JPH11286512A - Purification of isobutylene-based polymer - Google Patents

Purification of isobutylene-based polymer

Info

Publication number
JPH11286512A
JPH11286512A JP8868098A JP8868098A JPH11286512A JP H11286512 A JPH11286512 A JP H11286512A JP 8868098 A JP8868098 A JP 8868098A JP 8868098 A JP8868098 A JP 8868098A JP H11286512 A JPH11286512 A JP H11286512A
Authority
JP
Japan
Prior art keywords
isobutylene
carbon
polymer
based polymer
polymer solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8868098A
Other languages
Japanese (ja)
Inventor
Yoshikuni Deguchi
出口義国
Takahiro Oishi
大石孝洋
Koji Tsuneishi
常石浩司
Takashi Wachi
俊 和地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP8868098A priority Critical patent/JPH11286512A/en
Publication of JPH11286512A publication Critical patent/JPH11286512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the content of an impurity such as a scum and readily purify the subject polymer by bringing a solid carbon into contact with an isobutylene-based polymer solution and subsequently removing the solid carbon. SOLUTION: (B) A solid carbon selected from the group consisting of carbon black, graphite and active carbon is brought into contact with (A) an isonbutylene-based polymer solution and the component B is subsequently removed. Furthermore, the isobutylene-based polymer solution A is passed through a mixture comprising the components A and B and (C) water in order to deactivate the polymerization catalyst. The isobutylene-based polymer is preferably a polymer containing isobutylene units in a molar ratio of >=51 mol.% expressed in terms of the monomer compositional ratio, having 1,000-30,000 number-average molecular weight and containing >=1 carbon-carbon unsaturated groups on the average based on one molecule.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はイソブチレン系重合体の
精製方法に関する。さらに詳細にはカチオン重合触媒の
残渣を重合体から効率よく分離する方法に関する。
The present invention relates to a method for purifying an isobutylene-based polymer. More particularly, the present invention relates to a method for efficiently separating a residue of a cationic polymerization catalyst from a polymer.

【0002】[0002]

【従来の技術】テレケリック構造を有する重合体、即ち
複数の分子末端に官能基を有する重合体は、官能基の架
橋性を利用して接着剤、粘着剤、塗料、UV/電子線硬
化樹脂、コーティング材、弾性シーリング材、電気電子
用封止材、熱可塑性/熱硬化性樹脂の改質材等の原料と
して応用が進んでいる。
2. Description of the Related Art A polymer having a telechelic structure, that is, a polymer having a functional group at a plurality of molecular terminals, utilizes an adhesive, a pressure-sensitive adhesive, a paint, a UV / electron beam curable resin, and Applications are being advanced as raw materials for coating materials, elastic sealing materials, sealing materials for electric and electronic devices, and modifiers for thermoplastic / thermosetting resins.

【0003】末端官能性重合体の一つであるテレケリッ
クポリイソブチレンは、1,4−ビス(2−クロロ−2
−プロピル)ベンゼンを開始剤兼連鎖移動剤、三塩化ホ
ウ素をルイス酸触媒とするイソブチレンのカチオン重合
で製造できることが知られている(米国特許第4276
394号明細書)。カチオン重合において使用したルイ
ス酸触媒は重合体中に残存すると腐食や酸の発生を引き
起こすため、重合後は適切な方法によって失活させある
いは取り除かなければならない。例えばブチルゴムのよ
うな非テレケリック高分子量ポリイソブチレンの場合、
粘稠な重合体溶液を水、あるいは熱水中に注いで触媒を
失活させ重合体を単離する方法が公知である。
[0003] Telechelic polyisobutylene, one of the terminal functional polymers, is 1,4-bis (2-chloro-2).
It is known that it can be produced by cationic polymerization of isobutylene using (-propyl) benzene as an initiator and chain transfer agent and boron trichloride as a Lewis acid catalyst (U.S. Pat.
394). The Lewis acid catalyst used in the cationic polymerization, if left in the polymer, causes corrosion and generation of an acid. Therefore, after the polymerization, the Lewis acid catalyst must be deactivated or removed by an appropriate method. For example, for non-telechelic high molecular weight polyisobutylene such as butyl rubber,
A method is known in which a viscous polymer solution is poured into water or hot water to deactivate a catalyst and isolate a polymer.

【0004】失活の際に発生する酸を中和するためアル
カリ水溶液を用いたり触媒失活時の温度が低すぎると、
油水界面に始末の悪いエマルションが形成されることが
古くから知られている。触媒失活時の温度条件や種々の
添加剤(酸、アルコール、アミン類、アルカリ土類金属
塩、界面活性剤等)について数多くの特許出願が行われ
ているが、いずれもエマルションの発生量低減には一定
の効果を示すものの完全に消滅させることは困難であ
る。
[0004] If an alkaline aqueous solution is used to neutralize the acid generated at the time of deactivation, or if the temperature at the time of catalyst deactivation is too low,
It has long been known that poorly-emulsified emulsions are formed at the oil-water interface. Numerous patent applications have been filed for temperature conditions during catalyst deactivation and various additives (acids, alcohols, amines, alkaline earth metal salts, surfactants, etc.), all of which reduce the amount of emulsion generated. Although it has a certain effect, it is difficult to completely eliminate it.

【0005】またこれらのエマルション破壊対策をとる
と、微細化された触媒残渣が油層側(重合体溶液側)に
残りやすく、濾過工程で頻繁に目詰まりを生じる他、重
合体の着色原因となることが経験的に知られている。こ
のような精製工程における工程管理上の問題に加え、精
製の良否によってポリイソブチレン系重合体の品質が左
右されるという問題もあり、改善が求められていた。
[0005] If these emulsion destruction countermeasures are taken, finely divided catalyst residues tend to remain on the oil layer side (polymer solution side), frequently causing clogging in the filtration step and causing coloring of the polymer. It is known empirically. In addition to the problem of process control in the purification process, there is also a problem that the quality of the polyisobutylene-based polymer is affected by the quality of the purification, and thus improvement has been required.

【0006】[0006]

【発明が解決しようとする課題】本発明はイソブチレン
系重合体を効率的に精製する方法を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention provides a method for efficiently purifying an isobutylene-based polymer.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
本発明者らは重合体の精製方法について鋭意検討を行
い、本発明に至った。すなわち本発明の第一は(A)イ
ソブチレン系重合体溶液に、(B)カーボンブラック、
黒鉛、活性炭からなる群より選ばれる固体炭素を接触さ
せ、引き続き固体炭素を取り除くことを特徴とするイソ
ブチレン系重合体溶液の精製方法に関し、本発明の第二
は、以下の(1)、(2)の工程を経由するケイ素基含
有イソブチレン系重合体の製造方法に関する。 (1)不飽和基含有イソブチレン系重合体溶液をカーボ
ンブラック、黒鉛、活性炭からなる群より選ばれる固体
炭素に接触させた後、引き続き固体炭素を取り除く工
程。 (2)触媒存在下で、水素化ケイ素化合物の不飽和基含
有イソブチレン系重合体への付加反応をおこなうことに
より、ケイ素基含有イソブチレン系重合体を得る工程。
Means for Solving the Problems In order to solve the above problems, the present inventors have conducted intensive studies on a method for purifying a polymer, and have reached the present invention. That is, the first of the present invention is that (B) carbon black is added to (A) an isobutylene-based polymer solution,
A second aspect of the present invention relates to a method for purifying an isobutylene-based polymer solution, which comprises contacting solid carbon selected from the group consisting of graphite and activated carbon and subsequently removing the solid carbon. The present invention relates to a method for producing a silicon group-containing isobutylene polymer through the step of). (1) A step of bringing an isobutylene-based polymer solution containing an unsaturated group into contact with solid carbon selected from the group consisting of carbon black, graphite and activated carbon, and subsequently removing the solid carbon. (2) A step of obtaining a silicon group-containing isobutylene polymer by performing an addition reaction of the silicon hydride compound to the unsaturated group-containing isobutylene polymer in the presence of a catalyst.

【0008】以下本発明の内容を説明する。イソブチレ
ン系重合体を得るための重合反応時に用いられるルイス
酸を酸性またはアルカリ性の水で失活させると、その大
部分は分解され沈降ないしは水層側に抽出され油層側
(重合体溶液側)から除かれる。しかし分解残渣(以下
スカムという)がしばしば重合体溶液に残り、種々の悪
影響を与える。本発明は重合体溶液にわずかに残るスカ
ムの効果的な除去を骨子とする。
Hereinafter, the contents of the present invention will be described. When the Lewis acid used in the polymerization reaction to obtain the isobutylene-based polymer is deactivated with acidic or alkaline water, most of the Lewis acid is decomposed and sedimented or extracted to the aqueous layer side, and the oily layer side (polymer solution side) Removed. However, decomposition residues (hereinafter referred to as scum) often remain in the polymer solution and have various adverse effects. The present invention is based on the effective removal of scum remaining in the polymer solution.

【0009】分析の結果、スカムは陽イオン成分として
ルイス酸金属を多く含むが、これ以外に製造装置材質に
由来する鉄、コバルト、ニッケル、マンガン等の重金属
を含み、陰イオン成分として酸素以外にハロゲンを多く
含むことがわかっている。このようなスカムは通常極め
て小さい粒子から構成されており、重力による沈降は極
めて遅く、遠心分離を行っても上澄みを完全に透明にす
るのは困難である。現実的なスカム除去法は濾過である
が、粒径が小さいためJISNo.2濾紙(東洋濾紙
(株)製)を目詰まりさせたり素通りしてしまう問題が
ある。目開きの小さい濾紙を用いたり濾過を多段で繰り
返すことも試みられているが、工程が複雑になり簡便な
方法で清澄な重合体溶液を得ることは困難であった。
As a result of the analysis, scum contains a large amount of Lewis acid metal as a cation component, but also contains heavy metals such as iron, cobalt, nickel, and manganese derived from the material of the manufacturing apparatus, and has an anion component other than oxygen as an anion component. It is known that it contains a large amount of halogen. Such scum is usually composed of very small particles, sedimentation by gravity is very slow, and it is difficult to make the supernatant completely transparent even by centrifugation. Filtration is a practical method for removing scum, but JISNo. 2 There is a problem that filter paper (manufactured by Toyo Roshi Co., Ltd.) is clogged or passed. Attempts have been made to use filter paper with small openings or to repeat the filtration in multiple stages, but the process was complicated and it was difficult to obtain a clear polymer solution by a simple method.

【0010】吸着剤や濾過助剤と称される固体物質の利
用が考えられたが、シリカゲル、ケイ酸アルミニウム、
珪藻土、濾紙粉等を検討した結果、いずれも望むような
結果は得られなかった。これと対照的に、カーボンブラ
ック、黒鉛、活性炭より選ばれてなる固体炭素(以下固
体炭素類という)をイソブチレン系重合体溶液に接触さ
せた場合、スカムの沈降速度増大や濾過が容易になるこ
とが見いだされた。固液接触の過程でスカムの凝集と固
体炭素類への吸着が起こっていると思われる。特に水共
存下で固液接触を行った場合、シリカゲル等の効果のな
い吸着剤は水層に存在するのに対し、固体炭素類は重合
体溶液中に存在するという挙動の違いが認められた。
The use of solid substances called adsorbents and filter aids has been considered, but silica gel, aluminum silicate,
As a result of examining diatomaceous earth, filter paper powder, and the like, none of the desired results was obtained. In contrast, when solid carbon (hereinafter referred to as solid carbon) selected from carbon black, graphite, and activated carbon is brought into contact with an isobutylene polymer solution, the sedimentation rate of scum increases and filtration becomes easier. Was found. It is considered that scum agglomeration and adsorption to solid carbons occur during the solid-liquid contact process. In particular, when solid-liquid contact was performed in the coexistence of water, a difference in behavior was observed in which the ineffective adsorbent such as silica gel was present in the aqueous layer, whereas the solid carbons were present in the polymer solution. .

【0011】さらに不飽和基含有イソブチレン系重合体
を固体炭素類によって処理したところ、NMRによって
定量される1分子当たりの不飽和基の含有量が増大する
という予期しない効果が認められた。加えて固体炭素類
による精製処理を行った当該重合体を水素化ケイ素化合
物との付加反応(いわゆるヒドロシリル化反応)に供し
たところ、ブランク試験に比べ反応速度の向上が認めら
れた。
Further, when the unsaturated group-containing isobutylene polymer was treated with solid carbons, an unexpected effect of increasing the content of unsaturated groups per molecule determined by NMR was observed. In addition, when the polymer subjected to purification treatment with solid carbons was subjected to an addition reaction with a silicon hydride compound (so-called hydrosilylation reaction), an improvement in the reaction rate was observed as compared with the blank test.

【0012】詳細なメカニズムは不明であるが、固体炭
素類によるスカム除去は単に工程管理を容易にするばか
りではなく、イソブチレン系重合体の品質を向上させる
と考えられる。本発明で精製に供されるのはイソブチレ
ンを主成分とする重合体であり、好ましくは単量体組成
比で51モル%以上のイソブチレン単位を含む数平均分
子量1,000以上30,000未満の重合体で、1分
子当たり平均1個以上の炭素−炭素不飽和基を含有する
ものである。このような重合体は、特開平7−2920
38号、特開平8−73517号等に記載の方法で製造
することができる。
Although the detailed mechanism is unknown, it is considered that scum removal by solid carbons not only facilitates process control but also improves the quality of the isobutylene-based polymer. The polymer to be purified in the present invention is a polymer containing isobutylene as a main component, preferably having a number average molecular weight of 1,000 or more and less than 30,000 containing isobutylene units in a monomer composition ratio of 51 mol% or more. A polymer containing one or more carbon-carbon unsaturated groups on average per molecule. Such a polymer is disclosed in JP-A-7-2920.
No. 38, JP-A-8-73517 and the like.

【0013】本発明で用いられる固体炭素類としてはカ
ーボンブラック、黒鉛、活性炭が挙げられる。イソブチ
レン系重合体の数平均分子量(Mn)等を求める際に
は、例えばGPC測定装置として、Waters LC
−1を、測定カラムとしてShodex K−804
(ポリスチレンゲル)を使用し、Mn値等はポリスチレ
ン換算で求めることができる。
The solid carbons used in the present invention include carbon black, graphite and activated carbon. When determining the number average molecular weight (Mn) of the isobutylene-based polymer, for example, a Waters LC
-1 is Shodex K-804 as a measuring column.
(Polystyrene gel), and the Mn value and the like can be determined in terms of polystyrene.

【0014】この内カーボンブラックは製法の相違によ
ってファーネスブラック、チャンネルブラック、サーマ
ルブラックとに分類され、原料の相違によってガスブラ
ック、オイルブラック、アセチレンブラックとも分類さ
れる。炭化水素原料を不完全燃焼あるいは熱分解させて
製造され、原料や製法の違いを反映して粒径、粒径分
布、表面のミクロ性状が異なる様々な製品が市販されて
いる。本発明で使用されるカーボンブラックには特に制
約がなく、重合体溶液との接触時間やカーボンブラック
を除去する濾過設備との関係で適切なものが使用され
る。本発明で好適に使用されるものは顕微鏡法で求めた
平均粒径が10〜100μmのものである。
Among these, carbon black is classified into furnace black, channel black and thermal black according to the difference in production method, and is also classified into gas black, oil black and acetylene black according to the difference in raw materials. Various products are produced by incomplete combustion or thermal decomposition of hydrocarbon raw materials, and have different particle sizes, particle size distributions, and surface micro-properties reflecting the differences in raw materials and production methods. The carbon black used in the present invention is not particularly limited, and an appropriate one is used in relation to the contact time with the polymer solution and the filtration equipment for removing the carbon black. Those preferably used in the present invention are those having an average particle diameter determined by microscopy of 10 to 100 μm.

【0015】固体炭素類の内、黒鉛には天然物と人造物
があるが、天然/人造を問わずどちらも使用可能であ
る。黒鉛の市販品は角形や棒形の成形品であるので、破
砕分級した上で使用することが望ましい。固体炭素類の
内、活性炭は木片、鋸屑、椰子殻等の植物繊維;石炭;
コークス等の原料を窒素下で高温処理して製造されるも
ので、水蒸気によって賦活されたものと薬品によって賦
活されたものに大別することができる。性状としては粉
末状のものと粒状に成形されてものがあり、カーボンブ
ラックと同様に種々の粒径、表面性状のものが市販され
ている。本発明において使用される活性炭には製法/性
状による制約は特になく、接触時間や濾過設備との関係
を考慮して好適なものを選択することができるが、好ま
しいのはBET法比表面積が100〜2000m2/g
のものである。
[0015] Of the solid carbons, graphite includes natural products and artificial products, and both can be used regardless of whether they are natural or artificial. Since commercially available graphite is a square or rod-shaped molded product, it is desirable to use it after crushing and classification. Among the solid carbons, activated carbon is plant fiber such as wood chips, sawdust, and coconut shells; coal;
It is produced by processing raw materials such as coke under high temperature under nitrogen, and can be roughly classified into those activated by steam and those activated by chemicals. There are powdery and granulated ones, and various particles having various particle sizes and surface properties are commercially available like carbon black. The activated carbon used in the present invention is not particularly limited by the production method / property, and a suitable one can be selected in consideration of the contact time and the relationship with the filtration equipment. ~ 2000m 2 / g
belongs to.

【0016】固体炭素類の使用量には特に制約がない
が、スカム除去率と経済性の観点から最適量を設定する
ことができる。好ましい使用量は重合体溶液1L当たり
0.001g〜100g、経済性と操作面から更に好適
には0.01g〜10gの範囲である。固体炭素類と重
合体溶液の固液接触には様々な実施態様が可能である
が、撹拌混合と固液分離を回分操作で行う回分式のほ
か、固体炭素類を容器に充填し重合体溶液を通液する固
定層方式、固体炭素類の移動層に液を通じる移動層式、
固体炭素類を液で流動化して吸着を行う流動層式等も利
用できる。固液接触時の温度や圧力には特に制限はな
く、任意の条件を設定することができる。さらに必要に
応じて撹拌による混合分散に加えて、容器の振とう、超
音波の利用など、分散効率を向上させる諸操作を取り入
れることができる。
There is no particular limitation on the amount of solid carbon used, but an optimal amount can be set from the viewpoint of scum removal rate and economic efficiency. The preferred amount is from 0.001 g to 100 g per liter of the polymer solution, and more preferably from 0.01 g to 10 g in terms of economy and operation. Various embodiments are possible for the solid-liquid contact between the solid carbon and the polymer solution.A batch system in which stirring and mixing and solid-liquid separation are performed by a batch operation, and a method in which solid carbon is filled into a container and the polymer solution is filled Fixed-bed type with liquid passing through, moving-bed type with liquid passing through the moving layer of solid carbons,
A fluidized bed system in which solid carbons are fluidized with a liquid to perform adsorption can also be used. The temperature and pressure at the time of solid-liquid contact are not particularly limited, and arbitrary conditions can be set. Furthermore, in addition to the mixing and dispersion by stirring, various operations for improving the dispersion efficiency, such as shaking of the container and the use of ultrasonic waves, can be incorporated as necessary.

【0017】また固体炭素類は重合体溶液と接触処理で
きるだけではなく、重合体溶液に水層が共存する状況で
も接触処理が可能である。具体的な実施態様として重合
完了後の触媒失活工程で、油水懸濁状態で固体炭素類を
添加し固液接触させる方法を挙げることができる。接触
処理後分液を行ってもほとんどの固体炭素類は重合体溶
液(油層)側に存在し、水が存在しない場合と同様にス
カム処理が行える。触媒失活とスカム処理を一挙に行う
ことで工程の所要時間を短縮できる。
Further, not only solid carbons can be subjected to contact treatment with a polymer solution, but also contact treatment is possible even in a situation where an aqueous layer coexists in the polymer solution. As a specific embodiment, in a catalyst deactivation step after completion of polymerization, a method of adding solid carbons in an oil-water suspension state and bringing them into solid-liquid contact can be mentioned. Even if liquid separation is performed after the contact treatment, most of the solid carbons are present on the polymer solution (oil layer) side, and the scum treatment can be performed in the same manner as when water is not present. The time required for the process can be reduced by performing the catalyst deactivation and the scum treatment all at once.

【0018】重合体溶液を固体炭素類に接触させた後、
濾過、遠心分離、沈降分離等の方法で固体炭素類を除去
し、必要に応じて水洗を加え、目的とする清澄な重合体
溶液を得る。このようにして得られた清澄な重合体溶液
から溶剤を留去すると、不純物の少ないイソブチレン系
重合体を得ることができる。固体炭素類による処理の効
果は得られたイソブチレン系重合体の色調、燃焼残渣量
(灰分)、NMRで定量される不飽和基含有量等で評価
できる。スカム中にハロゲンが多く含まれていることか
ら、燃焼管方式によって求める全ハロゲン量が最も鋭敏
な分析法である。
After contacting the polymer solution with solid carbons,
Solid carbons are removed by a method such as filtration, centrifugation, or sedimentation, and if necessary, water is added to obtain a target clear polymer solution. When the solvent is distilled off from the clear polymer solution thus obtained, an isobutylene-based polymer with few impurities can be obtained. The effect of the treatment with solid carbons can be evaluated based on the color tone of the obtained isobutylene polymer, the amount of combustion residue (ash), the unsaturated group content determined by NMR, and the like. Since a large amount of halogen is contained in the scum, the total halogen amount determined by the combustion tube method is the most sensitive analysis method.

【0019】通常処理のイソブチレン系重合体では20
0〜300ppmものハロゲンを含有するのに対し、本
発明の精製方法によれば、100ppm以下しかハロゲ
ンを含有しないイソブチレン系重合体を得ることができ
る。また、本発明によるとスカムに由来するハロゲンを
大幅に減少させることが可能である。本発明において、
不飽和基含有イソブチレン系重合体の不飽和基を、他の
官能基に変換することにより、種々の有用なイソブチレ
ン系重合体を得ることも可能である。例えば、不飽和基
含有イソブチレン系重合体と水素化ケイ素化合物との、
触媒存在下での付加反応(いわゆるヒドロシリル化反
応)をおこなうことにより、ケイ素基含有イソブチレン
系重合体を得ることができる。
In a normally treated isobutylene-based polymer, 20
According to the purification method of the present invention, an isobutylene-based polymer containing only 100 ppm or less of halogen can be obtained while containing 0 to 300 ppm of halogen. Further, according to the present invention, it is possible to greatly reduce halogen derived from scum. In the present invention,
By converting the unsaturated group of the unsaturated group-containing isobutylene-based polymer to another functional group, various useful isobutylene-based polymers can be obtained. For example, an unsaturated group-containing isobutylene-based polymer and a silicon hydride compound,
By performing an addition reaction (a so-called hydrosilylation reaction) in the presence of a catalyst, a silicon group-containing isobutylene-based polymer can be obtained.

【0020】本発明における水素化ケイ素化合物とは、
分子中にケイ素−水素結合(以下Si−H結合という)
を有する化合物を意味する。本発明の水素化ケイ素化合
物は、Si−H結合以外にケイ素−加水分解性基の結合
(以下Si−X結合という)を有することが好ましい。
Si−X結合のXとしては、例えばハロゲン原子、アル
コキシ基、アシロキシ基、ケトキシメート基等を挙げる
ことができる。
In the present invention, the silicon hydride compound is
Silicon-hydrogen bond (hereinafter referred to as Si-H bond) in the molecule
Means a compound having The silicon hydride compound of the present invention preferably has a silicon-hydrolyzable group bond (hereinafter referred to as a Si-X bond) in addition to the Si-H bond.
Examples of X in the Si—X bond include a halogen atom, an alkoxy group, an acyloxy group, a ketoxmate group, and the like.

【0021】Si−X基を有するケイ素基含有イソブチ
レン系重合体は、水分存在下でのシラノール架橋反応に
より、硬化物を与えるので有用である。また、本発明の
ヒドロシリル化反応をおこなう際には、触媒を用いるこ
とが好ましい。触媒としては、例えば白金、ロジウム等
の重金属、あるいはこれらの金属錯体を挙げることがで
きる。
The silicon group-containing isobutylene polymer having a Si—X group is useful because it gives a cured product by a silanol crosslinking reaction in the presence of moisture. Further, when performing the hydrosilylation reaction of the present invention, it is preferable to use a catalyst. Examples of the catalyst include heavy metals such as platinum and rhodium, and complexes of these metals.

【0022】[0022]

【発明の効果】本発明の精製方法によれば、スカム等の
不純物の含有量が小さいイソブチレン系重合体を容易に
得ることができる。本発明で使用する固体炭素類は親油
性が大きいため、固体炭素類は油水懸濁状態においても
油層側に存在するため、スカム等の不純物を効率よく除
去することができる。
According to the purification method of the present invention, an isobutylene polymer having a small content of impurities such as scum can be easily obtained. Since the solid carbons used in the present invention have high lipophilicity, the solid carbons are present in the oil layer side even in the oil-water suspension state, so that impurities such as scum can be efficiently removed.

【0023】また、通常処理のイソブチレン系重合体で
は200〜300ppmものハロゲンを含有するのに対
し、本発明の精製方法によれば、100ppm以下しか
ハロゲンを含有しないイソブチレン系重合体を得ること
ができる。また、本発明の精製方法により得られる不純
物量の少ないイソブチレン系重合体を用いた場合には、
水素化ケイ素化合物の不飽和基含有イソブチレン系重合
体への付加反応が効率よく進行し、ケイ素基含有イソブ
チレン系重合体を容易に得ることができる。
Further, while the normally treated isobutylene-based polymer contains as much as 200 to 300 ppm of halogen, according to the purification method of the present invention, an isobutylene-based polymer containing only 100 ppm or less of halogen can be obtained. . Further, when using an isobutylene-based polymer with a small amount of impurities obtained by the purification method of the present invention,
The addition reaction of the silicon hydride compound to the unsaturated group-containing isobutylene polymer proceeds efficiently, and the silicon group-containing isobutylene polymer can be easily obtained.

【0024】[0024]

【実施例】以下実施例により本発明をさらに具体的に説
明するが、本発明はこれらの実施例のみに限定されるも
のではない。 分析装置1(微量塩素測定装置) 極微量の塩素を測定するために、三菱化学(株)製微量
塩素測定装置TOX−10シグマ型を使用した。当該装
置は石英管内のアルゴン/酸素混合気流中で試料を燃焼
分解させ、生成した塩化水素を銀/塩化銀電極を備えた
滴定セルに導き、電量法により酸化還元滴定を行うもの
である。以下の実施例に示した微量塩素の測定は、試料
5〜10mgを石英ボートに計量し燃焼炉温度900℃
で分析を行った結果である。 分析装置2(NMR) イソブチレン系重合体中の不飽和基含有量を求めるため
に、バリアン社製NMR装置ジェミニ−300を用い、
少量の重アセトンを含む四塩化炭素を溶剤に用いて測定
を行った。重合体1分子当たりの不飽和基の量は以下の
ようにして求めた。 1)7.2ppm付近に現れる芳香環成分の積分強度を
求め、これを4で割ったものをNArとする。 2)4.9〜5.0ppm付近の不飽和結合末端の積分
強度を求め、これを2で割ったものをNvとする。不飽
和基含有量Fn(v)をFn(v)=Nv/NArと定義
する。 製造例1(重合体溶液の製造) メカニカルスターラーを備えた2Lガラスセパラブルフ
ラスコを十分に乾燥・窒素置換した後、モレキュラーシ
ーブズ3Aで予め脱水したトルエン787.5mL、エ
チルシクロヘキサン262.5mL、1,4−ビス(2
−クロロ−2−プロピル)ベンゼン4.854g、α−
ピコリン0.7158gを仕込んだ。セパラブルフラス
コを−70℃に冷却し、別容器に計量したイソブチレン
モノマー438mLをここに移送した。三方コックを通
じて窒素ガスを少量ずつ流しながら、乾燥したシリンジ
を用いて四塩化チタン18.3gを加え重合を開始し
た。3時間そのままの状態で撹拌を続けた後、アリルト
リメチルシラン7.20gを加え同じ温度でさらに1時
間反応を続け両末端にアリル基を有するテレケリックポ
リイソブチレン重合体溶液を得た。本製造例で得られた
重合体溶液を以降重合体溶液1、溶剤留去後の重合体を
重合体1と記す。 製造例2(重合体の製造) 製造に用いる容器類をSUS316L製のものに変え、
製造スケールを大きくした以外は製造例1と同様にして
重合体溶液を得た。薄膜蒸発装置を用いて溶剤を留去
し、わずかに淡黄色を帯びたイソブチレン系重合体を得
た。本製造例で得られた重合体を、以降単に重合体2と
記す。 実施例1(固液接触) 2Lの水を入れた撹拌機付5Lセパラブルフラスコを7
0℃に温度調節し、激しく撹拌しながら冷えた重合体溶
液1を全量投入した。70℃で30分撹拌を続けた後デ
カンテーションにより水層を除き、重合体溶液を2Lの
脱イオン水で2回洗浄した。2.0gのカーボンブラッ
ク(三菱化学(株)製#10B、カタログによる粒子径
84μm、BET式比表面積28m2/gのもの)を加
え、室温で30分撹拌した。No.2濾紙(東洋濾紙
(株)製)で濾過することにより浮遊カーボンブラック
を除き、清澄な重合体溶液を得た。常法に従って溶剤を
減圧留去し、無色透明なポリイソブチレンを得た。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Analyzer 1 (trace chlorine measuring device) To measure a trace amount of chlorine, a trace chlorine measuring device TOX-10 sigma type manufactured by Mitsubishi Chemical Corporation was used. This apparatus burns and decomposes a sample in a mixed gas stream of argon / oxygen in a quartz tube, guides the generated hydrogen chloride to a titration cell equipped with a silver / silver chloride electrode, and performs a redox titration by a coulometric method. In the measurement of trace chlorine shown in the following examples, 5 to 10 mg of a sample was weighed in a quartz boat, and the temperature of the combustion furnace was 900 ° C.
This is the result of the analysis. Analyzer 2 (NMR) In order to determine the unsaturated group content in the isobutylene-based polymer, an NMR apparatus Gemini-300 manufactured by Varian Inc. was used.
The measurement was performed using carbon tetrachloride containing a small amount of heavy acetone as a solvent. The amount of unsaturated groups per polymer molecule was determined as follows. 1) The integrated intensity of the aromatic ring component appearing at around 7.2 ppm was obtained, and the result was divided by 4 to obtain N Ar . 2) determine the integrated intensity of the unsaturated bond-terminated near 4.9~5.0Ppm, those which were divided by 2 to N v. The unsaturated group content Fn (v) is defined as Fn (v) = N v / N Ar . Production Example 1 (Production of Polymer Solution) After sufficiently drying and purging with nitrogen with a 2 L glass separable flask equipped with a mechanical stirrer, 787.5 mL of toluene, 262.5 mL of ethylcyclohexane, and 267.5 mL of ethylcyclohexane previously dehydrated with Molecular Sieves 3A were used. 4-bis (2
-Chloro-2-propyl) benzene 4.854 g, α-
0.7158 g of picoline was charged. The separable flask was cooled to -70 ° C, and 438 mL of the isobutylene monomer measured in a separate container was transferred here. While flowing nitrogen gas little by little through a three-way cock, 18.3 g of titanium tetrachloride was added using a dried syringe to initiate polymerization. After continuing stirring for 3 hours, 7.20 g of allyltrimethylsilane was added and the reaction was continued for another hour at the same temperature to obtain a telechelic polyisobutylene polymer solution having allyl groups at both ends. Hereinafter, the polymer solution obtained in this Production Example is referred to as Polymer Solution 1, and the polymer after distilling off the solvent is referred to as Polymer 1. Production Example 2 (Production of Polymer) The containers used for production were changed to those made of SUS316L,
A polymer solution was obtained in the same manner as in Production Example 1 except that the production scale was increased. The solvent was distilled off using a thin film evaporator to obtain a slightly pale yellow isobutylene-based polymer. The polymer obtained in this Production Example is hereinafter simply referred to as Polymer 2. Example 1 (Solid-liquid contact) A 5 L separable flask equipped with a stirrer containing 2 L of water was placed in 7
The temperature of the solution was adjusted to 0 ° C., and the whole amount of the cooled polymer solution 1 was charged with vigorous stirring. After stirring was continued at 70 ° C. for 30 minutes, the aqueous layer was removed by decantation, and the polymer solution was washed twice with 2 L of deionized water. 2.0 g of carbon black (# 10B manufactured by Mitsubishi Chemical Corporation, having a particle size of 84 μm according to a catalog and a BET specific surface area of 28 m 2 / g) was added, and the mixture was stirred at room temperature for 30 minutes. No. 2 Filtered paper (manufactured by Toyo Roshi Kaisha, Ltd.) to remove floating carbon black to obtain a clear polymer solution. The solvent was distilled off under reduced pressure according to a conventional method to obtain colorless and transparent polyisobutylene.

【0025】得られた製品中の全塩素量を定量したとこ
ろ、30ppmの塩素が検出された。 実施例2(油水懸濁系での固液接触) 2Lの水を入れた撹拌機付5Lセパラブルフラスコを7
0℃に温度調節し、激しく撹拌しながら冷えた重合体溶
液1を全量投入した。投入完了後直ちに2.0gのカー
ボンブラック(三菱化学(株)製#10B、カタログに
よる粒子径84μm、BET式比表面積28m2/gの
もの)を加え、70℃で30分撹拌を続けた。デカンテ
ーションにより水層を除き、重合体溶液を2Lの脱イオ
ン水で2回洗浄した。No.2濾紙(東洋濾紙(株)
製)で濾過することにより浮遊カーボンブラックを除
き、清澄な重合体溶液を得た。常法に従って溶剤を減圧
留去し、無色透明なポリイソブチレンを得た。
When the total amount of chlorine in the obtained product was quantified, 30 ppm of chlorine was detected. Example 2 (Solid-liquid contact in an oil-water suspension system) A 5 L separable flask equipped with a stirrer containing 2 L of water was placed in 7
The temperature of the solution was adjusted to 0 ° C., and the whole amount of the cooled polymer solution 1 was charged with vigorous stirring. Immediately after the addition was completed, 2.0 g of carbon black (# 10B manufactured by Mitsubishi Chemical Corporation, having a particle diameter of 84 μm according to a catalog and a BET specific surface area of 28 m 2 / g) was added, and stirring was continued at 70 ° C. for 30 minutes. The aqueous layer was removed by decantation, and the polymer solution was washed twice with 2 L of deionized water. No. 2 Filter paper (Toyo Filter Paper Co., Ltd.)
To remove the suspended carbon black to obtain a clear polymer solution. The solvent was distilled off under reduced pressure according to a conventional method to obtain colorless and transparent polyisobutylene.

【0026】得られた製品中の全塩素量を定量したとこ
ろ、40ppmの塩素が検出された。 実施例3(固液接触) カーボンブラック2.0gの代わりに2.0gの粉末状
活性炭(武田薬品工業(株)製、商標名強力白鷺)を用
いた以外は実施例1と全く同様の操作を行い、無色透明
なポリイソブチレンを得た。
When the total amount of chlorine in the obtained product was quantified, 40 ppm of chlorine was detected. Example 3 (Solid-liquid contact) The same operation as in Example 1 except that 2.0 g of powdered activated carbon (manufactured by Takeda Pharmaceutical Co., Ltd., trade name: Strong Shirasagi) was used instead of 2.0 g of carbon black. Was carried out to obtain colorless and transparent polyisobutylene.

【0027】得られた製品中の全塩素量を定量したとこ
ろ、50ppmの塩素が検出された。 比較例1(濾過工程なし) カーボンブラックの添加と濾過を省略する以外は実施例
1と全く同様の操作を行い、黄土色を帯びたポリイソブ
チレンを得た。
When the total amount of chlorine in the obtained product was determined, 50 ppm of chlorine was detected. Comparative Example 1 (No Filtration Step) Except for omitting the addition of carbon black and the filtration, the same operation as in Example 1 was carried out to obtain ocher-colored polyisobutylene.

【0028】得られた製品中の全塩素量を定量したとこ
ろ、300ppmの塩素が検出された。 比較例2 カーボンブラックの添加を省略する以外は実施例1と全
く同様の操作を行い、乳白色を帯びたポリイソブチレン
を得た。
When the total amount of chlorine in the obtained product was quantified, 300 ppm of chlorine was detected. Comparative Example 2 The same operation as in Example 1 was carried out except that the addition of carbon black was omitted, to obtain milky white polyisobutylene.

【0029】得られた製品中の全塩素量を定量したとこ
ろ、200ppmの塩素が検出された。 実施例4(固液接触) 150gの重合体2を1Lのトルエンに再溶解させ、
0.5gのカーボンブラック(三菱化学(株)製#10
B)を加えて室温で15分撹拌した。No.2濾紙(東
洋濾紙(株)製)で濾過後常法に従って溶剤を減圧留去
し、無色透明なポリイソブチレンを得た。NMRで求め
た1分子当たりの不飽和結合含有量Fn(v)は1.9
2であった。 比較例3 カーボンブラック処理を省略した以外は実施例4と全く
同様の操作を行い、無処理ポリイソブチレンを得た。N
MRで求めた1分子当たりの不飽和結合含有量Fn
(v)は1.85であった。 実施例5 実施例4で得られた重合体60gに30gのプロセスオ
イル(出光興産(株)製、PS−32)を加えて混合し
た。内容物を75℃まで加熱した後1.8mLのメチル
ジメトキシシラン(日本ユニカー(株)製)と4.86
×10-6Lの白金−ジビニルシロキサン錯体キシレン溶
液(白金含量3wt%のもの)を加え、ヒドロシリル化
反応を開始した。NMRで炭素−炭素二重結合のシグナ
ルが完全に消滅するまで反応を経時的に追跡し、12時
間で反応を完了した。 比較例4 イソブチレン系重合体として比較例3で得られた重合体
60gを使用した以外は実施例5と全く同様にして、ヒ
ドロシリル化反応を実施した。反応完了までに30時間
を要した。
When the total chlorine content in the obtained product was determined, 200 ppm of chlorine was detected. Example 4 (Solid-liquid contact) 150 g of polymer 2 was redissolved in 1 L of toluene,
0.5g of carbon black (# 10 manufactured by Mitsubishi Chemical Corporation)
B) was added and the mixture was stirred at room temperature for 15 minutes. No. 2 After filtration through filter paper (manufactured by Toyo Roshi Kaisha, Ltd.), the solvent was distilled off under reduced pressure according to a conventional method to obtain colorless and transparent polyisobutylene. The unsaturated bond content Fn (v) per molecule determined by NMR is 1.9.
It was 2. Comparative Example 3 Except that the carbon black treatment was omitted, the same operation as in Example 4 was performed to obtain untreated polyisobutylene. N
Unsaturated bond content Fn per molecule determined by MR
(V) was 1.85. Example 5 To 60 g of the polymer obtained in Example 4, 30 g of process oil (PS-32, manufactured by Idemitsu Kosan Co., Ltd.) was added and mixed. After heating the content to 75 ° C., 1.8 mL of methyldimethoxysilane (manufactured by Nippon Unicar Co., Ltd.) and 4.86 were added.
× 10 −6 L of a xylene solution of a platinum-divinylsiloxane complex (with a platinum content of 3 wt%) was added to initiate a hydrosilylation reaction. The reaction was followed over time until the signal of the carbon-carbon double bond disappeared completely by NMR, and the reaction was completed in 12 hours. Comparative Example 4 A hydrosilylation reaction was carried out in exactly the same manner as in Example 5, except that 60 g of the polymer obtained in Comparative Example 3 was used as the isobutylene-based polymer. It took 30 hours to complete the reaction.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】(A)イソブチレン系重合体溶液に、
(B)カーボンブラック、黒鉛、活性炭からなる群より
選ばれる固体炭素を接触させ、引き続き固体炭素を取り
除くことを特徴とするイソブチレン系重合体溶液の精製
方法。
(1) An isobutylene-based polymer solution (A)
(B) A method for purifying an isobutylene-based polymer solution, comprising contacting solid carbon selected from the group consisting of carbon black, graphite and activated carbon, and subsequently removing the solid carbon.
【請求項2】(A)イソブチレン系重合体溶液、(B)
カーボンブラック、黒鉛、活性炭からなる群より選ばれ
る固体炭素、及び(C)重合触媒を失活するための水、
よりなる混合物を経由することを特徴とする請求項1記
載の精製方法。
(A) an isobutylene polymer solution, (B)
Carbon black, graphite, solid carbon selected from the group consisting of activated carbon, and (C) water for deactivating the polymerization catalyst,
The purification method according to claim 1, wherein the purification is performed via a mixture comprising:
【請求項3】イソブチレン系重合体が単量体組成比で5
1モル%以上のイソブチレン単位を含む数平均分子量
1,000以上30,000未満の重合体で、1分子当
たり平均1個以上の炭素−炭素不飽和基を含有すること
を特徴とする、請求項1または2記載の精製方法。
3. An isobutylene-based polymer having a monomer composition ratio of 5
A polymer having a number-average molecular weight of 1,000 or more and less than 30,000 containing 1 mol% or more of isobutylene units and containing an average of one or more carbon-carbon unsaturated groups per molecule. 3. The purification method according to 1 or 2.
【請求項4】以下の工程を経由するケイ素基含有イソブ
チレン系重合体の製造方法。 (1)不飽和基含有イソブチレン系重合体溶液をカーボ
ンブラック、黒鉛、活性炭からなる群より選ばれる固体
炭素に接触させた後、引き続き固体炭素を取り除く工
程。 (2)触媒存在下で、水素化ケイ素化合物の不飽和基含
有イソブチレン系重合体への付加反応をおこなうことに
よりケイ素基含有イソブチレン系重合体を得る工程。
4. A method for producing a silicon group-containing isobutylene polymer through the following steps. (1) A step of bringing an isobutylene-based polymer solution containing an unsaturated group into contact with solid carbon selected from the group consisting of carbon black, graphite and activated carbon, and subsequently removing the solid carbon. (2) a step of performing an addition reaction of the silicon hydride compound to the unsaturated group-containing isobutylene polymer in the presence of a catalyst to obtain a silicon group-containing isobutylene polymer.
JP8868098A 1998-04-01 1998-04-01 Purification of isobutylene-based polymer Pending JPH11286512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8868098A JPH11286512A (en) 1998-04-01 1998-04-01 Purification of isobutylene-based polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8868098A JPH11286512A (en) 1998-04-01 1998-04-01 Purification of isobutylene-based polymer

Publications (1)

Publication Number Publication Date
JPH11286512A true JPH11286512A (en) 1999-10-19

Family

ID=13949554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8868098A Pending JPH11286512A (en) 1998-04-01 1998-04-01 Purification of isobutylene-based polymer

Country Status (1)

Country Link
JP (1) JPH11286512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004024825A1 (en) * 2002-09-13 2006-01-05 株式会社カネカ Polymer composition containing double salt having magnesium and aluminum as metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004024825A1 (en) * 2002-09-13 2006-01-05 株式会社カネカ Polymer composition containing double salt having magnesium and aluminum as metal

Similar Documents

Publication Publication Date Title
KR100945632B1 (en) Synthesis of MDH-polymer hybrid paticles
JPH02302438A (en) Purified polyether silicone and its production
JPS63264610A (en) Gel type chelate resin and method of removing polyhydric alkali earth or heavy metal cation from solution
CN110719934B (en) Functionalized ethylene and 1, 3-butadiene copolymers
SU589929A3 (en) Method of preparing rubber-like copolymers
FR2468618A1 (en) PROCESS FOR THE SELECTIVE HYDROGENATION OF POLYMERS
JP2008527141A (en) Method for neutralizing polysiloxane hydrolyzate
WO2022157265A1 (en) Process for hydrodepolymerization of polymeric waste material
JPH11286512A (en) Purification of isobutylene-based polymer
EP0312213B1 (en) Romoval of catalyst residues
FR2732024A1 (en) PROCESS FOR THE PURIFICATION OF CHEMICALLY MODIFIED CYCLODEXTRINS TO REMOVE IMPURITIES
KR100204815B1 (en) Removal of hydrogenation catalyst from polymer solutions by catalyzed precipitation
US4082660A (en) Method of purification
JP2010070673A (en) Organic-inorganic hybrid material, and composition and additive containing the same
JPH07145176A (en) Passivation of fine methylchlorosilane powder
US5227528A (en) Decolorization of polyalkylene polyamines
JP3473862B2 (en) Isobutylene-based polymer containing carbon-carbon unsaturated group and method for producing the same
EP0540121B1 (en) Method of removing a polymerization catalyst
JP2618430B2 (en) Method for producing isobutylene-based polymer having isopropenyl group
JPH08208742A (en) Removal of metallic contaminant
JPH03197509A (en) Production and separation of chlorinated polydiene
JPH0873517A (en) Method for isolating isobutylene polymer
US6737538B2 (en) Purification of silicone oil
JPH07292038A (en) Production of isobutylene polymer with functional terminal group
JPS58108208A (en) Isobutylene-triene copolymer and manufacture