JP2000273222A - Flame-retardant prepreg and laminate - Google Patents

Flame-retardant prepreg and laminate

Info

Publication number
JP2000273222A
JP2000273222A JP11083483A JP8348399A JP2000273222A JP 2000273222 A JP2000273222 A JP 2000273222A JP 11083483 A JP11083483 A JP 11083483A JP 8348399 A JP8348399 A JP 8348399A JP 2000273222 A JP2000273222 A JP 2000273222A
Authority
JP
Japan
Prior art keywords
epoxy resin
weight
resin
prepreg
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11083483A
Other languages
Japanese (ja)
Inventor
Eizo Tozaki
栄造 東崎
Kido Murakawa
喜堂 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP11083483A priority Critical patent/JP2000273222A/en
Publication of JP2000273222A publication Critical patent/JP2000273222A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain both a prepreg and a laminate having excellent flame retardance by using a powdery epoxy resin composition and even without using a halogen-based flame-retardant. SOLUTION: This prepreg is obtained by making a powdery epoxy resin composition composed of (a) an epoxy resin, (b) a phenol resin, (c) 9,10-dihydro-9- oxa-10-phosphophenanthrene-10-oxide and (d) an inorganic filler as essential components exist on at least one side of a sheetlike fibrous material. Preferably the powdery epoxy resin composition is a mixture of the components which are provided with mechanical energy and subjected to a mechanochemical reaction or kneaded under heating or mixed in a molten state and pulverized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉末状エポキシ樹
脂組成物を使用し、ハロゲン系難燃剤を使用しなくても
優れた難燃性を有し、特に電気機器、電子機器、通信機
器等に使用される印刷回路板用として好適なプリプレグ
及び積層板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a powdered epoxy resin composition and has excellent flame retardancy without using a halogen-based flame retardant, and is particularly useful for electric equipment, electronic equipment, communication equipment, etc. The present invention relates to a prepreg and a laminated board suitable for a printed circuit board to be used in the present invention.

【0002】[0002]

【従来の技術】プリント回路板については小型化、高機
能化の要求が強くなる反面、価格競争が激しく、特にプ
リント回路板に用いられる多層積層板やガラス布基材エ
ポキシ樹脂積層板、あるいはガラス不織布を中間層基材
としガラス織布を表面層基材とした積層板は、いずれも
価格の低減が大きな課題となっている。従来これらに用
いられるプリプレグや積層板の製造工程では、多量の溶
剤が用いられてきた。これは、樹脂ワニスの調製が容易
で、基材への樹脂の塗布・含浸が均一で容易なためであ
る。この溶剤は塗布後の乾燥工程で蒸発して製品中に存
在せず、多くは、燃焼装置等で処理され、あるいはその
まま大気中に放出されてきた。この為地球温暖化や大気
汚染の一因となることが指摘されるようになってきた。
一方では、溶剤使用量の削減が種々検討されているが、
基材への樹脂塗布・含浸などの製造上の問題からこの削
減は困難であった。
2. Description of the Related Art As for printed circuit boards, demands for miniaturization and high performance are increasing, but price competition is intense. In particular, multilayer laminated boards, glass cloth base epoxy resin laminated boards, or glass used for printed circuit boards are used. The cost reduction of any laminate using nonwoven fabric as the intermediate layer base material and glass woven fabric as the surface layer base material has been a major issue. Conventionally, a large amount of a solvent has been used in a process for producing a prepreg or a laminate used for these. This is because the preparation of the resin varnish is easy, and the application and impregnation of the resin on the base material is uniform and easy. This solvent evaporates in a drying step after coating and does not exist in the product, and most of the solvent is treated by a combustion device or the like or released to the atmosphere as it is. It has been pointed out that this contributes to global warming and air pollution.
On the other hand, various measures have been taken to reduce the amount of solvent used,
This reduction was difficult due to manufacturing problems such as application and impregnation of the resin to the base material.

【0003】溶剤を使用しないプリプレグ及び積層板の
製造のために、低融点の樹脂や液状の樹脂を加熱混合し
て均一化して基材へ塗布する研究が以前からなされてい
る(例えば特開平9−263647号公報)。しかしな
がら、このような方法では、均一混合が十分に出来な
い、連続生産時加熱温度の低下による設備への樹脂固
結、加熱中の熱硬化性樹脂のゲル化、これによる設備の
掃除等の問題があり、連続的な生産が困難であった。一
方粉末状樹脂をそのまま塗布する方法も提案されている
(特開昭50−143870号公報)が、均一な混合及
び塗布が困難であり、部分的な硬化が生じたり、基材へ
の含浸が不十分であるなどの問題があり、実用化には至
っていない。
[0003] For the production of prepregs and laminates without using a solvent, studies have been made on a method in which a low-melting-point resin or a liquid resin is heated and mixed to make it uniform and applied to a substrate (for example, see Japanese Patent Application Laid-Open No. Hei 9 (1998)). -263647). However, with such a method, uniform mixing cannot be sufficiently performed, resin consolidation in equipment due to a decrease in heating temperature during continuous production, gelation of thermosetting resin during heating, and problems such as cleaning of equipment due to this. And continuous production was difficult. On the other hand, a method of directly applying a powdery resin has also been proposed (Japanese Patent Application Laid-Open No. 50-143870), but uniform mixing and application are difficult, and partial curing occurs or impregnation of the base material is difficult. There are problems such as insufficient, and it has not been put to practical use.

【0004】また、エポキシ樹脂等に代表される熱硬化
性樹脂は、火災に対する安全性を確保するため難燃性が
付与されている場合が多い。これらの樹脂の難燃化は従
来臭素化エポキシ樹脂等のハロゲン含有化合物を用いる
ことが一般的であった。これらのハロゲン含有化合物は
高度な難燃性を有するが、芳香族臭素化合物は熱分解す
ると腐食性の臭素、臭化水素を分離するだけでなく、酸
素存在下で分解した場合に毒性の高いポリブロムジベン
ゾフラン及びポリジブロモベンゾオキシンを形成する可
能性がある。この様な理由から臭素含有難燃剤に代わる
難燃剤としてリン化合物、窒素化合物及び無機系難燃剤
が検討されている。
A thermosetting resin represented by an epoxy resin or the like is often provided with flame retardancy in order to ensure fire safety. Conventionally, these resins have generally used a halogen-containing compound such as a brominated epoxy resin. Although these halogen-containing compounds have high flame retardancy, aromatic bromine compounds not only separate corrosive bromine and hydrogen bromide when thermally decomposed, but also have high toxicity when decomposed in the presence of oxygen. May form bromodibenzofuran and polydibromobenzooxin. For these reasons, phosphorus compounds, nitrogen compounds and inorganic flame retardants have been studied as flame retardants instead of bromine-containing flame retardants.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来製造が
困難であった無溶剤樹脂の使用によるプリプレグ、ある
いは積層板を得んとして研究した結果、エポキシ樹脂、
フェノール樹脂、9,10−ジヒドロ−9−オキサ−1
0−ホスファフェナントレン−10−オキシド及び無機
充填材を必須成分とする粉末状のエポキシ樹脂組成物を
使用することことにより基材への含浸性、硬化性及び難
燃性が従来の溶剤を使用した場合と同等になるとの知見
を得、更にこの知見に基づき種々研究を進めて本発明を
完成するに至ったものである。
DISCLOSURE OF THE INVENTION The present invention has been studied to obtain a prepreg or a laminate using a solventless resin, which has been conventionally difficult to produce.
Phenolic resin, 9,10-dihydro-9-oxa-1
By using a powdery epoxy resin composition containing 0-phosphaphenanthrene-10-oxide and an inorganic filler as essential components, a conventional solvent can be used for impregnation, curability and flame retardancy to a substrate. The present inventors have found that the present invention is equivalent to the case described above, and have further advanced various studies based on this finding to complete the present invention.

【0006】[0006]

【課題を解決するための手段】本発明は、(a)エポキ
シ樹脂、(b)フェノール樹脂、(c)9,10−ジヒ
ドロ−9−オキサ−10−ホスファフェナントレン−1
0−オキシド及び(d)無機充填材を必須成分とする粉
末状のエポキシ樹脂組成物を、シート状繊維基材の少な
くとも片面に存在させてなることを特徴とするプリプレ
グであり、好ましくはこの粉末状エポキシ樹脂組成物
が、各成分が粉末状であり、これらに機械的エネルギー
を与えてメカノケミカルな反応により粉末粒子間を表面
融合させたものであるプリプレグ、あるいは各成分を加
熱混練ないし溶融混合し、微粉砕した粉末状物であるプ
リプレグであり、さらには、かかるプリプレグを、1枚
又は複数枚重ね合わせ、加熱加圧してなることを特徴と
する積層板に関するものである。
The present invention comprises (a) an epoxy resin, (b) a phenolic resin, and (c) 9,10-dihydro-9-oxa-10-phosphaphenanthrene-1.
A prepreg characterized in that a powdery epoxy resin composition containing 0-oxide and (d) an inorganic filler as essential components is present on at least one surface of a sheet-like fiber base material, and is preferably a powder. Epoxy resin composition is a prepreg in which each component is in a powder form and the surface is fused between powder particles by mechanochemical reaction by applying mechanical energy to them, or heat-kneading or melt-mixing each component The present invention also relates to a prepreg that is a finely pulverized powdery material, and further relates to a laminated plate obtained by laminating one or a plurality of such prepregs and applying heat and pressure.

【0007】エポキシ樹脂(a)は、1分子中に2個以
上のエポキシ基を有するものであり、ビスフェノールA
型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビ
フェニル型エポキシ樹脂、フェノールノボラック型エポ
キシ樹脂、クレゾールノボラック型エポキシ樹脂、環状
脂肪族エポキシ樹脂、グリシジルエステル系エポキシ樹
脂、グリシジルアミン系エポキシ樹脂、複素環式エポキ
シ樹脂、フェノールアラルキル型エポキシ樹脂、ナフタ
レンアラルキル型エポキシ樹脂などを挙げることができ
る。特にフェノールノボラック型エポキシ樹脂及びクレ
ゾールノボラック型エポキシ樹脂は耐熱性が高く、また
ベンゼン環含有率が高いため、熱分解すると炭化されや
すい。このためビスフェノールA型エポキシ樹脂に比べ
て難燃性が高い特徴を持つため好ましい。これらの1種
若しくは2種以上の混合物も使用できる。エポキシ樹脂
は常温で固形であるものが組成物の粉末化のために好ま
しく、融点が50〜130℃の範囲にあるものがより好
ましい。
The epoxy resin (a) has two or more epoxy groups in one molecule, and bisphenol A
Epoxy resin, bisphenol F epoxy resin, biphenyl epoxy resin, phenol novolak epoxy resin, cresol novolak epoxy resin, cycloaliphatic epoxy resin, glycidyl ester epoxy resin, glycidylamine epoxy resin, heterocyclic epoxy resin And a phenol aralkyl type epoxy resin and a naphthalene aralkyl type epoxy resin. In particular, phenol novolak type epoxy resins and cresol novolak type epoxy resins have high heat resistance and a high benzene ring content, and thus are easily carbonized when thermally decomposed. For this reason, it is preferable because it has a feature that the flame retardancy is higher than that of the bisphenol A type epoxy resin. One or a mixture of two or more of these can also be used. The epoxy resin is preferably solid at room temperature for powdering the composition, and more preferably has a melting point in the range of 50 to 130 ° C.

【0008】フェノール樹脂(b)はフェノールノボラ
ック樹脂、クレゾールノボラック樹脂、パラキシリレン
変性フェノール樹脂、メタキシリレン・パラキシリレン
変性フェノール樹脂、テルペン変性フェノール樹脂、ジ
シクロペンタジエン変性フェノール樹脂、フェノールア
ラルキル樹脂、ナフタレンアラルキル樹脂などを挙げる
ことができる。特にフェノールアラルキル樹脂及びナフ
タレンアラルキル樹脂は、吸水率が低くかつ難燃性が高
い特徴を持つので好ましい。また、これらのフェノール
樹脂は、1種若しくは2種以上の混合物を使用でき常温
で固形状のものである。融点が50〜150℃、特に7
0〜130℃の範囲にあるものがより好ましい。
The phenolic resin (b) includes phenol novolak resin, cresol novolak resin, paraxylylene modified phenol resin, metaxylylene / paraxylylene modified phenol resin, terpene modified phenol resin, dicyclopentadiene modified phenol resin, phenol aralkyl resin, naphthalene aralkyl resin and the like. Can be mentioned. In particular, phenol aralkyl resins and naphthalene aralkyl resins are preferable because of their low water absorption and high flame retardancy. These phenolic resins can be used alone or as a mixture of two or more, and are solid at room temperature. Melting point 50-150 ° C, especially 7
Those in the range of 0 to 130 ° C are more preferable.

【0009】無機充填材(d)としては、水酸化アルミ
ニウム、水酸化マグネシウム、炭酸カルシウム、タル
ク、ウォラストナイト、アルミナ、シリカ、未焼成クレ
ー、焼成クレー、硫酸バリウム等がある。これら無機充
填材を加えることにより耐トラッキング性、耐熱性、熱
膨張率の低減等の特性を付与することが出来る。特に水
酸化アルミニウム及び水酸化マグネシウムを使用した場
合、300℃以上の温度でリン成分と反応して難燃性の
高いリン酸アルミニウム及びリン酸マグネシウムを生成
しさらに高い難燃性を得ることが出来るため好ましい。
The inorganic filler (d) includes aluminum hydroxide, magnesium hydroxide, calcium carbonate, talc, wollastonite, alumina, silica, unfired clay, fired clay, barium sulfate and the like. By adding these inorganic fillers, characteristics such as tracking resistance, heat resistance, and reduction in coefficient of thermal expansion can be imparted. In particular, when aluminum hydroxide and magnesium hydroxide are used, they react with a phosphorus component at a temperature of 300 ° C. or more to produce highly flame-retardant aluminum phosphate and magnesium phosphate, and further obtain higher flame retardancy. Therefore, it is preferable.

【0010】本発明において、エポキシ樹脂、フェノー
ル樹脂、9,10−ジヒドロ−9−オキサ−10−ホス
ファフェナントレン−10−オキシド及び無機充填材を
必須成分として含有するが、本発明の目的に反しない範
囲に於いて、その他の硬化剤、硬化促進剤、カップリン
グ剤、その他の成分を添加してよい。
In the present invention, an epoxy resin, a phenol resin, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and an inorganic filler are contained as essential components. Other curing agents, curing accelerators, coupling agents, and other components may be added as long as they do not occur.

【0011】各成分の配合割合について説明する。
(b)成分のフェノール樹脂は(a)成分のエポキシ樹
脂100重量部に対して20〜60重量部である。20
重量部未満である場合、樹脂の硬化が不十分となり、6
0重量部を越えると未反応のフェノール樹脂の影響によ
り耐熱性が低下する可能性があり好ましくない。(c)
成分の9,10−ジヒドロ−9−オキサ−10−ホスフ
ァフェナントレン−10−オキシドは(a)及び(b)
の合計100重量部に対してリンとして0.5〜4重量
部である。0.5重量部未満の場合、難燃性に対する効
果が小さく、4重量部を越えると耐熱性を低下させるた
め好ましくない。(d)成分の無機充填材は(a)、
(b)及び(c)の合計100重量部に対して1〜20
0重量部である。1重量部未満の場合、難燃性に対する
効果が小さく、200重量部を越えると耐熱性を低下さ
せるため好ましくない。好ましい範囲は5〜150重量
部、さらに好ましくは10〜120重量部である。な
お、シート状繊維基材が不織布の場合は、無機充填材の
量を上記範囲の大きい側に近づけることができる。
The mixing ratio of each component will be described.
The phenol resin of the component (b) is 20 to 60 parts by weight based on 100 parts by weight of the epoxy resin of the component (a). 20
If the amount is less than 10 parts by weight, the curing of the resin becomes insufficient, and
Exceeding 0 parts by weight is not preferred because heat resistance may decrease due to unreacted phenol resin. (C)
The component 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide comprises (a) and (b)
Is 0.5 to 4 parts by weight as phosphorus with respect to 100 parts by weight in total. If the amount is less than 0.5 part by weight, the effect on flame retardancy is small, and if it exceeds 4 parts by weight, heat resistance is undesirably reduced. The inorganic filler of the component (d) is (a),
1 to 20 based on a total of 100 parts by weight of (b) and (c)
0 parts by weight. When the amount is less than 1 part by weight, the effect on flame retardancy is small, and when it exceeds 200 parts by weight, heat resistance is undesirably reduced. A preferred range is 5 to 150 parts by weight, more preferably 10 to 120 parts by weight. In addition, when the sheet-like fiber substrate is a nonwoven fabric, the amount of the inorganic filler can be closer to the larger side of the above range.

【0012】粉末状エポキシ樹脂組成物が、各成分の混
合物に機械的エネルギーを与えてメカノケミカルな反応
をさせたものである場合、各成分は通常粉体であるが、
一部の成分について、その配合量が少ない場合(例え
ば、樹脂に対して20重量%以下)その一部又は全部が
液状でもよく、樹脂等との混合物に機械的エネルギーを
与えた後に粉末化できれば使用可能である。
When the powdered epoxy resin composition is obtained by applying a mechanical energy to a mixture of each component to cause a mechanochemical reaction, each component is usually a powder.
When the amount of some components is small (for example, 20% by weight or less with respect to the resin), some or all of the components may be in a liquid state, provided that the mixture with the resin or the like can be pulverized after applying mechanical energy. Can be used.

【0013】上記各成分において、粉体の粒径として
は、通常1000μm以下であり、好ましくは0.1〜
500μmであり、更に好ましくは0.1〜200μm
である。これは、1000μmを越えると粒子重量に対
しての表面積が小さくなり、エポキシ樹脂等各成分の互
いの接点が少なくなり、均一分散が困難となるため、反
応の目標比率とは異なった比率で反応したり、均一な反
応が行われないおそれがある。
In each of the above components, the particle size of the powder is usually 1000 μm or less, preferably 0.1 to
500 μm, more preferably 0.1 to 200 μm
It is. This is because, if it exceeds 1000 μm, the surface area with respect to the particle weight becomes small, the points of contact of each component such as epoxy resin become small, and uniform dispersion becomes difficult. Or a uniform reaction may not be performed.

【0014】メカノケミカル反応による改質とは、「固
体による固体の改質で、粉砕、磨砕、摩擦、接触による
粒子の表面活性、表面家電を利用するものである。活性
そのものが、結晶形の転移や歪みエネルギーの増大によ
る溶解、熱分解速度の改質、あるいは機械的強度、磁気
特性になる場合と、表面活性を他の物質との反応、付着
に用いる場合とがある。工学的には機械的衝撃エネルギ
ーが利用され、摩擦、接触による電荷、あるいは磁気に
よる付着、核物質への改質剤の埋め込み、溶融による皮
膜の形成等、物理的改質のみならず化学的改質も行われ
る。」(「実用表面改質技術総覧」材料技術研究協会
編、産業技術サービスセンター、1993.3.25発行、p786)
ものである。本発明は、メカノケミカル反応による化学
的改質を利用したものであるが、固体と液体が機械的エ
ネルギーにより化学的に改質される場合をも含むもので
ある。
The modification by the mechanochemical reaction is "a modification of a solid by a solid, which utilizes the surface activity of particles by grinding, grinding, friction, and contact, and surface appliances. The activity itself is a crystal form. In some cases, the dissolution or thermal decomposition rate is modified by increasing the transition energy or strain energy, or mechanical strength or magnetic properties are obtained. In other cases, surface activity is used for reaction or adhesion with other substances. Uses mechanical impact energy to perform not only physical modification but also chemical modification such as adhesion by electric charge or magnetism by friction, contact, embedding of modifier in nuclear material, formation of film by melting, etc. ("Overview of Practical Surface Modification Technologies" edited by the Material Technology Research Association, Industrial Technology Service Center, published March 25, 1993, p786)
Things. The present invention utilizes chemical modification by a mechanochemical reaction, but also includes a case where a solid and a liquid are chemically modified by mechanical energy.

【0015】メカノケミカル反応のために機械的エネル
ギーを与える粉体処理方法としては、ライカイ機、ヘン
シェルミキサー、プラネタリーミキサー、ボールミル、
媒体攪拌式ミル、ジェットミル、オングミル、多段石臼
型混練押し出し機等による混合乃至混練がある。この中
でオングミル(ホソカワミクロン(株)製 メカノフュー
ジョン方式等)、多段石臼型混練押し出し機((株)KC
K製:メカノケミカルディスパージョン方式等)、ジェ
ットミル((株)奈良機械製作所製:ハイブリタイザー方
式等)による混合乃至混練が好ましく、特に、メカノケ
ミカル反応を効率よく行うためには、多段石臼型混練押
し出し機((株)KCK製:メカノケミカルディスパージ
ョン方式)が好ましい。
As a powder treatment method for giving mechanical energy for the mechanochemical reaction, a raikai machine, a Henschel mixer, a planetary mixer, a ball mill,
Mixing or kneading with a medium stirring mill, a jet mill, an ang mill, a multi-stage mill-type kneading extruder or the like is available. Among them, Ongmill (Mechanofusion system manufactured by Hosokawa Micron Co., Ltd.), multi-stage mill-type kneading extruder (KC Co., Ltd.)
K: Mechanochemical dispersion method, etc.) or jet mill (manufactured by Nara Machinery Co., Ltd .: Hybridizer method, etc.) is preferred. Mixing or kneading is preferred. A kneading extruder (manufactured by KCK Corporation: mechanochemical dispersion method) is preferable.

【0016】メカノケミカル反応を行うためには、熱硬
化性樹脂の軟化点は、好ましくは50℃以上、より好ま
しくは70℃以上、さらに好ましくは80℃以上であ
る。これは、上記処理時に粉体間あるいは粉体と処理装
置との間で摩擦、粉砕、融合により20〜50℃程度の
熱が発生するため、この影響を最小限にとどめるためで
ある。一方、軟化点が高すぎても有効なメカノケミカル
反応が行われにくく、かつ、後の工程である樹脂組成物
の基材への含浸が困難となるので、150℃以下、特に
130℃以下の軟化点が好ましい。粉末状熱硬化性樹脂
及び硬化剤等の各成分は、メカノケミカル反応のための
粉体処理の前に、予め、上記粒径まで粉砕した後ヘンシ
ェルミキサー等にてできるだけ均一に混合することが好
ましい。
In order to carry out the mechanochemical reaction, the softening point of the thermosetting resin is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, and further preferably 80 ° C. or higher. This is because heat of about 20 to 50 ° C. is generated due to friction, pulverization, and fusion between the powders or between the powder and the processing apparatus during the above-mentioned processing, so that this influence is minimized. On the other hand, even if the softening point is too high, an effective mechanochemical reaction is difficult to be performed, and it is difficult to impregnate the base material of the resin composition in a later step, so that the temperature is 150 ° C or less, particularly 130 ° C or less. Softening points are preferred. Each component such as a powdery thermosetting resin and a curing agent is preferably mixed as uniformly as possible with a Henschel mixer or the like after pulverizing to the above particle size in advance before powder treatment for mechanochemical reaction. .

【0017】メカノケミカル反応された粉末状エポキシ
樹脂組成物の粒径は、通常1000μm以下であり、好
ましくは0.1〜500μmであり、更に好ましくは
0.1〜200μmである。かかる粒径は、粉末組成物
の散布ないし塗布時の流動性、及び加熱溶融時の流れや
表面の滑らかさを改良すること、基材への樹脂の含浸性
を改良すること、基材中での樹脂組成物の分布を安定化
させること等のために適している。
The particle size of the powdery epoxy resin composition subjected to the mechanochemical reaction is generally 1000 μm or less, preferably 0.1 to 500 μm, and more preferably 0.1 to 200 μm. Such a particle size is to improve the fluidity of the powder composition at the time of spraying or application, and to improve the flow and surface smoothness at the time of heating and melting, to improve the resin impregnation property of the base material, It is suitable for stabilizing the distribution of the resin composition.

【0018】粉末状エポキシ樹脂組成物が、各成分を加
熱混練ないし溶融混合し、微粉砕したものである場合、
エポキシ樹脂、フェノール樹脂、9,10−ジヒドロ−
9−オキサ−10−ホスファフェナントレン−10−オ
キシド及び無機充填材は、その他必要により添加される
添加剤とともに、加熱ロール等により加熱混練ないし溶
融混合され、次いで、粉砕機により微粉砕される。通
常、固形のものが使用されるが、エポキシ樹脂、フェノ
ール樹脂、9,10−ジヒドロ−9−オキサ−10−ホ
スファフェナントレン−10−オキシド及び無機充填材
以外の成分は液状のものも使用可能である。
When the powdered epoxy resin composition is obtained by kneading or melting and mixing each component and finely pulverizing,
Epoxy resin, phenolic resin, 9,10-dihydro-
9-oxa-10-phosphaphenanthrene-10-oxide and the inorganic filler are heat-kneaded or melt-mixed with a heating roll or the like, together with other optional additives, and then finely pulverized by a pulverizer. Usually, a solid material is used, but components other than an epoxy resin, a phenol resin, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and an inorganic filler can also be used in a liquid state. It is.

【0019】加熱混練ないし溶融混合するために装置
は、加熱ロール、1軸又は2軸押出機、コニーダー等の
加熱混練機、あるいはヘンシェルミキサー等の加熱装置
の付いた攪拌容器、反応装置等があり、実用上は加熱ロ
ール、1軸又は2軸押出機、ヘンシェルミキサーが好ま
しい。また、粉砕機は、加熱混練ないし溶融混合された
樹脂組成物を微粉砕可能なものであればいかなるもので
もよく、例えば、ハンマーミル、アトマイザー、ジェッ
トミル等がある。
The apparatus for heat kneading or melt mixing includes a heating roll, a single-screw or twin-screw extruder, a heating kneader such as a co-kneader, a stirring vessel equipped with a heating device such as a Henschel mixer, a reaction apparatus, and the like. Practically, a heating roll, a single screw or twin screw extruder, and a Henschel mixer are preferable. The pulverizer may be any pulverizer that can finely pulverize the resin composition that has been heated and kneaded or melt-mixed, and examples thereof include a hammer mill, an atomizer, and a jet mill.

【0020】微粉砕された粉末状熱硬化性樹脂組成物の
粒径は、通常1000μm以下であり、好ましくは0.
1〜500μmであり、更に好ましくは0.1〜200
μmである。かかる粒径は、粉末組成物の散布ないし塗
布時の流動性、及び加熱溶融時の流れや表面の滑らかさ
を改良すること、基材への樹脂の含浸性を改良するこ
と、基材中での樹脂組成物の分布を安定化させること等
のために適している。本発明に用いられる熱硬化性樹脂
組成物には、必要により、ガラスクロスとの密着性を向
上させるために、エポキシシラン、アミノシラン等のカ
ップリング剤の添加してもよい。
The particle size of the finely pulverized thermosetting resin composition is usually 1000 μm or less, preferably 0.1 μm or less.
1 to 500 μm, and more preferably 0.1 to 200 μm.
μm. Such a particle size is to improve the fluidity of the powder composition at the time of spraying or application, and to improve the flow and surface smoothness at the time of heating and melting, to improve the resin impregnation property of the base material, It is suitable for stabilizing the distribution of the resin composition. If necessary, a coupling agent such as epoxysilane or aminosilane may be added to the thermosetting resin composition used in the present invention in order to improve the adhesion to the glass cloth.

【0022】以上のようにして得られた粉末状エポキシ
樹脂組成物には、この流動特性を向上させるために微粉
末添加剤を配合することが好ましい。微粉末添加剤を配
合することにより、この粉末組成物を基材へ塗布・含浸
する際、該粉末組成物の均一な散布ないし塗布を行うこ
とができ、基材上での粉末組成物の均一な分布及び粉末
組成物塗布面の平滑性を得ることができる。これにより
基材への均一な塗布が可能となる。微粉末添加剤として
は、無機系微粉末が望ましいが、有機系微粉末も用いる
ことができる。また、微粉末添加剤は平均粒径で0.0
1〜1μmのものを用いるが、好ましくは0.01〜
0.1μm(比表面積:50〜500m2/g程度)の
ものを用いる。平均粒径が1μmを越えると比表面積が
小さくなり単位重量当たりの粒子数が減少すること、及
び、主成分である粉末状熱硬化性樹脂との粒径差が小さ
くなることにより、流動性向上のためのベアリング効果
が十分に得られないおそれがある。粉体中のベアリング
効果とは、比較的粒径の大きな粒子同士の接触点に微粒
子を存在させることにより、粒径の大きな粒子の移動を
より自由にし、粉末組成物全体としての流動性を向上さ
せるものである。
The powdery epoxy resin composition obtained as described above preferably contains a fine powder additive in order to improve the flow characteristics. By blending the fine powder additive, when the powder composition is applied and impregnated on a substrate, the powder composition can be uniformly dispersed or applied, and the powder composition can be uniformly dispersed on the substrate. Distribution and smoothness of the powder composition applied surface can be obtained. This enables uniform application to the base material. As the fine powder additive, an inorganic fine powder is desirable, but an organic fine powder can also be used. The fine powder additive has an average particle size of 0.0
The thickness is from 1 to 1 μm, preferably from 0.01 to 1 μm.
One having a thickness of 0.1 μm (specific surface area: about 50 to 500 m 2 / g) is used. When the average particle size exceeds 1 μm, the specific surface area is reduced, the number of particles per unit weight is reduced, and the difference in particle size from the powdered thermosetting resin as the main component is reduced, thereby improving the fluidity. There is a possibility that a sufficient bearing effect cannot be obtained. The bearing effect in powder means that fine particles are present at the point of contact between particles having relatively large particle diameters, thereby making the movement of large particle diameters more free and improving the flowability of the powder composition as a whole. It is to let.

【0022】微粉末添加剤の配合量は、粉末組成物全体
に対して0.1〜5重量%が好ましく、0.2〜2.0
重量%がより好ましい。0.1〜5重量%の範囲におい
て、積層板の特性を余り低下させることなく、粉末組成
物の流動性を向上させることができ、0.2〜2.0重
量%の範囲でその効果が最もよく発揮される。微粉末添
加剤を配合した粉末組成物の流動性を向上させるための
処理方法としては、微粉末添加剤を均一に混合分散でき
る方法であればいずれの方法でも良く、このような処理
方法としては、例えばヘンシェルミキサー,ライカイ
機,プラネタリーミキサー,タンブラー、ボールミル等
による混合が挙げられる。
The compounding amount of the fine powder additive is preferably 0.1 to 5% by weight based on the whole powder composition, and 0.2 to 2.0% by weight.
% Is more preferred. In the range of 0.1 to 5% by weight, the fluidity of the powder composition can be improved without significantly lowering the properties of the laminate, and the effect is in the range of 0.2 to 2.0% by weight. Best demonstrated. As a treatment method for improving the fluidity of the powder composition containing the fine powder additive, any method may be used as long as it can uniformly mix and disperse the fine powder additive. For example, mixing with a Henschel mixer, a Raikai machine, a planetary mixer, a tumbler, a ball mill or the like can be mentioned.

【0023】粉末組成物は、散布ないし塗布等により基
材の少なくとも表面に存在させる。この粉末組成物の量
は、基材の繊維材質、性状、重量(単位面積当たり)に
より異なるが、通常、基材の重量の40〜60%程度で
ある。粉末組成物を基材に存在させる方法は、基材の上
面から振りかける方法、静電塗装法、流動浸漬法、スプ
レーによる吹き付け法、ナイフコーター、コンマコータ
ー等の各種コーターによる塗布法等があり、特に限定さ
れない。基材としては、ガラスクロス、ガラス不繊布等
のガラス繊維基材の他、紙、合成繊維等からなる織布や
不織布、金属繊維、カーボン繊維、鉱物繊維等からなる
織布、不織布、マット類等が挙げられ、これらの基材の
原料繊維は単独又は混合して使用してもよい。
The powder composition is present on at least the surface of the substrate by spraying or coating. The amount of the powder composition varies depending on the fiber material, properties, and weight (per unit area) of the substrate, but is usually about 40 to 60% of the weight of the substrate. The method of causing the powder composition to be present on the substrate includes a method of sprinkling from the upper surface of the substrate, an electrostatic coating method, a fluid immersion method, a spraying method with a spray, a knife coater, a coating method using various coaters such as a comma coater, and the like. There is no particular limitation. As the base material, in addition to glass fiber base materials such as glass cloth and glass nonwoven fabric, woven and nonwoven fabrics made of paper, synthetic fibers, and the like, woven fabrics, nonwoven fabrics, mats made of metal fibers, carbon fibers, mineral fibers, and the like The raw material fibers of these substrates may be used alone or as a mixture.

【0024】前記基材に粉末組成物を存在せしめると
き、基材の片面のみに粉末組成物を存在せしめてもよい
が、好ましくは、反り防止等の点から表裏のバランスを
とるために基材の両面に粉末組成物を存在せしるのが好
ましい。この場合、まず基材の片面(上面)に散布ない
し塗布等により粉末組成物を存在させ、次いで、加温し
て粉末組成物を基材に十分付着させる。さらに反対面に
も粉末組成物を存在させる場合、基材を反転させ、基材
の上面に同様に粉末組成物を存在させ、次いで、加温し
て粉末組成物を基材に十分付着させる。加温は、基材の
上面に粉末組成物を存在させた場合、下面のみ、あるい
は両面からの加温の場合下面をより高温にして行うと、
溶融した樹脂の含浸が良好に行われるので、好ましい。
加温温度は、粉末組成物の軟化点にもよるが、粉末組成
物の存在する面(上面)は、加温する場合、通常、80
〜150℃であり、好ましくは100〜140℃であ
る。また、反対面(下面)では、通常、90〜170℃
であり、好ましくは110〜150℃である。
When the powder composition is made to exist on the base material, the powder composition may be made to exist on only one side of the base material. However, the base material is preferably used to balance front and back from the viewpoint of preventing warpage and the like. It is preferred that the powder composition is present on both sides of the substrate. In this case, first, the powder composition is made to exist on one surface (upper surface) of the substrate by spraying or coating, and then heated to sufficiently adhere the powder composition to the substrate. If the powder composition is also present on the opposite side, the substrate is inverted and the powder composition is similarly present on the top surface of the substrate, and then heated to sufficiently adhere the powder composition to the substrate. Heating, when the powder composition is present on the upper surface of the substrate, only the lower surface, or when heating from both surfaces and the lower surface is performed at a higher temperature,
It is preferable because the impregnation of the molten resin is performed well.
Although the heating temperature depends on the softening point of the powder composition, the surface (upper surface) on which the powder composition exists is usually 80 when heated.
To 150 ° C, preferably 100 to 140 ° C. On the opposite surface (lower surface), the temperature is usually 90 to 170 ° C.
And preferably 110 to 150 ° C.

【0025】樹脂組成物を更に十分に含浸させ、必要に
より樹脂を半硬化の状態にするために、樹脂含浸基材を
加熱してもよい。この加熱温度は、通常、100〜20
0℃であり、好ましくは120〜190℃であるが、樹
脂組成物の流動性や硬化性により異なる場合がある。基
材の厚みが100μm以下(ガラス基材では100g/
2 以下)と薄い場合、あるいは粉末組成物が容易に均
一に溶融する場合、片面にのみに粉末組成物を存在せし
める方法でもよい。この場合も、通常、その後に加温及
び又は加熱する工程を設ける。
The resin-impregnated substrate may be heated so that the resin composition is more sufficiently impregnated and, if necessary, the resin is in a semi-cured state. This heating temperature is usually 100 to 20
The temperature is 0 ° C, preferably 120 to 190 ° C, but may vary depending on the fluidity and curability of the resin composition. The thickness of the substrate is 100 μm or less (100 g /
If when m 2 or less) and thin, or powder composition is easily uniformly molten, it may be a method in which the presence of the powder composition only on one side. Also in this case, a step of heating and / or heating is usually provided thereafter.

【0026】以上のようにして得られたプリプレグは、
この1枚又は複数枚を、必要により銅箔等の金属箔を重
ね合わせ、通常の方法により加熱加圧して積層板又は金
属箔張積層板に成形される。本発明のプリプレグ及び積
層板は、これらプリプレグあるいは積層板の性能を、従
来のものと実質的に変えることなく、粉末樹脂組成物に
よる製造が容易となり、無溶剤による省資源化、省エネ
ルギー化及び大気汚染の低減化が図られ、さらに低コス
ト化をも達成することができる。
The prepreg obtained as described above is
One or more of the sheets are laminated with a metal foil such as a copper foil as necessary, and heated and pressed by a usual method to form a laminate or a metal foil-clad laminate. The prepreg and the laminate of the present invention can be easily manufactured using the powdered resin composition without substantially changing the performance of the prepreg or the laminate from the conventional one, and can save resources, save energy and save air by using no solvent. Contamination can be reduced, and further cost reduction can be achieved.

【0027】[0027]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention.

【0028】〔実施例1〕(KCK、コーター法) 平均粒径150μmの粉末状エポキシ樹脂(大日本イン
キ(株)製クレゾールノボラック型エポキシ樹脂N−69
5,エポキシ当量213)100重量部、平均粒子径1
00μmの粉末状フェノールノボラック樹脂(住友デュ
レズ(株)製PR−51470)34.5重量部、平均粒
子径15μmの粉末状9,10−ジヒドロ−9−オキサ
−10−ホスファフェナントレン−10−オキシド10
重量部、平均粒径10μmの粉末状2−フェニル−4−
メチルイミダゾール0.5重量部及び水酸化アルミニウ
ム(住友化学(株)製CL−310)55重量部を予備混
合し、次いで、多段石臼型混練押し出し機((株)KCK
製 メカノケミカルディスパージョンシステム KCK
−80X2−V(6))を用い、回転数200rpmに
て1分間処理し粉末組成物を得た。
Example 1 (KCK, coater method) Powdered epoxy resin having an average particle size of 150 μm (cresol novolac epoxy resin N-69 manufactured by Dainippon Ink and Chemicals, Inc.)
5, epoxy equivalent 213) 100 parts by weight, average particle size 1
34.5 parts by weight of a powdery phenol novolak resin of 00 μm (PR-51470 manufactured by Sumitomo Durez Co., Ltd.), powdered 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide having an average particle diameter of 15 μm 10
Parts by weight, powdered 2-phenyl-4- having an average particle size of 10 μm
0.5 parts by weight of methyl imidazole and 55 parts by weight of aluminum hydroxide (CL-310 manufactured by Sumitomo Chemical Co., Ltd.) are premixed, and then a multi-stage mill-type kneading extruder (KCK Co., Ltd.)
Made mechanochemical dispersion system KCK
Using -80X2-V (6)) at a rotation speed of 200 rpm for 1 minute, a powder composition was obtained.

【0029】次いで、この粉末組成物を100g/m2
のガラスクロスの上面ににナイフコーターで樹脂重量が
60g/m2 になるように均一に塗布した。その後、下
面側より150℃のパネルヒーター120℃により約1
分間加温した。次いで、ガラスクロスを上下反対にし、
もう一方の面にナイフコーターで樹脂重量が60g/m
2 になるように均一に塗布し、170℃の熱風加熱機で
1分間加熱してプリプレグを得た。このプリプレグを2
枚重ね合わせ、さらにその上下に厚さ18μmの銅箔を
重ね合わせ、温度165℃、圧力40kg/cm2 で9
0分間加熱加圧成形して、厚さ0.22mmの銅張積層
板を作製した。
Next, 100 g / m 2 of the powder composition was added.
Was uniformly coated on the upper surface of the glass cloth with a knife coater so that the resin weight became 60 g / m 2 . Then, from the lower surface side, a panel heater of
Warmed for minutes. Then turn the glass cloth upside down,
Resin weight 60g / m with knife coater on the other side
The mixture was uniformly applied so as to be 2 and heated with a hot air heater at 170 ° C. for 1 minute to obtain a prepreg. This prepreg is 2
A copper foil having a thickness of 18 μm is further laminated on the upper and lower sides, and a temperature of 165 ° C., a pressure of 40 kg / cm 2 and a pressure of 9 kg are applied.
It was heated and pressed for 0 minutes to produce a copper-clad laminate having a thickness of 0.22 mm.

【0030】〔実施例2〕(KCK、アエロジル、厚手
クロス、コーター法) 実施例1で得た粉末状樹脂組成物100重量部に、平均
粒径0.05μmの微粉末シリカ(日本アエロジル製ア
エロジル#200)1重量部の割合で添加し、ヘンシェ
ルミキサーで回転数500rpm、5分間混合処理し
た。得られた粉末組成物を210g/m2 のガラスクロ
スの片面上にナイフコーターで樹脂重量が90g/m2
になるように均一に塗布した。その後、下面側より12
0℃の熱風加熱機により約1分間加温した。次いで、ガ
ラスクロスを上下反対にし、もう一方の面にナイフコー
ターで樹脂重量が90g/m2 になるように均一に塗布
し、170℃の熱風加熱機で1分間加熱してプリプレグ
を得た。このプリプレグ1枚を用い、実施例1と同様に
して、厚さ0.22mmの銅張積層板を作製した。
Example 2 (KCK, Aerosil, Thick Cloth, Coater Method) Fine powdered silica having an average particle size of 0.05 μm (Aerosil manufactured by Nippon Aerosil Co., Ltd.) was added to 100 parts by weight of the powdery resin composition obtained in Example 1. # 200) 1 part by weight was added, and the mixture was mixed with a Henschel mixer at 500 rpm for 5 minutes. The obtained powder composition was applied on one side of a glass cloth of 210 g / m 2 with a knife coater so that the resin weight was 90 g / m 2.
Was applied uniformly. After that, 12
It was heated for about 1 minute by a hot air heater at 0 ° C. Then, the glass cloth was turned upside down, and the other surface was uniformly coated with a knife coater so that the resin weight became 90 g / m 2, and heated with a hot air heater at 170 ° C. for 1 minute to obtain a prepreg. Using this one prepreg, a copper-clad laminate having a thickness of 0.22 mm was produced in the same manner as in Example 1.

【0031】〔実施例3〕(ロール、コーター法) 粉末状エポキシ樹脂(大日本インキ(株)製クレゾールノ
ボラック型エポキシ樹脂N−695,エポキシ当量21
3)100重量部、粉末状フェノールノボラック樹脂
(住友デュレズ(株)製PR−51470)34.5重量
部、粉末状9,10−ジヒドロ−9−オキサ−10−ホ
スファフェナントレン−10−オキシド15重量部、粉
末状2−フェニル−4−メチルイミダゾール0.5重量
部及び水酸化マグネシウム(協和化学工業(株)製キスマ
5A)50重量部を予備混合し、次いで、直径12イン
チの2本ロールを用い、高速側回転数20rpm、高速
側ロール温度60℃、低速側ロール温度30℃、回転比
1.5:1にて30回処理した後、シート状で取りだし
冷風にて冷却後、微粉砕機にて粉砕して粉末状樹脂組成
物を得た。この粉末組成物を用い、実施例1と同様にし
てプリプレグを得、さらに、このプリプレグを用い、実
施例1と同様にして厚さ0.22mmの銅張積層板を作
製した。
Example 3 (Roll, coater method) Powdered epoxy resin (cresol novolak type epoxy resin N-695, manufactured by Dainippon Ink Co., Ltd., epoxy equivalent 21)
3) 100 parts by weight, 34.5 parts by weight of powdery phenol novolak resin (PR-51470 manufactured by Sumitomo Durez Co., Ltd.), powdery 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide 15 Parts by weight, 0.5 parts by weight of powdery 2-phenyl-4-methylimidazole and 50 parts by weight of magnesium hydroxide (Kisuma 5A manufactured by Kyowa Chemical Industry Co., Ltd.) are premixed, and then two rolls having a diameter of 12 inches are prepared. After processing 30 times at a high-speed side rotation speed of 20 rpm, a high-speed side roll temperature of 60 ° C., a low-speed side roll temperature of 30 ° C. and a rotation ratio of 1.5: 1, take out a sheet, cool it with cold air, and then pulverize it. The mixture was pulverized by a machine to obtain a powdery resin composition. Using this powder composition, a prepreg was obtained in the same manner as in Example 1, and using this prepreg, a copper-clad laminate having a thickness of 0.22 mm was manufactured in the same manner as in Example 1.

【0032】〔実施例4〕(ロール、アエロジル、コー
ター法) 実施例3で得た粉末状樹脂組成物100重量部に、平均
粒径0.05μmの微粉末シリカ(日本アエロジル製ア
エロジル#200)1重量部の割合で添加し、ヘンシェ
ルミキサーで回転数500rpm、5分間混合処理し
た。この粉末状組成物を用いて実施例5と同様にしてプ
リプレグを得、次いで、このプリプレグを用い厚さ0.
22mmの銅張積層板を作製した。
Example 4 (Roll, Aerosil, Coater Method) Fine powdered silica having an average particle size of 0.05 μm (Aerosil # 200 manufactured by Nippon Aerosil) was added to 100 parts by weight of the powdery resin composition obtained in Example 3. The mixture was added at a ratio of 1 part by weight, and mixed with a Henschel mixer at 500 rpm for 5 minutes. Using this powdery composition, a prepreg was obtained in the same manner as in Example 5, and then the prepreg was used to obtain a prepreg having a thickness of 0.1 mm.
A 22 mm copper-clad laminate was produced.

【0033】〔比較例1〕(粉末、メカノケミカル処理
無し) 平均粒径150μmの粉末状エポキシ樹脂(大日本イン
キ(株)製クレゾールノボラック型エポキシ樹脂N−69
5,エポキシ当量213)100重量部、平均粒子径1
00μmの粉末状フェノールノボラック樹脂(住友デュ
レズ(株)製PR−51470)34.5重量部、平均粒
子径15μmの粉末状9,10−ジヒドロ−9−オキサ
−10−ホスファフェナントレン−10−オキシド10
重量部、平均粒径10μmの粉末状2−フェニル−4−
メチルイミダゾール0.5重量部及び水酸化アルミニウ
ム(住友化学(株)製CL−310)55重量部を錨羽ね
型の撹拌機で回転数70rpmにて1分間撹拌混合処理
した。この粉末組成物を実施例1と同様にしてプリプレ
グを得た。このプリプレグを2枚重ね合わせ、さらにそ
の上下に厚さ18μmの銅箔を重ね合わせ、温度165
℃、圧力40kg/cm2 で90分間加熱加圧成形し
て、厚さ0.22mmの銅張積層板を作製した。
Comparative Example 1 (powder, no mechanochemical treatment) Powdered epoxy resin having an average particle size of 150 μm (cresol novolak epoxy resin N-69 manufactured by Dainippon Ink and Chemicals, Inc.)
5, epoxy equivalent 213) 100 parts by weight, average particle size 1
34.5 parts by weight of a powdery phenol novolak resin of 00 μm (PR-51470 manufactured by Sumitomo Durez Co., Ltd.), powdered 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide having an average particle diameter of 15 μm 10
Parts by weight, powdered 2-phenyl-4- having an average particle size of 10 μm
0.5 parts by weight of methyl imidazole and 55 parts by weight of aluminum hydroxide (CL-310, manufactured by Sumitomo Chemical Co., Ltd.) were stirred and mixed with an anchor-type stirrer at a rotation speed of 70 rpm for 1 minute. A prepreg was obtained from this powder composition in the same manner as in Example 1. Two prepregs were superimposed, and a copper foil having a thickness of 18 μm was superimposed on and under the prepreg.
It was heated and pressed at 90 ° C. and a pressure of 40 kg / cm 2 for 90 minutes to produce a copper-clad laminate having a thickness of 0.22 mm.

【0034】〔比較例2〕(従来の含浸法、無機充填材
なし) エポキシ樹脂(大日本インキ(株)製クレゾールノボラッ
ク型エポキシ樹脂N−695,エポキシ当量213)1
00重量部、フェノールノボラック樹脂(住友デュレズ
(株)製PR−51470)34.5重量部、9,10−
ジヒドロ−9−オキサ−10−ホスファフェナントレン
−10−オキシド10重量部、及び2−フェニル−4−
メチルイミダゾール0.5重量部の比率で混合したもの
をメチルセルソルブ100重量部に溶かした。このワニ
スを樹脂固形分で100g/m2 になるように100g
/m2 のガラスクロスを浸けて含浸させた後、170℃
の熱風加熱機で3分間加熱してプリプレグを得た。この
プリプレグを2枚重ね合わせ、さらにその上下に厚さ1
8μmの銅箔を重ね合わせ、温度165℃、圧力40k
g/cm2 で90分間加熱加圧成形して、厚さ0.22
mmの銅張積層板を作製した。
[Comparative Example 2] (Conventional impregnation method, no inorganic filler) Epoxy resin (cresol novolak type epoxy resin N-695, epoxy equivalent 213, manufactured by Dainippon Ink Co., Ltd.) 1
00 parts by weight, phenol novolak resin (Sumitomo Durez)
34.5 parts by weight, 9,10-
10 parts by weight of dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, and 2-phenyl-4-
A mixture of methyl imidazole at a ratio of 0.5 part by weight was dissolved in 100 parts by weight of methylcellosolve. 100 g of this varnish was adjusted to 100 g / m 2 in resin solids.
/ M 2 of glass cloth soaked and impregnated at 170 ° C
And heated for 3 minutes with a hot air heater to obtain a prepreg. Two prepregs are stacked, and a thickness of 1
8μm copper foil is superimposed, temperature 165 ℃, pressure 40k
g / cm 2 for 90 minutes under heat and pressure.
mm copper-clad laminate was prepared.

【0035】以上実施例及び比較例において、銅張積層
板について、含浸性、成形性、引張り強さ、銅箔引剥し
強さ、半田耐熱性、絶縁抵抗及び耐燃性を測定した。そ
の結果を表1及び表2に示す。
In the above Examples and Comparative Examples, the impregnation, moldability, tensile strength, copper foil peeling strength, solder heat resistance, insulation resistance and flame resistance of the copper-clad laminate were measured. The results are shown in Tables 1 and 2.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】(測定方法) 1.含浸性:積層板の断面を顕微鏡にて観察し、ガラス
繊維間のボイドの有無を確認した。 2.成形性:銅張積層板の銅箔をエッチングして、目視
により硬化剤等の析出の有無を観察し、樹脂組成物の分
散性の評価をした。 3.引張り強さ:銅張積層板の銅箔をエッチングして、
10×100mmに切断後テンシロンにて引張り強度を
測定した。 4.銅箔引剥し強さ:JIS C 6481により測定し
た。 5.半田耐熱性:50×50mmの積層板を、260℃
の半田浴に3分間フロートさせ、ふくれの有無を測定し
た。 6.絶縁抵抗:JIS C 6481により測定した。 7.耐燃性:UL−94規格に従い垂直法により評価し
た。
(Measurement method) Impregnation: The cross section of the laminate was observed with a microscope to confirm the presence or absence of voids between glass fibers. 2. Formability: The copper foil of the copper-clad laminate was etched, the presence or absence of the precipitation of a curing agent or the like was visually observed, and the dispersibility of the resin composition was evaluated. 3. Tensile strength: Etching copper foil of copper clad laminate,
After cutting to 10 × 100 mm, the tensile strength was measured with Tensilon. 4. Copper foil peel strength: Measured according to JIS C6481. 5. Solder heat resistance: A laminate of 50 × 50 mm is subjected to 260 ° C.
Was floated in a solder bath for 3 minutes, and the presence or absence of blisters was measured. 6. Insulation resistance: Measured according to JIS C6481. 7. Flame resistance: Evaluated by the vertical method according to UL-94 standard.

【0039】なお、製造コストについては、実施例の方
法は溶剤を使用しないので、実施例では得られた積層板
は比較例2で得られたものに比べ30〜40%程度低コ
スト化することができた。
As for the manufacturing cost, since the method of the embodiment does not use a solvent, the laminated board obtained in the embodiment is reduced in cost by about 30 to 40% as compared with that obtained in the comparative example 2. Was completed.

【0040】[0040]

【発明の効果】本発明のプリプレグ及び積層板は、有機
溶剤を使用しないで、良好な含浸性を有し成形性のよい
粉末状エポキシ樹脂組成物を使用して得られるで、省資
源、省エネルギー及び大気汚染の低減化が図られ、省資
源化及び省エネルギー化することにより、低コスト化の
点でも優れている。さらには、ハロゲン系難燃剤を使用
することなしに難燃性、電気特性、耐熱性等品質の良好
な積層板を安定して得ることができる。
The prepreg and laminate of the present invention can be obtained by using a powdered epoxy resin composition having good impregnating properties and good moldability without using an organic solvent. In addition, air pollution is reduced, and resource saving and energy saving are achieved. Furthermore, a laminated board having good quality such as flame retardancy, electric characteristics, heat resistance and the like can be stably obtained without using a halogen-based flame retardant.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08K 5/49 C08K 5/49 C08L 63/00 C08L 63/00 C B Fターム(参考) 4F072 AA04 AA07 AB02 AB04 AB05 AB08 AB09 AB10 AB11 AB28 AB29 AD13 AD15 AD16 AD17 AD18 AD23 AD25 AD26 AD27 AD28 AD31 AE06 AE07 AF02 AF03 AF04 AF06 AF14 AF19 AF24 AG03 AH05 AH24 AH25 AJ04 AK05 AL11 4F100 AA00A AB17 AB33 AG00 AH00A AK33A AK53A BA01 BA02 BA04 CA23A DG11A DH01A EH46 GB43 JG00 JJ03 JJ07 4J002 CC042 CC052 CD011 CD021 CD041 CD051 CD061 CD071 CD072 CD131 DE077 DE147 DE237 DG047 DJ007 DJ017 DJ037 DJ047 EW046 FD017 FD136 FD137 FD140 FD142 FD150 FD207 GQ00 HA09 4J036 AA01 AD07 AD08 AE05 AF06 AF08 AG00 AH00 AJ08 AJ18 DD07 FA03 FA04 FA05 FB08 JA08 JA11 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08K 5/49 C08K 5/49 C08L 63/00 C08L 63/00 CB F term (Reference) 4F072 AA04 AA07 AB02 AB04 AB05 AB08 AB09 AB10 AB11 AB28 AB29 AD13 AD15 AD16 AD17 AD18 AD23 AD25 AD26 AD27 AD28 AD31 AE06 AE07 AF02 AF03 AF04 AF06 AF14 AF19 AF24 AG03 AH05 AH24 AH25 AJ04 AK05 AL11 4F100 AA00A AB17 AB33 AG00 BA01A46 BA01A01 BA33A01 GB43 JG00 JJ03 JJ07 4J002 CC042 CC052 CD011 CD021 CD041 CD051 CD061 CD071 CD072 CD131 DE077 DE147 DE237 DG047 DJ007 DJ017 DJ037 DJ047 EW046 FD017 FD136 FD137 FD140 FD142 FD150 FD207 GQ00 AG09A08 AF08 A08A08 AF08 A0808 JA11

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (a)エポキシ樹脂、(b)フェノール
樹脂、(c)9,10−ジヒドロ−9−オキサ−10−
ホスファフェナントレン−10−オキシド、及び(d)
として(a)+(b)+(c)の合計100重量部に対
して無機充填材1〜200重量部含有する粉末状のエポ
キシ樹脂組成物を、シート状繊維基材の少なくとも片面
に存在させてなることを特徴とするプリプレグ。
1. An epoxy resin, (b) a phenolic resin, and (c) 9,10-dihydro-9-oxa-10-.
Phosphaphenanthrene-10-oxide, and (d)
As a result, a powdery epoxy resin composition containing 1 to 200 parts by weight of an inorganic filler with respect to 100 parts by weight in total of (a) + (b) + (c) is present on at least one surface of a sheet-like fiber base material. A prepreg characterized by:
【請求項2】 粉末状エポキシ樹脂組成物は、各成分の
混合物に機械的エネルギーを与えてメカノケミカルな反
応をさせたものである請求項1記載のプリプレグ。
2. The prepreg according to claim 1, wherein the powdery epoxy resin composition is obtained by applying a mechanical energy to a mixture of each component to cause a mechanochemical reaction.
【請求項3】 粉末状エポキシ樹脂組成物は、各成分を
加熱混練ないし溶融混合し、微粉砕したものである請求
項1記載のプリプレグ。
3. The prepreg according to claim 1, wherein the powdery epoxy resin composition is obtained by kneading or melt-mixing each component and finely pulverizing the components.
【請求項4】 請求項1,2,3又は4記載のプリプレ
グを、1枚又は複数枚重ね合わせ、加熱加圧してなるこ
とを特徴とする積層板。
4. A laminated plate, wherein one or more prepregs according to claim 1, 2, 3 or 4 are laminated and heated and pressed.
JP11083483A 1999-03-26 1999-03-26 Flame-retardant prepreg and laminate Pending JP2000273222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11083483A JP2000273222A (en) 1999-03-26 1999-03-26 Flame-retardant prepreg and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11083483A JP2000273222A (en) 1999-03-26 1999-03-26 Flame-retardant prepreg and laminate

Publications (1)

Publication Number Publication Date
JP2000273222A true JP2000273222A (en) 2000-10-03

Family

ID=13803731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11083483A Pending JP2000273222A (en) 1999-03-26 1999-03-26 Flame-retardant prepreg and laminate

Country Status (1)

Country Link
JP (1) JP2000273222A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049080A (en) * 1999-08-09 2001-02-20 Sumitomo Bakelite Co Ltd Flame-retardant resin composition, prepreg and laminated board
WO2001042359A1 (en) * 1999-12-13 2001-06-14 Dow Global Technologies Inc. Flame retardant phosphorus element-containing epoxy resin compositions
WO2007099710A1 (en) * 2006-03-03 2007-09-07 Sumitomo Bakelite Co., Ltd. Intermediate layer material, and composite laminate plate
JP2012031428A (en) * 2001-08-31 2012-02-16 Sumitomo Bakelite Co Ltd Prepreg with metal foil, laminated board, and semiconductor package

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049080A (en) * 1999-08-09 2001-02-20 Sumitomo Bakelite Co Ltd Flame-retardant resin composition, prepreg and laminated board
WO2001042359A1 (en) * 1999-12-13 2001-06-14 Dow Global Technologies Inc. Flame retardant phosphorus element-containing epoxy resin compositions
JP2003516455A (en) * 1999-12-13 2003-05-13 ダウ グローバル テクノロジーズ インコーポレイティド Flame retardant phosphorus element-containing epoxy resin composition
JP2012031428A (en) * 2001-08-31 2012-02-16 Sumitomo Bakelite Co Ltd Prepreg with metal foil, laminated board, and semiconductor package
WO2007099710A1 (en) * 2006-03-03 2007-09-07 Sumitomo Bakelite Co., Ltd. Intermediate layer material, and composite laminate plate
CN101395208B (en) * 2006-03-03 2012-07-04 住友电木株式会社 Intermediate layer material, and composite laminate plate
JP5332608B2 (en) * 2006-03-03 2013-11-06 住友ベークライト株式会社 Intermediate layer materials and composite laminates
US8722191B2 (en) 2006-03-03 2014-05-13 Sumitomo Bakelite Co., Ltd. Intermediate layer material and composite laminate

Similar Documents

Publication Publication Date Title
JPH0484489A (en) Laminate lined with metallic foil whose surface is smooth
WO1999027002A1 (en) Processes for the production of prepregs and laminated sheets
JP2000344917A (en) Flame-retardant prepreg and laminate
JP2002194119A (en) Prepreg and metal foil clad laminated plate
JP2000273222A (en) Flame-retardant prepreg and laminate
JP2000345006A (en) Flame retarded prepreg and laminate
JP3373164B2 (en) Method for producing prepreg and laminate
JP2000344916A (en) Flame-retardant prepreg and laminate
JP5712488B2 (en) Insulating resin film and laminated board and wiring board using the same
JP2000273238A (en) Flame retardant prepreg and laminate
JP2000273221A (en) Flame-retardant prepreg and laminate
JP2000273223A (en) Flame-retardant prepreg and laminate
JPH11302411A (en) Preparation of prepreg and laminate
JP2000336149A (en) Flame-retardant prepreg and laminate
JP2000273219A (en) Prepreg and laminate
JP2000336190A (en) Production of both prepreg and laminate
JPH11350359A (en) Production of prepreg and laminate
JP3582770B2 (en) Manufacturing method of laminated board
JP4301044B2 (en) Prepreg and laminate manufacturing method
JPH11240967A (en) Production of prepreg and laminate
JP2000273220A (en) Production of prepreg and laminate
JP2003332734A (en) Method of manufacturing printed wiring board using additive method
JPH11309808A (en) Metal foil with adhesive, prepreg with metal foil, and laminated plate
JP2000327812A (en) Preparation of prepreg and laminate
JP2000273217A (en) Production of prepreg and laminate