JPH11304994A - Radiation shield - Google Patents

Radiation shield

Info

Publication number
JPH11304994A
JPH11304994A JP10113282A JP11328298A JPH11304994A JP H11304994 A JPH11304994 A JP H11304994A JP 10113282 A JP10113282 A JP 10113282A JP 11328298 A JP11328298 A JP 11328298A JP H11304994 A JPH11304994 A JP H11304994A
Authority
JP
Japan
Prior art keywords
lead
titanium hydride
shielding material
pressure
radiation shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10113282A
Other languages
Japanese (ja)
Inventor
Koji Tsuzuki
浩二 続木
Hiroaki Yanai
広明 谷内
Hiroshi Akamatsu
博史 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Kobe Steel Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Kobe Steel Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10113282A priority Critical patent/JPH11304994A/en
Publication of JPH11304994A publication Critical patent/JPH11304994A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to shield against both γ rays and neutron beams efficiently at the same time by making a one-layer and pressure-formed structure where a specific weight of a titanium hydride is uniformly scattered in lead. SOLUTION: This shield, where a titanium hydride of 30 to 35 wt.% is uniformly scattered in lead and a one-layer structure is pressure-formed, is provided with crushing strength of 100 kg/cm<2> or higher. On this occasion, the lead and the titanium hydride are used to shield against γ rays and a neutron beam respectively. The one-layer structure can efficiently shield against both 7 rays and neutrons at the same time by setting the weight of the titanium hydride to the lead at 30 to 50%. In this range, the ratio of a titanium hydride to lead can also be changed due to the quality of radioactive wastes. Since the volume of a titanium hydride whose specific gravity is low increases in this case, it is difficult to form the shield through a uniform mixture in a molten condition. For this reason, lead and a titanium hydride are evenly scattered by a powdered metal technique to form a one layer structure by pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放射性廃棄物を保
存したり、輸送したりするための容器材料に関し、具体
的には、放射性廃棄物などから放射されるガンマ線や中
性子線などを遮断しうる放射線遮蔽材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a container material for storing and transporting radioactive waste, and more specifically, it blocks gamma rays and neutron rays emitted from radioactive waste and the like. Radiation shielding material.

【0002】[0002]

【従来の技術】放射性廃棄物は、透過性の高いガンマ線
や、中性子線や、飛距離が短く、吸収断面積の大きなベ
ータ線や、アルファ線が放射されている。これらの放射
線の中で、保管上、輸送上問題となるのは、透過性の高
いガンマ線と中性子線である。
2. Description of the Related Art Radioactive waste emits highly transparent gamma rays, neutron rays, beta rays and alpha rays having a short flight distance and a large absorption cross section. Among these radiations, gamma rays and neutron rays with high transparency cause storage and transportation problems.

【0003】放射性廃棄物を保管したり輸送する容器で
は、ガンマ線や中性子線が容器外に漏洩することを防止
する必要がある。このため、容器をガンマ線遮蔽能力の
高い鉛と、中性子遮蔽能力の高い軽元素(特に水素)を
主成分とする有機物等とを組合わせて容器を組み立てて
いる。例えば、鉛の容器の外面にゴム、樹脂、エチレン
グリコール層などを設け、鉛をガンマ線遮蔽材とし、ゴ
ム層などを中性子線遮蔽材とする。
In containers for storing and transporting radioactive waste, it is necessary to prevent gamma rays and neutron rays from leaking out of the containers. For this reason, the container is assembled by combining lead having a high gamma ray shielding ability and an organic substance mainly containing a light element (particularly hydrogen) having a high neutron shielding ability. For example, a rubber, resin, ethylene glycol layer or the like is provided on the outer surface of a lead container, and lead is used as a gamma ray shielding material, and the rubber layer is used as a neutron ray shielding material.

【0004】しかし、これらの容器では、収納物の発熱
および放射線吸収に伴う発熱により、中性子線遮蔽材が
劣化したり、燃焼したりする危険がある。加えて輸送等
に伴い破損するおそれも高い。また、これらの構造で
は、容器側壁が厚くなるので、容器の内容積に制約を受
けることになる。
[0004] However, in these containers, there is a risk that the neutron shielding material may be deteriorated or burned due to the heat generated by the stored items and the heat generated by radiation absorption. In addition, there is a high possibility of damage due to transportation. Further, in these structures, since the side wall of the container is thick, the inner volume of the container is restricted.

【0005】[0005]

【発明が解決しようとする課題】以上のことからわかる
ように、耐熱性が高い材料を用いてガンマ線と中性子線
とを共に遮蔽する能力を有する遮蔽材が開発できれば、
発熱に伴う中性子遮蔽材の損傷のおそれもなく、運搬等
に伴う破損のおそれも少なくなる。加えて、従来の2層
構造を1層構造とすることができるため、容器の内容積
を実質的に増加させることができる。
As can be seen from the above, if a shielding material capable of shielding both gamma rays and neutron rays using a material having high heat resistance can be developed,
There is no risk of damage to the neutron shielding material due to heat generation, and there is less risk of damage due to transportation and the like. In addition, since the conventional two-layer structure can be replaced with a one-layer structure, the inner volume of the container can be substantially increased.

【0006】本発明はこの観点よりなされたものであ
り、1層構造でガンマ線と中性子線とを同時に効率よく
遮蔽できる放射線遮蔽材の提供を課題とする。
The present invention has been made from this viewpoint, and it is an object of the present invention to provide a radiation shielding material capable of simultaneously shielding gamma rays and neutron rays efficiently with a single-layer structure.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明の放射線遮蔽材は、鉛と水素化チタンとが均
一に分散された1層構造加圧成形体で、100kgf/
cm2 以上の圧壊強度を有する。
Means for Solving the Problems To solve the above problems, the radiation shielding material of the present invention is a single-layer press-formed body in which lead and titanium hydride are uniformly dispersed, and is 100 kgf / kg.
It has a crushing strength of not less than cm 2 .

【0008】また、別の態様では、本発明の放射線遮蔽
材は、鉛粉末に対して30〜50重量%の水素化チタン
粉末を該鉛粉末に混合し、鉛融点より未満であるが、2
50℃以上の温度に保ちながら加圧成形され、プレスの
変位曲線から推定される被成形体の密度が理論値の95
%より大きくなったものである。そして、好ましくは非
酸化雰囲気中で加圧成形したものである。
In another aspect, the radiation shielding material of the present invention is obtained by mixing 30 to 50% by weight of titanium hydride powder with respect to lead powder and mixing it with the lead powder.
It is molded under pressure while maintaining the temperature at 50 ° C. or higher, and the density of the molded object estimated from the displacement curve of the press is 95% of the theoretical value
%. Then, it is preferably formed by pressure molding in a non-oxidizing atmosphere.

【0009】また、別の態様では、本発明の放射線遮蔽
材は、鉛粉末と該鉛粉末に対して30〜50重量%とな
る水素化チタン粉末との混合物が加圧成形されて充填密
度が95%より大きくなったものである。加圧成形時の
圧力を300kgf/cm2以上、500kgf/cm
2 以下とし、非酸化雰囲気中あるいは不活性雰囲気中で
温度250〜300℃に保持して加圧成形されたもので
ある。
In another aspect, the radiation shielding material of the present invention is obtained by molding a mixture of lead powder and titanium hydride powder in an amount of 30 to 50% by weight with respect to the lead powder so that the packing density is reduced. It is larger than 95%. Pressure at the time of pressure molding is 300 kgf / cm 2 or more, 500 kgf / cm
The pressure molding is performed at a temperature of 250 to 300 ° C. in a non-oxidizing atmosphere or an inert atmosphere.

【0010】[0010]

【発明の実施の形態】本発明では、鉛はガンマ線を遮蔽
する目的で用い、水素化チタンは中性子線を遮蔽する目
的で用いる。水素化チタンに含まれる水素の中性子遮蔽
能力が大きいからである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, lead is used for shielding gamma rays, and titanium hydride is used for shielding neutron rays. This is because the neutron shielding ability of hydrogen contained in titanium hydride is large.

【0011】鉛に対する水素化チタンの量を重量で30
〜50%とすることにより、ガンマ線と中性子線とを効
率良く、同時に遮蔽できるが、この範囲内では、鉛と水
素化チタンの比を、収納する放射性廃棄物の質によって
変えられる。
The amount of titanium hydride to lead is 30 by weight.
By setting it to 5050%, gamma rays and neutron rays can be efficiently and simultaneously shielded, but within this range, the ratio of lead to titanium hydride can be changed depending on the quality of the radioactive waste to be stored.

【0012】なお、混合物と加圧成形体において、鉛と
水素化チタンの割合は本質的に変わらない。
The ratio of lead and titanium hydride in the mixture and the compact is essentially unchanged.

【0013】本発明の放射線遮蔽材は、粉末冶金手法で
鉛中と水素化チタンが均一に分散されたものである。一
般的に、2種あるいはそれ以上の物質を混合して所望形
状の成形体を作る場合には、粉末冶金手法ではなく、そ
れぞれの物質を熔融状態で均質に混合して鋳造すること
も考えられる。しかし、本発明の遮蔽材の原料である鉛
と水素化チタンとは比重、濡れ性、熔融軟化点等の特性
が極めて異なるため、熔融状態での混合は極めて困難で
ある。
The radiation shielding material of the present invention is obtained by uniformly dispersing lead and titanium hydride by powder metallurgy. In general, when two or more kinds of substances are mixed to form a molded body having a desired shape, it is conceivable that the respective substances are homogeneously mixed in a molten state and cast instead of the powder metallurgy technique. . However, lead, which is a raw material of the shielding material of the present invention, and titanium hydride have extremely different properties such as specific gravity, wettability, and melting softening point, and therefore, mixing in a molten state is extremely difficult.

【0014】本発明のように、水素化チタンを鉛に対し
て重量で30〜50%とする場合、水素化チタンの比重
が小さいから、容量としては水素化チタンの方が多くな
るため、溶融状態における均一混合による成形が困難で
ある。
When titanium hydride is used in an amount of 30 to 50% by weight with respect to lead as in the present invention, the specific gravity of titanium hydride is small, so that the capacity of titanium hydride is larger than that of lead. It is difficult to mold by uniform mixing in the state.

【0015】本発明の放射線遮蔽材は、粉末状態で、す
なわち、鉛粉末と水素化チタン粉末とを均一に混合した
後、好ましくは雰囲気調整可能な加熱容器内において、
加圧成形と熱処理とを行ったものである。しかし、粉末
冶金的な処理であっても、局部的に拡散を伴うなど焼結
作用が要求され、部分的に溶融状態になりうる。そし
て、本発明における鉛粉末と水素化チタンとでは軟化点
が違い過ぎ、一般的な粉末冶金手法では鉛と水素化チタ
ン相互間で強固な結合を得ることは難しい。
The radiation shielding material of the present invention is in a powder state, that is, after uniformly mixing lead powder and titanium hydride powder, preferably in a heating vessel whose atmosphere can be adjusted.
This is a result of pressure molding and heat treatment. However, even in the case of powder metallurgical processing, a sintering action is required, for example, accompanied by local diffusion, and a partial molten state may be obtained. And, the softening point is too different between the lead powder and titanium hydride in the present invention, and it is difficult to obtain a strong bond between lead and titanium hydride by a general powder metallurgy technique.

【0016】このために、本発明の放射線遮蔽材は、2
50〜300℃で加圧・保持したものである。これは、
融点の低い鉛を成形体内部で均一に分散させ、かつ一様
に連結させて鉛に成形体内部で骨材的な役割を持たせる
ようにするためである。
For this reason, the radiation shielding material of the present invention
Pressed and held at 50 to 300 ° C. this is,
This is because lead having a low melting point is uniformly dispersed inside the molded body and is uniformly connected so that lead has a role of an aggregate in the molded body.

【0017】温度が250℃より低いと、鉛の均一分散
が得られず、したがって、成形体の強度が得られず、脆
くなり、300℃以上になると、鉛が融解して鉛と水素
化チタンとが比重差により分離し、均一分散の成形体が
得られなかったり、あるいは鉛が型枠から漏れ出したり
する。さらに、300℃以上の温度では、鉛の温度が鉛
の融点(327.3℃)近傍であるため、用いる装置に
よっては鉛が酸化してしまい、良好な成形体が得られな
い場合がある。このような場合には、非酸化雰囲気中、
あるいは不活性ガス雰囲気中で成形加工することが好ま
しい。
If the temperature is lower than 250 ° C., uniform dispersion of lead cannot be obtained, so that the strength of the molded body cannot be obtained and the molded body becomes brittle. If the temperature exceeds 300 ° C., lead melts and lead and titanium hydride Are separated due to a difference in specific gravity, and a uniformly dispersed molded product cannot be obtained, or lead leaks out of the mold. Furthermore, at a temperature of 300 ° C. or higher, since the temperature of lead is near the melting point of lead (327.3 ° C.), lead may be oxidized depending on the apparatus used, and a good molded product may not be obtained. In such a case, in a non-oxidizing atmosphere,
Alternatively, the forming is preferably performed in an inert gas atmosphere.

【0018】本発明の放射線遮蔽材を得るには、鉛の融
点直下という極めて熔融の危険性が高い温度が必要とな
る。すなわち、拡散を伴う焼結(加圧成形)の終点の判
定が早すぎると、成形体内部での鉛の結合が不十分とな
って脆いものとなり、逆に判定が遅れた場合には、圧縮
による発熱作用などにより温度が鉛の融点に達してしま
い、水素化チタンが比重分離を起こしたり、あるいは鉛
が型枠から漏れだし、均一に分散した成形体が得られな
くなる。
In order to obtain the radiation shielding material of the present invention, it is necessary to use a temperature which is very low, just below the melting point of lead. That is, if the determination of the end point of sintering (pressure molding) involving diffusion is too early, the bonding of lead in the molded body becomes insufficient, resulting in brittleness. As a result, the temperature reaches the melting point of lead due to the exothermic effect of the lead, the titanium hydride causes a specific gravity separation, or the lead leaks out of the mold, and a uniformly dispersed molded product cannot be obtained.

【0019】本発明の放射線遮蔽材は、従来行われてい
た鉛の融点より100〜200℃程度低い温度での加圧
ではなく、鉛融点(327℃)より僅かに(80℃ま
で)下の温度、言い換えると250℃以上の温度に保ち
ながらの加圧を受けている。これにより、融点の低い鉛
が成形体内部で均一に分布され、かつ、一様に連結し、
鉛が成形体内部で骨材的な役割を行っている。
The radiation shielding material of the present invention is not pressurized at a temperature lower than the melting point of lead by about 100 to 200 ° C., but is slightly (up to 80 ° C.) below the lead melting point (327 ° C.). Pressure is applied while maintaining the temperature, in other words, the temperature of 250 ° C. or higher. Thereby, lead having a low melting point is uniformly distributed inside the molded body, and is uniformly connected,
Lead plays an aggregate role inside the compact.

【0020】また、加圧時の体積変位曲線から推定され
る被成形物の密度が理論値の95%以上となってから、
さらに10〜20分間、加圧を続けたものが好ましい。
これにより、鉛が上記骨材的役割を確実に果たすのであ
る。加圧成形の終了時の判定が早すぎると、成形体内部
での鉛の結合が不十分となり、脆い成形体しか得られ
ず、逆に判定が遅れると圧縮による発熱作用などにより
温度が上昇し、鉛が溶融して鉛と水素化チタンとが比重
差により分離し、相互が均一に分散した成形体が得られ
なくなったり、あるいは鉛が型枠から漏れだしたりす
る。
When the density of the molded object estimated from the volume displacement curve at the time of pressurization becomes 95% or more of the theoretical value,
It is preferable that the pressurization is continued for further 10 to 20 minutes.
This ensures that lead plays the role of the above-mentioned aggregate. If the judgment at the end of the pressure molding is too early, the bonding of lead inside the molded body becomes insufficient, and only a brittle molded body is obtained. Conversely, if the judgment is delayed, the temperature rises due to the heat generation effect due to compression. As a result, the lead melts and the lead and titanium hydride are separated due to the difference in specific gravity, so that a molded article in which the lead is uniformly dispersed cannot be obtained, or the lead leaks out of the mold.

【0021】本発明の放射線遮蔽材では、加圧成形の温
度が鉛の融点近傍であるため、用いる装置によっては鉛
が酸化してしまい、良好な成形体が得られない場合があ
る。このため、成形加工を非酸化性雰囲気、あるいは不
活性雰囲気中で行ったものが好ましい。
In the radiation shielding material of the present invention, since the temperature of the pressure molding is near the melting point of lead, lead may be oxidized depending on the equipment used, and a good molded body may not be obtained. Therefore, it is preferable that the molding is performed in a non-oxidizing atmosphere or an inert atmosphere.

【0022】本発明の放射線遮蔽材は、前述の温度範囲
内で1〜3時間保持したものが好ましいが、この保持時
間は、用いる鉛と水素化チタンの割合により影響され、
この保持時間は鉛と水素化チタンとの割合で適宜変更さ
れる。
It is preferable that the radiation shielding material of the present invention be kept in the above-mentioned temperature range for 1 to 3 hours, but this retention time is affected by the ratio of lead and titanium hydride used.
This retention time is appropriately changed by the ratio of lead and titanium hydride.

【0023】また、本発明の放射線遮蔽材は300kg
f/cm2 以上の圧力で加圧成形したものである。30
0kgf/cm2 未満では、充填密度が95%以上に高
くならないからである。なお、500kgf/cm2
超えると、圧力の増大に対して充填密度の向上は実質的
に得られない。
The radiation shielding material of the present invention has a weight of 300 kg.
It was molded under pressure at a pressure of f / cm 2 or more. 30
If it is less than 0 kgf / cm 2 , the packing density does not increase to 95% or more. If the pressure exceeds 500 kgf / cm 2 , the packing density cannot be substantially improved with an increase in pressure.

【0024】以下、体積変位曲線を用いた加圧成形終了
の判定に関し、図を用いてさらに説明する。
Hereinafter, the determination of the end of pressure forming using the volume displacement curve will be further described with reference to the drawings.

【0025】図1、2は成形加工時の体積変位を示した
グラフであり、A点が加圧開始時点である。図1の体積
変位の履歴でわかるように、加圧開始後一旦急速に圧縮
が進み、その後徐々に圧縮が進み、1時間経過時点でほ
ぼ圧縮は限界となっている。すなわち、この条件下での
圧縮限界である。
FIGS. 1 and 2 are graphs showing the volume displacement at the time of forming, wherein point A is the time of starting pressurization. As can be seen from the history of the volume displacement shown in FIG. 1, the compression rapidly advances once after the start of the pressurization, and then the compression gradually progresses. That is, the compression limit under this condition.

【0026】図2は圧縮限界となった後も保持を継続し
た場合を示すグラフであり、B点で温度が鉛の融点に達
してしまい、鉛が型枠から漏れだしたものである。ここ
で、図1より延長した保持時間は20分程度である。
FIG. 2 is a graph showing the case where the holding is continued even after the compression limit is reached. At the point B, the temperature reaches the melting point of lead, and the lead leaks out of the mold. Here, the holding time extended from FIG. 1 is about 20 minutes.

【0027】図1、2より、理論計算から推定される変
位変化幅に近づいた時、すなわち圧縮限界に近づいた
後、終点判定が遅れてしまうと成形失敗となることは明
らかである。
It is clear from FIGS. 1 and 2 that when the displacement change width approached from the theoretical calculation approaches, that is, after approaching the compression limit, if the end point determination is delayed, molding fails.

【0028】このようにして得た成形体の圧壊強度は、
図1の条件で得られたもので100kgf/cm2 以上
となった。
The crushing strength of the thus obtained molded product is as follows:
It was 100 kgf / cm 2 or more obtained under the conditions of FIG.

【0029】なお、圧壊強度の測定は、次のように行っ
た。
The measurement of the crushing strength was performed as follows.

【0030】すなわち、得られた成形体を輪切りにした
直径30mm、厚さ10mmの試験片に、油圧プレスで
加重をかけ、破壊したときの加重から、そのときの単位
面積当たりの加重を求めて、圧壊強度値とした。
That is, a test piece having a diameter of 30 mm and a thickness of 10 mm obtained by cutting the obtained molded body into a slice was loaded with a hydraulic press, and the load per unit area at that time was determined from the load at the time of breaking. And crushing strength value.

【0031】強度測定値決定に当たっては、50mmの
円筒型サンプルの上下端、および中央部の3点について
測定し、3点の平均値を代表値とした。
In determining the strength measurement value, three points were measured at the upper and lower ends and at the center of a 50 mm cylindrical sample, and the average value of the three points was used as a representative value.

【0032】また、充填密度の測定は、理論密度との比
較により行った。
The packing density was measured by comparison with the theoretical density.

【0033】[0033]

【実施例】次に、実施例を用いて本発明をさらに説明す
る。
Next, the present invention will be further described with reference to examples.

【0034】[実施例1]平均粒径70ミクロンの鉛粉
末と、該鉛粉末に対して重量で30%の平均粒径20ミ
クロンの水素化チタンとを混合し、内径30mm、厚さ
80mmの型枠に充填し、Ar雰囲気下で、290℃に
昇温し、290℃(鉛融点−37℃)に保持したまま3
00kgf/cm2 の圧力で加圧した。
Example 1 A mixture of lead powder having an average particle diameter of 70 μm and titanium hydride having an average particle diameter of 20 μm, which is 30% by weight of the lead powder, was mixed with an inner diameter of 30 mm and a thickness of 80 mm. Filled in a mold, heated to 290 ° C. in an Ar atmosphere, and kept at 290 ° C. (lead melting point−37 ° C.).
It was pressurized at a pressure of 00 kgf / cm 2 .

【0035】加圧時に測定される被成形物の体積変位曲
線より圧縮限界に至ったことを確認し、冷却して成形体
(直径30mm、厚さ50mm)を得た。
It was confirmed from the volume displacement curve of the molded article measured at the time of pressurization that the compression limit had been reached, and cooled to obtain a molded article (diameter 30 mm, thickness 50 mm).

【0036】本実施例では、圧縮限界に至るまでの加圧
時間は60分間であり、体積変位曲線より求めた成形体
の密度が理論値の95%に到達してから15分後に終了
させたことになる。図1に体積変位の履歴グラフを示し
た。
In this embodiment, the pressing time until reaching the compression limit is 60 minutes, and the pressing is completed 15 minutes after the density of the molded body obtained from the volume displacement curve reaches 95% of the theoretical value. Will be. FIG. 1 shows a history graph of the volume displacement.

【0037】また、得られた成形体(Pb−TiH2
を切断し、その断面を表面分析して鉛とチタンとの分布
を調査した。得られた結果を図3に示した。図3より、
本発明の成形体では鉛と水素化チタンとが均一に分散さ
れていることがわかる。
Further, the obtained molded product (Pb-TiH 2 )
Was cut, and its cross section was subjected to surface analysis to investigate the distribution of lead and titanium. The results obtained are shown in FIG. From FIG.
It can be seen that in the molded article of the present invention, lead and titanium hydride are uniformly dispersed.

【0038】こうして得た成形体の圧縮強度は、表1に
示すように100kgf/cm2 以上であり、さらに加
重を高めていくと成形体に曲がりが生じ、正確な強度測
定ができない状態となっていた。
The compressive strength of the thus obtained molded body is 100 kgf / cm 2 or more as shown in Table 1. If the load is further increased, the molded body will bend, so that accurate strength measurement cannot be performed. I was

【0039】[実施例2]加圧時間を55分間(体積変
位曲線から求めた被成形物の密度が理論値の95%以上
に到達してから10分後に終了)とした以外は実施例1
と同様にして成形体を得た。
Example 2 Example 1 except that the pressurizing time was 55 minutes (finished 10 minutes after the density of the molded object obtained from the volume displacement curve reached 95% or more of the theoretical value).
A molded body was obtained in the same manner as described above.

【0040】得られた成形物を切断し、その断面を表面
分析して、鉛とチタンとの分布を調査したところ、鉛と
水素化チタンとが均一に分散されていることがわかっ
た。
The obtained molded product was cut, and its cross section was subjected to surface analysis to examine the distribution of lead and titanium. As a result, it was found that lead and titanium hydride were uniformly dispersed.

【0041】次に、実施例1と同様にして成形体の圧壊
強度を求めた。得られた圧壊強度を表1に示した。得ら
れた圧壊強度は100kgf/cm2 以上であり、良好
であった。
Next, the crushing strength of the compact was determined in the same manner as in Example 1. The obtained crushing strength is shown in Table 1. The obtained crushing strength was 100 kgf / cm 2 or more, which was good.

【0042】[実施例3]加圧時間を65分間(体積変
位曲線から求めた被成形物の密度が理論値の95%以上
に到達してから20分後に終了)とした以外は実施例1
と同様にして成形体を得た。
Example 3 Example 1 was repeated except that the pressurizing time was set to 65 minutes (the process was completed 20 minutes after the density of the molded object obtained from the volume displacement curve reached 95% or more of the theoretical value).
A molded body was obtained in the same manner as described above.

【0043】得られた成形物を切断し、その断面を表面
分析して、鉛とチタンとの分布を調査したところ、鉛と
水素化チタンとが均一に分散されていることがわかっ
た。
The obtained molded product was cut and its cross section was subjected to surface analysis to examine the distribution of lead and titanium. As a result, it was found that lead and titanium hydride were uniformly dispersed.

【0044】次に、実施例1と同様にして成形体の圧壊
強度を求めた。得られた圧壊強度を表1に示した。得ら
れた圧壊強度は100kgf/cm2 以上であり、良好
であった。
Next, the crushing strength of the compact was determined in the same manner as in Example 1. The obtained crushing strength is shown in Table 1. The obtained crushing strength was 100 kgf / cm 2 or more, which was good.

【0045】[実施例4]加圧時の保持温度を280℃
(鉛融点−47℃)とした以外は実施例1と同様にして
成形体を得た。
Example 4 The holding temperature during pressurization was 280 ° C.
A molded body was obtained in the same manner as in Example 1 except that (lead melting point -47 ° C.).

【0046】得られた成形物を切断し、その断面を表面
分析して、鉛とチタンとの分布を調査したところ、鉛と
水素化チタンとが均一に分散されていることがわかっ
た。
The obtained molded product was cut and its cross section was subjected to surface analysis to examine the distribution of lead and titanium. As a result, it was found that lead and titanium hydride were uniformly dispersed.

【0047】次に、実施例1と同様にして成形体の圧壊
強度を求めた。得られた圧壊強度を表1に示した。得ら
れた圧壊強度は100kgf/cm2 以上であり、良好
であった。
Next, the crushing strength of the compact was determined in the same manner as in Example 1. The obtained crushing strength is shown in Table 1. The obtained crushing strength was 100 kgf / cm 2 or more, which was good.

【0048】[実施例5]加圧時の保持温度を270℃
(鉛融点−57℃)とした以外は実施例1と同様にして
成形体を得た。
Example 5 The holding temperature during pressurization was 270 ° C.
A molded body was obtained in the same manner as in Example 1 except that (the melting point of lead was −57 ° C.).

【0049】得られた成形物を切断し、その断面を表面
分析して、鉛とチタンとの分布を調査したところ、鉛と
水素化チタンとが均一に分散されていることがわかっ
た。
The obtained molded product was cut, and its cross section was subjected to surface analysis to examine the distribution of lead and titanium. As a result, it was found that lead and titanium hydride were uniformly dispersed.

【0050】次に、実施例1と同様にして成形体の圧壊
強度を求めた。得られた圧壊強度を表1に示した。得ら
れた圧壊強度は100kgf/cm2 以上であり、良好
であった。
Next, the crushing strength of the compact was determined in the same manner as in Example 1. The obtained crushing strength is shown in Table 1. The obtained crushing strength was 100 kgf / cm 2 or more, which was good.

【0051】[実施例6]加圧時の保持温度を260℃
(鉛融点−67℃)とした以外は実施例1と同様にして
成形体を得た。
[Example 6] The holding temperature during pressurization was 260 ° C.
A molded body was obtained in the same manner as in Example 1 except that (lead melting point−67 ° C.).

【0052】得られた成形物を切断し、その断面を表面
分析して、鉛とチタンとの分布を調査したところ、鉛と
水素化チタンとが均一に分散されていることがわかっ
た。
The obtained molded product was cut and its cross section was subjected to surface analysis to examine the distribution of lead and titanium. As a result, it was found that lead and titanium hydride were uniformly dispersed.

【0053】次に、実施例1と同様にして成形体の圧壊
強度を求めた。得られた圧壊強度を表1に示した。得ら
れた圧壊強度は100kgf/cm2 以上であり、良好
であった。
Next, the crushing strength of the compact was determined in the same manner as in Example 1. The obtained crushing strength is shown in Table 1. The obtained crushing strength was 100 kgf / cm 2 or more, which was good.

【0054】[実施例7]加圧時の保持温度を250℃
(鉛融点−77℃)とした以外は実施例1と同様にして
成形体を得た。
[Example 7] The holding temperature during pressurization was 250 ° C.
A molded body was obtained in the same manner as in Example 1 except that (lead melting point -77 ° C.).

【0055】得られた成形物を切断し、その断面を表面
分析して、鉛とチタンとの分布を調査したところ、鉛と
水素化チタンとが均一に分散されていることがわかっ
た。
The obtained molded article was cut, and its cross section was subjected to surface analysis to examine the distribution of lead and titanium. As a result, it was found that lead and titanium hydride were uniformly dispersed.

【0056】次に、実施例1と同様にして成形体の圧壊
強度を求めた。得られた圧壊強度を表1に示した。得ら
れた圧壊強度は100kgf/cm2 以上であり、良好
であった。
Next, the crushing strength of the compact was determined in the same manner as in Example 1. The obtained crushing strength is shown in Table 1. The obtained crushing strength was 100 kgf / cm 2 or more, which was good.

【0057】[比較例1]加圧時間を75分間(体積変
位曲線から求めた被成形物の密度が理論値の95%に到
達してから30分後に終了)とした以外は実施例1と同
様にして成形体を得ようとした。しかし、70分経過し
たとき(被成形物の密度が理論値の95%以上に到達し
てから25分後)に融点に達してしまい、鉛が型枠から
流れ出し成形体を得ることはできなかった。
Comparative Example 1 Example 1 was repeated except that the pressurizing time was set to 75 minutes (completed 30 minutes after the density of the molded object obtained from the volume displacement curve reached 95% of the theoretical value). It was attempted to obtain a molded body in the same manner. However, when 70 minutes have passed (25 minutes after the density of the molded article has reached 95% or more of the theoretical value), the melting point has been reached, and lead has flowed out of the mold and a molded article cannot be obtained. Was.

【0058】図2に体積変位の履歴グラフを示した。FIG. 2 shows a history graph of the volume displacement.

【0059】[比較例2]加圧時間を50分間(体積変
位曲線から求めた被成形物の密度が理論値の95%以上
に到達してから5分後に終了)とした以外は実施例1と
同様にして成形体を得た。
[Comparative Example 2] Example 1 except that the pressurizing time was changed to 50 minutes (finished 5 minutes after the density of the molded object obtained from the volume displacement curve reached 95% or more of the theoretical value). A molded body was obtained in the same manner as described above.

【0060】得られた成形物を切断し、その断面を表面
分析して、鉛とチタンとの分布を調査したところ、鉛と
水素化チタンとが均一に分散されていることがわかっ
た。
The obtained molded product was cut and its cross section was subjected to surface analysis to examine the distribution of lead and titanium. As a result, it was found that lead and titanium hydride were uniformly dispersed.

【0061】また、成形体の圧壊強度を実施例と同様に
して求めた。得られた結果を表1に示した。この成形体
の圧壊強度は、70kgf/cm2 であり、加重により
曲がりを生じる前に破壊した。
The crushing strength of the compact was determined in the same manner as in the example. Table 1 shows the obtained results. The crushing strength of this molded product was 70 kgf / cm 2 , and the molded product was broken before bending due to load.

【0062】[比較例3]平均粒径70ミクロンの鉛粉
末と、該鉛粉末に対して重量で30%の平均粒径20ミ
クロンの水素化チタンとを混合し、内径30mm、厚さ
80mmの型枠に充填し、Ar雰囲気下において常温
で、1000kgf/cm2 の成形圧力で手動プレスに
より加圧して成形体を得た。
Comparative Example 3 A mixture of lead powder having an average particle diameter of 70 μm and titanium hydride having an average particle diameter of 20 μm at 30% by weight of the lead powder was mixed with an inner diameter of 30 mm and a thickness of 80 mm. It was filled in a mold and pressed by a manual press at a molding pressure of 1000 kgf / cm 2 at room temperature under an Ar atmosphere to obtain a molded body.

【0063】得られた成形体を切断し、その断面を表面
分析して、鉛とチタンとの分布を調査したところ、鉛と
水素化チタンとが均一に分散されていることがわかっ
た。
The obtained compact was cut and its cross section was subjected to surface analysis to examine the distribution of lead and titanium. As a result, it was found that lead and titanium hydride were uniformly dispersed.

【0064】また、成形体の圧壊強度を実施例と同様に
して求めた。得られた結果を表1に示した。この成形体
の圧壊強度は、20kgf/cm2 であり、加重により
曲がりを生じる前に破壊した。なお、充填密度を測定し
たところ、97.7%であった。
The crushing strength of the compact was determined in the same manner as in the example. Table 1 shows the obtained results. The compact had a crushing strength of 20 kgf / cm 2 and was broken before bending due to load. When the packing density was measured, it was 97.7%.

【0065】[比較例4]加圧時の保持温度を240℃
(鉛融点−87℃)とした以外は実施例1と同様にして
成形体を得た。
[Comparative Example 4] The holding temperature during pressurization was 240 ° C.
A molded body was obtained in the same manner as in Example 1 except that (the melting point of lead was -87 ° C.).

【0066】得られた成形物を切断し、その断面を表面
分析して、鉛とチタンとの分布を調査したところ、鉛と
水素化チタンとが均一に分散されていることがわかっ
た。
The obtained molded product was cut and its cross section was subjected to surface analysis to examine the distribution of lead and titanium. As a result, it was found that lead and titanium hydride were uniformly dispersed.

【0067】しかし、体積変位曲線から求めた被成形物
の密度が理論値の90.3%であった。
However, the density of the molded object determined from the volume displacement curve was 90.3% of the theoretical value.

【0068】また、成形体の圧壊強度を前記実施例と同
様にして求めた。得られた結果を表1に示した。この成
形体の強度は、95kgf/cm2 であり、加重により
曲がりを生じる前に破壊した。
Further, the crushing strength of the molded body was determined in the same manner as in the above example. Table 1 shows the obtained results. The strength of the molded body was 95 kgf / cm 2 , and the molded body was broken before bending due to load.

【0069】[比較例5]加圧時の温度を常温にした以
外は実施例1と同様に成形体を得ようとした。しかし、
被成形物が破壊され、成形体は得られなかった。
Comparative Example 5 An attempt was made to obtain a molded body in the same manner as in Example 1 except that the temperature during pressurization was normal temperature. But,
The molded article was destroyed and no molded article was obtained.

【0070】[0070]

【表1】 [Table 1]

【0071】[実施例8]粒径70ミクロンの鉛粉末
と、該鉛粉末に対して重量で30%の粒径20ミクロン
の水素化チタン粉末とを混合し、内径30mm、厚さ8
0mmの型枠に装填し、Ar雰囲気下で、250℃の温
度に昇温し、300kgf/cm2 の成形圧力で150
分間、ホットプレスで加圧した後、冷却して成形物を得
た。得られた成形体の充填密度と圧壊強度とを表2に示
した。
Example 8 A mixture of lead powder having a particle diameter of 70 μm and titanium hydride powder having a particle diameter of 20 μm at 30% by weight with respect to the lead powder was prepared.
0 mm in a mold, heated to a temperature of 250 ° C. in an Ar atmosphere, and heated at a molding pressure of 300 kgf / cm 2 for 150 mm.
After pressing with a hot press for a minute, the molded product was obtained by cooling. Table 2 shows the packing density and crushing strength of the obtained molded body.

【0072】得られた成形体の圧壊強度は100kgf
/cm2 以上であり、さらに荷重をかけていくと成形体
が曲がり、正確な圧壊強度の測定はできなかった。これ
らの結果より、本実施例で得られた成形体が高い強度と
粘りを持つことがわかる。
The crushing strength of the obtained molded body was 100 kgf.
/ Cm 2 or more, and when a load was further applied, the molded body was bent, and accurate measurement of the crushing strength could not be performed. From these results, it can be seen that the molded article obtained in this example has high strength and stickiness.

【0073】[実施例9〜22]表2に示す割合で、粒
径70ミクロンの鉛粉末と粒径20ミクロンの水素化チ
タン粉末とを混合し、内径30mm、厚さ80mmの型
枠に装填し、Ar雰囲気下で、表2に示す温度、成形圧
力および時間の条件で、ホットプレスで加圧した後、冷
却して成形物を得た。得られた成形体の充填密度と圧壊
強度とを表2に示した。
[Examples 9 to 22] Lead powder having a particle diameter of 70 μm and titanium hydride powder having a particle diameter of 20 μm were mixed at the ratios shown in Table 2 and loaded into a mold having an inner diameter of 30 mm and a thickness of 80 mm. Then, under an Ar atmosphere, under a condition of a temperature, a molding pressure and a time shown in Table 2, pressure was applied by a hot press, and then cooled to obtain a molded product. Table 2 shows the packing density and crushing strength of the obtained molded body.

【0074】得られた成形体の圧壊強度はいずれも10
0kgf/cm2 以上であり、さらに荷重をかけていく
と成形体が曲がり、正確な圧壊強度の測定はできなかっ
た。これらの結果より、これらの実施例で得られた成形
体が高い強度と粘りを持つことがわかる。
The crushing strength of each of the obtained molded products was 10
It was 0 kgf / cm 2 or more, and when a load was further applied, the molded product was bent, and accurate measurement of the crushing strength could not be performed. From these results, it can be seen that the molded articles obtained in these examples have high strength and stickiness.

【0075】[0075]

【表2】 [Table 2]

【0076】[比較例6]温度を305℃として、実施
例8と同様にして成形体を得ようとしたが、鉛が融解し
て型枠より流れ出してしまい成形体を得ることはできな
かった。
[Comparative Example 6] An attempt was made to obtain a molded body in the same manner as in Example 8 except that the temperature was 305 ° C, but lead was melted and flowed out of the mold, so that a molded body could not be obtained. .

【0077】[比較例7]温度を310℃として、実施
例8と同様にして成形体を得ようとしたが、鉛が融解し
て型枠より流れ出してしまい成形体を得ることはできな
かった。
[Comparative Example 7] An attempt was made to obtain a molded body in the same manner as in Example 8 except that the temperature was set to 310 ° C. However, lead was melted and flowed out of the mold, so that a molded body could not be obtained. .

【0078】[比較例8〜11]表3の条件に従った以
外は実施例8と同様にして成形体を得た。得られた成形
体の充填率と圧壊強度とを表3に示した。
[Comparative Examples 8 to 11] Moldings were obtained in the same manner as in Example 8 except that the conditions in Table 3 were used. Table 3 shows the packing ratio and crushing strength of the obtained molded body.

【0079】表3より、200℃で24時間保持した比
較例3および240℃で24時間保持した比較例9は、
圧壊強度の試験では、曲がりを生ずる前に破壊され、高
い強度を持つ成形体は得られなかった。
As shown in Table 3, Comparative Example 3 held at 200 ° C. for 24 hours and Comparative Example 9 held at 240 ° C. for 24 hours
In the crushing strength test, the molded product was broken before bending occurred, and a molded product having high strength was not obtained.

【0080】以上の結果より、加圧時の保持温度は、鉛
の融点未満で、かつ、鉛融点から80℃までには下がら
ない温度、言い換えると250℃以上とすればよいこと
がわかる。
From the above results, it can be seen that the holding temperature under pressure should be lower than the melting point of lead and not lower than the melting point of lead to 80 ° C., in other words, 250 ° C. or higher.

【0081】[0081]

【表3】 [Table 3]

【0082】[0082]

【発明の効果】本発明は以上のように構成されているの
で、鉛中に均一に水素化チタンを分散させた、圧壊強度
が高く加工性の高い1層構造の遮蔽材を得ることが可能
となった。本発明の遮蔽材を用いれば、放射線廃棄物か
らガンマ線・中性子線などの放射線を1層で遮蔽するこ
とができる。この遮蔽材で放射性廃棄物の貯蔵・輸送用
容器を製造し、多くの使用済み燃料を貯蔵・輸送でき、
またゴム・樹脂に比べて材料劣化がないほか、有機物を
高温雰囲気で使用することに起因する火災の心配がなく
なる。
According to the present invention, as described above, it is possible to obtain a one-layer shielding material having high crushing strength and high workability, in which titanium hydride is uniformly dispersed in lead. It became. By using the shielding material of the present invention, radiation such as gamma rays and neutron rays can be shielded from radiation waste by one layer. This shielding material can be used to manufacture radioactive waste storage and transport containers, which can store and transport a large amount of spent fuel.
In addition, there is no material deterioration as compared with rubber and resin, and there is no fear of fire caused by using organic substances in a high temperature atmosphere.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例1での成形時の変異曲線を示
したグラフである。
FIG. 1 is a graph showing a mutation curve during molding in Example 1 of the present invention.

【図2】 本発明の比較例1での成形時の変異曲線を示
したグラフである。
FIG. 2 is a graph showing a mutation curve during molding in Comparative Example 1 of the present invention.

【図3】 本発明の実施例1で得られたPb−TiH2
成形体を切断し、その断面を表面分析して鉛とチタンと
の分布を調査した結果を示した図である。
FIG. 3 shows Pb—TiH 2 obtained in Example 1 of the present invention.
It is the figure which showed the result of having investigated the distribution of lead and titanium by cutting a molded object and performing surface analysis of the section.

フロントページの続き (72)発明者 赤松 博史 兵庫県高砂市荒井町新浜2丁目3−1 株 式会社神戸製鋼所高砂事業所内Continuing from the front page (72) Inventor Hiroshi Akamatsu 2-3-1 Shinhama, Arai-machi, Takasago-shi, Hyogo Prefecture Inside Kobe Steel's Takasago Works

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 鉛中に該鉛に対して30〜50重量%の
水素化チタンを均一に分散させた1層構造に加圧成形さ
れ、100kgf/cm2 以上の圧壊強度を有する放射
線遮蔽材。
1. A radiation shielding material having a crushing strength of 100 kgf / cm 2 or more, which is press-formed into a one-layer structure in which 30 to 50% by weight of titanium hydride with respect to the lead is uniformly dispersed in the lead. .
【請求項2】 鉛粉末と該鉛粉末に対して30〜50重
量%の水素化チタン粉末との混合物が鉛融点より低く且
つ250℃以上の温度で且つ300kgf/cm2 以上
の圧力で加圧成形され、加圧成形時の体積変位曲線から
推定される被成形物の密度が理論値の95%より大きく
なっている放射線遮蔽材。
2. A mixture of lead powder and titanium hydride powder of 30 to 50% by weight based on the lead powder is pressurized at a temperature lower than the melting point of lead and at a temperature of 250 ° C. or more and a pressure of 300 kgf / cm 2 or more. A radiation shielding material which is molded and has a density of a molded object estimated from a volume displacement curve at the time of pressure molding, which is larger than 95% of a theoretical value.
【請求項3】 500kgf/cm2 以下の圧力で加圧
成形された請求項2に記載の放射線遮蔽材。
3. The radiation shielding material according to claim 2, wherein the radiation shielding material is molded under pressure at a pressure of 500 kgf / cm 2 or less.
【請求項4】 非酸化雰囲気中または不活性雰囲気中で
加圧成形された請求項2または3に記載の放射線遮蔽
材。
4. The radiation shielding material according to claim 2, wherein the radiation shielding material is pressure-formed in a non-oxidizing atmosphere or an inert atmosphere.
【請求項5】 加圧時の保持温度が300℃以下の温度
範囲にあった請求項2に記載の放射線遮蔽材。
5. The radiation shielding material according to claim 2, wherein the holding temperature during pressurization is in a temperature range of 300 ° C. or less.
【請求項6】 鉛粉末と該鉛粉末に対して30〜50重
量%の水素化チタン粉末との混合物が、300kgf/
cm2 以上の圧力および250℃以上の温度で加圧成形
された、充填密度が95%より大きくなっている放射線
遮蔽材。
6. A mixture of lead powder and 30 to 50% by weight of titanium hydride powder with respect to said lead powder is 300 kgf /
A radiation shielding material having a packing density of more than 95%, which is molded under pressure at a pressure of not less than 2 cm and a temperature of not less than 250 ° C.
【請求項7】 圧力を500kgf/cm2 以下とし、
温度を300℃以下とした請求項6に記載の放射線遮蔽
材。
7. A pressure of 500 kgf / cm 2 or less,
The radiation shielding material according to claim 6, wherein the temperature is 300 ° C or less.
【請求項8】 非酸化雰囲気中でまたは不活性雰囲気中
で加圧成形された請求項6または7に記載の放射線遮蔽
材。
8. The radiation shielding material according to claim 6, wherein the radiation shielding material is molded under pressure in a non-oxidizing atmosphere or an inert atmosphere.
JP10113282A 1998-04-23 1998-04-23 Radiation shield Pending JPH11304994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10113282A JPH11304994A (en) 1998-04-23 1998-04-23 Radiation shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10113282A JPH11304994A (en) 1998-04-23 1998-04-23 Radiation shield

Publications (1)

Publication Number Publication Date
JPH11304994A true JPH11304994A (en) 1999-11-05

Family

ID=14608235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10113282A Pending JPH11304994A (en) 1998-04-23 1998-04-23 Radiation shield

Country Status (1)

Country Link
JP (1) JPH11304994A (en)

Similar Documents

Publication Publication Date Title
EP2305843B1 (en) Method of adjusting the elemental composition of a titanium melt
EP1600984B1 (en) Cask, composition for neutron shielding body, and method of manufacturing the neutron shielding body
US20070064860A1 (en) Aluminum-based neutron absorber and method for production thereof
JP4461080B2 (en) Aluminum powder alloy composite material for neutron absorption, method for manufacturing the same, and basket manufactured therewith
US5965829A (en) Radiation absorbing refractory composition
JP4541969B2 (en) Aluminum powder alloy composite material for neutron absorption, method for manufacturing the same, and basket manufactured therewith
CN106145950B (en) Mgf for radiation decelerating material2-CaF2Binary sintered body and method for producing same
EP1119006B1 (en) Aluminum composite material having neutron-absorbing ability
EP0397513A1 (en) Consolidation of powder aluminum and aluminum alloys
US3276867A (en) Cermet materials and process of making
JP5406727B2 (en) Method for producing refractory ceramic material having high solidus temperature by powder metallurgy
EP1956107B1 (en) Aluminum powder alloy composite material for absorbing neutrons, process of production thereof and basket made thereof
US2986533A (en) Compact high density radiation screening material containing tungsten
JPH11304994A (en) Radiation shield
US5624475A (en) Copper based neutron absorbing material for nuclear waste containers and method for making same
US3359095A (en) Sintering of loose particulate aluminum metal
US4684480A (en) Ceramic bonded neutron absorber plates of boron carbide and free carbon
CN111943612A (en) Irradiation-resistant high-temperature-resistant fast neutron shielding material and preparation method thereof
FR2669142A1 (en) Heat-resistant radiological protection material
US3172196A (en) Sintered intermetallic compoundcomposition bodies
JPH06180388A (en) Heat resistant neutron shielding material
US2986465A (en) Method of making compact high density radiation screening material containing tungsten
FR2745658A1 (en) Neutron absorber of boron carbide and hexagonal boron nitride
JPH02108999A (en) Manufacture of neutron absorbing pellet, pellet obtained and usage of said pellet
US3231344A (en) Sintered intermetallic bodies composed of aluminum and niobium or tantalum