JPH11293425A - Non-oriented silicon steel sheet excellent in fatigue property - Google Patents

Non-oriented silicon steel sheet excellent in fatigue property

Info

Publication number
JPH11293425A
JPH11293425A JP11007210A JP721099A JPH11293425A JP H11293425 A JPH11293425 A JP H11293425A JP 11007210 A JP11007210 A JP 11007210A JP 721099 A JP721099 A JP 721099A JP H11293425 A JPH11293425 A JP H11293425A
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
fatigue
ppm
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11007210A
Other languages
Japanese (ja)
Inventor
Yoshihiko Oda
善彦 尾田
Nobuo Yamagami
伸夫 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP11007210A priority Critical patent/JPH11293425A/en
Publication of JPH11293425A publication Critical patent/JPH11293425A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep excellent low iron loss, high magnetic flux density and to improve fatigue property by including C, Si, Mn, P, N, Al and S in equal to or below a specific ratio and the balance substantially Fe. SOLUTION: A non-oriented silicon steel sheet containing by weight <=0.005% C, <=4.0% Si, 0.05-1.5% Mn, <=0.2% P, <=0.005% N, 0.1-1.0% Al and <=0.0009% S and the balance substantially Fe is provided. Excellent fatigue property is attained particularly by controlling S to <=0.009%. This is considered to be because MnS, which becomes the initiation site of the fatigue crack, is decreased when S is reduced. At least one of Sb and Sn is preferably incorporated by 0.001-0.05% in (Sb+Sn)/2 to attain more excellent low iron loss. And total content of Si and Al is preferably limited to <=3.5% to attain more excellent fatigue property.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【従来の技術】従来における一般の産業用モータにおい
ては、加減速の回数が少ないため、モータのコア材が疲
労破壊を起こすことは少なく、これまで、疲労特性に注
目した電磁鋼板の検討は、なされていなかった。
2. Description of the Related Art In conventional general industrial motors, the number of times of acceleration / deceleration is small, so that the core material of the motor rarely causes fatigue failure. Had not been done.

【0002】[0002]

【発明が解決しようとする課題】しかしながら、電気自
動車用モータのような、車の加減速にともないモータの
回転数が大きく変動するモータにおいては、コア材とし
て使用される電磁鋼板の疲労特性が優れていることが要
求されている。また、一方でモータ高効率化の観点から
低鉄損であることも求められている。このような特性
は、電気自動車用モータだけでなくインバータにより可
変速運転が行われる高効率エアコン用モータ等において
も要求されている。
However, in a motor such as an electric vehicle motor in which the number of revolutions of the motor greatly fluctuates as the vehicle accelerates or decelerates, the magnetic steel sheet used as the core material has excellent fatigue characteristics. Is required. On the other hand, low iron loss is also required from the viewpoint of increasing the efficiency of the motor. Such characteristics are required not only for motors for electric vehicles, but also for motors for high-efficiency air conditioners in which variable speed operation is performed by an inverter.

【0003】疲労特性を向上させるためには、結晶粒の
細粒化が有効であるが、細粒化は鉄損を増大させるため
電磁鋼板における疲労特性の改善手法としては望ましく
ない。このため、磁気特性を劣化させることなく疲労特
性を改善する手法が望まれている。
[0003] In order to improve the fatigue properties, it is effective to refine the crystal grains. However, the refinement of the crystal grains increases the iron loss, which is not desirable as a technique for improving the fatigue properties of the magnetic steel sheet. For this reason, a method for improving fatigue characteristics without deteriorating magnetic characteristics is desired.

【0004】本発明は、このような事情に鑑みてなされ
たもので、優れた磁気特性(低鉄損、高磁束密度)を保
ち、かつ疲労特性に優れた無方向性電磁鋼板を提供する
ことを課題とする。
The present invention has been made in view of such circumstances, and provides a non-oriented electrical steel sheet which has excellent magnetic properties (low iron loss, high magnetic flux density) and excellent fatigue properties. As an issue.

【0005】[0005]

【課題を解決するための手段】本発明の骨子は、鋼中の
S含有量を0.0009%以下とすることにより、磁気特性を
劣化させること無く、疲労特性を改善することにある。
The gist of the present invention is to improve the fatigue properties without deteriorating the magnetic properties by reducing the S content in the steel to 0.0009% or less.

【0006】すなわち、前記課題は、重量%で、C:0.
005%以下、Si:4.0%以下、Mn:0.05〜1.5%、P:0.2
%以下、N:0.005%以下(0を含む)、Al:0.1〜1.0
%、S:0.0009%以下(0を含む)を含有し、残部が実
質的にFeからなる疲労特性に優れた無方向性電磁鋼板
(請求項1)により解決される。
[0006] That is, the above-mentioned problem is expressed by:
005% or less, Si: 4.0% or less, Mn: 0.05 to 1.5%, P: 0.2
%, N: 0.005% or less (including 0), Al: 0.1 to 1.0
%, S: 0.0009% or less (including 0), and the balance is substantially solved by a non-oriented electrical steel sheet having excellent fatigue properties (claim 1).

【0007】ここに、「残部が実質的にFeからなる」と
は、本発明の作用効果を無くさない限り、不可避不純物
をはじめ、他の微量元素を含有するものが本発明の範囲
内に含まれることを意味する。なお、本明細書におい
て、鋼の成分を表わす%は、特に断らない限り重量%を
意味し、ppmも重量ppmを意味する。
[0007] Here, "the balance substantially consists of Fe" means that the substance containing other trace elements, including unavoidable impurities, is included in the scope of the present invention unless the effects of the present invention are lost. Means that In addition, in this specification,% which represents a component of steel means weight% unless otherwise specified, and ppm means weight ppm.

【0008】さらに、この無方向性電磁鋼板に、SbとSn
の少なくとも一方をSb+Sn/2で0.001〜0.05%含有させ
ることにより(請求項2)、より優れた磁気特性(低鉄
損)が得られる。
Further, Sb and Sn are added to the non-oriented electrical steel sheet.
By containing at least one of Sb + Sn / 2 at 0.001 to 0.05% (claim 2), more excellent magnetic properties (low iron loss) can be obtained.

【0009】さらに、これらの無方向性電磁鋼板におい
て、SiとAlの含有量の和を3.5%以下に制限することに
より、疲労特性がより優れたものが得られる。
Further, in these non-oriented electrical steel sheets, by limiting the sum of the contents of Si and Al to 3.5% or less, more excellent fatigue properties can be obtained.

【0010】(発明に至る経緯と、Sb、Sn含有量の限定
理由)本発明者らは、磁気特性を劣化させることなく疲
労特性の優れた無方向性電磁鋼板を得るために、鋭意検
討を行った。以下、本発明を実験結果に基づいて詳細に
説明する。
(Details leading to the invention and the reasons for limiting the contents of Sb and Sn) The present inventors have conducted intensive studies in order to obtain a non-oriented electrical steel sheet having excellent fatigue properties without deteriorating magnetic properties. went. Hereinafter, the present invention will be described in detail based on experimental results.

【0011】電磁鋼板の疲労特性を向上させるために
は、疲労亀裂のイニシエーションサイトとなる介在物、
析出物の総量を低減することが有効であると考えられ
る。そこで、まず、最初に析出物量低減の観点からS量
を低下させることについて検討した。
[0011] In order to improve the fatigue properties of the magnetic steel sheet, inclusions that serve as initiation sites for fatigue cracks,
It is considered effective to reduce the total amount of precipitates. Therefore, first, reduction of the amount of S was studied from the viewpoint of reducing the amount of precipitates.

【0012】はじめに、C:0.0020%、Si:2.86%、M
n:0.18%、P:0.01%、Al:0.30%、N:0.0015%と
し、S量をtr.〜20ppmの範囲で変化させた鋼を実験室に
て真空溶解し、熱延後、酸洗し、830℃×3hrの熱延板
焼鈍を行い、板厚0.35mmまで冷間圧延を行った。引き続
き10%H2-90%N2雰囲気にて2min間、仕上焼鈍を行っ
た。仕上焼鈍温度は材料の鉄損特性を同一とするため、
S量に応じて850〜1000℃の範囲で変化させた。このた
め、結晶粒径はS量によらず約120μmとなっている。
疲労試験は仕上焼鈍材より平行部の幅5mm、長さ150mm
のサンプルを切り出し、平行部を800番のエメリー紙で
研磨したのち、応力比0.1、周波数20Hzの部分片振り
(引張り-引張り)で行った。
First, C: 0.0020%, Si: 2.86%, M
n: 0.18%, P: 0.01%, Al: 0.30%, N: 0.0015%, steel with the S content changed in the range of tr. to 20 ppm was vacuum melted in a laboratory, hot rolled, and pickled. Then, hot-rolled sheet annealing at 830 ° C for 3 hours was performed, and cold rolling was performed to a sheet thickness of 0.35 mm. Subsequently, finish annealing was performed in a 10% H 2 -90% N 2 atmosphere for 2 minutes. The finish annealing temperature is to make the iron loss characteristics of the material the same,
The temperature was changed in the range of 850 to 1000 ° C. according to the amount of S. For this reason, the crystal grain size is about 120 μm regardless of the amount of S.
Fatigue test is 5mm wide and 150mm long in the parallel part from the finish annealed material
Was cut out, and the parallel part was polished with emery paper No. 800, and then subjected to partial pulsation (tensile-tensile) at a stress ratio of 0.1 and a frequency of 20 Hz.

【0013】図1に、このようにして得られたサンプル
のS量と疲労限の関係を示す(○印)。(グラフ上の○
印の点のS量は、左から、1、3、6、8、9、11、1
3、14ppmである。)ここで、疲労限は繰り返し数107回に
おいて破壊が生じない応力振幅とした。図1より、S量
が9ppm以下となった場合に疲労限が向上し、S量が9p
pmを超えると、疲労限が急激に低下することがわかる。
すなわち、S量が9ppmを境に、予期できなかった臨界
性が現れている。
FIG. 1 shows the relationship between the S content and the fatigue limit of the sample thus obtained (marked by ○). (○ on the graph
From the left, the S amount of the mark point is 1, 3, 6, 8, 9, 11, 1
3, 14 ppm. ) Here, the fatigue limit was stress amplitude fracture does not occur in repeated several 10 7 times. According to FIG. 1, when the S content is 9 ppm or less, the fatigue limit is improved, and the S content is 9 p.
It can be seen that the fatigue limit sharply decreases when it exceeds pm.
That is, unexpected criticality appears at the S content of 9 ppm.

【0014】この原因を調査するためSEMにて鋼板断
面の鋼中介在物、析出物の観察を行った。その結果、S
>9ppmの材料では粗大なMnSが多数認められた。これ
に対し、S≦10ppmの材料ではMnSはほとんど認められな
かった。このことから、S≦9ppm材で疲労特性が向上
した原因は、疲労亀裂のイニシエーションサイトとなる
MnSが減少したためと考えられる。以上のことより,本
発明においては、S量は9ppm以下に限定するが、でき
れば5ppm以下とすることが好ましい。
In order to investigate the cause, inclusions and precipitates in the steel in the cross section of the steel sheet were observed by SEM. As a result, S
Many coarse MnS were observed in the materials of> 9 ppm. In contrast, MnS was hardly recognized in the material of S ≦ 10 ppm. From this, the cause of the improvement in the fatigue properties with the S ≦ 9 ppm material is the initiation site of the fatigue crack.
It is considered that MnS decreased. From the above, in the present invention, the S content is limited to 9 ppm or less, but is preferably set to 5 ppm or less if possible.

【0015】次に極低S鋼の鉄損を低減させるためSbの
添加について検討した。ここでは、C:0.0017%、Si:
2.85%、Mn:0.17%、P:0.010%、Al:0.30%、S:
0.0004%、N:0.0017%としSb量をtr.〜600ppmの範囲
で変化させた鋼を実験室にて真空溶解し、熱延後、酸洗
し、830℃×3hrの熱延板焼鈍を行い、板厚0.35mmまで
冷間圧延を行った。引き続き10%H2-90%N2雰囲気に
て900℃×2min間の仕上焼鈍を行った。
Next, the addition of Sb was studied in order to reduce the iron loss of the extremely low S steel. Here, C: 0.0017%, Si:
2.85%, Mn: 0.17%, P: 0.010%, Al: 0.30%, S:
In a laboratory, steel with 0.0004%, N: 0.0017% and Sb content changed in the range of tr. To 600 ppm was vacuum-melted, hot-rolled, pickled, and annealed at 830 ° C for 3 hours. And cold-rolled to a thickness of 0.35 mm. Subsequently, finish annealing was performed at 900 ° C. for 2 minutes in a 10% H 2 -90% N 2 atmosphere.

【0016】図2にSb量と鉄損との関係を示す。グラフ
において、Sb無添加の場合の鉄損の値は2.35(W/kg)で
あり、○印で表される点のSb量は、左から、12、26、3
4、45、62、98、220、300、470、650ppmである。図2よ
り、Sb量が10ppm以上の領域で鉄損が低下していること
がわかる。このSb添加による鉄損低下の原因を調査する
ため、SEMによる鋼板断面の観察を行った。その結果
Sb free鋼では鋼板表層部が激しく窒化されているのに
対し、Sb添加鋼では窒化が軽微となっていた。
FIG. 2 shows the relationship between the amount of Sb and iron loss. In the graph, the value of iron loss in the case where Sb was not added was 2.35 (W / kg), and the Sb amount at the point indicated by a circle was 12, 26, 3 from the left.
4, 45, 62, 98, 220, 300, 470, and 650 ppm. FIG. 2 shows that iron loss is reduced in the region where the Sb content is 10 ppm or more. In order to investigate the cause of the iron loss reduction due to the addition of Sb, the cross section of the steel sheet was observed by SEM. as a result
In the case of Sb free steel, the surface layer of the steel sheet was severely nitrided, whereas in the case of Sb-added steel, nitriding was slight.

【0017】これは、Sbが表面偏析型の元素であること
から、焼鈍時に鋼板表面に偏析し、窒素原子の吸着を抑
制したためと考えられる。以上のことから図2に示す鉄
損低減はSbによる窒化抑制効果によるものと考えられ
る。
It is considered that this is because Sb is a surface segregation type element and segregates on the steel sheet surface during annealing to suppress the adsorption of nitrogen atoms. From the above, it is considered that the iron loss reduction shown in FIG. 2 is due to the nitridation suppression effect of Sb.

【0018】しかし、Sbをさらに添加し、Sb>50ppmと
なった場合には、鉄損は再び増大する。このSb>50ppm
の領域での鉄損増大原因を調査するため、光学顕微鏡に
よる組織観察を行った。その結果、表層細粒組織は認め
られなかったものの、平均結晶粒径が若干小さくなって
いた。この原因は明確ではないが、Sbが粒界に偏析しや
すい元素であるため、Sbの粒界ドラッグ効果により粒成
長性が低下したものと考えられる。但し、Sbを600ppmま
で添加してもSbフリー鋼と比べると鉄損は良好である。
However, when Sb is further added and Sb> 50 ppm, iron loss increases again. This Sb> 50ppm
In order to investigate the cause of the increase in iron loss in the region, the structure was observed with an optical microscope. As a result, although the surface layer fine grain structure was not recognized, the average crystal grain size was slightly smaller. Although the cause is not clear, it is considered that since Sb is an element that is easily segregated at the grain boundary, the grain growth property is reduced by the grain boundary drag effect of Sb. However, even when Sb is added up to 600 ppm, the iron loss is better than that of Sb-free steel.

【0019】以上のことより、Sbは10ppm以上含有させ
ることが好ましく、コストの問題から上限を500ppmとす
る。また鉄損の観点より、望ましくは10ppm以上、50ppm
以下とする。以上の鉄損低減効果はSbと同様な表面偏析
型元素であるSnを20ppm以上添加した場合にも認めら
れ、100ppm以上の添加で鉄損が若干増大した。このこと
よりSnは20ppm以上含有させることが好ましく、コスト
の問題から上限を1000ppmとする。また鉄損の観点よ
り、望ましくは20ppm以上、100ppm以下とする。
From the above, it is preferable that Sb be contained at 10 ppm or more, and the upper limit is set to 500 ppm from the viewpoint of cost. Also, from the viewpoint of iron loss, desirably 10 ppm or more, 50 ppm
The following is assumed. The iron loss reducing effect described above was also observed when Sn, which is a surface segregation type element similar to Sb, was added in an amount of 20 ppm or more, and the iron loss was slightly increased by the addition of 100 ppm or more. For this reason, it is preferable that Sn is contained at 20 ppm or more, and the upper limit is set to 1000 ppm from the viewpoint of cost. From the viewpoint of iron loss, the content is desirably 20 ppm or more and 100 ppm or less.

【0020】さらに、SbとSnを複合添加した場合にも、
Sb+Sn/2で10ppm以上添加した場合に鉄損が低下し、Sb
+Sn/2で50ppm以上添加した場合に若干の鉄損増大が認
められた。このことよりSbとSnを複合して含有させる場
合には、Sb+Sn/2で10ppm以上含有させることが好まし
く、コストの問題から上限を500ppmとする。また鉄損の
観点より、望ましくは10ppm以上、50ppm以下とする。
Further, when Sb and Sn are added in combination,
When Sb + Sn / 2 is added at 10 ppm or more, iron loss decreases, and Sb
When + 50% or more was added at + Sn / 2, a slight increase in iron loss was observed. For this reason, when Sb and Sn are combined and contained, it is preferable that Sb + Sn / 2 be contained at 10 ppm or more, and the upper limit is set to 500 ppm from the viewpoint of cost. From the viewpoint of iron loss, the content is desirably 10 ppm or more and 50 ppm or less.

【0021】(その他の成分の限定理由)次に、その他
の成分の限定理由について説明する。 C: Cは含有量が多い場合には炭化物を形成し、磁気
特性を劣化させるだけでなく疲労特性も劣化させるため
0.005%以下とする。 Si: Siは鋼板の固有抵抗を上げるために有効な元素で
あるが、4.0%を超えると飽和磁束密度の低下に伴い磁
束密度が低下するため上限を4.0%とする。 Mn: Mnは熱間圧延時の赤熱脆性を防止するために、0.
05%以上必要であるが、1.5%以上になると磁束密度を
低下させるので0.05〜1.5%とする。 P:Pは鋼板の打ち抜き性を改善するために必要な元素
であるが、0.2%を超えて添加すると鋼板が脆化するた
め0.2%以下とする。
(Reasons for Limiting Other Components) Next, reasons for limiting other components will be described. C: When C is contained in a large amount, it forms carbides, which not only deteriorates magnetic properties but also fatigue properties.
0.005% or less. Si: Si is an effective element for increasing the specific resistance of the steel sheet. However, if it exceeds 4.0%, the magnetic flux density decreases with a decrease in the saturation magnetic flux density, so the upper limit is set to 4.0%. Mn: Mn is 0.1% to prevent red hot brittleness during hot rolling.
It is required to be at least 05%, but if it is at least 1.5%, the magnetic flux density will be reduced. P: P is an element necessary for improving the punching property of the steel sheet, but if added in excess of 0.2%, the steel sheet will be embrittled, so P is set to 0.2% or less.

【0022】N: Nは含有量が多い場合にはAlNの析
出量が多くなり、鉄損を増大させるだけでなく疲労特性
も劣化させるため0.005%以下とする。 Al: AlはSiと同様、固有抵抗を上げるために有効な元
素であるが、1.0%を超えると飽和磁束密度の低下に伴
い磁束密度が低下するため上限を1.0%とする。また、
0.1%未満の場合にはAlNが微細化し粒成長性が低下す
るため、下限を0.1%とする。 Si+Al: SiとAlの含有量の和が、3.5%を超えた場合
には、図3に示すように疲労特性が低下するので、好ま
しい範囲としての上限を3.5%とする。(なお、図3に
おいて、○印で示される実測点のSi+Al量は、左から、
2.7、2.93、3.12、3.3、3.68、3.85、3.90%である。)
N: When the content of N is large, the precipitation amount of AlN increases, which not only increases iron loss but also deteriorates fatigue characteristics, so that the content of N is set to 0.005% or less. Al: Al is an element effective for increasing the specific resistance, like Si, but if it exceeds 1.0%, the magnetic flux density decreases with a decrease in the saturation magnetic flux density, so the upper limit is set to 1.0%. Also,
If it is less than 0.1%, the lower limit is set to 0.1% because AlN becomes finer and the grain growth is reduced. Si + Al: If the sum of the contents of Si and Al exceeds 3.5%, the fatigue characteristics are reduced as shown in FIG. 3, so the upper limit as a preferred range is set to 3.5%. (In FIG. 3, the Si + Al amount at the actual measurement point indicated by a circle is
2.7, 2.93, 3.12, 3.3, 3.68, 3.85, and 3.90%. )

【0023】(製造方法)本発明においては、Sをはじ
めとする所定の成分が所定の範囲内であれば、製造方法
は通常の無方向性電磁鋼板を製造する方法でかまわな
い。すなわち、転炉で吹練した溶鋼を脱ガス処理し所定
の成分に調整し、引き続き鋳造、熱間圧延を行う。熱間
圧延時の仕上温度、巻取り温度は特に規定する必要はな
く、通常の無方向性電磁鋼板を製造する温度でかまわな
い。また、熱延後の熱延板焼鈍は行っても良いが必須で
はない。次いで、一回の冷間圧延、もしくは中間焼鈍を
はさんだ2回以上の冷間圧延により所定の板厚とした後
に、仕上焼鈍を行う。
(Manufacturing method) In the present invention, as long as the predetermined components including S are within a predetermined range, the manufacturing method may be a method of manufacturing a normal non-oriented electrical steel sheet. That is, the molten steel blown in the converter is degassed and adjusted to a predetermined component, and subsequently casting and hot rolling are performed. The finishing temperature and the winding temperature during hot rolling do not need to be particularly specified, and may be the temperature at which a normal non-oriented electrical steel sheet is manufactured. In addition, hot-rolled sheet annealing after hot-rolling may be performed, but is not essential. Next, finish annealing is performed after a predetermined thickness is obtained by one cold rolling or two or more cold rollings sandwiching intermediate annealing.

【0024】[0024]

【実施例】表1に示す鋼を用い、転炉で吹練した後に脱
ガス処理を行うことにより所定の成分(表1の成分値は
重量%)に調整後鋳造し、スラブを1140℃で1hr加熱し
た後、板厚2.0mmまで熱間圧延を行った。熱延仕上げ温
度は800℃とした。巻取り温度は610℃とし、巻取り後、
830℃×3hrの熱延板焼鈍を施した。その後、酸洗を行
い、板厚0.35mmまで冷間圧延を行い、表1に示す仕上焼
鈍条件で焼鈍を行った。
EXAMPLES The steel shown in Table 1 was used, and after degassing by blowing in a converter, the steel was adjusted to a predetermined component (the component value in Table 1 is% by weight) and cast, and the slab was heated at 1140 ° C. After heating for 1 hour, hot rolling was performed to a thickness of 2.0 mm. The hot rolling finishing temperature was 800 ° C. The winding temperature is 610 ℃, and after winding,
Hot rolled sheet annealing at 830 ° C for 3 hours was performed. Thereafter, pickling was performed, cold rolling was performed to a sheet thickness of 0.35 mm, and annealing was performed under finish annealing conditions shown in Table 1.

【0025】磁気測定は25cmエプスタイン試験片を用い
て行った。疲労試験は平行部の幅5mm、長さ150mmのサ
ンプルを切り出し、平行部を800番のエメリー紙で研磨
したのち、応力比0.1、周波数20Hzの部分片振り(引張
り-引張り)で行った。各鋼板の磁気特性および疲労特
性を表1に併せて示す。
The magnetic measurement was performed using a 25 cm Epstein test piece. The fatigue test was performed by cutting out a sample having a parallel portion having a width of 5 mm and a length of 150 mm, polishing the parallel portion with No. 800 emery paper, and performing partial pulsation (tensile-tensile) at a stress ratio of 0.1 and a frequency of 20 Hz. Table 1 also shows the magnetic properties and fatigue properties of each steel sheet.

【0026】これより、鋼板成分を本発明のS含有量を
はじめとして請求項1に規定の成分を規定値以内とした
鋼板である本発明鋼(No.1〜No.15)においては、疲労
特性に優れかつ鉄損W15/50が低く、磁束密度B50の高
い鋼板が得られることがわかる。そして、特に、SbとSn
を請求項2に規定する範囲とした場合に、特に鉄損W
15/50が低い鋼板が得られることがわかる。また、No.14
とNo.15の鋼板は、Si+Al量が3.5%を超えているの
で、本発明鋼中の他の鋼板に対して疲労限が低くなって
いる。
From the above, the steel content was adjusted to the S content of the present invention.
First, the components specified in Claim 1 were set within the specified values.
In the steel sheet of the present invention (No. 1 to No. 15),
Excellent characteristics and iron loss W15/50Is low and the magnetic flux density B50High
It can be seen that a good steel plate can be obtained. And especially, Sb and Sn
Is within the range defined in claim 2, especially when the iron loss W
15/50It can be seen that a steel sheet having a low value is obtained. No.14
And No.15 steel sheet has more than 3.5% of Si + Al
Therefore, the fatigue limit is lower with respect to other steel sheets in the steel of the present invention.
I have.

【0027】これに対し、No.16の鋼板は、S含有量が
本発明の範囲を超えているので、疲労限が低いと同時に
鉄損W15/50が高い。No.17の鋼板は、C含有量が本発明
の範囲を超えているので、やはり、疲労限が低いと同時
に鉄損W15/50が高い。No.18の鋼板は、Si含有量が本発
明の範囲を超えているので、疲労限は低くならないもの
の、磁束密度B50が低くなっている。No.19の鋼板は、M
n含有量が本発明の範囲を超えているので、疲労限は低
くならないものの、やはり、磁束密度B50が低くなって
いる。
On the other hand, since the S content exceeds the range of the present invention, the steel sheet No. 16 has a low fatigue limit and a high iron loss W 15/50 . Since the C content exceeds the range of the present invention, the steel sheet of No. 17 also has a low fatigue limit and a high iron loss W 15/50 . Steel No.18, because the Si content exceeds the range of the present invention, although the fatigue limit is not lowered, the magnetic flux density B 50 is low. No.19 steel plate is M
Since n content is beyond the scope of the present invention, although the fatigue limit is not lowered, again, the magnetic flux density B 50 is low.

【0028】No.20の鋼板は、Al含有量が本発明の範囲
を下回っているので、疲労限は低くならないものの、鉄
損W15/50が高く、磁束密度B50が低くなっている。No.
21の鋼板は、逆にAl含有量が本発明の範囲を超えている
ので、疲労限は低くならないものの、磁束密度B50が低
くなっている。No.22の鋼板は、N含有量が本発明の範
囲を超えているので、疲労限は低くならないものの、磁
束密度B50が低くなっている。
Since the steel content of No. 20 has an Al content below the range of the present invention, the fatigue limit is not reduced, but the iron loss W 15/50 is high and the magnetic flux density B 50 is low. No.
Steel sheet 21, since the Al content conversely exceeds the scope of the present invention, although the fatigue limit is not lowered, the magnetic flux density B 50 is low. Steel No.22, because the N content exceeds the range of the present invention, although the fatigue limit is not lowered, the magnetic flux density B 50 is low.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】以上説明したように、本発明のうち請求
項1にかかる無方向性電磁鋼板は、重量%で、C:0.00
5%以下、Si:4.0%以下、Mn:0.05〜1.5%、P:0.2%
以下、N:0.005%以下(0を含む)、Al:0.1〜1.0%、
S:0.0009%以下(0を含む)を含有し、残部が実質的
にFeからなるものであるので、優れた磁気特性(低鉄
損、高磁束密度)を保ち、かつ疲労特性に優れている。
As described above, the non-oriented electrical steel sheet according to claim 1 of the present invention has a C content of 0.00% by weight.
5% or less, Si: 4.0% or less, Mn: 0.05 to 1.5%, P: 0.2%
Hereinafter, N: 0.005% or less (including 0), Al: 0.1 to 1.0%,
S: 0.0009% or less (including 0) is contained, and the balance is substantially composed of Fe, so that excellent magnetic properties (low iron loss, high magnetic flux density) are maintained and fatigue properties are excellent. .

【0031】また、請求項2に係る無方向性電磁鋼板
は、これに加え、SbとSnの少なくとも一方をSb+Sn/2で
0.001〜0.05%含有しているので、より優れた磁気特性
(低鉄損)を有する。さらに、請求項3に係る無方向性
電磁鋼板は、SiとAlの含有量の和が3.5%以下であるの
で、疲労特性に特に優れている。
In addition, in the non-oriented electrical steel sheet according to claim 2, at least one of Sb and Sn is represented by Sb + Sn / 2.
Since it contains 0.001 to 0.05%, it has more excellent magnetic properties (low iron loss). Furthermore, the non-oriented electrical steel sheet according to claim 3 is particularly excellent in fatigue properties because the sum of the contents of Si and Al is 3.5% or less.

【0032】これら、本発明の無方向性電磁鋼板は、電
気自動車用モータのコア材等、優れた疲労特性を必要と
する電気材料に広く使用するのに好適である。
The non-oriented electrical steel sheet of the present invention is suitable for being widely used for electric materials requiring excellent fatigue characteristics, such as a core material for an electric vehicle motor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 S量と疲労限との関係を示す図である。FIG. 1 is a diagram showing the relationship between the S content and the fatigue limit.

【図2】 Sb量と仕上焼鈍後の鉄損の関係を示す図であ
る。
FIG. 2 is a graph showing the relationship between the amount of Sb and iron loss after finish annealing.

【図3】(Si+Al)量と疲労限との関係を示す図である。FIG. 3 is a diagram showing the relationship between the amount of (Si + Al) and the fatigue limit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.005%以下、Si:4.0%
以下、Mn:0.05〜1.5%、P:0.2%以下、N:0.005%
以下(0を含む)、Al:0.1〜1.0%、S:0.0009%以下
(0を含む)を含有し、残部が実質的にFeからなる疲労
特性に優れた無方向性電磁鋼板。
1. C: 0.005% or less, Si: 4.0% by weight%
Mn: 0.05 to 1.5%, P: 0.2% or less, N: 0.005%
A non-oriented electrical steel sheet containing the following (including 0), Al: 0.1 to 1.0%, and S: 0.0009% or less (including 0), with the balance being substantially Fe and excellent in fatigue properties.
【請求項2】 重量%で、C:0.005%以下、Si:4.0%
以下、Mn:0.05〜1.5%、P:0.2%以下、N:0.005%
以下(0を含む)、Al:0.1〜1.0%、S:0.0009%以下
(0を含む)、SbとSnの少なくとも一方をSb+Sn/2で0.
001〜0.05%含有し、残部が実質的にFeからなる疲労特
性に優れた無方向性電磁鋼板。
2. In% by weight, C: 0.005% or less, Si: 4.0%
Mn: 0.05 to 1.5%, P: 0.2% or less, N: 0.005%
Or less (including 0), Al: 0.1 to 1.0%, S: 0.0009% or less (including 0), and at least one of Sb and Sn is defined as Sb + Sn / 2.
A non-oriented electrical steel sheet containing 001 to 0.05%, with the balance being substantially Fe and excellent in fatigue properties.
【請求項3】 SiとAlの含有量の和が3.5%以下である
請求項1又は請求項2に記載の疲労特性に優れた無方向
性電磁鋼板。
3. The non-oriented electrical steel sheet according to claim 1, wherein the sum of the contents of Si and Al is 3.5% or less.
JP11007210A 1998-02-13 1999-01-14 Non-oriented silicon steel sheet excellent in fatigue property Pending JPH11293425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11007210A JPH11293425A (en) 1998-02-13 1999-01-14 Non-oriented silicon steel sheet excellent in fatigue property

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4630698 1998-02-13
JP10-46306 1998-02-13
JP11007210A JPH11293425A (en) 1998-02-13 1999-01-14 Non-oriented silicon steel sheet excellent in fatigue property

Publications (1)

Publication Number Publication Date
JPH11293425A true JPH11293425A (en) 1999-10-26

Family

ID=26341477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11007210A Pending JPH11293425A (en) 1998-02-13 1999-01-14 Non-oriented silicon steel sheet excellent in fatigue property

Country Status (1)

Country Link
JP (1) JPH11293425A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1966403A1 (en) * 2005-12-27 2008-09-10 Posco Co., Ltd. Non-oriented electrical steel sheets with improved magnetic property and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1966403A1 (en) * 2005-12-27 2008-09-10 Posco Co., Ltd. Non-oriented electrical steel sheets with improved magnetic property and method for manufacturing the same
EP1966403A4 (en) * 2005-12-27 2010-07-14 Posco Co Ltd Non-oriented electrical steel sheets with improved magnetic property and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5884153B2 (en) High strength electrical steel sheet and manufacturing method thereof
KR102315078B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
JPWO2020136993A1 (en) Non-oriented electrical steel sheet and its manufacturing method
WO2014024222A1 (en) High-strength electromagnetic steel sheet and method for producing same
JP7056745B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP3915308B2 (en) Steel sheet for laminated core
JP2008202070A (en) Non-oriented electrical steel sheet and its manufacturing method
JP3486230B2 (en) Manufacturing method of non-oriented electrical steel sheet for electric vehicles
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JPH1192891A (en) Silicon steel sheet for electric automobile motor
JP4613436B2 (en) Non-oriented electrical steel sheet
JP2004339537A (en) High magnetic flux density nonoriented silicon steel sheet having high strength and excellent workability and recycling property, and production method therefor
JPH11293426A (en) Non-oriented silicon steel sheet excellent in fatigue property
JPH11293425A (en) Non-oriented silicon steel sheet excellent in fatigue property
JP2888229B2 (en) Non-oriented electrical steel sheet for high frequency
JP2888227B2 (en) Magnetic steel sheet for high frequency motor
JP7222444B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH11233328A (en) Non-oriented magnetic steel sheet having superior fatigue characteristic
KR100398389B1 (en) A method of manufacturing non-oriented electrical steel sheet having superior magnetic properties
JPH0686647B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JP2002212689A (en) Silicon steel sheet
JP2000282190A (en) Steel sheet for alternator core excellent in magnetic property
JP4244393B2 (en) Method for producing non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics, and non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics
JPH1112701A (en) Nonoriented silicon steel sheet with low iron loss
JP4019559B2 (en) Electric power steering motor core

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050617