JPH11302411A - Preparation of prepreg and laminate - Google Patents

Preparation of prepreg and laminate

Info

Publication number
JPH11302411A
JPH11302411A JP11040998A JP4099899A JPH11302411A JP H11302411 A JPH11302411 A JP H11302411A JP 11040998 A JP11040998 A JP 11040998A JP 4099899 A JP4099899 A JP 4099899A JP H11302411 A JPH11302411 A JP H11302411A
Authority
JP
Japan
Prior art keywords
powdery
thermosetting resin
prepreg
curing agent
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11040998A
Other languages
Japanese (ja)
Inventor
Wataru Kosaka
弥 小坂
Takahiro Nakada
高弘 中田
Kazuyuki Najima
和行 名島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP11040998A priority Critical patent/JPH11302411A/en
Publication of JPH11302411A publication Critical patent/JPH11302411A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain with a low cost a laminate which causes no air pollution, allows resource conservation and has a stable and good quality. SOLUTION: In a preparation process of a prepreg, a powdery composition, obtained by adding a thermosetting resin in the form of powder, which essentially comprises a thermosetting resin and a hardener uniformly mixed, with a thermoplastic resin in the form of fine powder with an average particle size of from 0.01 to 1 μm and a hardener or accelerator and uniformly mixing these, is allowed to exist at least at the surface of a sheet-form fiber substrate. In a preparation process for a laminate, one or more of this prepreg is laminated, heated and pressurized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はプリプレグ及び積層
板の製造方法、特に電気機器、電子機器、通信機器等に
使用される印刷回路板用として好適なプリプレグ及び積
層板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a prepreg and a laminate, and more particularly to a method for producing a prepreg and a laminate suitable for a printed circuit board used in electric equipment, electronic equipment, communication equipment and the like. .

【0002】[0002]

【従来の技術】プリント回路板については小型化、高機
能化の要求が強くなる反面、価格競争が激しく、特にプ
リント回路板に用いられる多層積層板やガラス布基材エ
ポキシ樹脂積層板、あるいはガラス不織布を中間層基材
としガラス織布を表面層基材とした積層板は、いずれも
価格の低減が大きな課題となっている。従来これらに用
いられるプリプレグや積層板の製造工程では、多量の溶
剤が用いられてきた。これは、樹脂ワニスの調製が容易
で、基材への樹脂の塗布・含浸が均一で容易なためであ
る。この溶剤は塗布後の乾燥工程で蒸発して製品中に存
在せず、多くは、燃焼装置等で処理され、あるいはその
まま大気中に放出されてきた。この為地球温暖化や大気
汚染の一因となることが指摘されるようになってきた。
一方では、溶剤使用量の削減が種々検討されているが、
基材への樹脂塗布・含浸などの製造上の問題からこの削
減は困難であった。
2. Description of the Related Art As for printed circuit boards, demands for miniaturization and high performance are increasing, but price competition is intense. In particular, multilayer laminated boards, glass cloth base epoxy resin laminated boards, or glass used for printed circuit boards are used. The cost reduction of any laminate using nonwoven fabric as the intermediate layer base material and glass woven fabric as the surface layer base material has been a major issue. Conventionally, a large amount of a solvent has been used in a process for producing a prepreg or a laminate used for these. This is because the preparation of the resin varnish is easy, and the application and impregnation of the resin on the base material is uniform and easy. This solvent evaporates in a drying step after coating and does not exist in the product, and most of the solvent is treated by a combustion device or the like or released to the atmosphere as it is. It has been pointed out that this contributes to global warming and air pollution.
On the other hand, various measures have been taken to reduce the amount of solvent used,
This reduction was difficult due to manufacturing problems such as application and impregnation of the resin to the base material.

【0003】溶剤を使用しないプリプレグ及び積層板の
製造のために、低融点の樹脂や液状の樹脂を加熱混合し
て均一化して基材へ塗布する研究が以前からなされてい
るが、均一混合が十分に出来ない、連続生産時加熱温度
の低下による設備への樹脂固結、加熱中の熱硬化性樹脂
のゲル化、これによる設備の掃除等の問題があり、連続
的な生産が困難であった。一方粉末状樹脂をそのまま塗
布する方法も提案されている(特開昭50−14387
0号公報)が、均一な混合及び塗布が困難であり、部分
的な硬化が生じたり、基材への含浸が不十分であるなど
の問題があり、実用化には至っていない。
[0003] For the production of prepregs and laminates that do not use a solvent, studies have been made to heat and mix a low-melting-point resin or a liquid resin so as to be uniform and apply it to a base material. It is not possible to achieve sufficient production, and there are problems such as resin consolidation in equipment due to a decrease in heating temperature during continuous production, gelling of thermosetting resin during heating, and cleaning of equipment due to this. Was. On the other hand, a method of directly applying a powdery resin has also been proposed (Japanese Patent Application Laid-Open No. 50-14387).
No. 0), however, have problems such as difficulty in uniform mixing and coating, partial curing, and insufficient impregnation of the substrate, and have not been put to practical use.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来製造が
困難であった溶剤を使用しない樹脂によるプリプレグ及
びこのプリプレグを使用した積層板を得んとして研究し
た結果、粉末状の熱硬化性樹脂組成物を使用すること、
及びその粉末熱硬化性樹脂組成物に平均粒径0.01〜
1μmの微粉末熱硬化性樹脂、硬化剤又は硬化促進剤を
添加することにより均一な混合や基材への含浸性が従来
の溶剤を使用した樹脂の場合と同等となり得るとの知見
を得、更にこの知見に基づき種々研究を進めて本発明を
完成するに至ったものである。
DISCLOSURE OF THE INVENTION The present invention has been studied to obtain a prepreg made of a resin that does not use a solvent and a laminate using the prepreg, which has been conventionally difficult to produce. Using the composition,
And the powder thermosetting resin composition has an average particle size of 0.01 to
1μm fine powder thermosetting resin, obtained the knowledge that by adding a curing agent or a curing accelerator, uniform mixing and impregnation to the substrate can be equivalent to the case of a resin using a conventional solvent, Further, based on this finding, the present inventors have made various studies and completed the present invention.

【0005】[0005]

【課題を解決するための手段】本発明は、熱硬化性樹脂
及び硬化剤を必須成分とし、これら成分が均一に混合さ
れた粉末状熱硬化性樹脂組成物に、平均粒径0.01〜
1μmの微粉末熱硬化性樹脂、硬化剤又は硬化促進剤
(以下、微粉末樹脂等という)を添加し均一混合して得
た粉末状樹脂組成物(以下、粉末組成物という)を、シ
ート状繊維基材(以下、基材という)の少なくとも表面
に存在させることを特徴とするプリプレグの製造方法、
に関するものであり、さらには、このようにして得られ
たプリプレグを、1枚又は複数枚重ね合わせ、加熱加圧
することを特徴とする積層板又は金属箔張積層板の製造
方法に関するものである。
According to the present invention, a thermosetting resin and a curing agent are essential components, and a powdery thermosetting resin composition in which these components are uniformly mixed has an average particle size of from 0.01 to 0.01%.
A powdery resin composition (hereinafter, referred to as a powder composition) obtained by adding and uniformly mixing a 1 μm fine powder thermosetting resin, a curing agent or a curing accelerator (hereinafter, referred to as a fine powder resin) is formed into a sheet. A method for producing a prepreg, characterized in that the prepreg is present on at least the surface of a fiber base material (hereinafter, referred to as a base material),
The present invention further relates to a method for producing a laminate or a metal foil-clad laminate, which comprises laminating one or more prepregs thus obtained and heating and pressing them.

【0006】本発明において、用いられる熱硬化性樹脂
は、エポキシ樹脂が望ましいが、このほか、ポリイミド
樹脂、ポリエステル樹脂、フェノール樹脂などを用いる
ことができる。熱硬化性樹脂がエポキシ樹脂の場合、硬
化剤としては、耐熱性や電気特性の点から、アミン系、
特にジシアンジアミドと芳香族アミン、及びノボラック
樹脂等が望ましいが、酸無水物、イミダゾール化合物等
も用いることができ、硬化促進剤としては、イミダゾー
ル化合物、第3級アミン等を用いることができる。
In the present invention, the thermosetting resin used is preferably an epoxy resin. In addition, a polyimide resin, a polyester resin, a phenol resin and the like can be used. When the thermosetting resin is an epoxy resin, as the curing agent, amine-based,
Particularly, dicyandiamide, an aromatic amine, a novolak resin, and the like are preferable. However, an acid anhydride, an imidazole compound, and the like can be used. As the curing accelerator, an imidazole compound, a tertiary amine, and the like can be used.

【0007】微粉末樹脂等を添加する前の粉末状熱硬化
性樹脂組成物が、粉末状熱硬化性樹脂及び硬化剤の混合
物に機械的エネルギーを与えてメカノケミカル反応を起
こさせて得られた粉末状物である場合、硬化剤は粉末状
であることが好ましいが、配合量が少ない場合(例え
ば、樹脂に対して20重量%以下)はその一部又は全部
が液状でもよく、樹脂との混合物に機械的エネルギーを
与えた後に粉末化できれば使用可能である。また、好ま
しくは、硬化促進剤を使用する。硬化促進剤も粉末状の
ものが好ましいが、上記と同様に液状のものも使用可能
である。
A powdery thermosetting resin composition before adding a fine powder resin or the like is obtained by applying a mechanical energy to a mixture of a powdery thermosetting resin and a curing agent to cause a mechanochemical reaction. In the case of a powdery substance, the curing agent is preferably in the form of a powder. However, when the amount is small (for example, 20% by weight or less based on the resin), a part or all of the curing agent may be in a liquid state. It can be used if it can be pulverized after applying mechanical energy to the mixture. Preferably, a curing accelerator is used. The curing accelerator is preferably in the form of a powder, but a liquid accelerator can also be used as described above.

【0008】これらの粉体の粒径としては、通常100
0μm以下であり、好ましくは0.1〜500μmであ
り、更に好ましくは0.1〜200μmである。これ
は、1000μmを越えると粒子重量に対しての表面積
が小さくなり、熱硬化性樹脂、硬化剤や硬化促進剤等各
成分の互いの接点が少なくなり、均一分散が困難となる
ため、反応の目標比率とは異なった比率で反応したり、
均一な反応が行われないおそれがある。メカノケミカル
反応のためには、硬化剤及び又は硬化促進剤が粉末状の
場合、熱硬化性樹脂の粒径は、硬化剤及び又は硬化促進
剤の粒径に対して5〜15倍が好ましい。これは、この
範囲では熱硬化性樹脂に硬化剤及び又は硬化促進剤が融
合しやすいためである。更に必要により無機充填材等の
添加剤を配合することができる。
The particle size of these powders is usually 100
0 μm or less, preferably 0.1 to 500 μm, more preferably 0.1 to 200 μm. This is because if the particle size exceeds 1000 μm, the surface area with respect to the particle weight becomes small, the number of contact points of each component such as a thermosetting resin, a curing agent and a curing accelerator decreases, and uniform dispersion becomes difficult. It may react at a different ratio than the target ratio,
There is a possibility that a uniform reaction is not performed. For the mechanochemical reaction, when the curing agent and / or the curing accelerator is in a powder form, the particle size of the thermosetting resin is preferably 5 to 15 times the particle size of the curing agent and / or the curing accelerator. This is because the curing agent and / or the curing accelerator are easily fused to the thermosetting resin in this range. Further, an additive such as an inorganic filler can be blended if necessary.

【0009】メカノケミカル反応による改質とは、「固
体による固体の改質で、粉砕、磨砕、摩擦、接触による
粒子の表面活性、表面家電を利用するものである。活性
そのものが、結晶形の転移や歪みエネルギーの増大によ
る溶解、熱分解速度の改質、あるいは機械的強度、磁気
特性になる場合と、表面活性を他の物質との反応、付着
に用いる場合とがある。工学的には機械的衝撃エネルギ
ーが利用され、摩擦、接触による電荷、あるいは磁気に
よる付着、核物質への改質剤の埋め込み、溶融による皮
膜の形成等、物理的改質のみならず化学的改質も行われ
る。」(「実用表面改質技術総覧」材料技術研究協会
編、産業技術サービスセンター、1993.3.25発行、p786)
ものである。本発明はメカノケミカル反応による化学的
改質を利用したものであるが、固体と液体が機械的エネ
ルギーにより化学的に改質される場合をも含むものであ
る。
The modification by the mechanochemical reaction is "a modification of a solid by a solid, which utilizes the surface activity of particles by grinding, grinding, friction, and contact, and surface home appliances. The activity itself is a crystal form. In some cases, the dissolution or thermal decomposition rate is modified by increasing the transition energy or strain energy, or mechanical strength or magnetic properties are obtained. In other cases, surface activity is used for reaction or adhesion with other substances. Uses mechanical impact energy to perform not only physical modification but also chemical modification such as adhesion by electric charge or magnetism by friction, contact, embedding of modifier in nuclear material, formation of film by melting, etc. ("Overview of Practical Surface Modification Technologies" edited by the Material Technology Research Association, Industrial Technology Service Center, published March 25, 1993, p786)
Things. The present invention utilizes chemical modification by a mechanochemical reaction, but also includes a case where solids and liquids are chemically modified by mechanical energy.

【0010】メカノケミカル反応のために機械的エネル
ギーを与える粉体処理方法としては、ライカイ機、ヘン
シェルミキサー、プラネタリーミキサー、ボールミル、
ジェットミル、オングミル、多段石臼型混練押し出し機
等による混合乃至混練がある。この中でオングミル(ホ
ソカワミクロン(株)製 メカノフュージョン方式
等)、多段石臼型混練押し出し機((株)KCK製:メカ
ノケミカルディスパージョン方式等)、ジェットミル
((株)奈良機械製作所製:ハイブリタイザー方式等)に
よる混合乃至混練が好ましく、特に、メカノケミカル反
応を効率よく行うためには、多段石臼型混練押し出し機
((株)KCK製:メカノケミカルディスパージョン方
式)が好ましい。
[0010] Powder processing methods for applying mechanical energy for the mechanochemical reaction include Raikai machines, Henschel mixers, planetary mixers, ball mills,
There is mixing or kneading by a jet mill, an ong mill, a multi-stage mill-type kneading extruder or the like. Among them, Ongmill (mechano-fusion method manufactured by Hosokawa Micron Corporation), multi-stage mill-type kneading extruder (manufactured by KCK: mechanochemical dispersion method, etc.), jet mill (manufactured by Nara Machinery Co., Ltd .: hybridizer) Or the like, and mixing or kneading is preferred. In order to efficiently carry out the mechanochemical reaction, a multi-stage mill-type kneading extruder (manufactured by KCK Co., Ltd .: mechanochemical dispersion method) is preferred.

【0011】メカノケミカル反応を行うためには、熱硬
化性樹脂の軟化点は、好ましくは50℃以上、より好ま
しくは70℃以上、さらに好ましくは80℃以上であ
る。これは、上記処理時に粉体間あるいは粉体と処理装
置との間で摩擦、粉砕、融合により20〜50℃程度の
熱が発生するため、この影響を最小限にとどめるためで
ある。一方、軟化点が高すぎても有効なメカノケミカル
反応が行われにくく、かつ、後の工程である樹脂組成物
の基材への含浸が困難となるので、150℃以下の軟化
点が好ましい。粉末状熱硬化性樹脂及び硬化剤等の各成
分は、メカノケミカル反応のための粉体処理の前に、予
め、上記粒径まで粉砕した後ヘンシェルミキサー等にて
できるだけ均一に混合することが好ましい。
In order to carry out the mechanochemical reaction, the softening point of the thermosetting resin is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, and further preferably 80 ° C. or higher. This is because heat of about 20 to 50 ° C. is generated due to friction, pulverization, and fusion between the powders or between the powder and the processing apparatus during the above-mentioned processing, so that this influence is minimized. On the other hand, if the softening point is too high, an effective mechanochemical reaction is unlikely to be performed, and it is difficult to impregnate the base material with the resin composition in a later step. Each component such as a powdery thermosetting resin and a curing agent is preferably mixed as uniformly as possible with a Henschel mixer or the like after pulverizing to the above particle size in advance before powder treatment for mechanochemical reaction. .

【0012】メカノケミカル反応された粉末状熱硬化性
樹脂組成物の粒径は、通常1000μm以下であり、好
ましくは0.1〜500μmであり、更に好ましくは
0.1〜200μmである。かかる粒径は、粉末組成物
の散布ないし塗布時の流動性、及び加熱溶融時の流れや
表面の滑らかさを改良すること、基材への樹脂の含浸性
を改良すること、基材中での樹脂組成物の分布を安定化
させること等のために適している。
The particle size of the powdery thermosetting resin composition subjected to the mechanochemical reaction is generally 1000 μm or less, preferably 0.1 to 500 μm, and more preferably 0.1 to 200 μm. Such a particle size is to improve the fluidity of the powder composition at the time of spraying or application, and to improve the flow and surface smoothness at the time of heating and melting, to improve the resin impregnation property of the base material, It is suitable for stabilizing the distribution of the resin composition.

【0013】微粉末樹脂等を添加する前の粉末状熱硬化
性樹脂組成物が、熱硬化性樹脂及び硬化剤を加熱混練な
いし溶融混合され、微粉砕された粉末状物である場合、
熱硬化性樹脂及び硬化剤、その他必要により添加され
る、硬化促進剤、無機充填材等の添加剤とともに、加熱
ロール等により加熱混練ないし溶融混合され、次いで、
粉砕機により微粉砕される。熱硬化性樹脂及び硬化剤
は、通常、固形のものが使用されるが、熱硬化性樹脂、
無機充填材以外の成分(例えば、硬化剤、硬化促進剤)
は液状のものも使用可能である。
In the case where the powdery thermosetting resin composition before the addition of the fine powder resin or the like is a finely pulverized powder obtained by heating and kneading or melting and mixing a thermosetting resin and a curing agent,
A thermosetting resin and a curing agent, and other additives that are added as needed, such as a curing accelerator and an inorganic filler, are heated and kneaded or melt-mixed by a heating roll, and then,
It is finely pulverized by a pulverizer. The thermosetting resin and the curing agent are usually used in a solid state, but the thermosetting resin,
Components other than inorganic fillers (eg, curing agent, curing accelerator)
Can also be used in liquid form.

【0014】加熱混練ないし溶融混合するために装置
は、加熱ロール、1軸又は2軸押出機、コニーダー等の
加熱混練機、あるいはヘンシェルミキサー等の加熱装置
の付いた攪拌容器、反応装置等があり、実用上は加熱ロ
ール、1軸又は2軸押出機、ヘンシェルミキサーが好ま
しい。また、粉砕機は、加熱混練ないし溶融混合された
樹脂組成物を微粉砕可能なものであればいかなるもので
もよく、例えば、ハンマーミル、アトマイザー、ジェッ
トミル等がある。
Apparatus for heating kneading or melt mixing includes a heating roll, a single-screw or twin-screw extruder, a heating kneader such as a co-kneader, a stirring vessel equipped with a heating device such as a Henschel mixer, a reaction apparatus, and the like. Practically, a heating roll, a single screw or twin screw extruder, and a Henschel mixer are preferable. The pulverizer may be any pulverizer that can finely pulverize the resin composition that has been heated and kneaded or melt-mixed, and examples thereof include a hammer mill, an atomizer, and a jet mill.

【0015】微粉砕された粉末状熱硬化性樹脂組成物の
粒径は、通常1000μm以下であり、好ましくは0.
1〜500μmであり、更に好ましくは0.1〜200
μmである。かかる粒径は、粉末組成物の散布ないし塗
布時の流動性、及び加熱溶融時の流れや表面の滑らかさ
を改良すること、基材への樹脂の含浸性を改良するこ
と、基材中での樹脂組成物の分布を安定化させること等
のために適している。
The particle size of the finely pulverized thermosetting resin composition is usually 1000 μm or less, preferably 0.1 μm or less.
1 to 500 μm, and more preferably 0.1 to 200 μm.
μm. Such a particle size is to improve the fluidity of the powder composition at the time of spraying or application, and to improve the flow and surface smoothness at the time of heating and melting, to improve the resin impregnation property of the base material, It is suitable for stabilizing the distribution of the resin composition.

【0016】本発明に用いられる熱硬化性樹脂組成物に
は、上述のように、必要により、メカノケミカル反応を
起こさる前に、あるいは加熱混練ないし溶融混合する前
に、予め無機充填材を添加することができる。無機充填
材を加えると耐トラッキング性、耐熱性、熱膨張率の低
下等の特性を付与することが出来る。かかる無機充填材
としては、水酸化アルミニウム、水酸化マグネシウム、
炭酸カルシウム、タルク、ウォラストナイト、アルミ
ナ、シリカ、未焼成クレー、焼成クレー、硫酸バリウム
等がある。これらの粒径も前記と同様である。この他、
カップリング剤等の添加剤を配合してもよい。
As described above, an inorganic filler is added to the thermosetting resin composition used in the present invention in advance before a mechanochemical reaction occurs or before heat kneading or melt mixing as described above. can do. When an inorganic filler is added, characteristics such as tracking resistance, heat resistance, and a decrease in coefficient of thermal expansion can be imparted. Such inorganic fillers include aluminum hydroxide, magnesium hydroxide,
Examples include calcium carbonate, talc, wollastonite, alumina, silica, unfired clay, fired clay, and barium sulfate. These particle sizes are the same as above. In addition,
An additive such as a coupling agent may be blended.

【0017】以上のようにして得られた粉末熱硬化性樹
脂組成物は、その後、平均粒径0.01〜1μmの微粉
末樹脂等を配合し均一混合して、基材の少なくとも表面
に存在させることによりプリプレグを得る。この微粉末
樹脂等は、熱硬化性樹脂や硬化剤とともにはじめから配
合され、混合処理されても効果はあるが、上記のよう
に、メカノケミカル処理された又は加熱混練ないし溶融
混合された粉末熱硬化性樹脂組成物に配合する方が効果
は遙かに大きい。
The powder thermosetting resin composition obtained as described above is then mixed with a fine powder resin having an average particle diameter of 0.01 to 1 μm and uniformly mixed to form a mixture on at least the surface of the substrate. Then, a prepreg is obtained. This fine powder resin or the like is initially blended with the thermosetting resin or the curing agent and is effective even if mixed, but as described above, the mechanochemically treated or heat-kneaded or melt-mixed powder heat is used. The effect is much greater when it is added to the curable resin composition.

【0018】粉末熱硬化性樹脂組成物に微粉末添加剤を
配合することにより、粉末組成物の流動特性を大きく向
上させることができる。従って、この粉末組成物を基材
へ塗布・含浸する際、該粉末組成物の均一な散布ないし
塗布を行うことができ、基材上での粉末組成物の均一な
分布及び粉末組成物塗布面の平滑性を得ることができ
る。これにより基材への均一な塗布が可能となる。微粉
末添加剤としては、無機系微粉末が望ましいが、有機系
微粉末も用いることができる。また、微粉末樹脂等は平
均粒径で0.01〜1μmのものを用いるが、好ましく
は0.01〜0.1μm(比表面積:50〜500m2
/g程度)のものを用いる。かかる微粉末樹脂等として
は、本発明の主要成分である熱硬化性樹脂、硬化剤ある
いは硬化促進剤から適宜選択される。平均粒径が1μm
を越えると比表面積が小さくなり単位重量当たりの粒子
数が減少すること、及び、主成分である粉末状熱硬化性
樹脂との粒径差が小さくなることにより、流動性向上の
ためのベアリング効果が十分に得られないおそれがあ
る。粉体中のベアリング効果とは、比較的粒径の大きな
粒子同士の接触点に微粒子を存在させることにより、粒
径の大きな粒子の移動をより自由にし、粉末組成物全体
としての流動性を向上させるものである。
By incorporating a fine powder additive into the powder thermosetting resin composition, the flow characteristics of the powder composition can be greatly improved. Therefore, when this powder composition is applied and impregnated on a substrate, the powder composition can be uniformly dispersed or applied, and the uniform distribution of the powder composition on the substrate and the powder composition application surface can be achieved. Can be obtained. This enables uniform application to the base material. As the fine powder additive, an inorganic fine powder is desirable, but an organic fine powder can also be used. The fine powder resin or the like having an average particle diameter of 0.01 to 1 μm is used, and preferably 0.01 to 0.1 μm (specific surface area: 50 to 500 m 2).
/ G). Such a fine powder resin or the like is appropriately selected from a thermosetting resin, a curing agent, and a curing accelerator, which are main components of the present invention. Average particle size is 1μm
Exceeding the specific surface area decreases the number of particles per unit weight, and the difference in particle size from the powdered thermosetting resin, which is the main component, decreases. May not be obtained sufficiently. The bearing effect in powder means that fine particles are present at the point of contact between particles having relatively large particle diameters, thereby making the movement of large particle diameters more free and improving the flowability of the powder composition as a whole. It is to let.

【0019】微粉末樹脂等の配合量は、粉末組成物全体
に対して0.1〜5重量%が好ましく、0.2〜2.0
重量%がより好ましい。0.1〜5重量%の範囲におい
て、積層板の特性を余り低下させることなく、粉末組成
物の流動性を向上させることができ、0.2〜2.0重
量%の範囲でその効果が最もよく発揮される。微粉末樹
脂等を配合した粉末組成物の流動性を向上させるための
処理方法としては、微粉末樹脂等を均一に混合分散でき
る方法であればいずれの方法でも良く、このような処理
方法としては、例えばヘンシェルミキサー,ライカイ
機,プラネタリーミキサー,タンブラー、ボールミル等
による混合が挙げられる。
The compounding amount of the fine powder resin and the like is preferably 0.1 to 5% by weight based on the whole powder composition, and 0.2 to 2.0% by weight.
% Is more preferred. In the range of 0.1 to 5% by weight, the fluidity of the powder composition can be improved without significantly lowering the properties of the laminate, and the effect is in the range of 0.2 to 2.0% by weight. Best demonstrated. As a treatment method for improving the fluidity of the powder composition containing the fine powder resin and the like, any method may be used as long as the method can uniformly mix and disperse the fine powder resin and the like. For example, mixing with a Henschel mixer, a Raikai machine, a planetary mixer, a tumbler, a ball mill or the like can be mentioned.

【0020】以上のようにして得られた粉末組成物は、
散布ないし塗布等により基材の少なくとも表面に存在さ
せる。この粉末組成物の量は、基材の繊維材質、性状、
重量(単位面積当たり)により異なるが、通常、基材の
重量の40〜60%程度である。粉末組成物を基材に存
在させる方法は、基材の上面から振りかける方法、静電
塗装法、流動浸漬法、スプレーによる吹き付け法、ナイ
フコーター、コンマコーター等の各種コーターによる塗
布法等があり、特に限定されない。基材としては、ガラ
スクロス、ガラス不繊布等のガラス繊維基材の他、紙、
合成繊維等からなる織布や不織布、金属繊維、カーボン
繊維、鉱物繊維等からなる織布、不織布、マット類等が
挙げられ、これらの基材の原料繊維は単独又は混合して
使用してもよい。
The powder composition obtained as described above is
It is made to exist on at least the surface of the substrate by spraying or coating. The amount of this powder composition depends on the fiber material of the base material, properties,
Although it depends on the weight (per unit area), it is usually about 40 to 60% of the weight of the substrate. The method of causing the powder composition to be present on the substrate includes a method of sprinkling from the upper surface of the substrate, an electrostatic coating method, a fluid immersion method, a spraying method with a spray, a knife coater, a coating method using various coaters such as a comma coater, and the like. There is no particular limitation. As the substrate, other than glass cloth, glass fiber substrate such as glass non-woven cloth, paper,
Woven fabrics and nonwoven fabrics made of synthetic fibers and the like, metal fibers, carbon fibers, woven fabrics made of mineral fibers and the like, nonwoven fabrics, mats and the like, and the raw material fibers of these substrates may be used alone or in combination. Good.

【0021】前記基材に粉末組成物を存在せしめると
き、基材の片面のみに粉末組成物を存在せしめてもよい
が、好ましくは、反り防止等の点から表裏のバランスを
とるために基材の両面に粉末組成物を存在せしるのが好
ましい。この場合、まず基材の片面(上面)に散布ない
し塗布等により粉末組成物を存在させ、次いで、加温し
て粉末組成物を基材に十分付着させる。さらに反対面に
も粉末組成物を存在させる場合、基材を反転させ、基材
の上面に同様に粉末組成物を存在させ、次いで、加温し
て粉末組成物を基材に十分付着させる。この加温温度
は、粉末組成物の軟化点にもよるが、粉末組成物の存在
する面(上面)では、通常、80〜150℃であり、好
ましくは100〜140℃である。また、反対面(下
面)では、通常、90〜170℃であり、好ましくは1
10〜150℃である。
When the powder composition is present on the base material, the powder composition may be present on only one side of the base material. However, the base material is preferably used to balance front and back from the viewpoint of preventing warpage and the like. It is preferred that the powder composition is present on both sides of the substrate. In this case, first, the powder composition is made to exist on one surface (upper surface) of the substrate by spraying or coating, and then heated to sufficiently adhere the powder composition to the substrate. If the powder composition is also present on the opposite side, the substrate is inverted and the powder composition is similarly present on the top surface of the substrate, and then heated to sufficiently adhere the powder composition to the substrate. The heating temperature depends on the softening point of the powder composition, but is usually from 80 to 150 ° C, preferably from 100 to 140 ° C, on the surface (upper surface) where the powder composition exists. On the opposite surface (lower surface), the temperature is usually 90 to 170 ° C., preferably 1 to 170 ° C.
10-150 ° C.

【0022】樹脂組成物を更に十分に含浸させ、必要に
より樹脂を半硬化の状態にするために、樹脂含浸基材を
加熱してもよい。この加熱温度は、通常、100〜20
0℃であり、好ましくは120〜190℃であるが、樹
脂組成物の流動性や硬化性より異なる場合がある。
The resin-impregnated base material may be heated so that the resin composition is more fully impregnated and, if necessary, the resin is in a semi-cured state. This heating temperature is usually 100 to 20
The temperature is 0 ° C., preferably 120 to 190 ° C., but may be different depending on the fluidity and curability of the resin composition.

【0023】基材の厚みが100μm以下(ガラス基材
では100g/m2以下)と薄い場合、あるいは粉末組
成物が容易に均一に溶融する場合、片面にのみに粉末組
成物を存在せしめる方法でもよい。この場合も、通常、
その後に加温及び又は加熱する工程を設ける。
When the thickness of the substrate is as thin as 100 μm or less (100 g / m 2 or less for a glass substrate), or when the powder composition is easily and uniformly melted, a method in which the powder composition is present only on one side is also used. Good. Again, in this case,
Thereafter, a step of heating and / or heating is provided.

【0024】以上のようにして得られたプリプレグは、
この1枚又は複数枚を、必要により銅箔等の金属箔を重
ね合わせ、通常の方法により加熱加圧して積層板又は金
属箔張積層板に成形される。本発明によるプリプレグ及
び積層板の製造方法は、得られたプリプレグあるいは積
層板の性能を、従来のものと実質的に変えることなく、
粉末組成物の使用による製造が容易となり、無溶剤によ
る省資源化、省エネルギー化及び大気汚染の低減化が図
られ、さらに低コスト化をも達成することができる。
The prepreg obtained as described above is
One or more of the sheets are laminated with a metal foil such as a copper foil as necessary, and heated and pressed by a usual method to form a laminate or a metal foil-clad laminate. The method for producing a prepreg and a laminate according to the present invention, the performance of the obtained prepreg or laminate, without substantially changing the conventional one,
The production by using the powder composition is facilitated, resource saving by solvent-free, energy saving and reduction of air pollution are achieved, and further cost reduction can be achieved.

【0025】本発明は、熱硬化性樹脂、硬化剤等が均一
の混合され微粉砕された微粉末熱硬化性樹脂組成物の使
用と微粉末樹脂等によるベアリング効果を応用したもの
であり、かかる技術により、各成分を均一に分散し結合
させ、得られた粉末組成物を基材に存在させ含浸する際
に、該粉末組成物の均一な分布、粉末組成物塗布面の平
滑性を得ることができ、これにより基材への均一な含浸
を達成することができたものである。
The present invention is directed to the use of a finely powdered thermosetting resin composition in which a thermosetting resin, a curing agent and the like are uniformly mixed and pulverized, and the application of the bearing effect of the fine powdered resin and the like. By technology, each component is uniformly dispersed and combined, and when the obtained powder composition is present on the substrate and impregnated, to obtain a uniform distribution of the powder composition and smoothness of the powder composition application surface Thus, uniform impregnation of the substrate can be achieved.

【0026】[0026]

【実施例】次に、本発明の実施例を比較例とともに具体
的に説明する。
Next, examples of the present invention will be specifically described together with comparative examples.

【0027】〔実施例1〕(微粉末ジシアンジアミド、
KCK、コーター法) 平均粒径150μmの粉末状のエポキシ樹脂(油化シェ
ルエポキシ(株)製臭素化エポキシ樹脂Ep5048,エ
ポキシ当量675)100重量部、平均粒子径15μm
の粉末状の硬化剤(ジシアンジアミド)4重量部、及び
平均粒径15μmの粉末状の硬化促進剤(2−エチル−
4−メチルイミダゾール)1重量部を予備混合し、次い
で、多段石臼型混練押し出し機((株)KCK製 メカノ
ケミカルディスパージョンシステム KCK−80X2
−V(6))を用い、回転数200rpmにて1分間処
理し、平均粒径150μmの粉末組成物を得た。この粉
末の樹脂組成物100重量部に、平均粒子径0.2μm
の微粉末硬化剤(ジシアンジアミド)1重量部を添加
し、ヘンシェルミキサーで回転数500rpm、5分間
混合処理した。次いで、この粉末組成物を100g/m
2のガラスクロスの上面ににナイフコーターで樹脂重量
が50g/m2になるように均一に塗布した。その後、
下面側より150℃のパネルヒーター120℃により約
1分間加温した。次いで、ガラスクロスを上下反対に
し、もう一方の面にナイフコーターで樹脂重量が50g
/m2になるように均一に塗布し、170℃の熱風加熱
機で1分間加熱してプリプレグを得た。このプリプレグ
を2枚重ね合わせ、さらにその上下に厚さ18μmの銅
箔を重ね合わせ、温度165℃、圧力60kg/cm2
で90分間加熱加圧成形して、厚さ0.22mmの銅張
積層板を作製した。
[Example 1] (Fine powder dicyandiamide,
KCK, coater method) 100 parts by weight of a powdery epoxy resin having an average particle diameter of 150 μm (brominated epoxy resin Ep5048, manufactured by Yuka Shell Epoxy Co., Ltd., epoxy equivalent: 675), and an average particle diameter of 15 μm
4 parts by weight of a powdery curing agent (dicyandiamide) and a powdery curing accelerator (2-ethyl-
1 part by weight of 4-methylimidazole) is preliminarily mixed, and then a multi-stage mill-type kneading extruder (Mechanochemical dispersion system KCK-80X2 manufactured by KCK Co., Ltd.)
-V (6)) at 200 rpm for 1 minute to obtain a powder composition having an average particle size of 150 μm. To 100 parts by weight of the resin composition of this powder, an average particle diameter of 0.2 μm
Was added and 1 part by weight of a fine powder curing agent (dicyandiamide) was added and mixed at 500 rpm for 5 minutes using a Henschel mixer. Then, the powder composition was added to 100 g / m
The resin was uniformly coated on the upper surface of the glass cloth of No. 2 with a knife coater so that the resin weight became 50 g / m 2 . afterwards,
The panel was heated from the lower surface side by a panel heater of 120 ° C. at 150 ° C. for about 1 minute. Then, turn the glass cloth upside down, and weigh 50 g of resin on the other side with a knife coater.
/ M 2, and heated for 1 minute with a hot air heater at 170 ° C. to obtain a prepreg. Two prepregs were superimposed, and a copper foil having a thickness of 18 μm was superimposed on top and bottom of the prepreg, at a temperature of 165 ° C. and a pressure of 60 kg / cm 2.
For 90 minutes to produce a copper-clad laminate having a thickness of 0.22 mm.

【0028】〔実施例2〕(微粉末硬化促進剤、ホソカ
ワミクロン、ふりかけ法) 平均粒径150μmの粉末状のエポキシ樹脂(前記Ep
5048)100重量部、平均粒子径15μmの粉末状
の硬化剤(ジシアンジアミド)5重量部、及び平均粒径
15μmの粉末状の硬化促進剤(2−エチル−4−メチ
ルイミダゾール)1重量部を予備混合し、次いで、メカ
ノフュージョン機(ホソカワミクロン(株)製AM−15
F)を用い、回転数2000rpmにて5分間処理し、
平均粒径150μmの粉末組成物を得た。この粉末組成
物100重量部に、平均粒子径0.5μmの微粉末硬化
促進剤(2−エチル−4−メチルイミダゾール)0.5
重量部を添加し、ヘンシェルミキサーで回転数500r
pm、5分間混合処理した。次いで、この粉末組成物を
100g/m2のガラスクロスの片面上に60メッシュ
篩いを通して樹脂重量が50g/m2になるように均一
に振りまいた。その後、170℃の熱風加熱機でガラス
クロスの両面から30秒加温し、次いで、ガラスクロス
を上下反対にし、もう一方の面に60メッシュ篩いを通
して樹脂重量が50g/m2になるように均一に振りま
き、170℃の熱風加熱機で3分間加熱してプリプレグ
を得た。このプリプレグを用い、実施例1と同様にし
て、厚さ0.22mmの銅張積層板を作製した。
Example 2 (Fine powder hardening accelerator, Hosokawa micron, sprinkling method) A powdery epoxy resin having an average particle size of 150 μm (Ep
5048) 100 parts by weight, 5 parts by weight of a powdery curing agent (dicyandiamide) having an average particle diameter of 15 μm, and 1 part by weight of a powdery curing accelerator (2-ethyl-4-methylimidazole) having an average particle diameter of 15 μm After mixing, a Mechanofusion machine (AM-15, manufactured by Hosokawa Micron Corp.)
Using F), process at a rotation speed of 2000 rpm for 5 minutes,
A powder composition having an average particle size of 150 μm was obtained. To 100 parts by weight of this powder composition was added 0.5 fine powder hardening accelerator (2-ethyl-4-methylimidazole) having an average particle size of 0.5 μm.
Add 500 parts by weight and use a Henschel mixer to rotate at 500 r.
pm for 5 minutes. Next, this powder composition was uniformly sieved on one side of a 100 g / m 2 glass cloth through a 60-mesh sieve so that the resin weight became 50 g / m 2 . Then, the glass cloth was heated for 30 seconds from both sides of the glass cloth with a hot air heater at 170 ° C., then the glass cloth was turned upside down, and the other side was passed through a 60-mesh sieve so that the resin weight became 50 g / m 2. And heated with a hot air heater at 170 ° C. for 3 minutes to obtain a prepreg. Using this prepreg, a copper-clad laminate having a thickness of 0.22 mm was produced in the same manner as in Example 1.

【0029】〔実施例3〕(実施例1、180μm厚手
クロス) 実施例1で得た粉末組成物を210g/m2のガラスク
ロスの片面上にナイフコーターで樹脂重量が90g/m
2になるように均一に塗布した。その後、下面側より1
20℃の熱風加熱機により約1分間加温した。次いで、
ガラスクロスを上下反対にし、もう一方の面にナイフコ
ーターで樹脂重量が90g/m2になるように均一に塗
布し、170℃の熱風加熱機で1分間加熱してプリプレ
グを得た。このプリプレグ1枚を用い、実施例1と同様
にして、厚さ0.22mmの銅張積層板を作製した。
Example 3 (Example 1, 180 μm thick cloth) The powder composition obtained in Example 1 was coated on one surface of a glass cloth of 210 g / m 2 with a resin weight of 90 g / m 2 using a knife coater.
2 was applied uniformly. Then, from the bottom side
It was heated by a hot air heater at 20 ° C. for about 1 minute. Then
The glass cloth was turned upside down, and the other surface was uniformly coated with a knife coater so that the resin weight became 90 g / m 2, and heated with a hot air heater at 170 ° C for 1 minute to obtain a prepreg. Using this one prepreg, a copper-clad laminate having a thickness of 0.22 mm was produced in the same manner as in Example 1.

【0030】〔実施例4〕(微粉末ジシアンジアミド、
ロール、コーター法) 粒状ないし粉末状のエポキシ樹脂(前記Ep5048,
エポキシ当量675)100重量部、粉末状の硬化剤
(ジシアンジアミド)4重量部、粉末状の硬化促進剤
(2−エチル−4−メチルイミダゾール)1重量部の比
率で予備混合し、次いで、直径12インチの2本ロール
を用い、高速側回転数20rpm、高速側ロール温度6
0℃、低速側ロール温度30℃、回転比1.5:1にて
30回処理した後、シート状で取りだし冷風にて冷却
後、微粉砕機にて粉砕して平均粒径200μmの粉末組
成物を得た。この粉末組成物100重量部に、平均粒子
径0.2μmの微粉末硬化剤(ジシアンジアミド)1重
量部を添加し、ヘンシェルミキサーで回転数500rp
m、5分間混合処理した。以下、この粉末組成物を用
い、実施例1と同様にしてプリプレグを得、さらに、こ
のプリプレグを用い、実施例1と同様にして厚さ0.2
2mmの銅張積層板を作製した。
Example 4 (fine powder dicyandiamide,
Roll, coater method) Granular or powdery epoxy resin (the above-mentioned Ep5048,
(Epoxy equivalent 675) 100 parts by weight, 4 parts by weight of a powdery curing agent (dicyandiamide), 1 part by weight of a powdery curing accelerator (2-ethyl-4-methylimidazole), and then premixed at a ratio of 1 part by weight. Using two inch rolls, high speed side rotation speed 20 rpm, high speed side roll temperature 6
After treating 30 times at 0 ° C., low-speed roll temperature of 30 ° C. and rotation ratio of 1.5: 1, take out the sheet, cool it with cold air, and pulverize it with a fine pulverizer to obtain a powder composition having an average particle diameter of 200 μm. I got something. To 100 parts by weight of this powder composition, 1 part by weight of a fine powder hardener (dicyandiamide) having an average particle diameter of 0.2 μm was added, and the rotation speed was set to 500 rpm with a Henschel mixer.
m for 5 minutes. Hereinafter, using this powder composition, a prepreg was obtained in the same manner as in Example 1. Further, using this prepreg, a thickness of 0.2 was obtained in the same manner as in Example 1.
A 2 mm copper-clad laminate was produced.

【0031】〔実施例5〕(微粉末エポキシ樹脂、ヘン
シェル、コーター法) 粒状ないし粉末状のエポキシ樹脂(前記Ep5048)
95重量部、粉末状の硬化剤(ジシアンジアミド)5重
量部、粉末状の硬化促進剤(2−エチル−4−メチルイ
ミダゾール)1重量部の比率で予備混合したものを温度
100℃で溶融し、ヘンシェルミキサーを用い、回転数
500rpmにて、20分混合処理し、バットに板状に
取りだし冷風にて冷却後、微粉砕機にて粉砕して平均粒
径200μmの粉末組成物を得た。この粉末組成物10
0重量部に、平均粒子径0.5μmの微粉末エポキシ樹
脂(前記Ep5048)5重量部を添加し、ヘンシェル
ミキサーで回転数500rpm、5分間混合処理した。
以下、この粉末組成物を用い、実施例1と同様にしてプ
リプレグを得、さらに、このプリプレグを用い、実施例
1と同様にして厚さ0.22mmの銅張積層板を作製し
た。
Example 5 (Fine powder epoxy resin, Henschel, coater method) Granular or powdery epoxy resin (Ep5048)
95 parts by weight, 5 parts by weight of a powdery curing agent (dicyandiamide), and 1 part by weight of a powdery curing accelerator (2-ethyl-4-methylimidazole) were preliminarily mixed at a ratio of 100 ° C. and melted. Using a Henschel mixer, the mixture was mixed at a rotation speed of 500 rpm for 20 minutes, taken out into a vat in a plate shape, cooled with cold air, and then pulverized with a fine pulverizer to obtain a powder composition having an average particle size of 200 μm. This powder composition 10
To 0 parts by weight, 5 parts by weight of a fine powder epoxy resin (the above-mentioned Ep5048) having an average particle diameter of 0.5 μm was added, and the mixture was mixed with a Henschel mixer at 500 rpm for 5 minutes.
Hereinafter, using this powder composition, a prepreg was obtained in the same manner as in Example 1. Further, using this prepreg, a copper-clad laminate having a thickness of 0.22 mm was produced in the same manner as in Example 1.

【0032】〔実施例6〕(微粉末ノボラック樹脂、K
CK、コーター法) 平均粒径150μmの粉末状のエポキシ樹脂(油化シェ
ル製臭素化エポキシ樹脂Ep5048,エポキシ当量6
75)100重量部、平均粒子径30μmの粉末状のフ
ェノールノボラック樹脂(住友デュレズ製フェノールノ
ボラックPR−51470、フェノール性水酸基当量1
05)14重量部、平均粒子径10μmの粉末状のトリ
フェニルホスフィン1重量部の割合で予備混合し、次い
で、多段石臼型混練押し出し機((株)KCK製 メカノ
ケミカルディスパージョンシステム KCK−80X2
−V(6))を用い、回転数200rpmにて1分間処
理し、平均粒径150μmの粉末組成物を得た。この粉
末組成物100重量部に、平均粒子径0.5μmの微粉
末フェノールノボラック樹脂(前記PR−51470)
2重量部を添加し、ヘンシェルミキサーで回転数500
rpm、5分間混合処理した。以下、この粉末組成物を
用い、実施例1と同様にしてプリプレグを得、さらに、
このプリプレグを用い、実施例1と同様にして厚さ0.
22mmの銅張積層板を作製した。
Example 6 (Fine powder novolak resin, K
(CK, coater method) Powdered epoxy resin having an average particle size of 150 μm (brominated epoxy resin Ep5048 manufactured by Yuka Shell, epoxy equivalent 6)
75) 100 parts by weight of a powdery phenol novolak resin having an average particle diameter of 30 μm (Phenol Novolak PR-51470 manufactured by Sumitomo Durez, phenolic hydroxyl equivalent: 1)
05) 14 parts by weight and 1 part by weight of powdery triphenylphosphine having an average particle diameter of 10 μm were preliminarily mixed, and then a multi-stage mill-type kneading extruder (KCK Co., Ltd., mechanochemical dispersion system KCK-80X2).
-V (6)) at 200 rpm for 1 minute to obtain a powder composition having an average particle size of 150 μm. 100 parts by weight of the powder composition was added to a fine powder phenol novolak resin having an average particle diameter of 0.5 μm (PR-51470).
Add 2 parts by weight, and use a Henschel mixer to rotate at 500 rpm.
The mixture was mixed at 5 rpm for 5 minutes. Hereinafter, using this powder composition, a prepreg was obtained in the same manner as in Example 1, and further,
Using this prepreg, a thickness of 0.1 mm was obtained in the same manner as in Example 1.
A 22 mm copper-clad laminate was produced.

【0033】〔比較例1〕(粉末、メカノケミカル処理
無し) 平均粒径150μmの粉末状のエポキシ樹脂(油化シェ
ル製臭素化エポキシ樹脂Ep5048,エポキシ当量6
75)100重量部、平均粒子径15μmの粉末状の硬
化剤(ジシアンジアミド)5重量部、及び平均粒径15
μmの粉末状の硬化促進剤(2−エチル−4−メチルイ
ミダゾール)1重量部を錨羽ね型の撹拌機で回転数70
rpmにて1分間撹拌混合処理した。この粉末組成物を
実施例1と同様にしてプリプレグを得、次いで、このプ
リプレグを用い厚さ0.22mmの銅張積層板を作製し
た。
Comparative Example 1 (powder, no mechanochemical treatment) Powdered epoxy resin having an average particle size of 150 μm (brominated epoxy resin Ep5048 manufactured by Yuka Shell, epoxy equivalent: 6)
75) 100 parts by weight, 5 parts by weight of a powdery curing agent (dicyandiamide) having an average particle size of 15 μm, and an average particle size of 15
1 part by weight of a powdery curing accelerator (2-ethyl-4-methylimidazole) having a particle diameter of 70 μm was rotated at 70 rpm using an anchor-type stirrer.
The mixture was stirred and mixed at 1 rpm for 1 minute. A prepreg was obtained from this powder composition in the same manner as in Example 1, and a copper-clad laminate having a thickness of 0.22 mm was prepared using the prepreg.

【0034】〔比較例2〕(ホットメルト法) 平均粒径150μmの粉末状のエポキシ樹脂(油化シェ
ル製臭素化エポキシEp5048)100重量部、平均
粒子径15μmの粉末状の硬化剤(ジシアンジアミド)
5重量部、平均粒径15μmの粉末状の硬化促進剤1重
量部の比率で混合し後、この粉末組成物を100℃で加
温して溶融した後、樹脂固形分で100g/m2になる
ように100g/m2のガラスクロスを浸けて含浸させ
て170℃の加熱装置で2分間加熱してプリプレグを得
た。このプリプレグを2枚重ね合わせ、さらにその上下
に厚さ18μmの銅箔を重ね合わせ、温度165℃、圧
力60kg/cm2で90分間加熱加圧成形して、厚さ
0.22mmの銅張積層板を作製した。
Comparative Example 2 (Hot Melt Method) 100 parts by weight of a powdery epoxy resin having an average particle size of 150 μm (brominated epoxy Ep5048 manufactured by Yuka Shell) and a powdery curing agent (dicyandiamide) having an average particle size of 15 μm
After mixing at a ratio of 5 parts by weight and 1 part by weight of a powdery curing accelerator having an average particle size of 15 μm, the powder composition was heated and melted at 100 ° C., and then reduced to a resin solid content of 100 g / m 2 . A 100 g / m 2 glass cloth was soaked and impregnated to obtain a prepreg by heating at 170 ° C. for 2 minutes. Two prepregs are laminated, and a copper foil having a thickness of 18 μm is laminated on the upper and lower sides of the prepreg, and is heated and pressed at a temperature of 165 ° C. and a pressure of 60 kg / cm 2 for 90 minutes to form a copper-clad laminate having a thickness of 0.22 mm. A plate was made.

【0035】〔比較例3〕(従来の含浸法) 平均粒径150μmの粉末状のエポキシ樹脂(油化シェ
ル製臭素化エポキシEp5048)100重量部、平均
粒子径15μmの粉末状の硬化剤(ジシアンジアミド)
5重量部、平均粒径15μmの粉末状の硬化促進剤1重
量部の比率で混合したものをメチルセルソルブ100重
量部に溶かした。このワニスを樹脂固形分で100g/
2になるように100g/m2のガラスクロスを浸けて
含浸させた後、170℃の熱風加熱機で3分間加熱して
プリプレグを得た。このプリプレグを2枚重ね合わせ、
さらにその上下に厚さ18μmの銅箔を重ね合わせ、温
度165℃、圧力60kg/cm2で90分間加熱加圧
成形して、厚さ0.22mmの銅張積層板を作製した。
Comparative Example 3 (Conventional impregnation method) 100 parts by weight of a powdery epoxy resin having an average particle diameter of 150 μm (brominated epoxy Ep5048 manufactured by Yuka Shell) and a powdery curing agent (dicyandiamide) having an average particle diameter of 15 μm )
A mixture of 5 parts by weight and 1 part by weight of a powdery curing accelerator having an average particle diameter of 15 μm was dissolved in 100 parts by weight of methylcellosolve. This varnish was 100 g / resin solid content.
After impregnating with a glass cloth of 100 g / m 2 such that m 2, and obtain a prepreg by heating at 170 ° C. hot air heater 3 minutes. Overlap two prepregs,
Further, a copper foil having a thickness of 18 μm was laminated on the upper and lower sides, and heated and pressed at a temperature of 165 ° C. and a pressure of 60 kg / cm 2 for 90 minutes to produce a copper-clad laminate having a thickness of 0.22 mm.

【0036】以上実施例及び比較例において、プリプレ
グについては、ガラスクロスへの樹脂の含浸性を測定
し、銅張積層板については、成形性、引張り強さ、銅箔
引剥し強さ、半田耐熱性及び絶縁抵抗を測定した。その
結果を表1及び表2に示す。
In the above Examples and Comparative Examples, for the prepreg, the impregnating property of the glass cloth with the resin was measured, and for the copper-clad laminate, the moldability, tensile strength, copper foil peeling strength, and solder heat resistance were measured. Properties and insulation resistance were measured. The results are shown in Tables 1 and 2.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】(測定方法) 1.含浸性:プリプレグを実体顕微鏡にて観察し、ガラ
ス繊維間のボイドの有無を確認した。 2.成形性:銅張積層板の銅箔をエッチングして、目視
により硬化剤等の析出の有無を観察し、樹脂組成物の分
散性の評価をした。 3.引張り強さ:銅張積層板の銅箔をエッチングして、
10×100mmに切断後テンシロンにて引張り強度を
測定した。 4.銅箔引剥し強さ:JIS C 6481により測定し
た。 5.半田耐熱性:50×50mmの積層板を、260℃
の半田浴に3分間フロートさせ、ふくれの有無を測定し
た。 6.絶縁抵抗:JIS C6481により測定した。
(Measurement method) Impregnating property: The prepreg was observed with a stereoscopic microscope, and the presence or absence of voids between glass fibers was confirmed. 2. Formability: The copper foil of the copper-clad laminate was etched, the presence or absence of the precipitation of a curing agent or the like was visually observed, and the dispersibility of the resin composition was evaluated. 3. Tensile strength: Etching copper foil of copper clad laminate,
After cutting to 10 × 100 mm, the tensile strength was measured with Tensilon. 4. Copper foil peel strength: Measured according to JIS C6481. 5. Solder heat resistance: A laminate of 50 × 50 mm is subjected to 260 ° C.
Was floated in a solder bath for 3 minutes, and the presence or absence of blisters was measured. 6. Insulation resistance: Measured according to JIS C6481.

【0040】なお、製造コストについては、実施例の方
法は溶剤を使用しないので、実施例では得られた積層板
は比較例3で得られたものに比べ30〜40%程度低コ
スト化することができた。また、比較例2については、
100℃で樹脂を溶かす工程で樹脂の硬化特性の経時変
化が著しく、また、設備への樹脂付着物が硬化して清掃
が困難となった。
As for the manufacturing cost, since the method of the embodiment does not use a solvent, the laminated board obtained in the embodiment is reduced in cost by about 30 to 40% as compared with that obtained in the comparative example 3. Was completed. Moreover, about the comparative example 2,
In the step of melting the resin at 100 ° C., the change over time in the curing characteristics of the resin was remarkable, and the resin adhered to the equipment hardened, making cleaning difficult.

【0041】[0041]

【発明の効果】本発明の方法は、粉末の熱硬化性樹脂組
成物に、平均粒径0.01〜1μmの微粉末熱硬化性樹
脂、硬化剤又は硬化促進剤を添加するので、均一な混合
や基材への含浸性が優れ、有機溶剤を使用しないにもか
かわらず、電気特性、耐熱性等品質の良好な積層板を安
定して得ることができる。そして有機溶剤を使用しない
ので、省資源、省エネルギー及び大気汚染の低減化が図
られ、省資源化及び省エネルギー化することにより、低
コスト化の点でも優れている。このように、本発明は、
工業的なプリプレグ及び積層板の製造方法として好適で
ある。
According to the method of the present invention, a fine-powder thermosetting resin having an average particle diameter of 0.01 to 1 μm, a curing agent or a curing accelerator is added to a powdery thermosetting resin composition. A laminate having good quality such as electric characteristics and heat resistance can be stably obtained despite excellent mixing and impregnation into a substrate and no use of an organic solvent. Since no organic solvent is used, resource saving, energy saving, and reduction of air pollution are achieved, and resource saving and energy saving are also excellent in terms of cost reduction. Thus, the present invention provides
It is suitable as an industrial method for producing prepregs and laminates.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29K 105:08 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FI B29K 105: 08

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂及び硬化剤を必須成分と
し、これら成分が均一に混合された粉末状熱硬化性樹脂
組成物に、平均粒径0.01〜1μmの微粉末熱硬化性
樹脂、硬化剤又は硬化促進剤を配合し均一混合して得た
粉末状樹脂組成物を、シート状繊維基材の少なくとも表
面に存在させることを特徴とするプリプレグの製造方
法。
1. A thermosetting resin having a mean particle diameter of 0.01 to 1 μm is added to a powdery thermosetting resin composition containing a thermosetting resin and a curing agent as essential components, and these components are uniformly mixed. A method for producing a prepreg, characterized in that a powdery resin composition obtained by blending and uniformly mixing a curing agent or a curing accelerator is present at least on the surface of a sheet-like fiber substrate.
【請求項2】 微粉末の熱硬化性樹脂、硬化剤又は硬化
促進剤の量が粉末状樹脂組成物全体に対して0.1〜5
重量%である請求項1記載のプリプレグの製造方法。
2. The amount of the fine powder of the thermosetting resin, the curing agent or the curing accelerator is 0.1 to 5 with respect to the whole powdery resin composition.
The method for producing a prepreg according to claim 1, wherein the prepreg is contained in a percentage by weight.
【請求項3】 粉末状熱硬化性樹脂組成物は、粉末状熱
硬化性樹脂及び硬化剤の混合物に機械的エネルギーを与
えてメカノケミカル反応を起こさせて得られた粉末状物
である請求項1記載のプリプレグの製造方法。
3. The powdery thermosetting resin composition is a powdery product obtained by applying a mechanical energy to a mixture of the powdery thermosetting resin and the curing agent to cause a mechanochemical reaction. 2. The method for producing a prepreg according to 1.
【請求項4】 硬化剤が粉末状硬化剤である請求項3記
載のプリプレグの製造方法。
4. The method for producing a prepreg according to claim 3, wherein the curing agent is a powdery curing agent.
【請求項5】 メカノケミカル反応を起こさせるための
装置が、ジェットミル、オングミル、多段石臼型混練押
し出し機である請求項3記載のプリプレグの製造方法。
5. The method for producing a prepreg according to claim 3, wherein the apparatus for causing a mechanochemical reaction is a jet mill, an ong mill, or a multi-stage mill-type kneading extruder.
【請求項6】 粉末状熱硬化性樹脂組成物は、熱硬化性
樹脂及び硬化剤を加熱混練ないし溶融混合され、微粉砕
された粉末状物である請求項1記載のプリプレグの製造
方法。
6. The method for producing a prepreg according to claim 1, wherein the powdery thermosetting resin composition is a powdery material obtained by kneading or melt-mixing a thermosetting resin and a curing agent and finely pulverizing the same.
【請求項7】 加熱混練ないし溶融混合するための装置
が、加熱ロール、押出機である請求項6記載のプリプレ
グの製造方法。
7. The method for producing a prepreg according to claim 6, wherein the apparatus for heat kneading or melt mixing is a heating roll or an extruder.
【請求項8】 請求項1乃至7記載のいずれかの方法に
より得られたプリプレグを1枚又は複数枚重ね合わせ、
加熱加圧することを特徴とする積層板又は金属箔張積層
板の製造方法。
8. One or more prepregs obtained by the method according to any one of claims 1 to 7,
A method for producing a laminate or a metal foil-clad laminate, comprising heating and pressing.
JP11040998A 1998-02-19 1999-02-19 Preparation of prepreg and laminate Pending JPH11302411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11040998A JPH11302411A (en) 1998-02-19 1999-02-19 Preparation of prepreg and laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-37246 1998-02-19
JP3724698 1998-02-19
JP11040998A JPH11302411A (en) 1998-02-19 1999-02-19 Preparation of prepreg and laminate

Publications (1)

Publication Number Publication Date
JPH11302411A true JPH11302411A (en) 1999-11-02

Family

ID=26376374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11040998A Pending JPH11302411A (en) 1998-02-19 1999-02-19 Preparation of prepreg and laminate

Country Status (1)

Country Link
JP (1) JPH11302411A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025325A (en) * 2001-07-23 2003-01-29 Sumitomo Bakelite Co Ltd Method for producing composite particle
JP2005194456A (en) * 2004-01-09 2005-07-21 Toray Ind Inc Preform forming binder composition, reinforcing fiber base material, method for producing preform and fiber reinforced composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025325A (en) * 2001-07-23 2003-01-29 Sumitomo Bakelite Co Ltd Method for producing composite particle
JP2005194456A (en) * 2004-01-09 2005-07-21 Toray Ind Inc Preform forming binder composition, reinforcing fiber base material, method for producing preform and fiber reinforced composite material
JP4547916B2 (en) * 2004-01-09 2010-09-22 東レ株式会社 Binder composition for preform preparation, reinforcing fiber substrate, preform, and method for producing fiber reinforced composite material

Similar Documents

Publication Publication Date Title
WO1999027002A1 (en) Processes for the production of prepregs and laminated sheets
JP3373164B2 (en) Method for producing prepreg and laminate
JP2000344917A (en) Flame-retardant prepreg and laminate
JP2000345006A (en) Flame retarded prepreg and laminate
JPH11302411A (en) Preparation of prepreg and laminate
JP2000273222A (en) Flame-retardant prepreg and laminate
JP2000344916A (en) Flame-retardant prepreg and laminate
JP2000336190A (en) Production of both prepreg and laminate
JP3582770B2 (en) Manufacturing method of laminated board
JPH11240967A (en) Production of prepreg and laminate
JP2000273217A (en) Production of prepreg and laminate
JPH11246687A (en) Production of prepreg and laminate
JP2000273219A (en) Prepreg and laminate
JP2000327812A (en) Preparation of prepreg and laminate
JP2000273238A (en) Flame retardant prepreg and laminate
JPH11309808A (en) Metal foil with adhesive, prepreg with metal foil, and laminated plate
JP2000280242A (en) Production of prepreg and laminated sheet
JP2000273218A (en) Production of prepreg and laminate
JP2000280241A (en) Production of prepreg and laminated sheet
JPH11350359A (en) Production of prepreg and laminate
JP4301044B2 (en) Prepreg and laminate manufacturing method
JP2000273223A (en) Flame-retardant prepreg and laminate
JP2000273220A (en) Production of prepreg and laminate
JP2000273221A (en) Flame-retardant prepreg and laminate
JP2000336149A (en) Flame-retardant prepreg and laminate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100416

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120416

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130416

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20140416

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250