JP2008202070A - Non-oriented electrical steel sheet and its manufacturing method - Google Patents

Non-oriented electrical steel sheet and its manufacturing method Download PDF

Info

Publication number
JP2008202070A
JP2008202070A JP2007036851A JP2007036851A JP2008202070A JP 2008202070 A JP2008202070 A JP 2008202070A JP 2007036851 A JP2007036851 A JP 2007036851A JP 2007036851 A JP2007036851 A JP 2007036851A JP 2008202070 A JP2008202070 A JP 2008202070A
Authority
JP
Japan
Prior art keywords
less
steel sheet
oriented electrical
annealing
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007036851A
Other languages
Japanese (ja)
Other versions
JP4946492B2 (en
Inventor
Yoshihiko Oda
善彦 尾田
Masaaki Kono
雅昭 河野
Tomoyuki Okubo
智幸 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007036851A priority Critical patent/JP4946492B2/en
Publication of JP2008202070A publication Critical patent/JP2008202070A/en
Application granted granted Critical
Publication of JP4946492B2 publication Critical patent/JP4946492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-oriented electrical steel sheet having high rigidity and excellent magnetic properties. <P>SOLUTION: The steel sheet comprises ≤0.05% C, ≤0.2% P, ≤5% Si, ≤5% Mn, ≤3% Al, ≤0.02% S, ≤0.01% N and the balance Fe with inevitable impurities. Moreover, when P(hkl) represents a ratio of X-ray integrated reflection intensity with respect to the (222) and (200) planes within a sheet surface to theoretical intensity, a value of TP represented by equation TP=P(222)/P(200) is ≥1.3. Further, recrystallization ratio is ≤20%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、無方向性電磁鋼板、特に電気自動車およびハイブリッド自動車の駆動モータ、或いは電動エアコン用モータなど、高周波域で駆動されるモータのコア材を典型例とする、打ち抜き加工を経て供される無方向性電磁鋼板およびその製造方法に関するものである。   INDUSTRIAL APPLICABILITY The present invention is provided through a punching process using a core material of a motor driven in a high frequency range, such as a non-oriented electrical steel sheet, in particular, a drive motor of an electric vehicle and a hybrid vehicle, or a motor for an electric air conditioner. The present invention relates to a non-oriented electrical steel sheet and a manufacturing method thereof.

電気自動車用駆動モータや電動エアコン用モータは、小型化および高効率化の観点より、数百〜数kHzといった高周波域で駆動されている。このようなモータのコア材として使用される無方向性電磁鋼板には、高周波鉄損の低い特性が要望されている。   Drive motors for electric vehicles and motors for electric air conditioners are driven in a high frequency range of several hundreds to several kHz from the viewpoint of miniaturization and high efficiency. The non-oriented electrical steel sheet used as the core material of such a motor is required to have a low frequency iron loss characteristic.

ここで、無方向性電磁鋼板の高周波鉄損を低減するためには、板厚の低減が効果的である。しかし、板厚を0.1〜0.25mm程度に低減した場合には、コアの形状に打ち抜き加工した際に、剛性低下に起因して、板が撓んだり、腰折れが発生する結果、かような材料を打ち抜き後、積層するための搬送が難しくなるところに問題を残していた。   Here, in order to reduce the high-frequency iron loss of the non-oriented electrical steel sheet, it is effective to reduce the plate thickness. However, when the plate thickness is reduced to about 0.1 to 0.25 mm, when punching into the shape of the core, due to the decrease in rigidity, the plate may be bent or waist folded, resulting in such materials After punching out, there was a problem in that it was difficult to transport for lamination.

このような電磁鋼板の剛性低下を改善する技術として、例えば特許文献1には、Si含有量を1.6〜2.8%とすることにより、剛性を向上する技術が開示されている。しかし、Siは鋼板の強度上昇に有効であるものの、ヤング率を低下させる元素であるため、むしろSi添加により剛性は低下するのが一般的である。   As a technique for improving such a decrease in rigidity of the electromagnetic steel sheet, for example, Patent Document 1 discloses a technique for improving rigidity by setting the Si content to 1.6 to 2.8%. However, although Si is effective in increasing the strength of the steel sheet, it is an element that decreases the Young's modulus. Therefore, the rigidity is generally decreased by adding Si.

また、特許文献2には、板厚の比較的薄い鋼板の結晶粒径や絶縁被膜塗布量等を制御することにより、高周波鉄損を低くすることが開示されているが、剛性の観点からは板厚を0.25mm以上とせざるを得ない旨が明記されており、板厚0.25mm以下の材料の剛性を向上する手法に関しては何ら開示されていない。
特開2001−172752号公報 特開2000−96195号公報
Patent Document 2 discloses that the high-frequency iron loss is reduced by controlling the crystal grain size, the coating amount of the insulating coating, and the like of the steel sheet having a relatively small thickness, but from the viewpoint of rigidity. It is specified that the plate thickness must be 0.25 mm or more, and nothing is disclosed about a technique for improving the rigidity of a material having a plate thickness of 0.25 mm or less.
Japanese Patent Laid-Open No. 2001-177272 JP 2000-96195 A

上記したように、無方向性電磁鋼板に剛性を付与する方策がいくつか提案されているものの、必要な剛性と良好な磁気特性を確保するまでには到っていないのが現状である。   As described above, although several measures for imparting rigidity to the non-oriented electrical steel sheet have been proposed, the present situation is that the required rigidity and good magnetic properties have not been ensured.

そこで、本発明の目的は、高剛性でかつ磁気特性にも優れる無方向性電磁鋼板およびその製造方法を提供しようとするものである。   Accordingly, an object of the present invention is to provide a non-oriented electrical steel sheet having high rigidity and excellent magnetic properties and a method for producing the same.

発明者らが上記課題の解決に開し鋭意検討したところ、電磁鋼板を冷延まま、もしくは低温で仕上焼鈍を行った状態にて、打ち抜き加工に供することにより、剛性の低下を低減できることを知見した。
本発明はかかる知見に基づきなされたものであって、その要旨は以下のとおりである。
The inventors have opened up to solve the above-mentioned problems and intensively studied, and found that the decrease in rigidity can be reduced by subjecting the electromagnetic steel sheet to punching in the cold-rolled state or in the state of finish annealing at low temperature did.
The present invention has been made based on such findings, and the gist thereof is as follows.

(1)質量%で、
C:0.05%以下、
P:0.2%以下、
Si:5%以下、
Mn:5%以下、
Al:3%以下、
S:0.02%以下および
N:0.01%以下
を含み、残部Feおよび不可避不純物の成分組成を有し、板面内での(222)および(200)の各面についてのX線積分反射強度の理論強度に対する比をP(hkl)とした場合に、下記式で表されるTP値が1.3以上であり、かつ再結晶率が20%以下であることを特徴とする無方向性電磁鋼板。

TP=P(222)/P(200)
(1) In mass%,
C: 0.05% or less,
P: 0.2% or less,
Si: 5% or less,
Mn: 5% or less,
Al: 3% or less,
Theory of X-ray integrated reflection intensity for each of the (222) and (200) planes in the plate surface, including S: 0.02% or less and N: 0.01% or less, with the remaining Fe and inevitable impurity composition A non-oriented electrical steel sheet, characterized in that when the ratio to strength is P (hkl), the TP value represented by the following formula is 1.3 or more and the recrystallization rate is 20% or less.
Record
TP = P (222) / P (200)

(2)前記鋼板の厚みが0.05〜0.30mmである前記(1)に記載の無方向性電磁鋼板。 (2) The non-oriented electrical steel sheet according to (1), wherein the steel sheet has a thickness of 0.05 to 0.30 mm.

(3)質量%で、
C:0.05%以下、
P:0.2%以下、
Si:5%以下、
Mn:5%以下、
Al:3%以下、
S:0.02%以下および
N:0.01%以下
を含み、残部Feおよび不可避不純物になる鋼素材に、熱間圧延を施し、熱延板焼鈍を施さないか、もしくは950℃以下で熱延板焼鈍を施したのち、冷間圧延を行い、次いで仕上焼鈍、そして磁性焼鈍を施す、一連の工程に従って無方向性電磁鋼板を製造するに当り、前記冷間圧延での圧下率を86%以上とし、冷間圧延まま、もしくは680℃以下で仕上焼鈍を施し、打ち抜き加工後に磁性焼鈍を施すことを特徴とする無方向性電磁鋼板の製造方法。
(3) In mass%,
C: 0.05% or less,
P: 0.2% or less,
Si: 5% or less,
Mn: 5% or less,
Al: 3% or less,
S: 0.02% or less and
N: Steel material containing 0.01% or less, remaining Fe and inevitable impurities, hot-rolled and not subjected to hot-rolled sheet annealing or hot-rolled sheet annealing at 950 ° C or lower and cold In producing a non-oriented electrical steel sheet according to a series of steps, performing rolling, then finish annealing, and magnetic annealing, the reduction ratio in the cold rolling is set to 86% or more, and cold rolling or 680 A method for producing a non-oriented electrical steel sheet, characterized in that finish annealing is performed at a temperature of ℃ or less and magnetic annealing is performed after punching.

(4)前記冷間圧延後の板厚を0.05〜0.30mmとすることを特徴とする前記(3)に記載の無方向性電磁鋼板の製造方法。 (4) The method for producing a non-oriented electrical steel sheet according to (3), wherein a thickness after the cold rolling is 0.05 to 0.30 mm.

本発明によれば、剛性が高く垂れ量の小さい無方向性電磁鋼板を提供することができる。   According to the present invention, it is possible to provide a non-oriented electrical steel sheet having high rigidity and a small amount of sagging.

以下、本発明の詳細を、その限定理由とともに説明する。なお、成分組成に関する「%」表示は特に断らない限り「質量%」を示すこととする。
まず、本発明を導くに到った実験結果から、順に説明する。
最初に、剛性に及ぼす素材処理条件の影響について調査するため、C:0.0018%、Si:2.8%、Al:1.0%、Mn:0.5%、P:0.01%、S:0.002%およびN:0.0013%を含み、残部Feおよび不可避不純物の組成になる鋼を溶製し、スラブとしたのち板厚2mmまで熱間圧延を行った。引き続き、この熱間圧延板に100%N雰囲気で850℃×30sの熱延板焼鈍を施し、さらに、板厚0.15mmまで冷間圧延し、冷間圧延ままおよび20%H−80%N雰囲気にて500〜800℃間で10s保持する仕上焼鈍を行い、その後、材料の剛性を調査した。剛性評価の方法は、以下の通りである。
Hereinafter, the details of the present invention will be described together with the reasons for limitation. In addition, unless otherwise indicated, the "%" display regarding a component composition shall show "mass%".
First, the experimental results leading to the present invention will be described in order.
First, C: 0.0018%, Si: 2.8%, Al: 1.0%, Mn: 0.5%, P: 0.01%, S: 0.002% and N: 0.0013% to investigate the effect of material processing conditions on rigidity A steel having a composition of the remaining Fe and inevitable impurities was melted to form a slab, and then hot rolled to a plate thickness of 2 mm. Subsequently, the hot-rolled sheet was subjected to hot-rolled sheet annealing at 850 ° C. × 30 s in a 100% N 2 atmosphere, further cold-rolled to a sheet thickness of 0.15 mm, cold-rolled and 20% H 2 -80% Finish annealing was performed for 10 s between 500 and 800 ° C. in an N 2 atmosphere, and then the rigidity of the material was investigated. The method for evaluating rigidity is as follows.

すなわち、圧延方向に幅30mmおよび長さ260mmの試験片を切り出し、試験片の一端より長さ方向に30mmの部分までを固定することにより、板厚方向に重力が加わる状態で試験片を水平に保持した。この片持ち梁の状態にて、自由端の垂れを測定した。ここで、組織観察は光学顕微鏡にて行い、歪みのない結晶の割合より再結晶率を求めた。鋼板板面の集合組織は、鋼板板厚の1/4まで減厚した後、X線回折装置を用いて反射法に基づいてX線回折パターンを測定し、(211)、(222)、(321)、(332)、(200)、(110)及び(310)各面のX線積分反射強度Iから、下記の(1)式で定義されるP値を求め、さらに、このP値から下記の(2)式で示すTP値を求め、このTP値の大小にて評価した。

P(hkl)=7×[I/I(hkl)]/[ΣI/I(hkl)] …(l)
ただし、I(hkl):(hkl)面におけるX線積分強度
(hkl):(hkl)面における理論強度
TP=P(222)/P(200) …(2)
That is, a test piece having a width of 30 mm and a length of 260 mm is cut out in the rolling direction, and the test piece is horizontally placed in a state where gravity is applied in the thickness direction by fixing from one end of the test piece to a portion having a length of 30 mm. Retained. In this cantilever state, the free end sag was measured. Here, the structure was observed with an optical microscope, and the recrystallization rate was determined from the proportion of crystals without distortion. The texture of the steel plate surface was reduced to 1/4 of the steel plate thickness, and then the X-ray diffraction pattern was measured based on the reflection method using an X-ray diffractometer, and (211), (222), ( 321), (332), (200), (110) and (310) From the X-ray integral reflection intensity I of each surface, a P value defined by the following equation (1) is obtained, and further, from this P value The TP value shown by the following formula (2) was obtained and evaluated based on the magnitude of this TP value.
Record
P (hkl) = 7 × [I / I 0 (hkl)] / [ΣI / I 0 (hkl)] (l)
However, I (hkl): X-ray integral intensity in (hkl) plane
I 0 (hkl): Theoretical strength in the (hkl) plane
TP = P (222) / P (200) (2)

ここで(222)面と(200)面との比を用いたのは、(222)面は鉄原子の密度が高い面であることから、当該面は剛性を高めることに寄与し、一方(200)面は鉄原子が粗であることから、剛性が低くなることに寄与するとの推察に基づいている。   Here, the ratio of the (222) plane to the (200) plane was used because the (222) plane is a plane with a high density of iron atoms, which contributes to increasing the rigidity, The 200) plane is based on the assumption that the iron atoms are rough, contributing to lower rigidity.

このようにして得られた試験片の垂れ量と仕上焼鈍温度および集合組織との関係を、表1に示す。同表の結果から、仕上焼鈍温度が680℃を超えると、垂れ量が大きくなり、P(222)/P(200)の比率も低下してくることがわかる。さらに、焼鈍温度の上昇に伴い、圧延方向に伸びた繊維状の組織が再結晶により破壊されることから、焼鈍温度の上昇による垂れ量の増大は、集合組織変化と再結晶率の増大の両者に起因したものと考えられる。   Table 1 shows the relationship between the sagging amount of the test piece thus obtained, the finish annealing temperature, and the texture. From the results in the table, it is understood that when the finish annealing temperature exceeds 680 ° C., the amount of sagging increases and the ratio of P (222) / P (200) also decreases. Furthermore, as the annealing temperature rises, the fibrous structure stretched in the rolling direction is destroyed by recrystallization. It is thought to be caused by

以上のことから、仕上焼鈍温度は680℃以下とし、より好ましくは600℃以下とする。また、P(222)/P(200)は1.3以上、好ましくは1.5以上とする。再結晶率は20%以下好ましくは5%以下とする。   From the above, the finish annealing temperature is set to 680 ° C. or lower, more preferably 600 ° C. or lower. Further, P (222) / P (200) is 1.3 or more, preferably 1.5 or more. The recrystallization rate is 20% or less, preferably 5% or less.

Figure 2008202070
Figure 2008202070

次に、垂れ量に及ぼす圧下量の影響について検討するため、C:0.0020%、Si:3.5%、Al:0.5%、Mn:0.7%、P:0.01%、S:0.002%およびN:0.0009%を含み、残部Feおよび不可避不純物の組成になる鋼を溶製し、スラブとしたのち熱間圧延を行った。熱間圧延後の板厚は0.9〜3.0mmとした。引き続き、この熱間圧延板に100%N雰囲気で860℃×30sの熱延板焼鈍を施し、さらに、板厚0.15mmまで冷間圧延し、20%H−80%N雰取気で600℃×10s間の仕上焼鈍を行い材料の剛性を調査した。本材料の再結晶率は0%であった。
表2に、冷間圧延での圧下率と垂れ量との開係を示す。これより圧下率86%以上で垂れ量が減少することがわかる。これは、圧下率の上昇に伴いP(222)/P(200)比率が上昇するとともに、圧延方向に繊維状の組織が発達するためと考えられる。
Next, C: 0.0020%, Si: 3.5%, Al: 0.5%, Mn: 0.7%, P: 0.01%, S: 0.002% and N: 0.0009% in order to examine the influence of the amount of reduction on the amount of droop A steel having a composition of the remaining Fe and inevitable impurities was melted to form a slab, and then hot rolled. The plate thickness after hot rolling was set to 0.9 to 3.0 mm. Subsequently subjected to hot rolled sheet annealing of 860 ° C. × 30s with 100% N 2 atmosphere The hot-rolled plate, further cold rolled to a thickness of 0.15mm, 20% H 2 -80% N 2 Kiritoki Finished annealing at 600 ° C for 10 s to investigate the rigidity of the material. The recrystallization rate of this material was 0%.
Table 2 shows the relationship between the rolling reduction and the amount of sagging in cold rolling. From this, it can be seen that the amount of sag decreases at a reduction rate of 86% or more. This is presumably because the P (222) / P (200) ratio increases as the rolling reduction increases, and a fibrous structure develops in the rolling direction.

Figure 2008202070
Figure 2008202070

ここで、電磁鋼板に圧延組織を残留させる技術としては、特開2006−169611号公報に記載のものがあるが、これは電磁鋼板の高強度化を図るための技術であり、薄電磁鋼板の高剛性化を狙った本発明とは技術思想が全く異なっている。また、材料の高強度化を図ったとしても、剛性が向上しないことは公知の事実である。さらに、この技術では、高強度化の観点から磁性焼鈍は不可であるが、本発明では磁性焼鈍を前提としていることも異なっている。   Here, as a technique for leaving the rolled structure in the electromagnetic steel sheet, there is a technique described in Japanese Patent Application Laid-Open No. 2006-169611, but this is a technique for increasing the strength of the electromagnetic steel sheet. The technical idea is completely different from the present invention aiming at high rigidity. Further, it is a known fact that the rigidity is not improved even if the strength of the material is increased. Furthermore, with this technique, magnetic annealing is not possible from the viewpoint of increasing strength, but the present invention is also different from the premise of magnetic annealing.

次に、本発明の成分組成について、成分毎の限定理由を示す。
C:0.05%以下
Cは、炭化物析出による鉄損の増大を抑制するために、0.05%以下に抑制する。
Next, the reason for limitation for every component is shown about the component composition of this invention.
C: 0.05% or less C is suppressed to 0.05% or less in order to suppress an increase in iron loss due to carbide precipitation.

P:0.2%以下
Pは、0.2%を超えて添加すると鋼板が硬くなるため、0.2%以下に抑制する。
P: 0.2% or less
When P is added in excess of 0.2%, the steel sheet becomes hard, so it is suppressed to 0.2% or less.

Si:5%以下
Siは、鋼板の固有抵抗を上げるために有効な元素であるが、5%を超えると飽和磁束密度の低下に伴い磁束密度が低下するため、上限は5%とした。好適下限は、0.5%である。
Si: 5% or less
Si is an effective element for increasing the specific resistance of the steel sheet, but if it exceeds 5%, the magnetic flux density decreases with a decrease in saturation magnetic flux density, so the upper limit was made 5%. A preferred lower limit is 0.5%.

Mn:5%以下
Mnは、鋼板の固有抵抗を上げるために有効な元素であり、好ましくは0.2%以上で含有させるが、5%を超えると磁束密度を低下させることから、上限を5%とした。
Mn: 5% or less
Mn is an element effective for increasing the specific resistance of the steel sheet, and is preferably contained at 0.2% or more. However, if it exceeds 5%, the magnetic flux density is lowered, so the upper limit was made 5%.

Al:3%以下
Alは、Siと同様に、固有抵抗を上げるために有効な元素であり、好ましくは0.2%以上で含有させるが、3%を超えると飽和磁束密度の低下に伴い磁束密度が低下するため、上限を3%とした。
Al: 3% or less
Al, like Si, is an element effective for increasing the specific resistance, and is preferably contained at 0.2% or more. However, if it exceeds 3%, the magnetic flux density decreases as the saturation magnetic flux density decreases. Was 3%.

S:0.02%以下
Sは、0.02%を超えるとMnSの析出により鉄損が増大するため、0.02%以下に抑制する。
S: 0.02% or less If S exceeds 0.02%, iron loss increases due to precipitation of MnS, so S is suppressed to 0.02% or less.

N:0.01%以下
Nは、含有量が多い場合には窒化物の析出量が多くなり、鉄損を増大させるため0.01%以下とした。
N: 0.01% or less
N content is set to 0.01% or less in order to increase the iron loss when the content is large and the amount of precipitation of nitride increases.

次に、本発明の鋼板の製造方法について説明する。
ここで、本発明においては、本発明で規定する成分、冷間圧延条件が本発明の範囲内であれば、それ以外の製造方法は通常の方法でかまわない。
すなわち、転炉で吹練した溶鋼を脱ガス処理し所定の成分に調整し、引き続き、鋳造、熱間圧延を行う。熱間圧延時の仕上焼鈍温度、巻取り温度は、特に規定する必要はなく、通常でかまわない。また、熱延後の熱延板焼鈍は行っても良いが、必須ではない。Si+Al≧1.7%の鋼では、700℃以上で熱延板焼鈍を行うことによりリジングが回避できる。但し、熱延板焼鈍を行う場合には、(222)集合組織が発達するように、上限は950℃とする。
Next, the manufacturing method of the steel plate of this invention is demonstrated.
Here, in this invention, if the component prescribed | regulated by this invention and cold rolling conditions are in the range of this invention, a manufacturing method other than that may be a normal method.
That is, the molten steel blown in the converter is degassed and adjusted to a predetermined component, followed by casting and hot rolling. The finish annealing temperature and the coiling temperature at the time of hot rolling do not need to be specified in particular and may be normal. Moreover, although hot-rolled sheet annealing after hot rolling may be performed, it is not essential. In steel with Si + Al ≧ 1.7%, ridging can be avoided by performing hot-rolled sheet annealing at 700 ° C. or higher. However, when performing hot-rolled sheet annealing, the upper limit is 950 ° C. so that (222) texture develops.

次いで、一回の冷間圧延、もしくは中間焼鈍をはさんだ2回以上の冷間圧延により所定の板厚とする。なお、冷間圧延での圧下率は、上述のとおりである。冷延板を冷間圧延まま、もしくは680℃以下の温度で仕上焼鈍した後、打ち抜き加工を行う。   Next, a predetermined sheet thickness is obtained by one cold rolling or two or more cold rollings with intermediate annealing. Note that the rolling reduction in cold rolling is as described above. The cold-rolled sheet is subjected to punching after being cold-rolled or subjected to finish annealing at a temperature of 680 ° C. or lower.

ここで、仕上焼鈍を行うことにより回復組織となり、材料を軟質化することが可能となり打抜き性が向上する。しかし、680℃以上で焼鈍した場合には、集合組織が変化し剛性が低下するため、680℃以下とする必要がある。   Here, by performing the finish annealing, a recovery structure is obtained, the material can be softened, and the punchability is improved. However, when annealing at 680 ° C or higher, the texture changes and the rigidity decreases, so it is necessary to set the temperature at 680 ° C or lower.

引き続き、結晶粒径を粗大化させて鉄損を低減するために、磁性焼鈍を行う。すなわち、磁性焼鈍は、700〜850℃にて1〜2時間程度行うことが好ましい。ここで、圧下量86%以上を確保するには、板厚0.30mm超では熱延板の厚みが厚くなり、冷延時に割れを生じやすくなるため、最終板厚の上限は0.30mm以下が望ましく、より好ましくは0.25mm以下である。一方、板厚0.05mm以下では、圧延が困難になるため、下限は0.05mmとする。   Subsequently, magnetic annealing is performed in order to coarsen the crystal grain size and reduce iron loss. That is, the magnetic annealing is preferably performed at 700 to 850 ° C. for about 1 to 2 hours. Here, in order to ensure the reduction amount of 86% or more, if the plate thickness exceeds 0.30 mm, the thickness of the hot-rolled plate increases, and cracking is likely to occur during cold rolling, so the upper limit of the final plate thickness is preferably 0.30 mm or less. More preferably, it is 0.25 mm or less. On the other hand, if the plate thickness is 0.05 mm or less, rolling becomes difficult, so the lower limit is set to 0.05 mm.

転炉で吹練した溶鋼を脱ガス処理し、表3に示す成分組成の溶鋼から鋳造後、1140℃×1hのスラブ加熱を行った後、熱間圧延を行った。熱間圧延の仕上げ温度は800℃、巻取り温度は610℃とした。巻取り後、100%N雰囲気で表3に示す条件にて熱延板焼鈍を施した。その後、板厚0.15mmまで冷間圧延を行い、一部の材料については20%H−80%N雰囲気で表3に示す条件において仕上焼鈍を行った。その後、試験片を打ち抜き、その剛性を調査した。 The molten steel blown in the converter was degassed, cast from molten steel having the composition shown in Table 3, slab heated at 1140 ° C. × 1 h, and then hot rolled. The finishing temperature of hot rolling was 800 ° C, and the winding temperature was 610 ° C. After winding, hot-rolled sheet annealing was performed under the conditions shown in Table 3 in a 100% N 2 atmosphere. Thereafter, cold rolling to a thickness of 0.15 mm, for some of the material was carried out finish annealing under the conditions shown in Table 3 with 20% H 2 -80% N 2 atmosphere. Then, the test piece was punched and the rigidity was investigated.

また、磁気測定用の試験片については、750℃×2h、100%N中で磁性焼鈍を行った。磁気測定は、圧延方向および圧延直角方向より、同量のエプスタイン試験片を切り出し、JIS C2550の方法に従って測定を行った。垂れ量の測定は、磁性焼鈍前の材料より圧延方向に幅30mmおよび長さ260mmの試験片を切り出し、試験片の一端より長さ方向に30mmの部分までを固定することにより板厚方向に重力が加わる状態で試験片を水平保持した。この片持ち梁の状態で、自由端の垂れを測定した。表3より、本発明による例では、垂れ量が小さく(すなわち剛性が高く)、鉄損および磁束密度がともに良好となっている。 As for the test piece for the magnetic measurements were performed magnetic annealing in 750 ℃ × 2h, 100% N 2. The magnetic measurement was performed according to the method of JIS C2550 by cutting out the same amount of Epstein test piece from the rolling direction and the direction perpendicular to the rolling direction. The amount of sag is measured by cutting a test piece 30 mm wide and 260 mm long in the rolling direction from the material before magnetic annealing, and fixing up to 30 mm in the length direction from one end of the test piece. The test piece was held horizontally in a state where the pressure was applied. In this cantilever state, the free end sag was measured. From Table 3, in the example according to the present invention, the sagging amount is small (that is, the rigidity is high), and both the iron loss and the magnetic flux density are good.

Figure 2008202070
Figure 2008202070

Claims (4)

質量%で、
C:0.05%以下、
P:0.2%以下、
Si:5%以下、
Mn:5%以下、
Al:3%以下、
S:0.02%以下および
N:0.01%以下
を含み、残部Feおよび不可避不純物の成分組成を有し、板面内での(222)および(200)の各面についてのX線積分反射強度の理論強度に対する比をP(hkl)とした場合に、下記式で表されるTP値が1.3以上であり、かつ再結晶率が20%以下であることを特徴とする無方向性電磁鋼板。

TP=P(222)/P(200)
% By mass
C: 0.05% or less,
P: 0.2% or less,
Si: 5% or less,
Mn: 5% or less,
Al: 3% or less,
Theory of X-ray integrated reflection intensity for each of the (222) and (200) planes in the plate surface, including S: 0.02% or less and N: 0.01% or less, with the remaining Fe and inevitable impurity composition A non-oriented electrical steel sheet, characterized in that when the ratio to strength is P (hkl), the TP value represented by the following formula is 1.3 or more and the recrystallization rate is 20% or less.
Record
TP = P (222) / P (200)
前記鋼板の厚みが0.05〜0.30mmである請求項1に記載の無方向性電磁鋼板。   The non-oriented electrical steel sheet according to claim 1, wherein the steel sheet has a thickness of 0.05 to 0.30 mm. 質量%で、
C:0.05%以下、
P:0.2%以下、
Si:5%以下、
Mn:5%以下、
Al:3%以下、
S:0.02%以下および
N:0.01%以下
を含み、残部Feおよび不可避不純物になる鋼素材に、熱間圧延を施し、熱延板焼鈍を施さないか、もしくは950℃以下で熱延板焼鈍を施したのち、冷間圧延を行い、次いで仕上焼鈍、そして磁性焼鈍を施す、一連の工程に従って無方向性電磁鋼板を製造するに当り、前記冷間圧延での圧下率を86%以上とし、冷間圧延まま、もしくは680℃以下で仕上焼鈍を施し、打ち抜き加工後に磁性焼鈍を施すことを特徴とする無方向性電磁鋼板の製造方法。
% By mass
C: 0.05% or less,
P: 0.2% or less,
Si: 5% or less,
Mn: 5% or less,
Al: 3% or less,
S: 0.02% or less and
N: Steel material containing 0.01% or less, remaining Fe and inevitable impurities, hot-rolled and not subjected to hot-rolled sheet annealing, or cold-rolled after hot-rolled sheet annealing at 950 ° C or lower In producing a non-oriented electrical steel sheet according to a series of steps, performing rolling, then finish annealing, and magnetic annealing, the reduction ratio in the cold rolling is set to 86% or more, and cold rolling or 680 A method for producing a non-oriented electrical steel sheet, characterized in that finish annealing is performed at a temperature of ℃ or less and magnetic annealing is performed after punching.
前記冷間圧延後の板厚を0.05〜0.30mmとすることを特徴とする請求項3に記載の無方向性電磁鋼板の製造方法。   The method for producing a non-oriented electrical steel sheet according to claim 3, wherein a thickness after the cold rolling is 0.05 to 0.30 mm.
JP2007036851A 2007-02-16 2007-02-16 Non-oriented electrical steel sheet and manufacturing method thereof Active JP4946492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007036851A JP4946492B2 (en) 2007-02-16 2007-02-16 Non-oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007036851A JP4946492B2 (en) 2007-02-16 2007-02-16 Non-oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008202070A true JP2008202070A (en) 2008-09-04
JP4946492B2 JP4946492B2 (en) 2012-06-06

Family

ID=39779867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007036851A Active JP4946492B2 (en) 2007-02-16 2007-02-16 Non-oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4946492B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018857A (en) * 2008-07-11 2010-01-28 Sumitomo Metal Ind Ltd Non-oriented electrical steel sheet for rotor, and manufacturing method therefor
JP2013517380A (en) * 2010-08-26 2013-05-16 宝山鋼鉄股▲分▼有限公司 Method for improving coarse crystal grains of non-oriented silicon steel
JP2017137528A (en) * 2016-02-02 2017-08-10 新日鐵住金株式会社 Manufacturing method of nonoriented electromagnetic sheet
WO2020085448A1 (en) 2018-10-24 2020-04-30 日本製鉄株式会社 Non-oriented magnetic steel sheet and method of manufacturing stacked core using same
WO2020153387A1 (en) * 2019-01-24 2020-07-30 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270723A (en) * 1986-05-19 1987-11-25 Nippon Kokan Kk <Nkk> Production of electromagnetic electronic parts using high-silicon iron sheet
JPH0280517A (en) * 1988-09-17 1990-03-20 Kobe Steel Ltd Manufacture of non-oriented electrical steel sheet
JP2001158948A (en) * 1999-12-01 2001-06-12 Kawasaki Steel Corp Nonoriented silicon steel sheet low in core loss and producing method therefor
JP2006009048A (en) * 2004-06-22 2006-01-12 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet for rotor and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270723A (en) * 1986-05-19 1987-11-25 Nippon Kokan Kk <Nkk> Production of electromagnetic electronic parts using high-silicon iron sheet
JPH0280517A (en) * 1988-09-17 1990-03-20 Kobe Steel Ltd Manufacture of non-oriented electrical steel sheet
JP2001158948A (en) * 1999-12-01 2001-06-12 Kawasaki Steel Corp Nonoriented silicon steel sheet low in core loss and producing method therefor
JP2006009048A (en) * 2004-06-22 2006-01-12 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet for rotor and production method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018857A (en) * 2008-07-11 2010-01-28 Sumitomo Metal Ind Ltd Non-oriented electrical steel sheet for rotor, and manufacturing method therefor
JP2013517380A (en) * 2010-08-26 2013-05-16 宝山鋼鉄股▲分▼有限公司 Method for improving coarse crystal grains of non-oriented silicon steel
JP2017137528A (en) * 2016-02-02 2017-08-10 新日鐵住金株式会社 Manufacturing method of nonoriented electromagnetic sheet
WO2020085448A1 (en) 2018-10-24 2020-04-30 日本製鉄株式会社 Non-oriented magnetic steel sheet and method of manufacturing stacked core using same
KR20210034053A (en) 2018-10-24 2021-03-29 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method of laminated core using the same
US11795518B2 (en) 2018-10-24 2023-10-24 Nippon Steel Corporation Non-oriented electrical steel sheet and method of manufacturing stacked core using same
WO2020153387A1 (en) * 2019-01-24 2020-07-30 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for producing same
JP6767687B1 (en) * 2019-01-24 2020-10-14 Jfeスチール株式会社 Non-oriented electrical steel sheet and its manufacturing method
KR20210099111A (en) * 2019-01-24 2021-08-11 제이에프이 스틸 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method thereof
KR102477535B1 (en) 2019-01-24 2022-12-14 제이에프이 스틸 가부시키가이샤 Non-oriented electrical steel sheet and method for producing same

Also Published As

Publication number Publication date
JP4946492B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
US10214791B2 (en) Non-oriented electrical steel sheet
JP5892327B2 (en) Method for producing non-oriented electrical steel sheet
JP5668460B2 (en) Method for producing non-oriented electrical steel sheet
JP6738047B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP5825494B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2014129034A1 (en) Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
TW201221652A (en) Method for producing non-oriented magnetic steel sheet
JP5713100B2 (en) Non-oriented electrical steel sheet, method for producing the same, laminated body for motor core and method for producing the same
JP4946492B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5724837B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO1986007390A1 (en) Process for producing silicon steel sheet having soft magnetic characteristics
JP2008127659A (en) Non-oriented electromagnetic steel sheet with less anisotropy
TWI550104B (en) Nonoriented electromagnetic steel sheet with excellent high frequency core loss property
JP5037796B2 (en) Method for producing grain-oriented electrical steel sheet
JP2004332042A (en) Method for producing non-oriented magnetic steel sheet excellent in magnetic characteristic in rolling direction and perpendicular direction on sheet surface
JP5939190B2 (en) Electrical steel sheet
JP5100000B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JP6123234B2 (en) Electrical steel sheet
JP7159592B2 (en) Non-oriented electrical steel sheet and its manufacturing method, and motor core and its manufacturing method
JP6048282B2 (en) Electrical steel sheet
JP2005200755A (en) Method for producing non-oriented silicon steel sheet
JP4987190B2 (en) Method for producing non-oriented electrical steel sheet with good workability and low iron loss after processing and strain relief annealing
JP2002146493A (en) Nonoriented silicon steel sheet having excellent mechanical strength property and magnetic property and its production method
JP7211532B2 (en) Method for manufacturing non-oriented electrical steel sheet
WO2024080140A1 (en) Nonoriented electromagnetic steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4946492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250