JPH11297337A - Separator member for solid polymer type fuel cell, and manufacture thereof - Google Patents

Separator member for solid polymer type fuel cell, and manufacture thereof

Info

Publication number
JPH11297337A
JPH11297337A JP10095717A JP9571798A JPH11297337A JP H11297337 A JPH11297337 A JP H11297337A JP 10095717 A JP10095717 A JP 10095717A JP 9571798 A JP9571798 A JP 9571798A JP H11297337 A JPH11297337 A JP H11297337A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
cured resin
carbonaceous powder
separator member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10095717A
Other languages
Japanese (ja)
Other versions
JP4037955B2 (en
Inventor
Mitsuo Enomoto
三男 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP09571798A priority Critical patent/JP4037955B2/en
Publication of JPH11297337A publication Critical patent/JPH11297337A/en
Application granted granted Critical
Publication of JP4037955B2 publication Critical patent/JP4037955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a member suitable for a separator for a solid polymer type fuel cell having gas inpermeability, corrosion resistance, electric conductivity, strength characteristic and the like with good balance, and to provide a manufacturing method therefor. SOLUTION: This separator for a solid polymer type fuel cell comprises a structure having a metal thin plate of which both obverse and reverse faces are covered with a carbonaceous powder-dispersed cured resin molding of a thermosetting resin, in which a gas flowing for supplying fuel gas or oxidant gas is formed. In a manufacturing method thereof, 10-100 pts.wt. of the thermosetting resin are added to 100 pts.wt. of the carbonaceous powder to be kneaded uniformly, the cured resin molding prepared by curing thereof is thermally pressure-contacted to both of the obverse and reverse faces of the metal thin plate to be attached, and the gas flowing channel for supplying the fuel gas or the oxidant gas is formed in the attached cured resin molding. Graphite powder having 125 μm or less of the maximum particle size is preferably used for the carbonaceous powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型(S
PE型)燃料電池のセパレータ部材及びその製造方法に
関する。
The present invention relates to a solid polymer type (S)
(PE type) fuel cell separator member and a method of manufacturing the same.

【0002】[0002]

【従来の技術】固体高分子型燃料電池はパーフルオロカ
ーボンスルフォン酸等のイオン交換膜からなる固体高分
子の電解質膜と、その両側に設けた2つの電極とそれぞ
れの電極に水素等の燃料ガスあるいは酸素等の酸化剤ガ
スを供給するガス供給溝を設けた集電体およびセパレー
タから構成されている。
2. Description of the Related Art A polymer electrolyte fuel cell is a solid polymer electrolyte membrane composed of an ion exchange membrane such as perfluorocarbon sulfonic acid, two electrodes provided on both sides thereof, and a fuel gas such as hydrogen or the like provided on each electrode. It is composed of a current collector provided with a gas supply groove for supplying an oxidizing gas such as oxygen and a separator.

【0003】このセパレータには、燃料ガスと酸化剤ガ
スとを完全に分離した状態で電極に供給するために高度
のガス不透過性が要求され、また電池反応に伴う発熱を
効率よく放散させるために高い熱伝導性、更に、燃料ガ
スとして用いる水素ガスによる脆化を生じない耐蝕性等
が必要である。
The separator is required to have a high degree of gas impermeability in order to supply the fuel gas and the oxidizing gas to the electrode in a completely separated state, and to efficiently dissipate the heat generated by the battery reaction. High thermal conductivity, and corrosion resistance that does not cause embrittlement by hydrogen gas used as a fuel gas.

【0004】このような材質特性が要求されるセパレー
タとして、例えば特開平4−267062号公報にはセ
パレータの材質を純銅やステンレス鋼などで構成する例
が開示されている。しかしながら、これらの金属系の材
質では燃料ガスとして用いる水素ガスと長時間に亘って
接触するために、水素脆性が生じて材質劣化が起こり電
池性能が低下する欠点がある。
[0004] As a separator requiring such material properties, for example, Japanese Patent Application Laid-Open No. Hei 4-267062 discloses an example in which the material of the separator is made of pure copper or stainless steel. However, these metal-based materials have a disadvantage in that they come into contact with hydrogen gas used as a fuel gas for a long period of time, causing hydrogen embrittlement, deterioration of the materials and deterioration of battery performance.

【0005】また、リン酸型燃料電池ではセパレータに
炭素質系の材料、特にガス不透過性に優れているガラス
状カーボン材が使用されている。ガラス状カーボン材は
フェノール系樹脂やフラン系樹脂などの熱硬化性樹脂液
を成形し加熱硬化後、非酸化性雰囲気中800℃以上の
温度で焼成炭化して得られるガラス質の性状を呈する特
異な炭素材である。
In a phosphoric acid fuel cell, a carbonaceous material, particularly a glassy carbon material having excellent gas impermeability, is used for a separator. The glassy carbon material has a unique glassy property obtained by molding a thermosetting resin liquid such as a phenolic resin or a furan resin, heating and curing, and then calcining and carbonizing at a temperature of 800 ° C or more in a non-oxidizing atmosphere. Carbon material.

【0006】しかしながら、ガラス状カーボン材は緻密
な組織構造を有し、高いガス不透過性を示す反面、硬度
が高く脆性であるので加工性が悪いという欠点がある。
更に金属系の材質に比べて熱伝導率が低く電気抵抗も大
きいという難点があり、リン酸型燃料電池に比較して高
電流密度で運転される固体高分子型燃料電池のセパレー
タとして使用するには適当でない。
[0006] However, the glassy carbon material has a dense structure and high gas impermeability, but has a drawback of poor workability due to its high hardness and brittleness.
Furthermore, it has a disadvantage that the thermal conductivity is low and the electric resistance is large as compared with metal-based materials, so that it is used as a separator of a polymer electrolyte fuel cell operated at a higher current density than a phosphoric acid fuel cell. Is not appropriate.

【0007】そこで本出願人はガス不透過性、熱伝導
性、導電性、耐蝕性等に優れ、これらの性能をバランス
よく備え、固体高分子型燃料電池のセパレータ等として
好適な黒鉛部材の製法として、最大粒径125μm 以下
の炭素質粉末に結合材を加えて加熱混練後CIP成形
し、次いで焼成、黒鉛化して得られた平均気孔径10μ
m以下、気孔率20%以下の等方性黒鉛材に熱硬化性樹
脂液を含浸、硬化処理する固体高分子型燃料電池用黒鉛
部材の製造方法(特開平8−222241号公報)を提案し
た。
The applicant of the present invention has a method of manufacturing a graphite member which is excellent in gas impermeability, thermal conductivity, conductivity, corrosion resistance, etc., has these properties in a well-balanced manner, and is suitable as a separator of a polymer electrolyte fuel cell. A binder is added to carbonaceous powder having a maximum particle size of 125 μm or less, and the mixture is heated and kneaded, then CIP-molded, and then fired and graphitized to obtain an average pore diameter of 10 μm.
A method for producing a graphite member for a polymer electrolyte fuel cell, in which an isotropic graphite material having a porosity of 20% or less and a thermosetting resin liquid is impregnated and cured, has been proposed (JP-A-8-222241). .

【0008】[0008]

【発明が解決しようとする課題】本発明者は、上記特開
平8−222241号公報の技術を基に更に研究を進め
た結果、金属系材料のもつ優れた導電性及びガス不透過
性と、炭素質材料の有する高耐蝕性とをバランスよく併
せ持ち、固体高分子型燃料電池のセパレータとして好適
な部材及びその製造方法を開発した。
As a result of further research based on the technique disclosed in the above-mentioned Japanese Patent Application Laid-Open No. Hei 8-222241, the present inventors have found that the excellent conductivity and gas impermeability of a metal-based material, A member suitable for a polymer electrolyte fuel cell separator and a method for manufacturing the same have been developed, having a good balance between the high corrosion resistance of a carbonaceous material and the high corrosion resistance of a carbonaceous material.

【0009】すなわち、本発明の目的は長期間に亘って
安定に稼働することのできる固体高分子型燃料電池セパ
レータ部材及びその製造方法を提供することにある。
That is, an object of the present invention is to provide a polymer electrolyte fuel cell separator member capable of operating stably for a long period of time and a method of manufacturing the same.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による固体高分子型燃料電池セパレータ部材
は、金属薄板と、その表裏両面に炭素質粉末が分散した
熱硬化性樹脂の硬化樹脂成形体が被着し、該硬化樹脂成
形体には燃料ガスまたは酸化剤ガスを供給するガス流通
溝が形成された構造からなることを構成上の特徴とす
る。
In order to achieve the above object, a polymer electrolyte fuel cell separator member according to the present invention comprises a thin metal plate and a thermosetting resin in which carbonaceous powder is dispersed on both front and back surfaces. The resin molding is adhered, and the cured resin molding has a structure in which a gas flow groove for supplying a fuel gas or an oxidizing gas is formed.

【0011】また、その製造方法は、炭素質粉末100
重量部に対し、熱硬化性樹脂を10〜100重量部の割
合で加えて均一に混練し、硬化して得られた硬化樹脂成
形体を金属薄板の表裏両面に熱圧接合して被着し、被着
された硬化樹脂成形体に燃料ガスまたは酸化剤ガスを供
給するガス流通溝を形成することを構成上の特徴とす
る。
[0011] Further, the method of producing the carbonaceous powder 100
The thermosetting resin is added in a ratio of 10 to 100 parts by weight to the parts by weight, and uniformly kneaded, and the cured resin molded body obtained by curing is hot-press bonded to both the front and back surfaces of the thin metal plate. In addition, a gas flow groove for supplying a fuel gas or an oxidizing gas is formed in the attached cured resin molded body, which is a structural feature.

【0012】[0012]

【発明の実施の形態】本発明のセパレータ部材は厚さ方
向の中央部に金属薄板があり、その表裏両面に硬化樹脂
成形体が被着された構造からなり、この金属薄板により
ガスの透過が遮断される。すなわち、金属板は薄くても
ガス不透過性を充分に確保することができるのでセパレ
ータ部材を薄くすることができ、電池スタックの積層厚
さを低減することができる。金属薄板の厚さは0.05
〜1mm程度のものが用いられる。金属としては、鉄、ス
テンレス、ニッケル、銅、アルミニウム、チタン等多く
の金属を用いることができるが、加工性が容易で安価な
金属を選定することが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The separator member of the present invention has a structure in which a thin metal plate is provided at the center in the thickness direction, and a cured resin molded body is adhered to both front and back surfaces of the thin metal plate. Will be shut off. That is, even if the metal plate is thin, sufficient gas impermeability can be ensured, so that the separator member can be thinned and the stack thickness of the battery stack can be reduced. Metal sheet thickness is 0.05
Approximately 1 mm is used. As the metal, many metals such as iron, stainless steel, nickel, copper, aluminum and titanium can be used, but it is preferable to select a metal which is easy to process and inexpensive.

【0013】この金属薄板の表裏両面には、金属表面を
被覆するように炭素質粉末が分散した熱硬化性樹脂の硬
化樹脂成形体が被着されている。この硬化樹脂成形体は
ガス不透過性を有するとともに化学的安定性が高く、セ
パレータ部材の中央部にある金属薄板の腐食抑止に機能
する。すなわち、硬化樹脂成形体は均一に分散している
炭素質粉末により導電性が確保されるとともに、高ガス
不透過性及び高耐蝕性を備えており、金属薄板の腐食防
止に機能する。なお、この硬化樹脂成形体には燃料ガス
または酸化剤ガスを供給する流通路としてガス流通溝が
形成されており、ガス流通溝は金属薄板の表裏両面に被
着された硬化樹脂成形体に互いに直交する方向に設けら
れている。
A cured resin molded body of a thermosetting resin in which carbonaceous powder is dispersed is coated on both the front and back surfaces of the thin metal plate so as to cover the metal surface. This cured resin molded body has gas impermeability and high chemical stability, and functions to prevent corrosion of the metal sheet at the center of the separator member. That is, the cured resin molded body has conductivity ensured by the uniformly dispersed carbonaceous powder, has high gas impermeability and high corrosion resistance, and functions to prevent corrosion of a thin metal plate. In addition, a gas circulation groove is formed in the cured resin molded body as a flow passage for supplying a fuel gas or an oxidizing gas, and the gas circulation groove is formed on the cured resin molded body attached to the front and back surfaces of the thin metal sheet. They are provided in directions orthogonal to each other.

【0014】このように本発明の固体高分子型燃料電池
セパレータ部材は、セパレータの厚さ方向の中央部にあ
る金属薄板が燃料ガスや酸化剤ガスの透過を防止すると
ともに内部電気抵抗を低く抑え、またその表裏両面に被
着した炭素質粉末が均一に分散した熱硬化性樹脂を硬化
した硬化樹脂成形体により高耐蝕性とともに適度の導電
性が付与される。したがって、金属系材料のもつ優れた
導電性及びガス不透過性と、炭素・樹脂系材料の有する
高耐蝕性と高ガス不透過性とがバランスよく機能して、
固体高分子型燃料電池のセパレータ部材として優れた性
能を発揮することができる。更に、耐衝撃性にも優れて
いるので電池セルの組立や締め付け時、あるいは隣接す
るセルとのガス圧力差が生じた際の変形に対する靱性も
向上し、長期運転における信頼性も高くなる。
As described above, in the polymer electrolyte fuel cell separator member of the present invention, the thin metal plate at the center in the thickness direction of the separator prevents permeation of fuel gas and oxidizing gas and suppresses internal electric resistance. In addition, a cured resin molded body obtained by curing a thermosetting resin in which carbonaceous powder adhered on both front and back surfaces is uniformly dispersed provides high corrosion resistance and appropriate conductivity. Therefore, the excellent conductivity and gas impermeability of metal-based materials, and the high corrosion resistance and high gas impermeability of carbon and resin-based materials function in a well-balanced manner.
Excellent performance can be exhibited as a separator member of a polymer electrolyte fuel cell. Furthermore, since it has excellent impact resistance, the toughness against deformation when assembling or tightening a battery cell or when a gas pressure difference is generated between adjacent cells is improved, and the reliability in long-term operation is also increased.

【0015】この固体高分子型燃料電池セパレータ部材
は炭素質粉末100重量部に対し、熱硬化性樹脂を10
〜100重量部の割合で加えて均一に混練し、硬化して
得られた硬化樹脂成形体を金属薄板の表裏両面に熱圧接
合して被着し、被着された硬化樹脂成形体に燃料ガスま
たは酸化剤ガスを供給するガス流通溝を形成することに
より製造することができる。
This polymer electrolyte fuel cell separator member is prepared by adding 10 parts by weight of a thermosetting resin to 100 parts by weight of a carbonaceous powder.
To 100 parts by weight, uniformly kneaded and cured, and the resulting cured resin molded body is hot-press bonded to the front and back surfaces of the thin metal sheet, and the fuel is applied to the adhered cured resin molded body. It can be manufactured by forming a gas flow groove for supplying a gas or an oxidizing gas.

【0016】炭素質粉末と熱硬化性樹脂との混合比は、
樹脂成分が多くなるとガス不透過性は向上するが電気抵
抗の増大を招き、また炭素質粉末の割合が大きくなると
導電性は高くなるがガス不透過性が低下する。そのた
め、混合比は炭素質粉末100重量部に対して熱硬化性
樹脂を10〜100重量部の範囲に設定する。
The mixing ratio between the carbonaceous powder and the thermosetting resin is as follows:
When the resin component is increased, the gas impermeability is improved, but the electric resistance is increased, and when the proportion of the carbonaceous powder is increased, the conductivity is increased but the gas impermeability is reduced. Therefore, the mixing ratio is set in the range of 10 to 100 parts by weight of the thermosetting resin with respect to 100 parts by weight of the carbonaceous powder.

【0017】炭素質粉末としては黒鉛粉末、コークス粉
末等が用いられるが、導電性や高耐蝕性を付与するため
に黒鉛粉末が好ましい。また、炭素質粉末の粒子径はガ
ス流通溝を形成する際の溝加工時における粒子脱落を防
止するために最大粒子径として125μm 以下のものが
好ましく用いられる。
As the carbonaceous powder, graphite powder, coke powder and the like are used, but graphite powder is preferable in order to impart conductivity and high corrosion resistance. The maximum particle diameter of the carbonaceous powder is preferably 125 μm or less in order to prevent the particles from falling off during the groove processing when forming the gas flow grooves.

【0018】熱硬化性樹脂は固体高分子型燃料電池の発
電稼働時の温度である80〜120℃の耐熱性、pH2
〜3のスルフォン酸や硫酸酸性に耐え得る耐酸性があれ
ば、特に制限はなく、例えばフェノール樹脂、フラン樹
脂、エポキシ樹脂等が用いられる。
The thermosetting resin has a heat resistance of 80 to 120 ° C., which is the temperature at the time of power generation operation of the polymer electrolyte fuel cell, and has a pH of 2.
There is no particular limitation as long as it has acid resistance that can withstand the acidity of sulfonic acid or sulfuric acid, for example, phenol resin, furan resin, epoxy resin and the like.

【0019】これらの炭素質粉末と熱硬化性樹脂とを所
定の重量比で混合し、均一に混練したのち、金属薄板の
形状に合わせて板状に成形し、半硬化(一次硬化)処理
して板状成形体が得られる。半硬化状態の板状成形体は
鉄、ステンレス、ニッケル、銅、アルミニウム、チタン
等の金属の厚さ0.05〜1mmの薄板の表裏両面に熱圧
接合により強固に被着されるとともに二次硬化される。
熱圧接合は、例えば温度80〜200℃、圧力10〜1
000Kg/cm2の条件で適宜時間処理することにより行わ
れ、その結果硬化樹脂成形体は金属面に強固に接合、被
着する。この場合、金属薄板の両面は適度に粗面化して
おくと硬化樹脂成形体をより強固に被着させることがで
きる。
The carbonaceous powder and the thermosetting resin are mixed at a predetermined weight ratio, uniformly kneaded, formed into a sheet shape according to the shape of the metal sheet, and subjected to a semi-curing (primary curing) treatment. Thus, a plate-like molded body is obtained. The semi-cured plate-like molded body is firmly adhered to both the front and back surfaces of a 0.05 to 1 mm thick metal sheet such as iron, stainless steel, nickel, copper, aluminum, titanium, etc. by hot-press bonding and secondary Is cured.
The thermal pressure bonding is performed, for example, at a temperature of 80 to 200 ° C and a pressure of
The treatment is carried out for an appropriate time under the condition of 000 kg / cm 2 , and as a result, the cured resin molded article is firmly bonded and adhered to the metal surface. In this case, if both surfaces of the thin metal plate are appropriately roughened, the cured resin molding can be more firmly adhered.

【0020】なお、この金属薄板の表裏両面に被着した
硬化樹脂成形体に燃料ガスまたは酸化剤ガスを供給する
流通路となるガス流通溝を互いに直交する方向に形成す
ることにより、本発明の固体高分子型燃料電池セパレー
タ部材が製造される。
In the present invention, the gas flow grooves serving as flow passages for supplying the fuel gas or the oxidizing gas are formed in the cured resin molded body attached to the front and back surfaces of the thin metal plate in directions perpendicular to each other. A polymer electrolyte fuel cell separator member is manufactured.

【0021】[0021]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
Hereinafter, examples of the present invention will be described in comparison with comparative examples.

【0022】実施例1〜2 炭素質粉末として120メッシュ篩下(最大粒子径12
5μm )の黒鉛粉末を用い、黒鉛粉末100重量部に対
しフェノール樹脂初期縮合物を20重量部、及び35重
量の割合で加えて充分に混練し均一な混練物を調製し
た。この混練物を半硬化(一次硬化)して板状に成形
し、金属薄板として縦横200mm、厚さ0.2mmのステ
ンレス板を用い、その表裏両面に板状成形体を180
℃、250Kg/cm2の条件で熱圧接合して被着した。この
ようにして、ステンレス薄板の両面に、フェノール樹脂
中に黒鉛粉末が均一に分散した硬化樹脂成形体が被着し
た縦横200mm、厚さ1.5mmのセパレータ部材を製造
した。
Examples 1-2 As a carbonaceous powder, a 120 mesh sieve was used (maximum particle size 12
Using a 5 μm) graphite powder, a phenol resin precondensate was added in an amount of 20 parts by weight and 35 parts by weight with respect to 100 parts by weight of the graphite powder, and kneaded sufficiently to prepare a uniform kneaded product. The kneaded material is semi-cured (primary cured) and formed into a plate shape. A stainless steel plate having a length and width of 200 mm and a thickness of 0.2 mm is used as a thin metal plate, and a plate-shaped formed body is formed on both front and back sides of the formed plate.
° C., was deposited by thermal pressure bonding under the conditions of 250 Kg / cm 2. Thus, a separator member having a length and width of 200 mm and a thickness of 1.5 mm, in which a cured resin molded body in which graphite powder was uniformly dispersed in phenol resin was adhered to both surfaces of a stainless steel thin plate, was produced.

【0023】実施例3 炭素質粉末として最大粒子径125μm の黒鉛粉末を用
い、黒鉛粉末100重量部にフェノール樹脂初期縮合物
を70重量部の割合で加え、金属薄板として厚さ0.2
mmのニッケル板を用いた他は、実施例1と同一の条件に
より縦横200mm、厚さ1.5mmのセパレータ部材を得
た。
Example 3 A graphite powder having a maximum particle diameter of 125 μm was used as a carbonaceous powder, a phenol resin precondensate was added in an amount of 70 parts by weight to 100 parts by weight of the graphite powder, and a metal sheet having a thickness of 0.2 parts by weight was added.
A separator member having a length and width of 200 mm and a thickness of 1.5 mm was obtained under the same conditions as in Example 1 except that a nickel plate of mm was used.

【0024】比較例1 金属薄板を使用しない他は実施例1と同一の方法、すな
わち120メッシュ篩下(最大粒子径125μm )の黒
鉛粉末100重量部にフェノール樹脂初期縮合物を20
重量部の割合で加えて混練し、混練物を半硬化(一次硬
化)して板状に成形し、次いで180℃、250Kg/cm2
の条件で熱圧処理して縦横200mm、厚さ1.5mmの黒
鉛粉末が分散した硬化フェノール樹脂の板状成形体を作
製した。
COMPARATIVE EXAMPLE 1 The same method as in Example 1 was used except that the metal sheet was not used, that is, 100 parts by weight of graphite powder sieved with a 120-mesh sieve (maximum particle diameter 125 μm) was mixed with 20 parts of a phenol resin precondensate.
The mixture was kneaded in a ratio of parts by weight, and the kneaded material was semi-cured (primarily cured) to be formed into a plate shape, and then 180 ° C. and 250 kg / cm 2.
To obtain a plate-like molded product of a cured phenol resin in which graphite powder having a length and width of 200 mm and a thickness of 1.5 mm is dispersed.

【0025】比較例2 フェノール樹脂初期縮合物の配合割合を、黒鉛粉末10
0重量部に対し120重量部とした他は実施例1と同一
の方法によりセパレータ部材を作製した。
Comparative Example 2 The mixing ratio of the phenol resin precondensate was changed to graphite powder 10
A separator member was produced in the same manner as in Example 1 except that the amount was 120 parts by weight with respect to 0 parts by weight.

【0026】これらの各セパレータ部材の特性を下記の
方法により測定し、その結果を表1に示した。 固有抵抗(Ω・cm): JIS R7202「人造黒鉛電極の試
験方法」の電圧降下法による。 曲げ強度(Kg/cm2): JIS K7203「硬質プラスチック
の曲げ強度試験方法」による。 腐食電流(μA/cm2 ):温度80℃、濃度0.02%ベンゼ
ンスルホン酸水溶液中における0.8 V/RHE の定電位腐食
試験における 500分後の腐食電流を測定。 ガス透過率(cc/cm2・sec):窒素ガス 1Kg/cm2の圧力
(差圧)で、単位断面積当たり、単位時間当たりの通過
窒素ガス体積を測定。なお、ガス透過率はセパレータ部
材の両面に深さ 0.5mmの溝を切った試料について測定。
The characteristics of each of these separator members were measured by the following methods, and the results are shown in Table 1. Specific resistance (Ω · cm): According to the voltage drop method of JIS R7202 “Test method for artificial graphite electrode”. Bending strength (Kg / cm 2 ): According to JIS K7203 “Testing method for bending strength of hard plastic”. Corrosion current (μA / cm 2 ): Measured the corrosion current after 500 minutes in a constant potential corrosion test of 0.8 V / RHE in a 0.02% aqueous benzenesulfonic acid solution at a temperature of 80 ° C. Gas permeability (cc / cm 2 · sec): Measured the volume of nitrogen gas passing per unit cross-sectional area and per unit time at a pressure (differential pressure) of 1 kg / cm 2 of nitrogen gas. The gas permeability was measured for a sample in which a 0.5 mm deep groove was cut on both sides of the separator member.

【0027】[0027]

【表1】 [Table 1]

【0028】表1の結果から、実施例の部材は比較例の
部材に比べて固有抵抗、曲げ強度、腐食電流、ガス透過
率ともバランスよく備えていることが判る。また、比較
例1は金属薄板を使用していないために曲げ強度が低
く、ガス不透過性にも劣る結果となっている。比較例2
では金属薄板を用いているが熱硬化性樹脂の配合量が高
いために固有抵抗の増大が大きく、固体高分子型燃料電
池用のセパレータ部材として性能低下が認められる。
From the results shown in Table 1, it can be seen that the members of Examples have a better balance of specific resistance, bending strength, corrosion current and gas permeability than the members of Comparative Example. In Comparative Example 1, the bending strength was low and the gas impermeability was inferior because the thin metal plate was not used. Comparative Example 2
Although a thin metal plate is used, an increase in the specific resistance is large due to a high blending amount of the thermosetting resin, and performance degradation is recognized as a separator member for a polymer electrolyte fuel cell.

【0029】[0029]

【発明の効果】以上のとおり本発明の固体高分子型燃料
電池セパレータ部材によれば、金属薄板と、その表裏両
面に炭素質粉末が分散した熱硬化性樹脂の硬化樹脂成形
体が被着し、硬化樹脂成形体には燃料ガスまたは酸化剤
ガスを供給するガス流通溝が形成された構造からなるの
で、金属薄板による優れたガス不透過性と導電性、また
その表裏両面に被着した硬化樹脂成形体による優れた耐
蝕性及びガス不透過性の機能が付与され、更に強度特性
もバランスよく付与される。したがって、長期間に亘っ
て安定に発電を行うことが可能となる。また、本発明の
製造方法によれば、炭素質粉末と熱硬化性樹脂との混合
割合を特定した硬化樹脂成形体を被着することにより金
属薄板の両面に強固に被着し、本発明の優れた性能を有
する固体高分子型燃料電池セパレータ部材を製造するこ
とができる。
As described above, according to the polymer electrolyte fuel cell separator member of the present invention, a thin metal plate and a cured resin molded body of a thermosetting resin in which carbonaceous powder is dispersed are adhered to both front and back surfaces thereof. Since the cured resin molded body has a structure in which gas flow grooves for supplying fuel gas or oxidant gas are formed, excellent gas impermeability and electrical conductivity by a thin metal plate, and curing applied to both front and back surfaces Excellent corrosion resistance and gas impermeability are provided by the resin molded body, and strength characteristics are also provided in a well-balanced manner. Therefore, it is possible to stably generate power for a long period of time. Further, according to the production method of the present invention, by firmly adhering to both sides of a thin metal plate by applying a cured resin molded body having a specified mixing ratio of the carbonaceous powder and the thermosetting resin, A polymer electrolyte fuel cell separator member having excellent performance can be manufactured.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属薄板と、その表裏両面に炭素質粉末
が分散した熱硬化性樹脂の硬化樹脂成形体が被着し、該
硬化樹脂成形体には燃料ガスまたは酸化剤ガスを供給す
るガス流通溝が形成された構造からなることを特徴とす
る固体高分子型燃料電池セパレータ部材。
1. A thin metal plate and a cured resin molded body of a thermosetting resin in which carbonaceous powder is dispersed on both front and back surfaces thereof, and a gas for supplying a fuel gas or an oxidizing gas to the cured resin molded body. A polymer electrolyte fuel cell separator member having a structure in which a flow groove is formed.
【請求項2】 炭素質粉末100重量部に対し、熱硬化
性樹脂を10〜100重量部の割合で加えて均一に混練
し、硬化して得られた硬化樹脂成形体を金属薄板の表裏
両面に熱圧接合して被着し、被着された硬化樹脂成形体
に燃料ガスまたは酸化剤ガスを供給するガス流通溝を形
成することを特徴とする請求項1記載の固体高分子型燃
料電池セパレータ部材の製造方法。
2. A cured resin molded product obtained by adding 10 to 100 parts by weight of a thermosetting resin to 100 parts by weight of carbonaceous powder, uniformly kneading the mixture, and curing the same is coated on both sides of a thin metal plate. 2. A polymer electrolyte fuel cell according to claim 1, wherein said polymer resin fuel cell is adhered by heat and pressure, and a gas flow groove for supplying a fuel gas or an oxidizing gas is formed in the applied cured resin molded body. A method for manufacturing a separator member.
【請求項3】 炭素質粉末が最大粒子径125μm 以下
の黒鉛粉末である請求項2記載の固体高分子型燃料電池
セパレータ部材の製造方法。
3. The method for producing a polymer electrolyte fuel cell separator member according to claim 2, wherein the carbonaceous powder is graphite powder having a maximum particle diameter of 125 μm or less.
JP09571798A 1998-04-08 1998-04-08 Method for producing polymer electrolyte fuel cell separator member Expired - Fee Related JP4037955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09571798A JP4037955B2 (en) 1998-04-08 1998-04-08 Method for producing polymer electrolyte fuel cell separator member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09571798A JP4037955B2 (en) 1998-04-08 1998-04-08 Method for producing polymer electrolyte fuel cell separator member

Publications (2)

Publication Number Publication Date
JPH11297337A true JPH11297337A (en) 1999-10-29
JP4037955B2 JP4037955B2 (en) 2008-01-23

Family

ID=14145242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09571798A Expired - Fee Related JP4037955B2 (en) 1998-04-08 1998-04-08 Method for producing polymer electrolyte fuel cell separator member

Country Status (1)

Country Link
JP (1) JP4037955B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215902A (en) * 1999-01-27 2000-08-04 Toyota Motor Corp Gas separator for fuel cell, fuel cell and manufacture of gas separator for fuel cell
WO2001043217A1 (en) * 1999-12-06 2001-06-14 Hitachi Chemical Company, Ltd. Fuel cell, fuel cell separator, and method of manufacture thereof
JP2001325967A (en) * 2000-05-15 2001-11-22 Nisshinbo Ind Inc Manufacturing method of fuel cell separator, fuel cell separator and solid polymer fuel cell
JP2002015750A (en) * 2000-06-30 2002-01-18 Mitsubishi Plastics Ind Ltd Fuel cell separator
WO2002059995A1 (en) * 2001-01-26 2002-08-01 Helion Light bipolar plate for fuel cell and method for making same
US6939638B2 (en) 2000-07-06 2005-09-06 Nisshinbo Industries, Inc. Fuel cell separator, process for production thereof, and polymer electrolyte fuel cell
US7008274B2 (en) 2003-11-26 2006-03-07 Japan Aviation Electronics Industry, Limited Crimp contact which can easily be reduced in size
JP2007176070A (en) * 2005-12-28 2007-07-12 Hosokawa Funtai Gijutsu Kenkyusho:Kk Electroconductive composite membrane, manufacturing method of the same, and separator for fuel cell
US7422815B2 (en) 2000-04-19 2008-09-09 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, manufacturing method thereof and fuel cell
JP2008288220A (en) * 2001-11-20 2008-11-27 General Motors Corp <Gm> Low contact resistance pem fuel cell
KR100901362B1 (en) * 2007-08-01 2009-06-05 한국과학기술원 Bipolar plate for fuel cell and manufacturing method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215902A (en) * 1999-01-27 2000-08-04 Toyota Motor Corp Gas separator for fuel cell, fuel cell and manufacture of gas separator for fuel cell
US6794078B1 (en) * 1999-12-06 2004-09-21 Hitachi Chemical Company, Ltd. Fuel cell, fuel cell separator, and method of manufacture thereof
WO2001043217A1 (en) * 1999-12-06 2001-06-14 Hitachi Chemical Company, Ltd. Fuel cell, fuel cell separator, and method of manufacture thereof
US7422815B2 (en) 2000-04-19 2008-09-09 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, manufacturing method thereof and fuel cell
JP2001325967A (en) * 2000-05-15 2001-11-22 Nisshinbo Ind Inc Manufacturing method of fuel cell separator, fuel cell separator and solid polymer fuel cell
JP2002015750A (en) * 2000-06-30 2002-01-18 Mitsubishi Plastics Ind Ltd Fuel cell separator
US6939638B2 (en) 2000-07-06 2005-09-06 Nisshinbo Industries, Inc. Fuel cell separator, process for production thereof, and polymer electrolyte fuel cell
FR2820244A1 (en) * 2001-01-26 2002-08-02 Technicatome LIGHT BIPOLAR PLATE FOR FUEL CELL AND MANUFACTURING METHOD THEREOF
US7122273B2 (en) 2001-01-26 2006-10-17 Helion Light bipolar plate for fuel cell and method for making same
WO2002059995A1 (en) * 2001-01-26 2002-08-01 Helion Light bipolar plate for fuel cell and method for making same
JP2008288220A (en) * 2001-11-20 2008-11-27 General Motors Corp <Gm> Low contact resistance pem fuel cell
US7709116B2 (en) 2001-11-20 2010-05-04 Gm Global Technology Operations, Inc. Low contact resistance PEM fuel cell
US7008274B2 (en) 2003-11-26 2006-03-07 Japan Aviation Electronics Industry, Limited Crimp contact which can easily be reduced in size
JP2007176070A (en) * 2005-12-28 2007-07-12 Hosokawa Funtai Gijutsu Kenkyusho:Kk Electroconductive composite membrane, manufacturing method of the same, and separator for fuel cell
KR100901362B1 (en) * 2007-08-01 2009-06-05 한국과학기술원 Bipolar plate for fuel cell and manufacturing method thereof

Also Published As

Publication number Publication date
JP4037955B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
JP3534685B2 (en) Separators for polymer electrolyte fuel cells
CA2259748C (en) Separator for fuel cell and manufacturing method for the same
JP3383953B2 (en) Method for producing graphite member for polymer electrolyte fuel cell
JPH11297337A (en) Separator member for solid polymer type fuel cell, and manufacture thereof
JP3573444B2 (en) Carbonaceous separator member for polymer electrolyte fuel cell and method of manufacturing the same
JP3824795B2 (en) Method for producing separator member for polymer electrolyte fuel cell
JP3616255B2 (en) Separator member for polymer electrolyte fuel cell and method for producing the same
JPWO2003056648A1 (en) Fuel cell separator
JP2002008676A (en) Fuel cell separator and solid polymer type fuel cell
JP2015138696A (en) Titanium material for separator of solid polymer fuel cell
JP2004079196A (en) Fuel cell separator and solid polymer fuel cell
JP2001068128A (en) Separator for fuel cell and manufacture thereof
JP4508574B2 (en) Fuel cell separator and method for producing fuel cell separator
JP2002025572A (en) Separator having groove for solid high polymer molecule fuel cell
JP2001143719A (en) Separator in fuel cell and method of manufacturing the same
JP2001266912A (en) Separator for fuel cell and its manufacturing method
JP2002075394A (en) Separator member for fuel cell
JP2001216977A (en) Separator material for fuel cell
JP2002231261A (en) Separator for fuel cell and its manufacturing method
JPH01154467A (en) Liquid fuel cell
JP2004192981A (en) Separator for fuel cell, and manufacturing method of the same
JP4702118B2 (en) Manufacturing method of fuel cell separator
JP2001250566A (en) Separator for fuel cell and method of manufacturing the same
JP2008010431A (en) Polymer electrolyte fuel cell
JP2006179207A (en) Separator for fuel cell and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees