JPH11276992A - Solar radiation shielding film and its production - Google Patents

Solar radiation shielding film and its production

Info

Publication number
JPH11276992A
JPH11276992A JP10043298A JP10043298A JPH11276992A JP H11276992 A JPH11276992 A JP H11276992A JP 10043298 A JP10043298 A JP 10043298A JP 10043298 A JP10043298 A JP 10043298A JP H11276992 A JPH11276992 A JP H11276992A
Authority
JP
Japan
Prior art keywords
rays
fine particles
oxide
solar shading
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10043298A
Other languages
Japanese (ja)
Inventor
Nobuko Takahashi
伸子 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP10043298A priority Critical patent/JPH11276992A/en
Publication of JPH11276992A publication Critical patent/JPH11276992A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a solar radiation shielding film being transparent and also excellent, even though the film is formed at a relatively lower temperature, and to provide the solar radiation shielding film capable of forming a coating on a large area and being excellent in mass- productivity and the cost, and its production method. SOLUTION: The solar radiation shielding film is produced by applying a solution incorporating inorganic fine particles on a base and irradiating the coating film with active energy rays. The inorganic fine particles are fine oxide particles having 1 nm-500 nm particle sizes, for example, one or more kinds of fine particles selected from indium tin oxide, aluminum zinc oxide, zinc oxide, titanium oxide fine particles and cerium oxide. Electromagnetic wave rays such as infra-red rays, visible rays, ultraviolet rays, X rays, and particle beams such as electron beams, ion beams, neutron beams, and α-rays, are used as the active energy rays.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス、プラスチ
ックスその他の各種日射遮蔽機能を必要とする基材に適
用可能な日射遮蔽膜及びその形成方法に関する。より詳
しくは、無機微粒子を含有する溶液を基体上に塗布し、
この塗布膜に活性エネルギー線を照射して製造される日
射遮蔽膜及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar shading film applicable to glass, plastics, and other substrates requiring various solar shading functions, and a method of forming the same. More specifically, a solution containing inorganic fine particles is applied on a substrate,
The present invention relates to a solar shading film manufactured by irradiating an active energy ray to the coating film and a manufacturing method thereof.

【0002】[0002]

【従来の技術】太陽光は、近赤外光、可視光、紫外光の
3種に大きく分けることができる。近赤外光(熱線)は
熱エネルギーとして人体に感じる波長領域であり、夏季
の室内温度上昇の原因となる光線である。可視光は、人
間の肉眼に認識される領域の光線である。紫外光は、皮
膚癌の発生等人体へ悪影響を及ぼすことが指摘されてい
る光線である。
2. Description of the Related Art Sunlight can be broadly classified into three types: near-infrared light, visible light, and ultraviolet light. Near-infrared light (heat ray) is a wavelength region that is perceived by the human body as heat energy, and is a light ray that causes a rise in indoor temperature in summer. Visible light is a light ray in an area recognized by the naked eye of a human. Ultraviolet light is a light beam that has been pointed out to have an adverse effect on the human body, such as the occurrence of skin cancer.

【0003】従来、太陽光のこれらの領域のいずれか或
いは全部の領域の光線を遮蔽するための日射遮蔽膜が知
られている。日射遮蔽膜に使用されている材料には、貴
金属(Au、Ag、Cu)や、窒化チタン、アルミニウ
ムなどのような伝導電子を多量にもつ材料が知られてい
る。日射遮蔽機能はこれら伝導電子のプラズモンによる
反射を主として利用している。これらの材料では、近赤
外光領域の光以外に可視光領域の光も同時に反射もしく
は吸収する性質があるので、建材、乗り物、電話ボック
ス等に使用する透明基材に適用する場合には可視光領域
の透過率が低下する。
Heretofore, there has been known a solar shading film for blocking light rays in any or all of these regions of sunlight. As a material used for the solar shading film, a material having a large amount of conduction electrons, such as a noble metal (Au, Ag, Cu), titanium nitride, or aluminum is known. The solar shading function mainly utilizes the reflection of these conduction electrons by plasmons. These materials have the property of simultaneously reflecting or absorbing light in the visible light region in addition to light in the near-infrared light region, so when applied to transparent base materials used in building materials, vehicles, telephone boxes, etc. The transmittance of the light region decreases.

【0004】近年、可視光透明性があり、かつ日射遮蔽
機能をもつ材料として各種酸化物材料が検討されてい
る。例えばインジウム錫酸化物(ITO)、アルミニウ
ム添加酸化亜鉛(AZO)、酸化チタン、酸化亜鉛、酸
化セリウム、酸化ルテニウムが知られている。
[0004] In recent years, various oxide materials have been studied as materials having transparency to visible light and a function of shielding sunlight. For example, indium tin oxide (ITO), aluminum-added zinc oxide (AZO), titanium oxide, zinc oxide, cerium oxide, and ruthenium oxide are known.

【0005】また、日射遮蔽膜として可視光領域におい
て、その透過率を制御することで窓ガラス等の透明基材
にプライバシー保護機能を持たせる使用例も知られてい
る。
[0005] Further, there is also known a use example in which a transparent base material such as a window glass is provided with a privacy protection function by controlling the transmittance in a visible light region as a solar shading film.

【0006】[0006]

【発明が解決しようとする課題】前記従来の各種日射遮
蔽機能をもつ材料を用いた膜の形成方法には、主に、蒸
着法、塗布法の2つの方法に大別される。蒸着法では、
金属あるいは金属酸化物材料の真空蒸着法、或いはスパ
ッタリング法などが知られている。塗布法では、金属ア
ルコキシドの加水分解と重縮合反応利用するゾル−ゲル
法により基体上に金属酸化物薄膜を形成する方法、又は
金属或いは金属酸化物微粒子を有機バインダー中に分散
させた微粒子溶液を塗布する方法が知られている。
The above-mentioned conventional methods of forming a film using various materials having a function of shielding solar radiation are roughly classified into two methods: a vapor deposition method and a coating method. In the evaporation method,
A vacuum evaporation method or a sputtering method of a metal or metal oxide material is known. In the coating method, a method of forming a metal oxide thin film on a substrate by a sol-gel method utilizing hydrolysis and polycondensation reaction of a metal alkoxide, or a fine particle solution in which metal or metal oxide fine particles are dispersed in an organic binder is used. A method of applying is known.

【0007】しかし、これらの従来技術は、前記蒸着法
では比較的高度な真空を要するため製造コストが高く、
また、量産性に難点があった。前記塗布法では、ゾル−
ゲル法の場合、一般にコーティング液となるゾル液の反
応性が高く、不安定なため、塗布法の利点を生かした製
品の開発、例えば大面積の塗布などが行えない、また原
材料のコストが高いという難点があった。
However, these prior arts require a relatively high vacuum in the above-mentioned vapor deposition method, so that the production cost is high,
In addition, there was a problem in mass productivity. In the coating method, sol-
In the case of the gel method, in general, the reactivity of a sol liquid serving as a coating liquid is high and unstable, so that it is not possible to develop a product utilizing the advantages of the coating method, for example, it is not possible to apply a large area, and the cost of raw materials is high. There was a drawback.

【0008】一方、微粒子溶液を用いる場合、コーティ
ング液が安定かつ比較的安価で、量産性に優れた方法で
あるが、バインダー成分や分散剤等の有機物が膜中に残
存するため、透明性・日射遮蔽性などの性能が蒸着法よ
り劣っていることなどの問題があった。
On the other hand, when a fine particle solution is used, the coating solution is stable and relatively inexpensive, and is excellent in mass productivity. However, since organic substances such as a binder component and a dispersant remain in the film, the transparency and the like are low. There is a problem that the performance such as solar shading is inferior to the vapor deposition method.

【0009】本発明は、これらの問題点を解決するため
になされたもので、比較的低温度の膜形成でも優れた日
射遮蔽性を持つ日射遮蔽膜の製造方法を提供することを
目的とする。特に、大面積の塗布形成が可能であり、量
産性・コスト面で優れた日射遮蔽膜とその製造方法を提
供することを目的とする。
The present invention has been made to solve these problems, and an object of the present invention is to provide a method of manufacturing a solar shading film having excellent solar shading properties even when a film is formed at a relatively low temperature. . In particular, it is an object of the present invention to provide a solar shading film which can be formed in a large area and is excellent in mass productivity and cost, and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに本発明者等が鋭意検討を行った結果、無機微粒子を
主成分とする塗布膜に対して活性エネルギー線照射を行
うことにより、微粒子塗布膜でも優れた日射遮蔽膜を得
られることを知見し、本発明に至ったものである。
Means for Solving the Problems As a result of intensive studies by the present inventors in order to achieve the above object, the present inventors have found that a coating film containing inorganic fine particles as a main component is irradiated with active energy rays. The present inventors have found that an excellent solar shading film can be obtained even with a fine particle coating film, and have reached the present invention.

【0011】即ち、本発明の日射遮蔽膜の製造方法およ
びその日射遮蔽膜は、無機微粒子を含有する溶液を基体
上に塗布し、この塗布膜に活性エネルギー線を照射する
こと、およびこのようにして得られた日射遮蔽膜である
ことを特徴とする。
That is, the method for producing a solar shading film of the present invention and the solar shading film are provided by applying a solution containing inorganic fine particles onto a substrate and irradiating the coated film with active energy rays. It is characterized by being a solar shading film obtained by the above method.

【0012】本発明の重要な特徴は、上記塗布膜に活性
エネルギー線を照射することにより、日射遮蔽性発現を
阻害している因子を減らすことにある。詳述すると、活
性エネルギー線により塗布膜中の残留有機物が減少する
ことにより、膜の無機微粒子の純度が上がり、無機微粒
子が本来持ち合わせている日射遮蔽性により近づくこと
である。
An important feature of the present invention is that by irradiating the above-mentioned coating film with an active energy ray, a factor which inhibits the onset of solar shading properties is reduced. More specifically, the purity of the inorganic fine particles of the film is increased by reducing the amount of organic substances remaining in the coating film due to the active energy rays, and the inorganic fine particles are closer to the solar shading property originally provided.

【0013】[0013]

【発明の実施の形態】ここで、日射遮蔽膜が形成される
基体としては、特に限定する必要はなく、ガラス、金
属、プラスチック、紙、木材等の板状のもの、フィルム
状のもの、或いは成形体などを用いることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Here, the substrate on which the solar shading film is formed is not particularly limited, and may be a plate-like material such as glass, metal, plastic, paper, wood, or the like, or a film-like material. A molded article or the like can be used.

【0014】本発明においては、まず上記基体に無機微
粒子溶液が塗布される。この場合、無機微粒子は特に限
定されないが、例えばインジウム錫酸化物、アルミニウ
ム亜鉛酸化物、酸化亜鉛、酸化チタン微粒子、酸化セリ
ウム、等の金属酸化物などが挙げられるが、塗布膜の透
明性の点から、その粒子径が1nm〜500nmの範囲
である方が好ましい。無機微粒子溶液の溶媒としては、
基体上に塗布したのち、除去させる必要があるために、
揮発性の溶媒が好ましいが、特に限定されない。例え
ば、エチルアルコール、メチルアルコール、iso−プ
ロピルアルコール、n−プロピルアルコール、n−ブト
キシアルコール、sec−ブトキシアルコール、ter
t−ブトキシアルコール等のアルコール類;水;酢酸エ
チル、酢酸メチル、2−メトキシ酢酸エチルなどの酢酸
エステル類;、アセトン、メチルエチルケトン、メチル
イソブチルケトンなどのケトン類;エチレングリコー
ル、ジエチレングリコール、ポリエチレングリコール等
のエチレングリコール類;エチレングリコールモノエチ
ルエーテル等のエチレングリコールアルキルエーテル
類、テトラヒドロフランなどのエーテル類、ジメチルフ
ォルムアミド、ジメチルスルフォキシド、キシレン、ク
ロロベンゼン、ジオキサン、酢酸イソアミルなどが挙げ
られる。
In the present invention, first, an inorganic fine particle solution is applied to the above substrate. In this case, the inorganic fine particles are not particularly limited, and include, for example, metal oxides such as indium tin oxide, aluminum zinc oxide, zinc oxide, titanium oxide fine particles, cerium oxide, and the like. Therefore, the particle diameter is preferably in the range of 1 nm to 500 nm. As a solvent for the inorganic fine particle solution,
After applying on the substrate, it is necessary to remove
Volatile solvents are preferred, but not particularly limited. For example, ethyl alcohol, methyl alcohol, iso-propyl alcohol, n-propyl alcohol, n-butoxy alcohol, sec-butoxy alcohol, ter
alcohols such as t-butoxy alcohol; water; acetates such as ethyl acetate, methyl acetate and ethyl 2-methoxyacetate; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; ethylene glycol, diethylene glycol, polyethylene glycol and the like. Ethylene glycols; ethylene glycol alkyl ethers such as ethylene glycol monoethyl ether; ethers such as tetrahydrofuran; dimethylformamide, dimethyl sulfoxide, xylene, chlorobenzene, dioxane, isoamyl acetate and the like.

【0015】また、無機微粒子溶液中には、必要に応じ
て分散剤やバインダー成分等の添加剤が入る。例えば、
シランカップリング剤、チタネート系カップリング剤、
アルミニウム系カップリング剤の各種カップリング剤、
アセチルアセトン、エチルアセチルアセトン等のベータ
ジケトン、その他、各種の界面活性剤やポリマー等が適
宜用いられる。
The inorganic fine particle solution may contain additives such as a dispersant and a binder component, if necessary. For example,
Silane coupling agents, titanate coupling agents,
Various coupling agents of aluminum-based coupling agents,
Beta diketones such as acetylacetone and ethylacetylacetone, as well as various surfactants and polymers are appropriately used.

【0016】上記無機微粒子溶液の基体上への塗布方法
としては、スプレー、ディップ、バーコーティング、ロ
ールコート、スピンコート、ブレードコート、フレキソ
印刷等の各種方法が可能である。また、オフセット、あ
るいはスクリーン印刷法でのパターン印刷法も採用可能
である。
Various methods such as spraying, dipping, bar coating, roll coating, spin coating, blade coating, and flexographic printing can be used as a method for applying the inorganic fine particle solution on the substrate. Also, a pattern printing method using an offset or screen printing method can be adopted.

【0017】この場合、塗布後に乾燥を行うと、溶剤の
蒸発とともに微粒子同士の接触が事前に促され、その後
の活性エネルギー線照射が効果的になるので好ましい。
加熱による乾燥を行う場合には、基体が耐熱性を有する
範囲であれば加熱温度は何度でもよい。例えば、プラス
チック基板を用いる場合などは、基材の材質を選択すれ
ば室温〜250℃が可能である。
In this case, it is preferable to carry out drying after the application, since the contact between the fine particles is promoted in advance with the evaporation of the solvent, and the subsequent irradiation with active energy rays becomes effective.
When drying by heating, the heating temperature may be any number as long as the substrate has heat resistance. For example, when a plastic substrate is used, the temperature can be from room temperature to 250 ° C. if the material of the base material is selected.

【0018】本発明において、このように基体上に無機
微粒子溶液を塗布した後、その塗膜に活性エネルギー線
照射を行う。
In the present invention, after the inorganic fine particle solution is applied on the substrate as described above, the coating film is irradiated with active energy rays.

【0019】上記活性エネルギー線としては、赤外線、
可視光線、紫外線、X線等の電磁波光線や電子線、イオ
ンビーム、中性子線、α線等の粒子線等が用いられる。
特に、電磁波の場合、低圧水銀ランプ、高圧水銀ラン
プ、超高圧水銀ランプ、キセノン水銀ランプ、エキシマ
ランプ、エキシマレーザ、高調波発生YAGレーザ、他
各種レーザを線源とする波長1nm〜400nmの紫外
線が残留有機物の除去には効果的であり、好ましい。ま
た、その中でも最大瞬間エネルギーの高いレーザ、例え
ばエキシマレーザ、高調波発生YAGレーザが効果的で
ある。これらのレーザを用いる場合の照射エネルギー密
度は、1〜1000mJ/cm2 の範囲であることが望
ましく、それより低い場合は残留有機物を除去すること
ができず、またそれより大きい場合は膜自身が破壊され
るために特性がでない。活性エネルギー線は、電子線で
もその効果を発揮する。この場合、線量は10〜100
0Mradの範囲であることが望ましい。
The active energy rays include infrared rays,
Electromagnetic rays such as visible rays, ultraviolet rays, and X-rays, electron beams, ion beams, neutron rays, and particle rays such as α rays are used.
In particular, in the case of electromagnetic waves, low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon mercury lamps, excimer lamps, excimer lasers, harmonic generation YAG lasers, and other lasers having a wavelength of 1 nm to 400 nm are used. It is effective and preferred for removing residual organic matter. Among them, a laser having a high maximum instantaneous energy, for example, an excimer laser or a harmonic generation YAG laser is effective. The irradiation energy density in the case of using these lasers is desirably in the range of 1 to 1000 mJ / cm 2. If the irradiation energy density is lower than this, the residual organic substances cannot be removed. No property to be destroyed. Active energy rays also exert their effects with electron beams. In this case, the dose is 10-100
It is desirable to be in the range of 0 Mrad.

【0020】[0020]

【実施例】以下、実施例により本発明を詳細に説明す
る。なお、以下の説明で示される事例は、本発明の範囲
内の好適例に過ぎない。従って、本発明が以下に示す実
施例にのみ限定されるものではない。
The present invention will be described below in detail with reference to examples. Note that the cases shown in the following description are merely preferred examples within the scope of the present invention. Therefore, the present invention is not limited only to the embodiments described below.

【0021】1.ITO微粒子溶液の調製 体積抵抗値(100kg/cm加圧時測定値)10-2Ω
cm、平均一次粒子径が20nmのITO微粒子(In
2 3 /SnO2 比は95/5重量比)5gを、イソプ
ロピルアルコール94gにアセチルアセトン1gを添加
した溶媒に均一に分散し、ITO微粒子溶液とした。
1. Preparation of ITO fine particle solution Volume resistance value (measured value under pressure of 100 kg / cm) 10 -2 Ω
cm, the average primary particle diameter is 20 nm.
5 g of a 2 O 3 / SnO 2 ratio (weight ratio: 95/5) was uniformly dispersed in a solvent obtained by adding 1 g of acetylacetone to 94 g of isopropyl alcohol to obtain an ITO fine particle solution.

【0022】2.膜形成方法 上述のように調製したITO微粒子溶液を、石英ウエハ
((株)信越化学製)上に、スピンコーティング法によ
り500rpmで5秒間、その後1500rpmで15
秒間の条件で、塗布した。これを循環式クリーンオーブ
ンにて120℃、30分の条件で予備乾燥した。
2. Film forming method The ITO fine particle solution prepared as described above was spin-coated on a quartz wafer (manufactured by Shin-Etsu Chemical Co., Ltd.) at 500 rpm for 5 seconds, and then at 1500 rpm for 15 seconds.
The coating was performed under the condition of seconds. This was preliminarily dried in a circulating clean oven at 120 ° C. for 30 minutes.

【0023】〔実施例1〕予備乾燥後に、エキシマレー
ザ(ラムダフィジックス社製)にて、波長308nm、
照射エネルギー密度200mJ/cm2 の紫外線を膜に
照射した。照射パルス数は1パルスである。以上のよう
にして、膜厚約1500Åの透明膜を得た。
Example 1 After pre-drying, a wavelength of 308 nm was measured with an excimer laser (manufactured by Lambda Physics).
The film was irradiated with ultraviolet light having an irradiation energy density of 200 mJ / cm 2 . The number of irradiation pulses is one pulse. As described above, a transparent film having a thickness of about 1500 ° was obtained.

【0024】〔実施例2〕予備乾燥後に、4倍高調波Y
AGレーザ(Photonics Industrie
s International社製)にて、波長26
6nm、照射エネルギー密度20mJ/cm2 の紫外線
を膜に照射した。照射パルス数は100パルスである。
以上のようにして、膜厚約1500Åの透明膜を得た。
Example 2 After preliminary drying, the fourth harmonic Y
AG Laser (Photonics Industry)
s International, Inc.)
The film was irradiated with ultraviolet rays having an irradiation energy density of 6 nm and an irradiation energy density of 20 mJ / cm 2 . The number of irradiation pulses is 100 pulses.
As described above, a transparent film having a thickness of about 1500 ° was obtained.

【0025】〔実施例3〕予備乾燥後に、電子線照射装
置Curetron(日新ハイボルテージ社製)にて、
線量100Mradの電子線を膜に照射した。以上のよ
うにして、膜厚約1500Åの透明膜を得た。
[Example 3] After preliminary drying, an electron beam irradiation apparatus Curetron (manufactured by Nissin High Voltage) was used.
The film was irradiated with an electron beam at a dose of 100 Mrad. As described above, a transparent film having a thickness of about 1500 ° was obtained.

【0026】〔比較例〕前記実施例において、各活性エ
ネルギー線による照射工程を除いた点以外は、前記実施
例の1.ITO微粒子溶液の調製および2.膜形成方法
と同一にして膜を形成した。
[Comparative Example] The same procedure as in Example 1 was applied except that the irradiation step with each active energy ray was omitted. 1. Preparation of ITO fine particle solution and A film was formed in the same manner as the film forming method.

【0027】3.日射遮蔽膜の評価 上述のようにして得られた前記各実施例及び比較例の日
射遮蔽膜について評価を行った。その際に、形成された
膜の340〜1800nmの分光透過率を測定し、JI
SR3106に従って日射透過率を算出した。その結果
を、下記の表1に示す。各実施例により得られた透明膜
の比抵抗はいずれも、10-2Ωcmの値を示した。
3. Evaluation of solar shading film The solar shading films of each of the above-mentioned Examples and Comparative Examples obtained as described above were evaluated. At that time, the spectral transmittance of the formed film at 340 to 1800 nm was measured,
The solar transmittance was calculated according to SR3106. The results are shown in Table 1 below. The specific resistance of each of the transparent films obtained in each example showed a value of 10 −2 Ωcm.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】本発明の製造方法による日射遮蔽膜は、
無機微粒子分散溶液を塗布する方法でありながら、活性
エネルギー線を照射することにより実用上充分な日射遮
蔽性を有することができる。すなわち、活性エネルギー
線照射により、導電性を低下させている残留有機物の除
去や、微粒子同士のつながりができ、膜の日射遮蔽性
が、無機微粒子が本来持ち合わせている特性に近づく。
従って、本発明によれば比較的低温度の膜形成でも優れ
た日射遮蔽性を示し、大面積の塗布形成が可能であり、
量産性・コスト面で優れた日射遮蔽膜を得ることができ
る。
The solar shading film according to the manufacturing method of the present invention is
Irradiation with an active energy ray can provide practically sufficient solar shading even though the method is a method of applying an inorganic fine particle dispersion. That is, by the irradiation of the active energy ray, the residual organic substances that have reduced the conductivity are removed and the fine particles are connected to each other, and the solar light shielding property of the film approaches the characteristic originally possessed by the inorganic fine particles.
Therefore, according to the present invention, even in the formation of a film at a relatively low temperature, it shows excellent solar shading properties, and a large-area coating can be formed.
A solar shading film excellent in mass productivity and cost can be obtained.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 無機微粒子を含有する溶液を基体上に塗
布し、この塗布膜に活性エネルギー線を照射することを
特徴とする日射遮蔽膜の製造方法。
1. A method for producing a solar shading film, comprising applying a solution containing inorganic fine particles onto a substrate and irradiating the applied film with active energy rays.
【請求項2】 前記無機微粒子が、粒子径1nm〜50
0nmの酸化物微粒子である請求項1記載の日射遮蔽膜
の製造方法。
2. The method according to claim 1, wherein the inorganic fine particles have a particle diameter of 1 nm to 50 nm.
The method for producing a solar shading film according to claim 1, wherein the fine particles are 0 nm oxide fine particles.
【請求項3】 前記酸化物微粒子が、インジウム錫酸化
物、アルミニウム亜鉛酸化物、酸化亜鉛、酸化チタン微
粒子および酸化セリウムから選ばれた1種類以上である
請求項2記載の日射遮蔽膜の製造方法。
3. The method for producing a solar shading film according to claim 2, wherein said oxide fine particles are at least one selected from indium tin oxide, aluminum zinc oxide, zinc oxide, titanium oxide fine particles and cerium oxide. .
【請求項4】 前記活性エネルギー線が、波長1nm〜
400nmの電磁波である請求項1、2または3記載の
日射遮蔽膜の製造方法。
4. The method according to claim 1, wherein the active energy ray has a wavelength of 1 nm or more.
The method for producing a solar shading film according to claim 1, 2 or 3, which is an electromagnetic wave of 400 nm.
【請求項5】 前記活性エネルギー線が、照射エネルギ
ー密度1〜1000mJ/cm2 の紫外線レーザ、照射
エネルギー密度1〜1000mJ/cm2 のエキシマレ
ーザ、照射エネルギー密度1〜1000mJ/cm2
高調波発生YAGレーザ、および線量10〜1000M
radの電子線から選ばれたものである請求項1、2、
3または4記載の日射遮蔽膜の製造方法。
Wherein said active energy rays, ultraviolet laser irradiation energy density 1~1000mJ / cm 2, the excimer laser irradiation energy density 1~1000mJ / cm 2, harmonic generation of the irradiation energy density 1~1000mJ / cm 2 YAG laser and dose 10-1000M
3. The method according to claim 1, wherein the rad electron beam is selected from the group consisting of:
5. The method for producing a solar shading film according to 3 or 4.
【請求項6】 請求項1、2、3、4または5記載の日
射遮蔽膜の製造方法により得られた日射遮蔽膜。
6. A solar shading film obtained by the method for producing a solar shading film according to claim 1, 2, 3, 4, or 5.
JP10043298A 1998-03-27 1998-03-27 Solar radiation shielding film and its production Pending JPH11276992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10043298A JPH11276992A (en) 1998-03-27 1998-03-27 Solar radiation shielding film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10043298A JPH11276992A (en) 1998-03-27 1998-03-27 Solar radiation shielding film and its production

Publications (1)

Publication Number Publication Date
JPH11276992A true JPH11276992A (en) 1999-10-12

Family

ID=14273799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10043298A Pending JPH11276992A (en) 1998-03-27 1998-03-27 Solar radiation shielding film and its production

Country Status (1)

Country Link
JP (1) JPH11276992A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518589A (en) * 2011-04-12 2014-07-31 ダイパワー Sintering method for metal oxide compounds
CN113667375A (en) * 2021-07-30 2021-11-19 哈尔滨工业大学 Nano rare earth oxide composite powder for shielding neutrons and gamma rays, composite material thereof and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518589A (en) * 2011-04-12 2014-07-31 ダイパワー Sintering method for metal oxide compounds
CN113667375A (en) * 2021-07-30 2021-11-19 哈尔滨工业大学 Nano rare earth oxide composite powder for shielding neutrons and gamma rays, composite material thereof and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4096277B2 (en) Solar shading material, coating liquid for solar shading film, and solar shading film
US4916014A (en) I.R. reflecting paint
EP0943587B1 (en) Near infra-red shielding single or multilayer film and a coating liquid for forming the same
EP0007224B1 (en) Heat wave-reflective or electrically conductive laminated structure
RU2470053C1 (en) Porous titanium dioxide coatings and methods of forming porous titanium dioxide coatings having improved photocatalytic activity
US7662440B2 (en) Process for marking object surfaces
AU597105B2 (en) Infrared reflecting composition for topical application to the skin
JP2000169765A (en) Coating solution for sunlight-shielding film and sunlight- shielding film obtained therefrom
JPH0841441A (en) Indium-tin oxide powder for shielding ultraviolet and near infrared rays, ultraviolet and near-infrared ray-shielding glass and production thereof
JP2009120835A (en) Transparent aqua-based nano sol-gel coating agent composition which does not lower transmittance of visible ray and solar light through transparent substrate and method for coating it
JP2003176132A (en) Antimony-tin oxide particle for shielding insolation, coating solution for forming insolation shielding film and insolation shielding film
JP2000239047A (en) Hydrophilic photocatalytic member
JP2005511292A (en) Infrared reflecting lacquer layer
JP3744188B2 (en) Heat ray shielding film forming coating solution and heat ray shielding film
JP2003151362A (en) Conductive film and manufacturing method of conductive film
JPH11276992A (en) Solar radiation shielding film and its production
JP2003215328A (en) Fine particles for sun protection, coating liquid for forming sun protection film containing the same and sun protection film
JP2010097728A (en) Method for forming transparent conductive film
JP5471825B2 (en) Heat ray reflective laminate and heat ray reflective layer forming coating solution
JP5726071B2 (en) Coating composition, film forming method, and article having the film
JP4290780B2 (en) Method for producing transparent conductive film
JP4200424B2 (en) Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading
KR102073880B1 (en) Coating composition for solar cell module and Solar cell module coated by using the same
Mohammad et al. Optical properties of cadmium stannate thin film prepared by pyrolytic process
JPH0770445A (en) Infra red rays cutting off membrane and forming material thereof