a luminescent material and an electron transfer material are mixed with a polymer such as polyvinylcarbazole, and the like. Can be These materials are coated on the hole injection layer 3 by a method such as spin coating or dip coating in the same manner as the hole injection layer to form a thin film. Ten~
It is 200 nm, preferably 30-100 nm.

【0063】素子の発光特性を向上させるために、図2
に示すように、正孔輸送層4を正孔注入層3と発光層5
との間に設けたり、さらには、図3に示す様に電子輸送
層6を発光層5と陰極7との間に設けるなど機能分離型
にすることが行われる。
In order to improve the light emitting characteristics of the device, FIG.
As shown in the figure, the hole transport layer 4 is
And a function-separated type such as providing the electron transport layer 6 between the light emitting layer 5 and the cathode 7 as shown in FIG.

【0064】図2及び図3の機能分離型素子において、
正孔輸送層4の材料としては、正孔注入層3からの正孔
注入効率が高く、かつ、注入された正孔を効率よく輸送
することができる材料であることが必要である。そのた
めには、イオン化ポテンシャルが小さく、しかも正孔移
動度が大きく、さらに安定性に優れ、トラップとなる不
純物が製造時や使用時に発生しにくいことが要求され
る。
In the function-separated element shown in FIGS. 2 and 3,
The material of the hole transport layer 4 needs to be a material having high hole injection efficiency from the hole injection layer 3 and capable of efficiently transporting the injected holes. For that purpose, it is required that the ionization potential is small, the hole mobility is large, the stability is further excellent, and impurities serving as traps are hardly generated during production or use.

【0065】このような正孔輸送材料としては、例え
ば、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロ
ヘキサン等の3級芳香族アミンユニットを連結した芳香
族ジアミン化合物(特開昭59−194393号公報)、4,4'-
ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニ
ルで代表される2個以上の3級アミンを含み2個以上の
縮合芳香族環が窒素原子に置換した芳香族アミン(特開
平5−234681号公報)、トリフェニルベンゼンの誘導体
でスターバースト構造を有する芳香族トリアミン(米国
特許第4,923,774号)、N,N'-ジフェニル-N,N'-ビス(3-
メチルフェニル)ビフェニル-4,4'-ジアミン等の芳香族
ジアミン(米国特許第4,764,625号)、分子全体として
立体的に非対称なトリフェニルアミン誘導体(特開平4
−129271号公報)、ピレニル基に芳香族ジアミノ基が複
数個置換した化合物(特開平4−175395号公報)、エチ
レン基で3級芳香族アミンユニットを連結した芳香族ジ
アミン(特開平4−264189号公報)、スチリル構造を有
する芳香族ジアミン(特開平4−290851号公報)、チオ
フェン基で芳香族3級アミンユニットを連結したもの
(特開平4−304466号公報)、スターバースト型芳香族
トリアミン(特開平4−308688号公報)、ベンジルフェ
ニル化合物(特開平4−364153号公報)、フルオレン基
で3級アミンを連結したもの(特開平5−25473号公
報)、トリアミン化合物(特開平5−239455号公報)、
ビスジピリジルアミノビフェニル(特開平5−320634号
公報)、N,N,N-トリフェニルアミン誘導体(特開平6−
1972号公報)、フェノキサジン構造を有する芳香族ジア
ミン(特開平7−138562号公報)、ジアミノフェニルフ
ェナントリジン誘導体(特開平7−252474号公報)、シ
ラザン化合物(米国特許第 4,950,950号公報)、シラナ
ミン誘導体(特開平6− 49079号公報)、ホスファミン
誘導体(特開平6−25659号公報)等が挙げられる。こ
れらの化合物は、単独で用いてもよいし、必要に応じ
て、2種以上を混合して用いてもよい。
As such a hole transporting material, for example, an aromatic diamine compound linked to a tertiary aromatic amine unit such as 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane (Japanese Unexamined Patent Application Publication No. JP-A-59-194393), 4,4'-
Aromatic amines containing two or more tertiary amines represented by bis [N- (1-naphthyl) -N-phenylamino] biphenyl and having two or more condensed aromatic rings substituted by nitrogen atoms (Japanese Unexamined Patent Application Publication No. -234681), an aromatic triamine having a starburst structure as a derivative of triphenylbenzene (U.S. Pat. No. 4,923,774), N, N'-diphenyl-N, N'-bis (3-
Aromatic diamines such as methylphenyl) biphenyl-4,4′-diamine (US Pat. No. 4,764,625) and triphenylamine derivatives which are sterically asymmetric as a whole molecule
JP-A-129271), a compound in which a pyrenyl group is substituted with a plurality of aromatic diamino groups (JP-A-4-175395), and an aromatic diamine in which a tertiary aromatic amine unit is linked by an ethylene group (JP-A-4-264189) Japanese Patent Application Laid-Open No. 4-290851, an aromatic diamine having a styryl structure (JP-A-4-290851), an aromatic tertiary amine unit linked by a thiophene group (JP-A-4-304466), a starburst type aromatic triamine (JP-A-4-308688), a benzylphenyl compound (JP-A-4-364153), a tertiary amine linked by a fluorene group (JP-A-5-25473), and a triamine compound (JP-A-5-253473). 239455),
Bisdipyridylaminobiphenyl (JP-A-5-320634), N, N, N-triphenylamine derivative (JP-A-6-320634)
1972), an aromatic diamine having a phenoxazine structure (JP-A-7-138562), a diaminophenylphenanthridine derivative (JP-A-7-252474), a silazane compound (US Pat. No. 4,950,950), Examples thereof include silanamine derivatives (JP-A-6-49079) and phosphamine derivatives (JP-A-6-25659). These compounds may be used alone or, if necessary, in combination of two or more.

【0066】上記の化合物以外に、正孔輸送層4の材料
としては、ポリビニルカルバゾールやポリシラン、ポリ
フォスファゼン(特開平5−310949号公報)、ポリアミ
ド(特開平5−310949号公報)、ポリビニルトリフェニ
ルアミン(特開平7−53953号公報)、トリフェニルア
ミン骨格を有する高分子(特開平4−133065号公報)、
芳香族アミンを含有するポリメタクリレート等の高分子
材料が挙げられる。
In addition to the above compounds, materials for the hole transport layer 4 include polyvinyl carbazole, polysilane, polyphosphazene (JP-A-5-310949), polyamide (JP-A-5-310949), and polyvinyltriazole. Phenylamine (JP-A-7-53953), a polymer having a triphenylamine skeleton (JP-A-4-133065),
A polymer material such as polymethacrylate containing an aromatic amine may be used.

【0067】正孔輸送層4は上記の正孔輸送材料を塗布
法あるいは真空蒸着法により前記正孔注入層3上に積層
することにより形成される。
The hole transport layer 4 is formed by laminating the above hole transport material on the hole injection layer 3 by a coating method or a vacuum evaporation method.

【0068】塗布法の場合は、正孔輸送材料の1種また
は2種以上に、必要により正孔のトラップにならないバ
インダー樹脂や塗布性改良剤などの添加剤とを添加し、
溶解して塗布溶液を調製し、スピンコート法などの方法
により正孔注入層3上に塗布し、乾燥して正孔輸送層4
を形成する。ここで、バインダー樹脂としては、ポリカ
ーボネート、ポリアリレート、ポリエステル等が挙げら
れる。バインダー樹脂は添加量が多いと正孔移動度を低
下させるので、少ない方が望ましく、通常50重量%以
下が好ましい。
In the case of the coating method, if necessary, an additive such as a binder resin or a coating property improving agent which does not trap holes is added to one or more of the hole transporting materials.
The solution is dissolved to prepare a coating solution, applied to the hole injection layer 3 by a method such as spin coating, dried, and dried to form the hole transport layer 4.
To form Here, examples of the binder resin include polycarbonate, polyarylate, and polyester. If the amount of the binder resin added is large, the hole mobility is lowered. Therefore, a small amount is desirable, and usually 50% by weight or less is preferable.

【0069】真空蒸着法の場合には、正孔輸送材料を真
空容器内に設置されたルツボに入れ、真空容器内を適当
な真空ポンプで10-4Pa程度にまで排気した後、ルツボを
加熱して、正孔輸送材料を蒸発させ、ルツボと向き合っ
て置かれた、陽極2および正孔注入層3が形成された基
板1上に正孔輸送層4を形成する。
In the case of the vacuum vapor deposition method, the hole transporting material is put into a crucible placed in a vacuum vessel, and the inside of the vacuum vessel is evacuated to about 10 -4 Pa by a suitable vacuum pump, and then the crucible is heated. Then, the hole transporting material is evaporated, and the hole transporting layer 4 is formed on the substrate 1 on which the anode 2 and the hole injection layer 3 are formed facing the crucible.

【0070】このようにして形成される正孔輸送層4の
膜厚は、通常10〜300nm、好ましくは30〜100nmである。
このように薄い膜を一様に形成するためには、一般に真
空蒸着法がよく用いられる。
The thickness of the hole transport layer 4 thus formed is usually 10 to 300 nm, preferably 30 to 100 nm.
In order to uniformly form such a thin film, generally, a vacuum deposition method is often used.

【0071】また、この電子輸送層6に用いられる化合
物には、陰極からの電子注入が容易で、電子の輸送能力
がさらに大きいことが要求される。このような電子輸送
材料としては、既に発光層材料として挙げた8−ヒドロ
キシキノリンのアルミ錯体、オキサジアゾール誘導体
(Appl. Phys. Lett., 55巻, 1489頁, 1989年) やそれ
らをポリメタクリル酸メチル(PMMA)等の樹脂に分
散した系、フェナントロリン誘導体(特開平5−331459
号公報)、2-t-ブチル-9,10-N,N'-ジシアノアントラキ
ノンジイミン、n型水素化非晶質炭化シリコン、n型硫
化亜鉛、n型セレン化亜鉛等が挙げられる。電子輸送層
6の膜厚は、通常5〜200nm、好ましくは10〜100 nmであ
る。
The compound used for the electron transport layer 6 is required to be capable of easily injecting electrons from the cathode and having a higher electron transport ability. Examples of such an electron transporting material include an aluminum complex of 8-hydroxyquinoline, an oxadiazole derivative (Appl. Phys. Lett., 55, 1489, 1989), which has already been mentioned as a light emitting layer material, and polymethacrylic acid. Phenanthroline derivatives dispersed in a resin such as methyl methacrylate (PMMA) (JP-A-5-331459)
Publication), 2-t-butyl-9,10-N, N'-dicyanoanthraquinone diimine, n-type hydrogenated amorphous silicon carbide, n-type zinc sulfide, n-type zinc selenide, and the like. The thickness of the electron transport layer 6 is usually 5 to 200 nm, preferably 10 to 100 nm.

【0072】陰極7は、発光層5に電子を注入する役割
を果たす。陰極7として用いられる材料は、前記陽極2
に使用される材料を用いることが可能であるが、効率よ
く電子注入を行なうには、仕事関数の低い金属が好まし
く、スズ、マグネシウム、インジウム、カルシウム、ア
ルミニウム、銀等の適当な金属またはそれらの合金が用
いられる。具体例としては、マグネシウム−銀合金、マ
グネシウム−インジウム合金、アルミニウム−リチウム
合金等の低仕事関数合金電極が挙げられる。
The cathode 7 plays a role of injecting electrons into the light emitting layer 5. The material used for the cathode 7 is the anode 2
It is possible to use a material used for the above, but for efficient electron injection, a metal having a low work function is preferable, and an appropriate metal such as tin, magnesium, indium, calcium, aluminum, silver or the like, An alloy is used. Specific examples include a low work function alloy electrode such as a magnesium-silver alloy, a magnesium-indium alloy, and an aluminum-lithium alloy.

【0073】陰極7の膜厚は通常、陽極2と同様であ
る。低仕事関数金属から成る陰極を保護する目的で、こ
の上にさらに、仕事関数が高く大気に対して安定な金属
層を積層することは素子の安定性を増す上で有効であ
る。この目的のために、アルミニウム、銀、銅、ニッケ
ル、クロム、金、白金等の金属が使われる。
The thickness of the cathode 7 is usually the same as that of the anode 2. In order to protect the cathode made of a low work function metal, it is effective to further stack a metal layer having a high work function and being stable to the atmosphere to increase the stability of the device. For this purpose, metals such as aluminum, silver, copper, nickel, chromium, gold, platinum and the like are used.

【0074】さらに、陰極7と発光層5または電子輸送
層6の界面にLiF、MgF2、Li2O等の極薄絶縁膜
(0.1〜5nm)を挿入することも、素子の効率を向上させ
る有効な方法である(Appl. Phys. Lett., 70巻,152
頁,1997年;特開平10− 74586号公報;IEEE Trans. El
ectron. Devices,44巻,1245頁,1997年)。
Further, inserting an ultra-thin insulating film (0.1 to 5 nm) of LiF, MgF 2 , Li 2 O or the like at the interface between the cathode 7 and the light emitting layer 5 or the electron transporting layer 6 also improves the efficiency of the device. It is an effective method (Appl. Phys. Lett., 70, 152
Page, 1997; JP-A-10-74586; IEEE Trans. El.
ectron. Devices, 44, 1245, 1997).

【0075】図1〜3は、本発明で採用される素子構造
の一例であって、本発明は何ら図示のものに限定される
ものではない。例えば、図1とは逆の構造、即ち、基板
1上に陰極7、発光層5、正孔注入層3、陽極2の順に
積層することも可能であり、既述したように少なくとも
一方が透明性の高い2枚の基板の間に本発明の有機電界
発光素子を設けることも可能である。同様に、図2及び
図3に示したものについても、前記各構成層を逆の構造
に積層することも可能である。
FIGS. 1 to 3 show an example of an element structure employed in the present invention, and the present invention is not limited to those shown in the drawings. For example, it is also possible to stack the cathode 7, the light emitting layer 5, the hole injection layer 3, and the anode 2 in this order on the substrate 1, that is, at least one of them is transparent as described above. It is also possible to provide the organic electroluminescent device of the present invention between two highly-substrate substrates. Similarly, the components shown in FIGS. 2 and 3 can be stacked in the opposite structure.

【0076】[0076]

【実施例】次に、本発明を実験例、比較実験例、実施例
及び比較例によって更に具体的に説明するが、本発明は
その要旨を超えない限り、以下の実施例の記載に限定さ
れるものではない。
Next, the present invention will be described in more detail with reference to Experimental Examples, Comparative Experimental Examples, Examples and Comparative Examples, but the present invention is limited to the following Examples unless it exceeds the gist thereof. Not something.

【0077】実験例1 ガラス基板を、アセトンで超音波洗浄、純水で水洗、イ
ソプロピルアルコールで超音波洗浄、乾燥窒素で乾燥、
UV/オゾン洗浄を行った後、既述の方法により合成し
た芳香族ジアミン含有ポリエーテル(表1の番号(I−
1)に示す繰り返し単位100%からなる;重量平均分
子量9300;ガラス転移温度 190℃)を下記の条件で、上
記ガラス基板上にスピンコートした。
Experimental Example 1 A glass substrate was subjected to ultrasonic cleaning with acetone, water cleaning with pure water, ultrasonic cleaning with isopropyl alcohol, and drying with dry nitrogen.
After performing UV / ozone cleaning, the aromatic diamine-containing polyether synthesized by the method described above (the number (I-
(1) consisting of 100% of repeating units; weight average molecular weight of 9300; glass transition temperature of 190 ° C.) was spin-coated on the above glass substrate under the following conditions.

【0078】 溶媒 1,2-ジクロロエタン 塗布液濃度 30[mg/ml] スピナ回転数 2500[rpm] スピナ回転時間 25[秒] 乾燥条件 90分間−自然乾燥 上記のスピンコートにより30nmの膜厚の均一な薄膜が形
成された。この薄膜試料のイオン化ポテンシャルを理研
計器(株)製の紫外線電子分析装置(AC−1)を用い
て測定したところ、5.23eVの値を示した。
Solvent 1,2-dichloroethane Coating solution concentration 30 [mg / ml] Spinner rotation speed 2500 [rpm] Spinner rotation time 25 [second] Drying condition 90 minutes-natural drying Uniform film thickness of 30 nm by the above spin coating A thin film was formed. When the ionization potential of this thin film sample was measured using an ultraviolet electron analyzer (AC-1) manufactured by Riken Keiki Co., Ltd., a value of 5.23 eV was shown.

【0079】還元電位が報告されているいくつかの電子
受容性化合物について、電子親和力を表6に示す。ま
た、上記芳香族ジアミン含有ポリエーテルのイオン化ポ
テンシャルとの差を表6に併記する。
Table 6 shows the electron affinities of some electron accepting compounds for which reduction potentials are reported. Table 6 also shows the difference between the aromatic diamine-containing polyether and the ionization potential.

【0080】[0080]

【表6】 [Table 6]

【0081】実験例2 芳香族ジアミン含有ポリエーテル(表1の番号(I−
1)に示す繰り返し単位100%からなる)に電子受容
性化合物のDDQを混合し、下記条件で、実験例1と同
様にしてガラス基板上にスピンコートした。
EXPERIMENTAL EXAMPLE 2 Aromatic diamine-containing polyether (No. (I-
DDQ as an electron-accepting compound was mixed with a repeating unit (100%) shown in 1) and spin-coated on a glass substrate in the same manner as in Experimental Example 1 under the following conditions.

【0082】 溶媒 1,2-ジクロロエタン I−1 30mg DDQ 2mg 塗布液濃度 30[mg/ml] スピナ回転数 2500[rpm] スピナ回転時間 25[秒] 乾燥条件 90分間−自然乾燥 上記のスピンコートにより30nmの膜厚の均一な、DDQ
を6重量%含む薄膜が形成された。この薄膜試料の可視
部分の吸収スペクトルを測定した結果を図5に示す。図
5に示す如く、可視光領域において透明な膜が得られ
た。
Solvent 1,2-dichloroethane I-1 30 mg DDQ 2 mg Coating solution concentration 30 [mg / ml] Spinner rotation speed 2500 [rpm] Spinner rotation time 25 [sec] Drying condition 90 minutes-natural drying DDQ with uniform thickness of 30nm
Was formed in a thin film containing 6% by weight. FIG. 5 shows the result of measuring the absorption spectrum of the visible portion of the thin film sample. As shown in FIG. 5, a transparent film was obtained in the visible light region.

【0083】実験例3 芳香族ジアミン含有ポリエーテルとして、既述の方法に
より合成した芳香族ジアミン含有ポリエーテル(表3の
番号(I−23)に示す繰り返し単位100%からなる;
重量平均分子量25100;ガラス転移温度183℃)を用いた
こと以外は実験例1と同様にしてガラス基板上にスピン
コートを行い、40nmの膜厚の均一な薄膜を形成した。こ
の薄膜試料のイオン化ポテンシャルを測定したところ、
5.12eVの値を示した。
EXPERIMENTAL EXAMPLE 3 As an aromatic diamine-containing polyether, an aromatic diamine-containing polyether synthesized by the above-described method (consisting of 100% of repeating units shown in Table 3 as number (I-23);
Spin coating was performed on a glass substrate in the same manner as in Experimental Example 1 except that a weight average molecular weight of 25100; a glass transition temperature of 183 ° C.) was used to form a uniform thin film having a thickness of 40 nm. When the ionization potential of this thin film sample was measured,
It showed a value of 5.12 eV.

【0084】従って、この(I−23)からなる芳香族ジ
アミン含有ポリエーテルのイオン化ポテンシャルと電子
受容性化合物であるTBPAHの電子親和力との差は−0.24e
Vであることが確認された。
Accordingly, the difference between the ionization potential of the aromatic diamine-containing polyether comprising (I-23) and the electron affinity of TBPAH, which is an electron-accepting compound, is -0.24 e
V was confirmed.

【0085】比較実験例1 実験例1と同様にして洗浄したガラス基板を真空蒸着装
置内に設置した。上記装置の粗排気を油回転ポンプによ
り行った後、装置内の真空度が2×10-6Torr(約2.7×10
-4Pa)以下になるまで液体窒素トラップを備えた油拡散
ポンプを用いて排気した。上記装置内に配置されたモリ
ブデンボートに入れた、下記構造式で示される銅フタロ
シアニンを加熱して蒸着を行った。蒸着時の真空度は2
×10-6Torr(約2.7×10-4Pa)で、蒸着速度 0.2nm/秒
で膜厚30nmの膜を成膜した。
Comparative Experimental Example 1 A glass substrate washed in the same manner as in Experimental Example 1 was set in a vacuum evaporation apparatus. After the rough evacuation of the above apparatus is performed by an oil rotary pump, the degree of vacuum in the apparatus is 2 × 10 −6 Torr (about 2.7 × 10
(−4 Pa) or less, using an oil diffusion pump equipped with a liquid nitrogen trap. The copper phthalocyanine represented by the following structural formula, which was placed in a molybdenum boat placed in the above apparatus, was heated to perform vapor deposition. The degree of vacuum during evaporation is 2
A film having a thickness of 30 nm was formed at × 10 −6 Torr (approximately 2.7 × 10 −4 Pa) at a deposition rate of 0.2 nm / sec.

【0086】[0086]

【化15】 Embedded image

【0087】この薄膜試料の可視部分の透過スペクトル
を図5に示す。図5に示す如く、550〜700nmにおいて吸
収があり、この膜はフルカラー表示への適用には問題が
ある。
FIG. 5 shows the transmission spectrum of the visible portion of the thin film sample. As shown in FIG. 5, there is absorption at 550 to 700 nm, and this film has a problem in application to full color display.

【0088】実施例1 図2に示す構造を有する有機電界発光素子を以下の方法
で作製した。
Example 1 An organic electroluminescent device having the structure shown in FIG. 2 was manufactured by the following method.

【0089】ガラス基板上にインジウム・スズ酸化物
(ITO)透明導電膜を 120nm堆積したもの(ジオマテ
ック社製;電子ビーム成膜品;シート抵抗15Ω)を通常
のフォトリソグラフィ技術と塩酸エッチングを用いて 2
mm幅のストライプにパターニングして陽極2を形成し
た。パターン形成したITO基板を、アセトンによる超
音波洗浄、純水による水洗、イソプロピルアルコールに
よる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、
最後に紫外線オゾン洗浄を行った。
A transparent conductive film of indium tin oxide (ITO) having a thickness of 120 nm was deposited on a glass substrate (manufactured by Geomatic Corporation; an electron beam film-formed product; sheet resistance of 15Ω) using a normal photolithography technique and hydrochloric acid etching. Two
The anode 2 was formed by patterning into a stripe having a width of mm. The patterned ITO substrate is cleaned by ultrasonic cleaning with acetone, water cleaning with pure water, and ultrasonic cleaning with isopropyl alcohol, and then dried by nitrogen blowing.
Finally, ultraviolet ozone cleaning was performed.

【0090】このITOガラス基板上に、芳香族ジアミ
ン含有ポリエーテル(表1の番号(I−1)に示す繰り
返し単位100%からなる)とDDQとの混合物を実験
例2と同一条件でスピンコートし、27nmの膜厚の均一な
薄膜形状を有する正孔注入層3を形成した。
On this ITO glass substrate, a mixture of an aromatic diamine-containing polyether (consisting of 100% of the repeating unit shown in the number (I-1) in Table 1) and DDQ was spin-coated under the same conditions as in Experimental Example 2. Then, a hole injection layer 3 having a uniform thin film shape with a thickness of 27 nm was formed.

【0091】次に、上記正孔注入層3を塗布成膜した基
板1を真空蒸着装置内に設置した。上記装置の粗排気を
油回転ポンプにより行った後、装置内の真空度が2×10
-6Torr(約2.7×10-4Pa)以下になるまで液体窒素トラ
ップを備えた油拡散ポンプを用いて排気した。上記装置
内に配置されたセラミックるつぼに入れた下記構造式で
示される芳香族アミン化合物:4,4'-ビス[N-(1-ナフ
チル)-N-フェニルアミノ]ビフェニルを加熱して蒸着
を行った。蒸着時の真空度は1.3×10-6Torr(約1.7×10
-4Pa)、蒸着速度は0.3nm/秒で、膜厚60nmの膜をポリエ
ーテルからなる正孔注入層3の上に積層して正孔輸送層
4を完成させた。
Next, the substrate 1 on which the hole injection layer 3 was applied and formed was set in a vacuum evaporation apparatus. After rough exhaust of the above device was performed by an oil rotary pump, the degree of vacuum in the device was 2 × 10
Evacuation was performed using an oil diffusion pump equipped with a liquid nitrogen trap until the pressure became -6 Torr (about 2.7 × 10 -4 Pa) or less. An aromatic amine compound represented by the following structural formula: 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl, which is placed in a ceramic crucible placed in the above apparatus, is heated for vapor deposition. went. The degree of vacuum during vapor deposition is 1.3 × 10 −6 Torr (about 1.7 × 10
-4 Pa), a deposition rate of 0.3 nm / sec, and a film having a thickness of 60 nm was laminated on the hole injection layer 3 made of polyether to complete the hole transport layer 4.

【0092】[0092]

【化16】 Embedded image

【0093】引続き、発光層5の材料として、下記構造
式で示されるアルミニウムの8−ヒドロキシキノリン錯
体:Al(C96NO)3を正孔輸送層4と同様にして
蒸着を行った。この時のアルミニウムの8−ヒドロキシ
キノリン錯体のるつぼ温度は275〜285℃の範囲で制御
し、蒸着時の真空度は1.1×10-6Torr(約1.5×10-4P
a)、蒸着速度は0.4nm/秒で、蒸着された発光層の膜厚
は75nmであった。
Subsequently, as a material for the light emitting layer 5, aluminum 8-hydroxyquinoline complex represented by the following structural formula: Al (C 9 H 6 NO) 3 was deposited in the same manner as the hole transport layer 4. At this time, the crucible temperature of the aluminum 8-hydroxyquinoline complex was controlled in the range of 275 to 285 ° C., and the degree of vacuum at the time of vapor deposition was 1.1 × 10 −6 Torr (about 1.5 × 10 −4 P).
a), the deposition rate was 0.4 nm / sec, and the thickness of the deposited light emitting layer was 75 nm.

【0094】[0094]

【化17】 Embedded image

【0095】なお、上記の正孔輸送層4及び発光層5を
真空蒸着する時の基板温度は室温に保持した。
The substrate temperature during the vacuum deposition of the hole transport layer 4 and the light emitting layer 5 was kept at room temperature.

【0096】ここで、発光層5までの蒸着を行った素子
を一度前記真空蒸着装置内より大気中に取り出して、陰
極蒸着用のマスクとして 2mm幅のストライプ状シャドー
マスクを、陽極2のITOストライプとは直交するよう
に素子に密着させて、別の真空蒸着装置内に設置して有
機層と同様にして装置内の真空度が2×10-6Torr(約2.7
×10-4Pa)以下になるまで排気した。その後、陰極7と
して、まず、フッ化マグネシウム(MgF2)をモリブ
デンボートを用いて、蒸着速度0.1nm/秒、真空度7.0×
10-6Torr(約9.3×10-4Pa)で、 0.5nmの膜厚で発光層
5の上に成膜した。次に、アルミニウムを同様にモリブ
デンボートにより加熱して、蒸着速度0.5nm/秒、真空度
1×10-5Torr(約1.3×10-3Pa)で膜厚40nmのアルミニウ
ム層を形成した。さらに、その上に、陰極の導電性を高
めるために銅を、同様にモリブデンボートにより加熱し
て、蒸着速度0.5nm/秒、真空度1×10-5Torr(約1.3×10
-3Pa)で膜厚40nmの銅層を形成して陰極7を完成させ
た。以上の3層型陰極7の蒸着時の基板温度は室温に保
持した。
Here, the element on which the light-emitting layer 5 was deposited was once taken out of the vacuum deposition apparatus into the atmosphere, and a 2 mm-wide stripe-shaped shadow mask was used as a cathode deposition mask, and the ITO stripe of the anode 2 was used. In close contact with the element so as to be orthogonal to the device, it is placed in another vacuum deposition apparatus and the degree of vacuum in the apparatus is set to 2 × 10 −6 Torr (about 2.7
(× 10 −4 Pa) or less. Then, as a cathode 7, first, magnesium fluoride (MgF 2 ) was deposited using a molybdenum boat at a deposition rate of 0.1 nm / sec and a degree of vacuum of 7.0 ×.
A film was formed on the light emitting layer 5 at 10 −6 Torr (about 9.3 × 10 −4 Pa) with a thickness of 0.5 nm. Next, the aluminum was similarly heated by a molybdenum boat, and the deposition rate was 0.5 nm / sec.
An aluminum layer having a thickness of 40 nm was formed at 1 × 10 −5 Torr (about 1.3 × 10 −3 Pa). Further, copper is further heated thereon by a molybdenum boat in order to increase the conductivity of the cathode, and the deposition rate is 0.5 nm / sec, the degree of vacuum is 1 × 10 −5 Torr (about 1.3 × 10 5 Torr).
A negative electrode 7 was completed by forming a copper layer having a thickness of 40 nm at -3 Pa). The substrate temperature during the deposition of the three-layer cathode 7 was kept at room temperature.

【0097】以上のようにして、2mmx×2mmのサイズの
発光面積部分を有する有機電界発光素子が得られた。こ
の素子の発光特性を表7に示す。表7において、発光輝
度は250mA/cm2の電流密度での値、発光効率は 100cd/
m2での値、輝度/電流は輝度−電流密度特性の傾きを、
電圧は 100cd/m2での値を各々示す。
As described above, an organic electroluminescent device having a light emitting area of 2 mm × 2 mm was obtained. Table 7 shows the emission characteristics of this device. In Table 7, the emission luminance is a value at a current density of 250 mA / cm 2 , and the emission efficiency is 100 cd / cm 2.
The slope of the current density characteristic, - the value of m 2, and the luminance / current intensity
The voltage shows a value at 100 cd / m 2 .

【0098】表7より、低電圧で高輝度かつ高発光効率
で発光する素子が得られたことが明らかである。
From Table 7, it is clear that an element which emits light with high luminance and high luminous efficiency at a low voltage was obtained.

【0099】実施例2 DDQの代わりにTBPAH(tris(4-bromophenyl)ami
nium hexachloroantimonate)を用いた他は、実施例1
と同様にして図2に示す構造を有する有機電界発光素子
を作製した。正孔注入層3に含まれるTBPAHの量は
14重量%とした。この素子の発光特性を表7に示す。
Example 2 TBPAH (tris (4-bromophenyl) amido was used instead of DDQ)
Example 1 except that nium hexachloroantimonate) was used.
An organic electroluminescent device having the structure shown in FIG. The amount of TBPAH contained in the hole injection layer 3 is
It was 14% by weight. Table 7 shows the emission characteristics of this device.

【0100】表7より、駆動電圧の低下が達成され、高
輝度、高効率の素子が得られたことが明らかである。
It is apparent from Table 7 that the drive voltage was reduced and a device with high luminance and high efficiency was obtained.

【0101】実施例3 正孔注入層を芳香族ジアミン含有ポリエーテル(表3の
番号(I−23)に示す繰り返し単位100%からなる)
に電子受容性化合物としてTBPAHを9重量%ドープして膜
厚40nmで形成したこと以外は実施例2と同様にして有機
電界発光素子を作製した。この素子の発光特性を表7に
示す。
Example 3 The hole injecting layer was made of an aromatic diamine-containing polyether (consisting of 100% of the repeating unit shown in Table 3 by number (I-23)).
An organic electroluminescent device was produced in the same manner as in Example 2 except that the film was formed to a thickness of 40 nm by doping 9% by weight of TBPAH as an electron accepting compound. Table 7 shows the emission characteristics of this device.

【0102】表7より、駆動電圧の低下が達成され、高
輝度、高効率の素子が得られたことが明らかである。
It is apparent from Table 7 that the drive voltage was reduced and a device with high luminance and high efficiency was obtained.

【0103】比較例1 電子受容性化合物を用いないで正孔注入層3を形成した
他は、実施例1と同様にして素子を作製した。この素子
の発光特性を表7に示す。
Comparative Example 1 A device was produced in the same manner as in Example 1, except that the hole injection layer 3 was formed without using an electron accepting compound. Table 7 shows the emission characteristics of this device.

【0104】比較例2 正孔注入層を設けない他は、実施例1と同様にして素子
を作製した。この素子の発光特性を表7に示す。
Comparative Example 2 An element was fabricated in the same manner as in Example 1 except that no hole injection layer was provided. Table 7 shows the emission characteristics of this device.

【0105】[0105]

【表7】 [Table 7]

【0106】[0106]

【発明の効果】以上詳述した通り、特定の芳香族ジアミ
ン含有ポリエーテルと電子受容性化合物とを含有する正
孔注入層を形成した本発明の有機電界発光素子によれ
ば、低電圧での高発光効率駆動が可能で、しかも耐熱性
が良好な素子が提供される。
As described in detail above, according to the organic electroluminescent device of the present invention in which a hole injection layer containing a specific aromatic diamine-containing polyether and an electron-accepting compound is formed, low-voltage operation is possible. An element which can be driven with high luminous efficiency and has good heat resistance is provided.

【0107】従って、本発明による有機電界発光素子
は、フラットパネル・ディスプレイ(例えばOAコンピ
ュータ用や壁掛けテレビ)や面発光体としての特徴を生
かした光源(例えば、複写機の光源、液晶ディスプレイ
や計器類のバックライト光源)、表示板、標識灯への応
用が考えられ、特に、高耐熱性が要求される車載用表示
素子として、その技術的価値は大きいものである。
Accordingly, the organic electroluminescent device according to the present invention can be used as a light source (for example, a light source of a copier, a liquid crystal display, or an instrument) utilizing the characteristics of a flat panel display (for example, for an OA computer or a wall-mounted television) or a surface light emitter. It can be applied to various types of backlight light sources, display boards, and marker lights, and has a great technical value particularly as a display element for vehicles that requires high heat resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機電界発光素子の実施の形態の一例
を示す模式的な断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of an organic electroluminescent device of the present invention.

【図2】本発明の有機電界発光素子の実施の形態の他の
例を示す模式的な断面図である。
FIG. 2 is a schematic sectional view showing another example of the embodiment of the organic electroluminescent device of the present invention.

【図3】本発明の有機電界発光素子の実施の形態の別の
例を示す模式的な断面図である。
FIG. 3 is a schematic sectional view showing another example of the embodiment of the organic electroluminescent device of the present invention.

【図4】イオン化ポテンシャルと電子親和力の関係を示
したエネルギー準位図である。
FIG. 4 is an energy level diagram showing the relationship between ionization potential and electron affinity.

【図5】実験例2及び比較実験例1で形成した薄膜の可
視部分における透過スペクトルを示すグラフである。
FIG. 5 is a graph showing transmission spectra in the visible part of the thin films formed in Experimental Example 2 and Comparative Experimental Example 1.

【符号の説明】[Explanation of symbols]

1 基板 2 陽極 3 正孔注入層 4 正孔輸送層 5 発光層 6 電子輸送層 7 陰極 Reference Signs List 1 substrate 2 anode 3 hole injection layer 4 hole transport layer 5 light emitting layer 6 electron transport layer 7 cathode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08K 5/55 C08K 5/55 C08L 71/00 C08L 71/00 H05B 33/14 H05B 33/14 A // C09K 11/06 680 C09K 11/06 680 (72)発明者 緒方 朋行 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08K 5/55 C08K 5/55 C08L 71/00 C08L 71/00 H05B 33/14 H05B 33/14 A // C09K 11/06 680 C09K 11/06 680 (72) Inventor: Tomoyuki Ogata 1000 Kamoshida-cho, Aoba-ku, Aoba-ku, Yokohama-shi, Kanagawa Pref.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、陽極及び陰極により挟持され
た発光層が形成されると共に、該発光層と陽極との間に
正孔注入層が形成された有機電界発光素子において、該
正孔注入層が、下記一般式(I)または(II)で表わさ
れる繰り返し単位を有し、かつ、重量平均分子量が1,00
0〜1,000,000である芳香族ジアミン含有ポリエーテル
と、電子受容性化合物とを含有することを特徴とする有
機電界発光素子。 【化1】 【化2】 (式中、Ar1,Ar2,Ar3,Ar4,Ar5,Ar6,Ar7
Ar8,Ar9は、各々独立して置換基を有していてもよい
2価の芳香族環残基を示し、R1,R2,R3,R4は置換
基を有していてもよい芳香族環基または芳香族複素環基
を示し、X及びYは直接結合、または下記の連結基から
選ばれる。) 【化3】 (式中、R′は置換基を有していてもよいアルキレン基
を示し、R″はアルキル基または置換基を有していても
よい芳香族環基を示す。)
1. An organic electroluminescent device having a light emitting layer sandwiched between an anode and a cathode formed on a substrate and a hole injection layer formed between the light emitting layer and the anode. The injection layer has a repeating unit represented by the following general formula (I) or (II), and has a weight average molecular weight of 1,00
An organic electroluminescent device comprising an aromatic diamine-containing polyether of 0 to 1,000,000 and an electron-accepting compound. Embedded image Embedded image (Where Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 ,
Ar 8 and Ar 9 each independently represent a divalent aromatic ring residue which may have a substituent, and R 1 , R 2 , R 3 and R 4 each have a substituent. And X and Y are selected from the group consisting of a direct bond and the following linking groups. ) (In the formula, R ′ represents an alkylene group which may have a substituent, and R ″ represents an alkyl group or an aromatic ring group which may have a substituent.)
【請求項2】 前記芳香族ジアミン含有ポリエーテルの
イオン化ポテンシャルから前記電子受容性化合物の電子
親和力を引いた値が0.7eV以下であり、前記正孔注入
層中の該電子受容性化合物の含有量が、該芳香族ジアミ
ン含有ポリエーテルに対して0.1〜50重量%の範囲であ
ることを特徴とする請求項1に記載の有機電界発光素
子。
2. The value obtained by subtracting the electron affinity of the electron-accepting compound from the ionization potential of the aromatic diamine-containing polyether is 0.7 eV or less, and the content of the electron-accepting compound in the hole injection layer. The organic electroluminescent device according to claim 1, wherein the content is in the range of 0.1 to 50% by weight based on the aromatic diamine-containing polyether.
【請求項3】 前記電子受容性化合物が、下記一般式
(III)で表される化合物の少なくとも1種であること
を特徴とする請求項1または2に記載の有機電界発光素
子。 【化4】 (式中、Zはハロゲン原子を示し、R5は水素原子、ハ
ロゲン原子、置換基を有していてもよいアルキル基、シ
アノ基またはニトロ基を示す。)
3. The organic electroluminescent device according to claim 1, wherein the electron accepting compound is at least one compound represented by the following general formula (III). Embedded image (In the formula, Z represents a halogen atom, and R 5 represents a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, a cyano group or a nitro group.)
【請求項4】 前記電子受容性化合物が、下記化合物群
から選ばれる少なくとも1種であることを特徴とする請
求項1または2に記載の有機電界発光素子。 【化5】
4. The organic electroluminescent device according to claim 1, wherein the electron accepting compound is at least one selected from the following compound group. Embedded image
JP12884199A 1998-05-13 1999-05-10 Organic electroluminescence device Expired - Lifetime JP4058842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12884199A JP4058842B2 (en) 1998-05-13 1999-05-10 Organic electroluminescence device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP13033998 1998-05-13
JP10-130339 1998-05-13
JP12884199A JP4058842B2 (en) 1998-05-13 1999-05-10 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2000036390A true JP2000036390A (en) 2000-02-02
JP4058842B2 JP4058842B2 (en) 2008-03-12

Family

ID=26464416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12884199A Expired - Lifetime JP4058842B2 (en) 1998-05-13 1999-05-10 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP4058842B2 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001067823A1 (en) * 2000-03-06 2001-09-13 Mitsubishi Chemical Corporation Organic electroluminescent element and photosensitive polymer
JP2001267081A (en) * 2000-03-16 2001-09-28 Matsushita Electric Ind Co Ltd Organic electroluminescence element
WO2005042621A1 (en) 2003-10-30 2005-05-12 Nissan Chemical Industries, Ltd. Charge-transporting compound, charge-transporting material, charge-transporting varnish, charge-transporting thin film, and organic electroluminescent device
JP2005183078A (en) * 2003-12-17 2005-07-07 Asahi Glass Co Ltd Organic el display device and manufacturing method of same
JP2006041020A (en) * 2004-07-23 2006-02-09 Konica Minolta Holdings Inc Organic electro-luminescence element, display device, and lighting device
JP2006156997A (en) * 2004-11-05 2006-06-15 Semiconductor Energy Lab Co Ltd Light emitting element and luminous unit using it
WO2006062062A1 (en) 2004-12-10 2006-06-15 Pioneer Corporation Organic compound, charge-transporting material, and organic electroluminescent element
JP2006233162A (en) * 2004-03-11 2006-09-07 Mitsubishi Chemicals Corp Composition for charge transport membrane and ionic compound, charge transport membrane and organic electroluminescent device each using the same, and method for producing the device and method for producing the membrane
JP2006352095A (en) * 2005-05-20 2006-12-28 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and electronic apparatus
US7202840B2 (en) 2002-12-02 2007-04-10 Optrex Corporation Method for driving an organic electroluminescent display device
JP2007169606A (en) * 2005-11-22 2007-07-05 Mitsubishi Chemicals Corp Polymer compound, polymer composition, organic thin film and organic electroluminescent element
US7358660B2 (en) 2002-05-01 2008-04-15 Nissan Chemical Industries, Ltd. Organic electroluminescence device and material thereof
JP2009132913A (en) * 2007-11-08 2009-06-18 Mitsubishi Chemicals Corp Macromolecular compound, polymer composition, and organic electroluminescent element
JP2009132912A (en) * 2007-11-08 2009-06-18 Mitsubishi Chemicals Corp Polymer compound, polymer composition, and organic electroluminescent element
WO2009084268A1 (en) * 2007-12-28 2009-07-09 Idemitsu Kosan Co., Ltd. Aromatic amine derivatives and organic electroluminescent device employing these
JP2009218424A (en) * 2008-03-11 2009-09-24 Dainippon Printing Co Ltd Organic device
WO2009133907A1 (en) 2008-04-28 2009-11-05 大日本印刷株式会社 Device having hole injection transport layer, method for production thereof, and ink for formation of hole injection transport layer
WO2009133903A1 (en) 2008-04-28 2009-11-05 大日本印刷株式会社 Device having hole injection/transport layer, method for manufacturing the same, and ink for forming hole injection/transport layer
US7879461B2 (en) 2004-03-11 2011-02-01 Mitsubishi Chemical Corporation Composition for charge-transporting film and ion compound, charge-transporting film and organic electroluminescent device using same, and method for manufacturing organic electroluminescent device and method for producing charge-transporting film
WO2011052645A1 (en) 2009-10-27 2011-05-05 大日本印刷株式会社 Nanoparticle containing transition metal compound, method for producing same, ink for hole injection/transport layer, device having hole injection/transport layer, and method for producing same
JP2011176355A (en) * 2004-11-05 2011-09-08 Semiconductor Energy Lab Co Ltd Light emitting element, light emitting device, electronic apparatus, and illumination apparatus
US8053973B2 (en) 2005-02-15 2011-11-08 Pioneer Corporation Film forming composition and organic electroluminescent device
US8227097B2 (en) 2005-05-20 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
KR20120100893A (en) 2009-10-27 2012-09-12 다이니폰 인사츠 가부시키가이샤 Device having hole injection/transport layer, method for producing same, and ink for forming hole injection/transport layer
WO2013061720A1 (en) 2011-10-25 2013-05-02 大日本印刷株式会社 Material for positive hole injection transport layer, ink for positive hole injection transport layer, device, and production methods for same
EP2592905A1 (en) 2003-07-31 2013-05-15 Mitsubishi Chemical Corporation Compound, charge transporting material and organic electroluminescent element
WO2013081031A1 (en) * 2011-11-30 2013-06-06 日立化成株式会社 Organic electronic material, ink composition, and organic electronic element
US9045613B2 (en) 2005-05-20 2015-06-02 Sumitomo Chemical Company, Limited Polymer composition and polymer light-emitting device using same
WO2015087961A1 (en) 2013-12-12 2015-06-18 三菱化学株式会社 Iridium complex compound, method for producing said compound, composition containing said compound, organic electroluminescent element, display device, and lighting device
US9644048B2 (en) 2009-10-27 2017-05-09 Samsung Electronics Co., Ltd Composition for anode buffer layer, high-molecular weight compound for anode buffer layer, organic electroluminescence element, and production process and uses of the same
WO2017188023A1 (en) 2016-04-28 2017-11-02 日立化成株式会社 Charge transport material and utilization thereof
WO2018070460A1 (en) 2016-10-13 2018-04-19 日立化成株式会社 Organic electronics material, ink composition, and organic electronics element
WO2018084009A1 (en) 2016-11-07 2018-05-11 日立化成株式会社 Organic electronics material, organic layer, organic electronics element, organic electroluminescence element, display element, illumination device, and display device
WO2018139487A1 (en) 2017-01-26 2018-08-02 日立化成株式会社 Organic electronics material, ink composition, organic layer, organic electronics element, organic electroluminescence element, display element, illumination device, and display device
WO2018143467A1 (en) 2017-02-06 2018-08-09 日立化成株式会社 Branched polymer manufacturing method, branched polymer, and organic electronic element
WO2018143471A1 (en) 2017-02-06 2018-08-09 日立化成株式会社 Branched polymer manufacturing method, branched polymer, and organic electronic element
WO2018143438A1 (en) 2017-02-03 2018-08-09 日立化成株式会社 Organic electronics material and use thereof
WO2018147114A1 (en) 2017-02-08 2018-08-16 日立化成株式会社 Charge-transporting material and utilization thereof
WO2018146779A1 (en) 2017-02-09 2018-08-16 日立化成株式会社 Organic electronics material, organic electronics element, and organic electroluminescent element
WO2018159694A1 (en) 2017-03-02 2018-09-07 日立化成株式会社 Organic electronic material and use of same
WO2018180485A1 (en) 2017-03-29 2018-10-04 日立化成株式会社 Charge transport material and use of same
WO2019009327A1 (en) 2017-07-04 2019-01-10 日立化成株式会社 Organic electronics material and organic electronics element
DE112017002037T5 (en) 2016-04-15 2019-02-21 Hitachi Chemical Company, Ltd. CHARGE TRANSPORT MATERIAL, INK COMPOSITION USING THE MATERIAL, ORGANIC ELECTRONIC ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE
WO2019098356A1 (en) 2017-11-20 2019-05-23 日立化成株式会社 Method for producing organic thin film, organic thin film, and use thereof
DE112017004204T5 (en) 2016-08-25 2019-05-29 Hitachi Chemical Company, Ltd. CHARGE TRANSPORT MATERIAL, INK COMPOSITION AND ORGANIC ELECTRONIC ELEMENT
WO2020065926A1 (en) 2018-09-28 2020-04-02 日立化成株式会社 Organic electronic material and use thereof
US10840452B2 (en) 2016-01-08 2020-11-17 Hitachi Chemical Company, Ltd. Organic electronic material including charge transport polymer or oligomer having structural unit containing aromatic amine structure substituted with fluorine atom, organic electronic element, and organic electroluminescent element
US10868252B2 (en) 2015-09-10 2020-12-15 Showa Denko Materials Co., Ltd. Organic electronics material and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101335155B1 (en) 2009-06-01 2013-12-02 히타치가세이가부시끼가이샤 Organic electronic material, ink composition containing same, and organic thin film, organic electronic element, organic electroluminescent element, lighting device, and display device formed therewith

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001067823A1 (en) * 2000-03-06 2001-09-13 Mitsubishi Chemical Corporation Organic electroluminescent element and photosensitive polymer
JP2001267081A (en) * 2000-03-16 2001-09-28 Matsushita Electric Ind Co Ltd Organic electroluminescence element
US7358660B2 (en) 2002-05-01 2008-04-15 Nissan Chemical Industries, Ltd. Organic electroluminescence device and material thereof
US7202840B2 (en) 2002-12-02 2007-04-10 Optrex Corporation Method for driving an organic electroluminescent display device
EP2592905A1 (en) 2003-07-31 2013-05-15 Mitsubishi Chemical Corporation Compound, charge transporting material and organic electroluminescent element
WO2005042621A1 (en) 2003-10-30 2005-05-12 Nissan Chemical Industries, Ltd. Charge-transporting compound, charge-transporting material, charge-transporting varnish, charge-transporting thin film, and organic electroluminescent device
US7737248B2 (en) 2003-10-30 2010-06-15 Nissan Chemical Industries, Ltd. Charge-transporting compound, charge-transporting material, charge-transporting varnish, charge-transporting thin film, and organic electroluminescent device
JP2005183078A (en) * 2003-12-17 2005-07-07 Asahi Glass Co Ltd Organic el display device and manufacturing method of same
JP4692025B2 (en) * 2004-03-11 2011-06-01 三菱化学株式会社 Charge transport film composition and ionic compound, charge transport film and organic electroluminescent device using the same, method for producing organic electroluminescent device, and method for producing charge transport film
JP2006233162A (en) * 2004-03-11 2006-09-07 Mitsubishi Chemicals Corp Composition for charge transport membrane and ionic compound, charge transport membrane and organic electroluminescent device each using the same, and method for producing the device and method for producing the membrane
US8252432B2 (en) 2004-03-11 2012-08-28 Mitsubishi Chemical Corporation Composition for charge-transporting film and ion compound, charge-transporting film and organic electroluminescent device using same, and method for manufacturing organic electroluminescent device and method for producing charge-transporting film
US7879461B2 (en) 2004-03-11 2011-02-01 Mitsubishi Chemical Corporation Composition for charge-transporting film and ion compound, charge-transporting film and organic electroluminescent device using same, and method for manufacturing organic electroluminescent device and method for producing charge-transporting film
JP2006041020A (en) * 2004-07-23 2006-02-09 Konica Minolta Holdings Inc Organic electro-luminescence element, display device, and lighting device
JP2006156997A (en) * 2004-11-05 2006-06-15 Semiconductor Energy Lab Co Ltd Light emitting element and luminous unit using it
US8207555B2 (en) 2004-11-05 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light emitting device using the same
JP2011176355A (en) * 2004-11-05 2011-09-08 Semiconductor Energy Lab Co Ltd Light emitting element, light emitting device, electronic apparatus, and illumination apparatus
US8338196B2 (en) 2004-11-05 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light emitting device using the same
WO2006062062A1 (en) 2004-12-10 2006-06-15 Pioneer Corporation Organic compound, charge-transporting material, and organic electroluminescent element
US8053973B2 (en) 2005-02-15 2011-11-08 Pioneer Corporation Film forming composition and organic electroluminescent device
JP2006352095A (en) * 2005-05-20 2006-12-28 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and electronic apparatus
US9045613B2 (en) 2005-05-20 2015-06-02 Sumitomo Chemical Company, Limited Polymer composition and polymer light-emitting device using same
US8445121B2 (en) 2005-05-20 2013-05-21 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US8227097B2 (en) 2005-05-20 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
JP2007169606A (en) * 2005-11-22 2007-07-05 Mitsubishi Chemicals Corp Polymer compound, polymer composition, organic thin film and organic electroluminescent element
JP2009132912A (en) * 2007-11-08 2009-06-18 Mitsubishi Chemicals Corp Polymer compound, polymer composition, and organic electroluminescent element
JP2009132913A (en) * 2007-11-08 2009-06-18 Mitsubishi Chemicals Corp Macromolecular compound, polymer composition, and organic electroluminescent element
WO2009084268A1 (en) * 2007-12-28 2009-07-09 Idemitsu Kosan Co., Ltd. Aromatic amine derivatives and organic electroluminescent device employing these
JP2009218424A (en) * 2008-03-11 2009-09-24 Dainippon Printing Co Ltd Organic device
US8778233B2 (en) 2008-04-28 2014-07-15 Dai Nippon Printing Co., Ltd. Device comprising positive hole injection transport layer, method for producing the same and ink for forming positive hole injection transport layer
WO2009133903A1 (en) 2008-04-28 2009-11-05 大日本印刷株式会社 Device having hole injection/transport layer, method for manufacturing the same, and ink for forming hole injection/transport layer
WO2009133907A1 (en) 2008-04-28 2009-11-05 大日本印刷株式会社 Device having hole injection transport layer, method for production thereof, and ink for formation of hole injection transport layer
US8860009B2 (en) 2008-04-28 2014-10-14 Dai Nippon Printing Co., Ltd. Device comprising positive hole injection transport layer, method for producing the same and ink for forming positive hole injection transport layer
US8785921B2 (en) 2008-04-28 2014-07-22 Dai Nippon Printing Co., Ltd. Device comprising positive hole injection transport layer, method for producing the same and ink for forming positive hole injection transport layer
US9644048B2 (en) 2009-10-27 2017-05-09 Samsung Electronics Co., Ltd Composition for anode buffer layer, high-molecular weight compound for anode buffer layer, organic electroluminescence element, and production process and uses of the same
US9391277B2 (en) 2009-10-27 2016-07-12 Dai Nippon Printing Co., Ltd. Device comprising positive hole injection transport layer, method for producing the same and ink for forming positive hole injection transport layer
KR101599575B1 (en) 2009-10-27 2016-03-03 다이니폰 인사츠 가부시키가이샤 Device having hole injection/transport layer, method for producing same, and ink for forming hole injection/transport layer
WO2011052645A1 (en) 2009-10-27 2011-05-05 大日本印刷株式会社 Nanoparticle containing transition metal compound, method for producing same, ink for hole injection/transport layer, device having hole injection/transport layer, and method for producing same
US8927099B2 (en) 2009-10-27 2015-01-06 Dai Nippon Printing Co., Ltd. Transition metal compound-containing nanoparticle and method for producing the same, ink for positive hole injection transport layer, device comprising positive hole injection transport layer and method for producing the same
KR20120100893A (en) 2009-10-27 2012-09-12 다이니폰 인사츠 가부시키가이샤 Device having hole injection/transport layer, method for producing same, and ink for forming hole injection/transport layer
US9130176B2 (en) 2011-10-25 2015-09-08 Dai Nippon Printing Co., Ltd. Material for hole injection transport layers, ink for forming hole injection transport layers, device, and production methods thereof
WO2013061720A1 (en) 2011-10-25 2013-05-02 大日本印刷株式会社 Material for positive hole injection transport layer, ink for positive hole injection transport layer, device, and production methods for same
CN103959498A (en) * 2011-11-30 2014-07-30 日立化成株式会社 Organic electronic material, ink composition and organic electronic element
WO2013081031A1 (en) * 2011-11-30 2013-06-06 日立化成株式会社 Organic electronic material, ink composition, and organic electronic element
US9496509B2 (en) 2011-11-30 2016-11-15 Hitachi Chemical Company, Ltd. Organic electronic material, ink composition, and organic electronic element
WO2015087961A1 (en) 2013-12-12 2015-06-18 三菱化学株式会社 Iridium complex compound, method for producing said compound, composition containing said compound, organic electroluminescent element, display device, and lighting device
US10868252B2 (en) 2015-09-10 2020-12-15 Showa Denko Materials Co., Ltd. Organic electronics material and use thereof
US10840452B2 (en) 2016-01-08 2020-11-17 Hitachi Chemical Company, Ltd. Organic electronic material including charge transport polymer or oligomer having structural unit containing aromatic amine structure substituted with fluorine atom, organic electronic element, and organic electroluminescent element
DE112017002037T5 (en) 2016-04-15 2019-02-21 Hitachi Chemical Company, Ltd. CHARGE TRANSPORT MATERIAL, INK COMPOSITION USING THE MATERIAL, ORGANIC ELECTRONIC ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE
WO2017188023A1 (en) 2016-04-28 2017-11-02 日立化成株式会社 Charge transport material and utilization thereof
DE112017004204T5 (en) 2016-08-25 2019-05-29 Hitachi Chemical Company, Ltd. CHARGE TRANSPORT MATERIAL, INK COMPOSITION AND ORGANIC ELECTRONIC ELEMENT
WO2018070460A1 (en) 2016-10-13 2018-04-19 日立化成株式会社 Organic electronics material, ink composition, and organic electronics element
WO2018084009A1 (en) 2016-11-07 2018-05-11 日立化成株式会社 Organic electronics material, organic layer, organic electronics element, organic electroluminescence element, display element, illumination device, and display device
US11398604B2 (en) 2016-11-07 2022-07-26 Showa Denko Materials Co., Ltd. Organic electronic material, organic layer, organic electronic element, organic electroluminescent element, display element, illumination device, and display device
WO2018139487A1 (en) 2017-01-26 2018-08-02 日立化成株式会社 Organic electronics material, ink composition, organic layer, organic electronics element, organic electroluminescence element, display element, illumination device, and display device
WO2018143438A1 (en) 2017-02-03 2018-08-09 日立化成株式会社 Organic electronics material and use thereof
WO2018143471A1 (en) 2017-02-06 2018-08-09 日立化成株式会社 Branched polymer manufacturing method, branched polymer, and organic electronic element
WO2018143467A1 (en) 2017-02-06 2018-08-09 日立化成株式会社 Branched polymer manufacturing method, branched polymer, and organic electronic element
WO2018147114A1 (en) 2017-02-08 2018-08-16 日立化成株式会社 Charge-transporting material and utilization thereof
US11459462B2 (en) 2017-02-08 2022-10-04 Showa Denko Materials Co., Ltd. Charge-transport material and utilization thereof
WO2018146779A1 (en) 2017-02-09 2018-08-16 日立化成株式会社 Organic electronics material, organic electronics element, and organic electroluminescent element
WO2018159694A1 (en) 2017-03-02 2018-09-07 日立化成株式会社 Organic electronic material and use of same
US11508909B2 (en) 2017-03-02 2022-11-22 Showa Denko Materials Co., Ltd. Organic electronic material and use of same
WO2018180485A1 (en) 2017-03-29 2018-10-04 日立化成株式会社 Charge transport material and use of same
US11476421B2 (en) 2017-07-04 2022-10-18 Showa Denko Materials Co., Ltd. Organic electronics material and organic electronics element
WO2019009327A1 (en) 2017-07-04 2019-01-10 日立化成株式会社 Organic electronics material and organic electronics element
WO2019098356A1 (en) 2017-11-20 2019-05-23 日立化成株式会社 Method for producing organic thin film, organic thin film, and use thereof
WO2020065926A1 (en) 2018-09-28 2020-04-02 日立化成株式会社 Organic electronic material and use thereof

Also Published As

Publication number Publication date
JP4058842B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
JP4058842B2 (en) Organic electroluminescence device
JP4023204B2 (en) Organic electroluminescence device
JP3996036B2 (en) Aromatic diamine-containing polymer compound and organic electroluminescence device using the same
JP3972588B2 (en) Organic electroluminescence device
JP4186758B2 (en) Polymer compound, hole injecting / transporting material, organic electroluminescent device material and organic electroluminescent device
US20030006411A1 (en) Organic electroluminescent device
JPH11329734A (en) Organic electroluminescence element
JPH11242996A (en) Organic electroluminescent element
JP2002056985A (en) Organic electroluminescent element and manufacturing method of the same
JP2002100482A (en) Organic electroluminescence element
JP2002100478A (en) Organic electroluminescence element and its method of manufacture
JP2004002740A (en) Polymer compound, 1,4-phenylenediamine derivative, charge-transporting material, organic electroluminescent element material and organic electroluminescent element
JP2001223084A (en) Organic electric field light emitting element
JP3988539B2 (en) Organic electroluminescence device
JP2000150169A (en) Organic electroluminescence element
JP2003026641A (en) Binaphthyl compound, method for producing the same and organic electroluminescent element
JP4396115B2 (en) Polymer compound, 1,4-phenylenediamine derivative, charge transport material, organic electroluminescent element material, and organic electroluminescent element
JP3750315B2 (en) Organic electroluminescence device
JP4135411B2 (en) Asymmetric 1,4-phenylenediamine derivative and organic electroluminescence device using the same
JP4147621B2 (en) Organic electroluminescence device
JP4906810B2 (en) Organic electroluminescent device using benzopyrrole compound
JP4816687B2 (en) Composition for organic electroluminescent device, organic electroluminescent device, method for producing organic electroluminescent device, and storage method for composition for organic electroluminescent device
JP2004327166A (en) Organic el device and its manufacturing method
JPH11302639A (en) Organic electroluminescent element
JP2004158216A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term