JP2543905B2 - Nuclear power plant turbine system - Google Patents

Nuclear power plant turbine system

Info

Publication number
JP2543905B2
JP2543905B2 JP62223121A JP22312187A JP2543905B2 JP 2543905 B2 JP2543905 B2 JP 2543905B2 JP 62223121 A JP62223121 A JP 62223121A JP 22312187 A JP22312187 A JP 22312187A JP 2543905 B2 JP2543905 B2 JP 2543905B2
Authority
JP
Japan
Prior art keywords
pressure heater
low
heater
pressure
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62223121A
Other languages
Japanese (ja)
Other versions
JPS6466597A (en
Inventor
小林  実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62223121A priority Critical patent/JP2543905B2/en
Publication of JPS6466597A publication Critical patent/JPS6466597A/en
Application granted granted Critical
Publication of JP2543905B2 publication Critical patent/JP2543905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は原子力発電所において、一次系給水中への鉄
等の金属不純物持込み量を低減させ、放射能発生を抑制
すると同時に熱効率を向上させ得るように構成した原子
力発電所のタービン系統に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial field of application) The present invention aims to reduce the amount of metal impurities such as iron brought into primary system feedwater and suppress the generation of radioactivity in a nuclear power plant. At the same time, it relates to a turbine system of a nuclear power plant configured so as to improve thermal efficiency.

(従来の技術) 一般に、沸騰水型原子力発電プラントにおいては、給
水系から原子炉内へ持込まれた金属不純物が炉内を流過
する際に放射化され、これが炉心外や主蒸気系、給水系
へ流れ出るため、炉心外の放射能が増大し、放射線被曝
量の増加につながる恐れがある。
(Prior Art) Generally, in a boiling water nuclear power plant, metal impurities brought into the reactor from the feed water system are activated when they flow through the reactor, and these are activated outside the core, main steam system, and feed water. As it flows out into the system, radioactivity outside the core increases, which may lead to an increase in radiation exposure.

このため、最近の沸騰水型原子力発電プラントでは、
給水系の金属不純物低減対策として、復水浄化系の二重
化による復水系金属不純物の除去、または給水酸素ガス
注入による給水系配管の腐蝕抑制、あるいは給水ヒータ
のチューブ材にオーステナイト系ステンレス鋼を採用す
ることによる腐蝕抑制等を実施し、給水中の金属不純物
濃度、なかでも被曝量に大きく影響を与える鉄、コバル
ト、ニッケルを低減させるようにしている。その結果、
我が国の沸騰水型原子力発電プラントにおける定期点検
時の被曝量は通常、100人・レム以下と、世界的に見て
も充分に低い値に保たれている。
Therefore, in recent boiling water nuclear power plants,
As a measure to reduce metallic impurities in the water supply system, the condensate metal impurities are removed by duplicating the condensate purification system, or the corrosion of the water supply system piping is suppressed by injecting the feed water oxygen gas, or austenitic stainless steel is used for the tube material of the water supply heater Therefore, corrosion control is carried out to reduce the concentration of metal impurities in the feed water, especially iron, cobalt, and nickel, which have a large effect on the exposure dose. as a result,
The exposure dose at the time of regular inspections in boiling water nuclear power plants in Japan is usually 100 people / rem or less, which is kept at a sufficiently low value even in the world.

一方、沸騰水型原子力発電プラントの出力向上のた
め、高圧タービンの低圧タービンの間に湿分分離加熱器
(MSH)を設置し、高圧タービンで仕事をした主蒸気を
湿分分離加熱器で再加熱した後、低圧タービンへ供給す
ることにより、タービン効率を向上させる方法が知られ
ている。
On the other hand, in order to improve the output of a boiling water nuclear power plant, a moisture separation heater (MSH) was installed between the low pressure turbine of the high pressure turbine, and the main steam that worked in the high pressure turbine was regenerated by the moisture separation heater. A method of improving turbine efficiency by heating and then supplying the low pressure turbine is known.

また、高圧ヒータおよび低圧ヒータにて給水を加熱す
ることにより凝縮されたヒータドレインを高圧ヒータか
ら低圧ヒータへ順次戻して最終的に主復水器へ常温回収
する従来のカスケード方式も知られている。
Further, there is also known a conventional cascade method in which heater drain condensed by heating feed water with a high-pressure heater and a low-pressure heater is sequentially returned from the high-pressure heater to the low-pressure heater and finally recovered to the main condenser at room temperature. .

さらに、このカスケード方式に代え、高圧ヒータおよ
び低圧ヒータからのヒータドレンを復水浄化系の復水脱
塩装置の上流側等に回収するフォワードドレン方式を備
えた例が特公昭55−14964号公報に開示され、ヒータド
レンを高温度で復水給水系に回収して熱損失を低減さ
せ、プラント出力の上昇を図るようにした原子力発電プ
ラントも知られている。
Further, in place of this cascade method, there is an example provided with a forward drain method for collecting heater drain from a high-pressure heater and a low-pressure heater to the upstream side of a condensate demineralizer of a condensate purification system, etc. in Japanese Patent Publication No. 55-14964. There is also disclosed a nuclear power plant in which the heater drain is recovered at a high temperature in the condensate water supply system to reduce heat loss and increase the plant output.

(発明が解決しようとする課題) しかしながら、特公昭55−14964号公報開示の原子力
発電プラントでは、タービン抽気管や給水ヒータ(高圧
ヒータおよび低圧ヒータ)、ヒータドレン管等のヒータ
ドレン系には、耐食性材料が用いられておらず、耐エロ
ージョン対策が施されていない。このため、ヒータドレ
ン系の金属不純物、特にクラッド鉄濃度が高く、浄化装
置なしで復水給水系に回収することができなかったり、
浄化装置なしで復水給水系で万一回収した場合、放射線
被曝量が増大する虞があった。
(Problems to be Solved by the Invention) However, in the nuclear power plant disclosed in Japanese Examined Patent Publication No. 55-14964, a corrosion resistant material is used for a heater drain system such as a turbine extraction pipe, a feed water heater (high pressure heater and low pressure heater), and a heater drain pipe. Is not used and no anti-erosion measures have been taken. Therefore, the concentration of metal impurities in the heater drain system, especially the clad iron concentration is high, and it cannot be recovered in the condensate water supply system without a purification device,
If recovered by the condensate water supply system without a purification device, the radiation exposure might increase.

また、最近の沸騰水型原子力発電プラントにおいて
は、耐エロージョン対策として、タービン抽気管、給水
ヒータ、ヒータドレン管等に耐食性材料を採用し、ヒー
タドレン系の金属不純物,特にクラッド鉄の濃度を低く
するように配慮したものがある。
Also, in recent boiling water nuclear power plants, as a countermeasure against erosion, use corrosion resistant materials for turbine extraction pipes, feed water heaters, heater drain pipes, etc. to reduce the concentration of heater drain metal impurities, especially clad iron. There are things in consideration.

しかし、耐エロージョン対策を施し、ヒータドレン系
に耐食性材料を用いた従来の原子力発電プラントにおい
ても、ヒータドレン中に含まれるクラッド鉄濃度が高い
プラントもあり、浄化装置なしで給水系へ回収した場
合、給水中の鉄濃度が上昇し、放射線被曝量が増大する
おそれがあった。
However, even in a conventional nuclear power plant that uses erosion resistance measures and uses a corrosion-resistant material for the heater drain system, there are plants with high clad iron concentration in the heater drain system. There was a risk that the iron concentration in the product would increase and the radiation exposure would increase.

本発明は上述した事情を考慮してなされたもので、原
子炉への給水中の金属不純物を低濃度に保って放射線被
曝量を低減させる一方、ヒータドレンの熱損失を低減さ
せてプラント出力を向上させた原子力発電所のタービン
系統を提供することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and reduces the radiation exposure by keeping the metal impurities in the feed water to the reactor at a low concentration, while reducing the heat loss of the heater drain and improving the plant output. The purpose of the present invention is to provide a turbine system of the nuclear power plant.

〔発明の構成〕[Structure of Invention]

(課題を解決するための手段) 本発明に係る原子力発電所のタービン系統において
は、上述した課題を解決するために、原子炉で発生した
蒸気を主蒸気ラインを通して高圧タービンへ導き、この
高圧タービンで仕事をした蒸気を湿分分離加熱器を経て
低圧タービンに案内し、この低圧タービンで仕事をした
蒸気を主復水器で凝縮して復水にし、この復水を復水浄
化系、低圧ヒータおよび高圧ヒータを通して加熱して前
記原子炉へ給水し、かつ原子炉からの蒸気の一部を前記
高圧タービン上流側の主蒸気ラインからバイパスして前
記湿分分離加熱器内の熱交換チューブに流入し、このチ
ューブから流出する蒸気を前記高圧ヒータ内に流入さ
せ、この高圧ヒータおよび低圧ヒータで発生するヒータ
ドレンを給水中に回収するフォワードドレンポンプアッ
プ方式を備えた原子力発電所のタービン系統において、
前記フォワードドレンポンプアップ方式は、高圧ヒータ
で発生する高圧ヒータドレンをポンプアップして高圧ヒ
ータの吸込側に供給する高圧ヒータドレンポンプアップ
方式と、低圧ヒータからの低圧ヒータドレンを低圧ヒー
タドレンのクラッド鉄濃度如何により前記主復水器の下
流と前記復水浄化系の上流との間、復水浄化系の復水フ
ィルタの下流と復水脱塩装置の上流との間、および復水
浄化系の下流側のいずれかに戻すように設けた低圧ヒー
タドレンポンプアップ方式とを備えたものである。
(Means for Solving the Problems) In the turbine system of a nuclear power plant according to the present invention, in order to solve the above-mentioned problems, steam generated in a nuclear reactor is guided to a high pressure turbine through a main steam line, and the high pressure turbine The steam that has worked in the above is guided to the low-pressure turbine through the moisture separation heater, and the steam that has worked in this low-pressure turbine is condensed in the main condenser into condensate. Water is supplied to the reactor by heating through a heater and a high-pressure heater, and part of steam from the reactor is bypassed from the main steam line on the upstream side of the high-pressure turbine to a heat exchange tube in the moisture separation heater. A forward drain pump that allows the steam flowing in and out of this tube to flow into the high-pressure heater and recover the heater drain generated by the high-pressure heater and the low-pressure heater into the feed water. In a nuclear power plant turbine system equipped with a pull-up system,
The forward drain pump-up method is a high-pressure heater drain pump-up method in which the high-pressure heater drain generated by the high-pressure heater is pumped up and supplied to the suction side of the high-pressure heater, and the low-pressure heater drain from the low-pressure heater is used to determine the clad iron concentration of the low-pressure heater drain. Between the downstream of the main condenser and the upstream of the condensate purification system, between the downstream of the condensate filter of the condensate purification system and the upstream of the condensate desalination device, and the downstream side of the condensate purification system. And a low-pressure heater drain pump-up system provided so as to be returned to any of the above.

(作用) 本発明の原子力発電所のタービン系統においては、高
圧ヒータおよび低圧ヒータで発生するヒータドレンを給
水中にフォワードドレンポンプアップ方式に、高圧ヒー
タドレンポンプアップ方式(HPPD方式)と低圧ヒータド
レンポンプアップ方式(LPPD方式)をそれぞれ独立して
採用し、高圧ヒータからのヒータドレンおよび低圧ヒー
タからのヒータドレンをそれぞれ高温度で給水中に効率
よく有効に回収して熱損失を低下させてプラント出力の
上昇を図るようにしている。
(Operation) In the turbine system of the nuclear power plant of the present invention, the heater drain generated by the high-pressure heater and the low-pressure heater is fed to the forward drain pump up system, the high-pressure heater drain pump up system (HPPD system) and the low-pressure heater drain pump. Independently adopting the up method (LPPD method) to efficiently and effectively recover the heater drain from the high-pressure heater and the heater drain from the low-pressure heater into the water supply at high temperature to reduce heat loss and increase the plant output. I am trying to.

また、低圧ヒータドレンポンプアップ(LPPD)方式
は、低圧ヒータからのヒータドレンを、主復水器の下流
と復水浄化系の上流との間、復水浄化系の復水フィルタ
の下流と復水脱塩装置の上流との間、および復水浄化系
の下流側のいずれかに、低圧ヒータドレンのクラッド鉄
濃度如何により戻すように設けたので、熱効率を向上さ
せることができ、LPPD方式を採用して低圧ヒータドレン
を給水に回収しても、給水中のクラッド鉄濃度が上昇す
るのを未然にかつ有効的に防止でき、給水系の金属不純
物を低濃度に保って放射線被曝量を効率よく従来と同程
度に低減させることができる。
In addition, the low-pressure heater drain pump-up (LPPD) method uses the heater drain from the low-pressure heater between the downstream side of the main condenser and the upstream side of the condensate purification system, the downstream side of the condensate purification system condensate filter, and the condensate. Since it was installed either upstream of the desalination unit or downstream of the condensate purification system depending on the clad iron concentration of the low-pressure heater drain, the thermal efficiency can be improved and the LPPD method was adopted. Even if the low-pressure heater drain is collected in the feed water, it is possible to effectively prevent the clad iron concentration in the feed water from rising, and keep the metal impurities in the water supply system at a low concentration to effectively reduce the radiation exposure dose. It can be reduced to the same extent.

(実施例) 以下、図面を参照して本発明の一実施例を説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図において、原子炉1で発生した蒸気は主蒸気ラ
イン2を通して高圧タービン3に導かれ、ここで仕事を
した後、湿分分離加熱器4に流入する。
In FIG. 1, the steam generated in the nuclear reactor 1 is guided to a high-pressure turbine 3 through a main steam line 2, where it works and then flows into a moisture separation heater 4.

この湿分分離加熱器4を流過する蒸気は、主蒸気ライ
ン2からバイパスされ、湿分分離加熱器4内の熱交換チ
ューブ4aを流れる高圧蒸気との熱交換によってスーパヒ
ートされ、低圧タービン5に流入して再び仕事をし、発
電機(図示せず)を駆動した後、主復水器6に導入さ
れ、復水となる。この復水は復水ポンプ7で加圧され、
復水浄化系8で浄化され、低圧ヒータ9および高圧ヒー
タ10で順次加熱された後、原子炉1へ再供給される。
The steam flowing through the moisture separator / heater 4 is bypassed from the main steam line 2 and is superheated by heat exchange with the high pressure steam flowing through the heat exchange tube 4 a in the moisture separator / heater 4 to be transferred to the low pressure turbine 5. After flowing in to perform work again and drive a generator (not shown), it is introduced into the main condenser 6 and becomes condensed water. This condensate is pressurized by condensate pump 7,
After being purified by the condensate purification system 8 and sequentially heated by the low-pressure heater 9 and the high-pressure heater 10, they are supplied again to the reactor 1.

一方、湿分分離加熱器4内の熱交換チューブ4aへ加熱
源として供給された主蒸気は湿分分離加熱器4内での熱
交換によって冷却され、高温凝縮水の高圧ヒータドレン
となって高圧ヒータ10のシェル側へ流入し、高圧ヒータ
10内の熱交換チューブ10aを流れる給水を加熱した後、
高圧ヒータドレンポンプ11でポンプアップされて戻りラ
イン15から高圧ヒータ10の吸込側へ給水され、高圧ヒー
タドレンポンプアップ方式(HPPD方式)のヒータドレン
系が構成される。
On the other hand, the main steam supplied as a heating source to the heat exchange tube 4a in the moisture separator / heater 4 is cooled by heat exchange in the moisture separator / heater 4 and becomes a high-pressure heater drain of the high-temperature condensed water to form a high-pressure heater. Inflow to the shell side of 10, high pressure heater
After heating the feed water flowing through the heat exchange tube 10a in 10,
It is pumped up by the high-pressure heater drain pump 11 and is supplied with water from the return line 15 to the suction side of the high-pressure heater 10 to form a high-pressure heater drain pump-up (HPPD) heater drain system.

また、低圧ヒータ9のシェル側へ流入した抽気蒸気は
低圧ヒータ9内の熱交換チューブ9aを流れる給水との熱
交換により冷却されて凝縮水の低圧ヒータドレンとなっ
た後、回収ライン16に設けられた低圧ヒータドレンポン
プ12でポンプアップされ、バルブ17を有する分岐管18か
ら復水浄化系8の出口側の復水浄化系下流側ライン13へ
流入される。また回収ライン16の他端は復水浄化系8の
入口側ライン14にバルブ19を介して接続されており、凝
縮水は上流側ライン14へ流入され、給水として回収され
る。復水浄化系8の入口側ライン14に戻す代りに、回収
ライン16を復水浄化系8の復水フィルタ8aの下流側と復
水脱塩装置8bの上流側との間にバルブ19aを介して戻す
ようにしてもよい。このようにして、低圧ヒータ9の低
圧ヒータドレンを給水中にポンプアップして回収する低
圧ヒータドレンポンプアップ方式(LPPD方式)のヒータ
ドレン系が構成され、このヒータドレン系と、HPPD方式
のヒータドレン系とはそれぞれ独立して設けられる。
The extracted steam that has flowed into the shell side of the low-pressure heater 9 is cooled by heat exchange with the feed water flowing through the heat exchange tube 9a in the low-pressure heater 9 to become a low-pressure heater drain of the condensed water, and then provided in the recovery line 16. It is pumped up by the low-pressure heater drain pump 12, and flows into the condensate purification system downstream side line 13 on the outlet side of the condensate purification system 8 from the branch pipe 18 having the valve 17. The other end of the recovery line 16 is connected to the inlet side line 14 of the condensate purification system 8 via a valve 19, and the condensed water flows into the upstream side line 14 and is recovered as feed water. Instead of returning to the inlet side line 14 of the condensate purification system 8, the recovery line 16 is provided between the downstream side of the condensate filter 8a of the condensate purification system 8 and the upstream side of the condensate desalination device 8b via a valve 19a. You may make it return. In this way, a low-pressure heater drain pump-up type (LPPD type) heater drain system for pumping up the low-pressure heater drain of the low-pressure heater 9 into the feed water and collecting it is constructed. The heater drain system and the HPPD type heater drain system are Each is provided independently.

しかして、高圧ヒータ10および低圧ヒータ9のヒータ
ドレンを給水中に回収するフォワードドレンポンプアッ
プ方式は、高圧ヒータドレンを給水ポンプ(図示せず)
の吸込み側へ戻す高圧ヒータドレンポンプアップ方式
(HPPD方式)および低圧ヒータドレンを復水浄化系の出
口側へ戻す低圧ヒータドレンポンプアップ方式(LPPD方
式)が独立して構成され、ヒータドレンを高温度で効率
よく給水中へ熱回収して熱損失を低下させ、プラントの
出力上昇を図るようになっている。
Therefore, the forward drain pump-up method of collecting the heater drain of the high-pressure heater 10 and the low-pressure heater 9 in the feed water supplies the high-pressure heater drain to the feed pump (not shown).
The high-pressure heater drain pump-up method (HPPD method) for returning to the suction side of the and the low-pressure heater drain pump-up method (LPPD method) for returning the low-pressure heater drain to the outlet side of the condensate purification system are configured independently, and the heater drain at high temperature It is designed to efficiently recover heat into the water supply to reduce heat loss and increase the plant output.

第2図は、耐エロージョン材を採用し、腐食抑制をは
かった沸騰水型原子力発電プラントのヒータドレン中の
クラッド鉄濃度を示す。耐エロージョン対策として、抽
気管、給水ヒータ、ヒータドレン管等のヒータドレン系
に耐食材料を採用することにより、ヒータドレン系の金
属不純物、特にクラッド鉄濃度が低くなっている。
FIG. 2 shows the clad iron concentration in the heater drain of a boiling water nuclear power plant in which an erosion resistant material is used to prevent corrosion. As a countermeasure against erosion, by adopting a corrosion resistant material for the heater drain system such as the extraction pipe, the feed water heater, the heater drain pipe, etc., the concentration of metal impurities in the heater drain system, especially the clad iron concentration, is lowered.

そのため、高圧ヒータドレンポンプアップ方式(HPPD
方式)や低圧ヒータドレンポンプアップ方式(LPPD方
式)等のフォワードドレンポンプアップ方式を採用する
場合には、給水系統に浄化装置を設置しなくともヒータ
ドレンを給水系へ直接回収できる可能性が生じている。
Therefore, the high pressure heater drain pump up method (HPPD
Method) and low-pressure heater drain pump-up method (LPPD method), the heater drain may be directly collected in the water supply system without installing a purification device in the water supply system. There is.

第2図から明らかなように、HPPD側サンプリング点20
でのHPPD側クラッド鉄濃度22はいずれの原子力発電プラ
ントも低いため浄化装置が必要なく、そのまま給水へ回
収しても給水金属濃度を増加させない。
As is clear from FIG. 2, sampling points on the HPPD side 20
Since the HPPD-side clad iron concentration of 22 is low in any nuclear power plant, no purification device is required, and even if it is directly recovered in the feed water, the feed water metal concentration is not increased.

しかし、LPPD側サンプリング点21でのLPPD側クラッド
鉄濃度23は濃度が高い原子力発電プラントもある。符号
23aはLPPD側クラッド鉄濃度の平均値を示す。このクラ
ッド鉄濃度23aはHPPD側サンプリング点20でのクラッド
鉄濃度22よりかなり高い。そのため、LPPD側のクラッド
鉄濃度23が低い場合にはLPPDの低圧ヒータドレンを復水
浄化系8の下流側ライン13に戻すことにより低圧ヒータ
ドレンの熱回収を有効にはかることができるが、LPPD側
クラッド鉄濃度23が高い場合、復水浄化系上流側ライン
14へ戻すことにより、熱回収をはかりつつ、金属不純物
も浄化が可能となる。上記構成により、従来の復水浄化
系を二重化し、給水低クラッド濃度のカスケードプラン
トと同程度のクラッド鉄濃度とすることができる。
However, in some nuclear power plants, the LPPD side clad iron concentration 23 at the LPPD side sampling point 21 is high. Sign
23a shows the average value of the clad iron concentration on the LPPD side. The clad iron concentration 23a is considerably higher than the clad iron concentration 22 at the sampling point 20 on the HPPD side. Therefore, when the clad iron concentration 23 on the LPPD side is low, it is possible to effectively recover the heat of the low-pressure heater drain by returning the low-pressure heater drain of the LPPD to the downstream line 13 of the condensate purification system 8. When the iron concentration is high 23, the upstream line of the condensate purification system
By returning to 14, it is possible to purify metal impurities while collecting heat. With the above configuration, the conventional condensate purification system can be duplicated and the clad iron concentration can be made approximately the same as in the cascade plant having a low clad concentration of feed water.

また、LPPDを復水浄化系8の上流側へ戻す代りに、復
水浄化系8の復水フィルタ8aの下流側と復水脱塩装置8b
の上流側との間に回収させることもでき、この場合でも
同様の効果が期待できる。
Further, instead of returning the LPPD to the upstream side of the condensate purification system 8, the downstream side of the condensate filter 8a of the condensate purification system 8 and the condensate demineralizer 8b.
It can also be collected between the upstream side and the upstream side, and the same effect can be expected in this case as well.

〔発明の効果〕〔The invention's effect〕

以上に述べたように本発明に係る原子力発電所のター
ビン系統においては、フォワードドレンポンプアップ方
式が独立した高圧ヒータドレンポンプアップ方式と低圧
ヒータドレンポンプアップ方式とを備えたので、高圧ヒ
ータからの高圧ヒータドレン(高温凝縮水)および低圧
ヒータからの低圧ヒータドレン(凝縮水)を給水中に直
接かつ有効的に熱回収でき、熱効率を向上させてプラン
ト出力の向上を図ることができる。
As described above, in the turbine system of the nuclear power plant according to the present invention, the forward drain pump-up system has the independent high-pressure heater drain pump-up system and the low-pressure heater drain pump-up system. The high-pressure heater drain (high-temperature condensed water) and the low-pressure heater drain (condensed water) from the low-pressure heater can be directly and effectively recovered in the feed water, and the thermal efficiency can be improved to improve the plant output.

また、低圧ヒータドレンポンプアップ方式は、低圧ヒ
ータドレンのクラッド鉄濃度如何によって、低圧ヒータ
ドレンを、主復水器の下流と復水浄化系の上流との間、
復水浄化系の復水フィルタの下流と復水脱塩装置の上流
との間、および復水浄化系の下流側のいずれかに戻すよ
うに設けたので、原子炉への給水中の金属不純物を低濃
度に保って、従来のカスケードタイプの原子力発電プラ
ントと同程度に抑制でき、ヒータドレンの熱回収を効率
よく行ないながら、定期点検時等における被曝量の低減
を図ることができる。
In addition, the low-pressure heater drain pump-up method, depending on the clad iron concentration of the low-pressure heater drain, connects the low-pressure heater drain between the downstream side of the main condenser and the upstream side of the condensate purification system.
Since it was installed between the downstream of the condensate filter of the condensate purification system and the upstream of the condensate demineralizer, or to the downstream side of the condensate purification system, metal impurities in the water supply to the reactor were Can be suppressed to the same level as that of the conventional cascade type nuclear power plant by efficiently maintaining the heat concentration of the heater drain, and at the same time, it is possible to reduce the exposure dose at the time of periodic inspection and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る原子力発電所のタービン系統の一
実施例を示す系統図、第2図は第1図において耐エロー
ジョン材を採用し、腐食抑制をはかったプラントのヒー
タドレンクラッド鉄濃度を示す図である。 1……原子炉、2……主蒸気ライン、3……高圧タービ
ン、4……湿分分離加熱器、5……低圧タービン、6…
…主復水器、7……復水ポンプ、8……復水浄化系、9
……低圧ヒータ、10……高圧ヒータ、11……高圧ヒータ
ドレンポンプ、12……低圧ヒータドレンポンプ、13……
復水浄化系下流側ライン、14……復水浄化系上流側ライ
ン、15……戻りライン、16……回収ライン、17……バル
ブ、18……分岐管、19……バルブ、20……HPPD側サンプ
リング点、21……LPPD側サンプリング点、22……HPPD側
クラッド鉄濃度、23……LPPD側クラッド鉄濃度。
FIG. 1 is a system diagram showing an embodiment of a turbine system of a nuclear power plant according to the present invention, and FIG. 2 is a heater drain clad iron concentration of a plant which employs an erosion resistant material in FIG. 1 to prevent corrosion. FIG. 1 ... Reactor, 2 ... Main steam line, 3 ... High-pressure turbine, 4 ... Moisture separation heater, 5 ... Low-pressure turbine, 6 ...
… Main condenser, 7 …… Condensate pump, 8 …… Condensate purification system, 9
...... Low pressure heater, 10 ...... High pressure heater, 11 ...... High pressure heater drain pump, 12 ...... Low pressure heater drain pump, 13 ......
Condensate purification system downstream line, 14 …… Condensate purification system upstream line, 15 …… Return line, 16 …… Collection line, 17 …… Valve, 18 …… Branch pipe, 19 …… Valve, 20 …… HPPD side sampling point, 21 …… LPPD side sampling point, 22 …… HPPD side clad iron concentration, 23 …… LPPD side clad iron concentration.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子炉で発生した蒸気を主蒸気ラインを通
して高圧タービンへ導き、この高圧タービンで仕事をし
た蒸気を湿分分離加熱器を経て低圧タービンに案内し、
この低圧タービンで仕事をした蒸気を主復水器で凝縮し
て復水にし、この復水を復水浄化系、低圧ヒータおよび
高圧ヒータを通して加熱して前記原子炉へ給水し、かつ
原子炉からの蒸気の一部を前記高圧タービン上流側の主
蒸気ラインからバイパスして前記湿分分離加熱器内の熱
交換チューブに流入し、このチューブから流出する蒸気
を前記高圧ヒータ内に流入させ、この高圧ヒータおよび
低圧ヒータで発生するヒータドレンを給水中に回収する
フォワードドレンポンプアップ方式を備えた原子力発電
所のタービン系統において、前記フォワードドレンポン
プアップ方式は、高圧ヒータで発生する高圧ヒータドレ
ンをポンプアップして高圧ヒータの吸込側に供給する高
圧ヒータドレンポンプアップ方式と、低圧ヒータからの
低圧ヒータドレンを低圧ヒータドレンのクラッド鉄濃度
如何により前記主復水器の下流と前記復水浄化系の上流
との間、復水浄化系の復水フィルタの下流と復水脱塩装
置の上流との間、および復水浄化系の下流側のいずれか
に戻すように設けた低圧ヒータドレンポンプアップ方式
とを備えたことを特徴とする原子力発電所のタービン系
統。
1. The steam generated in a nuclear reactor is guided to a high pressure turbine through a main steam line, and the steam working in this high pressure turbine is guided to a low pressure turbine through a moisture separation heater,
The steam that has worked in this low-pressure turbine is condensed in the main condenser into condensate, which is heated through the condensate purification system, low-pressure heater and high-pressure heater to supply water to the reactor, and from the reactor. A part of the steam of the main steam line on the upstream side of the high-pressure turbine to flow into the heat exchange tube in the moisture separation heater, and the steam flowing out of this tube is flowed into the high-pressure heater, In a turbine system of a nuclear power plant equipped with a forward drain pump-up system for collecting heater drain generated by a high-pressure heater and a low-pressure heater into feed water, the forward drain pump-up system pumps up the high-pressure heater drain generated by the high-pressure heater. High-pressure heater drain pump up method that supplies the suction side of the high-pressure heater with the low-pressure heater drain from the low-pressure heater. Depending on the clad iron concentration of the low-pressure heater drain, between the downstream of the main condenser and the upstream of the condensate purification system, between the downstream of the condensate filter of the condensate purification system and the upstream of the condensate desalination device, and A turbine system of a nuclear power plant, comprising a low-pressure heater drain pump-up system provided so as to be returned to one of the downstream side of the condensate purification system.
JP62223121A 1987-09-08 1987-09-08 Nuclear power plant turbine system Expired - Lifetime JP2543905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62223121A JP2543905B2 (en) 1987-09-08 1987-09-08 Nuclear power plant turbine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62223121A JP2543905B2 (en) 1987-09-08 1987-09-08 Nuclear power plant turbine system

Publications (2)

Publication Number Publication Date
JPS6466597A JPS6466597A (en) 1989-03-13
JP2543905B2 true JP2543905B2 (en) 1996-10-16

Family

ID=16793144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62223121A Expired - Lifetime JP2543905B2 (en) 1987-09-08 1987-09-08 Nuclear power plant turbine system

Country Status (1)

Country Link
JP (1) JP2543905B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2519306B2 (en) * 1988-09-16 1996-07-31 株式会社日立製作所 Drain recovery system purification device
JP4982351B2 (en) * 2007-12-20 2012-07-25 日立Geニュークリア・エナジー株式会社 Nuclear power plant and operation method for increasing its output
CN111457354B (en) * 2020-04-08 2022-02-08 华北电力科学研究院有限责任公司 Input control method and device for feed water heating system of thermal power plant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514964A (en) * 1978-07-20 1980-02-01 Tokyo Shiyouketsu Kinzoku Kk Internal gear pump

Also Published As

Publication number Publication date
JPS6466597A (en) 1989-03-13

Similar Documents

Publication Publication Date Title
JP4057778B2 (en) Boilers, especially waste heat boilers and their operating methods
CN111256104A (en) Purification system and method for high-temperature gas cooled reactor nuclear power unit thermal equipment during starting period
JP2543905B2 (en) Nuclear power plant turbine system
JPS6126957Y2 (en)
JP3667525B2 (en) Steam generator-attached nuclear power generation turbine facility
US4510755A (en) Demineralization of feed water in a steam system
US4216057A (en) Purifying plant for water to be vaporized in a steam generator of a nuclear reactor
JPH0440524B2 (en)
JPH11236689A (en) Water treating apparatus for power generating plant and water treatment
JPH065123B2 (en) Nuclear power plant turbine system
JP2519306B2 (en) Drain recovery system purification device
JPS60201296A (en) Reducer for radiation dose
JPS63307393A (en) Turbine system for nuclear power plant
JPS63150504A (en) Water treatment equipment
JPH11304993A (en) Turbine equipment for power generation
CN109072719B (en) Steam turbine plant
JPS6398597A (en) Condensate system
JPH01118799A (en) Method for controlling iron concentration in feed water of nuclear power plant
JPS60101204A (en) Cleanup method in thermal power plant
WO1984004952A1 (en) Condensate feed apparatus for steam generator
JPS61132897A (en) Method of operating nuclear power plant
JPH0493796A (en) Nuclear power plant
JPH04126902A (en) Feedwater heater
RU2045702C1 (en) Method of enhancing operational reliability of power-generating unit
JPH0468525B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12