JPH11274008A - Electrolytic capacitor and manufacture thereof - Google Patents

Electrolytic capacitor and manufacture thereof

Info

Publication number
JPH11274008A
JPH11274008A JP7705898A JP7705898A JPH11274008A JP H11274008 A JPH11274008 A JP H11274008A JP 7705898 A JP7705898 A JP 7705898A JP 7705898 A JP7705898 A JP 7705898A JP H11274008 A JPH11274008 A JP H11274008A
Authority
JP
Japan
Prior art keywords
conductive polymer
porous body
solution
valve metal
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7705898A
Other languages
Japanese (ja)
Other versions
JP3991429B2 (en
Inventor
Emiko Igaki
恵美子 井垣
Takahiro Hamada
貴裕 濱田
Masakazu Tanahashi
正和 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP07705898A priority Critical patent/JP3991429B2/en
Publication of JPH11274008A publication Critical patent/JPH11274008A/en
Application granted granted Critical
Publication of JP3991429B2 publication Critical patent/JP3991429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic capacitor of high capacity achievement percentage by forming conductive polymer, which is a cathode electrolyte of an electrolytic capacitor, to be homogeneous as far as the inside of a hole at a minute part of a capacitor porous body. SOLUTION: A depression process is performed, when the inside of porous body is impregnated with polymerization solution which is used for forming a conductive high polymer layer at a capacitor porous body, so that the coverage percentage of a dielectric oxide film with the conductive high polymer is improved to provide a superior capacitor of high capacity generation percentage. Also before the solution impregnation, the surface of hole of the porous body is made wet with the solvent vapor of the solution or the solvent vapor of affinity with the solution, so that the coverage percentage of the dielectric oxide film with the conductive high polymer is improved to provide a superior electrolytic capacitor of high capacity generation percentage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアルミニウムやタン
タルなどの弁金属を用いた電解コンデンサおよびその製
造方法に関し、特に、陰極用電解質として導電性高分子
を用いた電解コンデンサおよびその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic capacitor using a valve metal such as aluminum or tantalum and a method for manufacturing the same, and more particularly to an electrolytic capacitor using a conductive polymer as a cathode electrolyte and a method for manufacturing the same. is there.

【0002】[0002]

【従来の技術】従来、アルミニウムやタンタルなどの弁
金属を用いた電解コンデンサは、弁金属多孔体を陽極と
し、弁金属の酸化物を誘電体層とし、陰極には電解質溶
液や無機固体電解質を用い、たとえばアルミニウム電解
コンデンサでは有機酸を含む有機溶媒等が陰極として用
いられ、タンタル電解コンデンサでは二酸化マンガン等
が陰極に用いられてきた。そして、それぞれ陽極、陰極
に接続するリード部を設け、外装を形成するのが一般的
であった。
2. Description of the Related Art Conventionally, an electrolytic capacitor using a valve metal such as aluminum or tantalum has a porous valve metal as an anode, an oxide of the valve metal as a dielectric layer, and a cathode as an electrolyte solution or an inorganic solid electrolyte. For example, in an aluminum electrolytic capacitor, an organic solvent containing an organic acid or the like has been used as a cathode, and in a tantalum electrolytic capacitor, manganese dioxide or the like has been used as a cathode. And it was common to provide the lead part connected to an anode and a cathode, respectively, and to form an exterior.

【0003】回路のデジタル化に対応して電子部品の高
周波応答性が要求され、電解コンデンサにおいても低抵
抗化による高周波応答性の向上が要求されている。この
ような状況の中で、電導度の良い導電性高分子を電解コ
ンデンサの陰極用固体電解質として用いることが検討さ
れ、開発されてきた。
[0003] In response to digitization of circuits, high-frequency response of electronic components is required, and improvement of high-frequency response is also required for electrolytic capacitors by lowering resistance. Under such circumstances, use of a conductive polymer having good conductivity as a solid electrolyte for a cathode of an electrolytic capacitor has been studied and developed.

【0004】導電性高分子の形成方法は大きく分けて電
解酸化重合法と化学酸化重合法とがある。前者の場合、
絶縁性の酸化皮膜上に直接電解酸化重合により導電性高
分子を形成することができない。そこで、酸化皮膜上に
予め導電性を有するプレコート層を形成した後、該プレ
コート層を電極として電解酸化重合により導電性高分子
を酸化皮膜上に形成する方法が提案されている。後者
は、モノマーの酸化剤による化学酸化重合により直接酸
化皮膜上に導電性高分子を形成する方法であり、量産性
に適しているため工業的によく用いられている。
[0004] The method of forming a conductive polymer is roughly classified into an electrolytic oxidation polymerization method and a chemical oxidation polymerization method. In the former case,
A conductive polymer cannot be formed directly on an insulating oxide film by electrolytic oxidation polymerization. Therefore, a method has been proposed in which after a conductive precoat layer is formed on an oxide film in advance, a conductive polymer is formed on the oxide film by electrolytic oxidation polymerization using the precoat layer as an electrode. The latter is a method of forming a conductive polymer directly on an oxide film by chemical oxidative polymerization using a monomer oxidizing agent, and is widely used industrially because it is suitable for mass production.

【0005】[0005]

【発明が解決しようとする課題】電解コンデンサは、そ
の構造上の特徴として多孔質な弁金属体の空孔表面に酸
化皮膜を形成し、その酸化皮膜を誘電体層とし、酸化皮
膜の内側に残った弁金属を陽極としている。従って、こ
のコンデンサに陰極電解質を形成する場合、非常に入り
組んだ多孔体の空孔表面を効率よく導電性高分子で覆う
必要がある。
The electrolytic capacitor is characterized in that an oxide film is formed on the surface of pores of a porous valve metal body, and the oxide film is used as a dielectric layer. The remaining valve metal is used as the anode. Therefore, when a cathode electrolyte is formed in this capacitor, it is necessary to efficiently cover the surface of the pores of a very complicated porous body with a conductive polymer.

【0006】電解酸化重合法により陰極電解質として導
電性高分子を形成した場合、絶縁性の酸化皮膜上に導電
性を有するプレコート層を予め形成する際に、プレコー
ト層を非常に入り組んだ多孔体空孔表面の酸化皮膜上に
均質に形成することが困難なため、結果として導電性高
分子も多孔体表面には形成できるが空孔内部まで均質に
形成できないという欠点を有していた。また、プレコー
ト層上に導電性高分子を形成する際にも、非常に入り組
んだ多孔体空孔の細部に至るまで均一に溶液を導入する
ことが困難なため、結果として導電性高分子を多孔体表
面から空孔細部まで均質に形成できないという欠点を有
していた。
When a conductive polymer is formed as a cathode electrolyte by electrolytic oxidation polymerization, when a precoat layer having conductivity is formed in advance on an insulating oxide film, a porous material having a very complicated precoat layer is formed. Since it is difficult to form uniformly on the oxide film on the surface of the pores, as a result, the conductive polymer can be formed on the surface of the porous body but cannot be formed uniformly inside the pores. Also, when forming a conductive polymer on the pre-coat layer, it is difficult to uniformly introduce the solution down to the details of the very complicated porous pores. It has a disadvantage that it cannot be formed uniformly from the body surface to the pore details.

【0007】一方、化学酸化重合法により陰極電解質と
して導電性高分子を形成した場合も、多孔体内部の空孔
細部にまで溶液を導入することが困難なため、均質に導
電性高分子を形成できないという欠点を有していた。
On the other hand, even when a conductive polymer is formed as a cathode electrolyte by the chemical oxidation polymerization method, it is difficult to introduce the solution into the pores inside the porous body, so that the conductive polymer is formed uniformly. There was a disadvantage that it could not be done.

【0008】すなわち、従来の電解酸化重合法、化学酸
化重合法いずれの場合においても、コンデンサ多孔体内
部の空孔細部にまで効率よく均質に導電性高分子を形成
し完全に容量を引き出すことが困難であった。この課題
に対し、導電性高分子を形成するに先立ち、予め誘電体
酸化皮膜上に界面活性剤層を形成し、空孔細部に至るま
での溶液導入を容易化することにより、空孔内への導電
性高分子の生成効率および均質性を高める方法が提案さ
れている(特開平3―64013号公報)。しかしなが
ら、この方法では、導電性高分子と誘電体酸化皮膜層の
間に界面活性剤層が残存するため、導電性高分子の誘電
体酸化皮膜との密着性が低く、形成した導電性高分子の
剥離によって容量出現率が低下するという課題を内在し
ている。
That is, in both of the conventional electrolytic oxidation polymerization method and chemical oxidation polymerization method, it is possible to efficiently and uniformly form a conductive polymer even in the fine pores inside the porous body of the capacitor and to completely draw out the capacity. It was difficult. In order to solve this problem, before forming the conductive polymer, a surfactant layer is formed on the dielectric oxide film in advance, and the solution is easily introduced into the pore details, thereby facilitating the introduction into the pores. There has been proposed a method for improving the generation efficiency and homogeneity of the conductive polymer (Japanese Patent Laid-Open No. 3-64013). However, in this method, since the surfactant layer remains between the conductive polymer and the dielectric oxide film layer, the adhesion of the conductive polymer to the dielectric oxide film is low, and the formed conductive polymer There is an inherent problem that the capacity appearance rate is reduced due to the peeling off.

【0009】以上のように、電解酸化重合法、化学酸化
重合法いずれの場合においても、コンデンサとしては本
来の容量を容易に出現することができないという課題が
残されていた。
As described above, in both the electrolytic oxidation polymerization method and the chemical oxidation polymerization method, there remains a problem that the original capacity of the capacitor cannot be easily obtained.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明にかかる電解コンデンサの製造法は、陽極が
弁金属の多孔体からなり、誘電体層が該弁金属の酸化物
皮膜層で、陰極用電解質が導電性高分子である電解コン
デンサの製造方法であって、前記導電性高分子が、モノ
マーを溶液中で化学酸化重合させて成る導電性ポリマー
であって、その形成方法が、前記モノマーと酸化剤とを
含む溶液中に誘電体層を形成した弁金属多孔体を浸漬す
ることにより多孔体内部および表面に該導電性高分子を
形成するものである電解コンデンサの製造方法におい
て、前記溶液中に弁金属多孔体を浸漬する際に、該溶液
を多孔体に減圧含浸させることを特徴とするものであ
る。これにより、弁金属多孔体内部の空孔細部に至るま
で全体に均質に重合反応用溶液を含浸させることがで
き、多孔体空孔表面全体に効率良く導電性高分子を形成
することができる。
In order to achieve the above object, a method for manufacturing an electrolytic capacitor according to the present invention is characterized in that the anode is made of a porous material of a valve metal, and the dielectric layer is an oxide film layer of the valve metal. A method for producing an electrolytic capacitor in which the cathode electrolyte is a conductive polymer, wherein the conductive polymer is a conductive polymer obtained by chemically oxidizing and polymerizing a monomer in a solution. A method for producing an electrolytic capacitor, wherein the conductive polymer is formed inside and on the surface of a porous body by immersing a valve metal porous body having a dielectric layer formed therein in a solution containing the monomer and an oxidizing agent. When the valve metal porous body is immersed in the solution, the porous body is impregnated with the solution under reduced pressure. Thereby, the polymerization reaction solution can be uniformly impregnated to the entire pores inside the valve metal porous body, and the conductive polymer can be efficiently formed on the entire porous body pore surface.

【0011】また、本発明にかかる電解コンデンサの製
造方法には、前記溶液に浸漬するに先立ち、前記溶液の
溶媒蒸気あるいは該溶液と親和性を有する溶媒の蒸気に
弁金属多孔体をさらすことにより、弁金属多孔体空孔内
部表面を前記溶媒で湿潤することを特徴とするものも含
む。これにより、重合反応溶液の多孔体空孔表面への濡
れ性が良化し、弁金属多孔体内部の空孔全体に速やかに
重合反応溶液を含浸させることができ、多孔体空孔表面
全体に効率良く導電性高分子を形成することができる。
Further, in the method for manufacturing an electrolytic capacitor according to the present invention, prior to immersion in the solution, the valve metal porous body is exposed to a solvent vapor of the solution or a solvent vapor having an affinity for the solution. And those in which the inner surface of the valve metal porous body pores is wetted with the solvent. As a result, the wettability of the polymerization reaction solution to the surface of the porous body pores is improved, and the entire pores inside the valve metal porous body can be quickly impregnated with the polymerization reaction solution, and the entire surface of the porous body pores is efficiently treated. A conductive polymer can be formed well.

【0012】また、本発明にかかる電解コンデンサの製
造方法は、前記導電性高分子の形成方法が、前記モノマ
ーを含む溶液中と酸化剤を含む溶液中とに、前記誘電体
層を形成した弁金属多孔体を交互に浸漬することによ
り、多孔体内部および表面に該導電性高分子を形成する
ものである電解コンデンサの製造方法において、前記溶
液のうち先に浸漬する溶液中に弁金属多孔体を浸漬する
際に、該溶液を多孔体に減圧含浸させることを特徴とす
るものである。これによっても同様の効果が得られ多孔
体空孔表面全体に効率良く導電性高分子を形成すること
ができる。
Further, in the method for manufacturing an electrolytic capacitor according to the present invention, the method for forming the conductive polymer may be such that the method comprises forming the dielectric layer in a solution containing the monomer and a solution containing the oxidizing agent. In a method for manufacturing an electrolytic capacitor in which the conductive polymer is formed inside and on the surface of a porous body by alternately immersing the porous metal body, the valve metal porous body is immersed in the solution to be immersed first among the above solutions. Is characterized by impregnating the porous body with the solution under reduced pressure when immersing the porous body. With this, the same effect can be obtained, and the conductive polymer can be efficiently formed on the entire surface of the porous pores.

【0013】また、本発明にかかる電解コンデンサの製
造方法には、前記溶液のうち先に浸漬する溶液中に弁金
属多孔体を浸漬する際に、浸漬するに先立ち、前記先に
浸漬する溶液の溶媒蒸気あるいは該溶液と親和性を有す
る溶媒の蒸気に弁金属多孔体をさらすことにより、弁金
属多孔体空孔内部表面を前記溶媒で湿潤することを特徴
とするものを含む。これによっても同様の効果が得られ
多孔体空孔表面全体に効率良く導電性高分子を形成する
ことができる。
Further, in the method for manufacturing an electrolytic capacitor according to the present invention, when the valve metal porous body is immersed in the solution to be immersed first among the above solutions, the immersion of the solution to be immersed before the immersion is performed before the immersion. By exposing the valve metal porous body to a solvent vapor or a solvent vapor having an affinity for the solution, the inner surface of the valve metal porous body pores is wetted with the solvent. With this, the same effect can be obtained, and the conductive polymer can be efficiently formed on the entire surface of the porous pores.

【0014】さらに、本発明にかかる電解コンデンサの
製造方法は、前記導電性高分子の形成方法が、前記モノ
マーを含む溶液中に、予め導電性を有するプレコート層
を誘電体層上に形成した弁金属多孔体を浸漬し、プレコ
ート層を電極としてモノマーを酸化重合することにより
多孔体内部および表面に該導電性高分子を形成するもの
である電解コンデンサの製造方法において、前記溶液中
に弁金属多孔体を浸漬し電解酸化重合する際に、前記溶
液を多孔体に減圧含浸させたのちに電解酸化重合処理を
施すことを特徴とするものである。また、前記溶液中に
弁金属多孔体を浸漬して電解酸化重合を施すに先立ち、
前記溶液の溶媒蒸気あるいは該溶液と親和性を有する溶
媒の蒸気に弁金属多孔体をさらすことにより、弁金属多
孔体空孔内部表面(プレコート層表面)を前記溶媒で湿
潤することを特徴とするものも含む。これにより、いず
れの場合も同様の効果が得られ、多孔体空孔表面全体に
効率良く導電性高分子を形成することができる。
Further, in the method for manufacturing an electrolytic capacitor according to the present invention, the method for forming a conductive polymer may include the step of forming a conductive pre-coat layer on a dielectric layer in advance in a solution containing the monomer. In a method for producing an electrolytic capacitor in which a porous metal is immersed and the conductive polymer is formed inside and on the surface of the porous body by oxidatively polymerizing a monomer using the precoat layer as an electrode, the valve metal porous material is contained in the solution. When the body is immersed and subjected to electrolytic oxidation polymerization, the porous body is impregnated with the solution under reduced pressure, and then subjected to electrolytic oxidation polymerization treatment. Prior to performing electrolytic oxidation polymerization by immersing the valve metal porous body in the solution,
By exposing the valve metal porous body to the solvent vapor of the solution or the vapor of a solvent having an affinity for the solution, the inner surface of the valve metal porous body pores (precoat layer surface) is wetted with the solvent. Including things. Thus, in each case, the same effect is obtained, and the conductive polymer can be efficiently formed on the entire surface of the porous pores.

【0015】また本発明には、上述の製造方法により製
造された電解コンデンサを含む。以上のように、いずれ
の方法においても弁金属多孔体の表面のみならず内部に
まで効率よく均質に導電性高分子を形成することができ
る。かつ、この製造方法で製造した場合、界面活性剤層
のような異物質を導電性高分子と誘電体酸化皮膜との間
に介在させることがないので、誘電体酸化皮膜と導電性
高分子との密着性が良好となる。結果として、容量出現
率の高いコンデンサを効率よく製造することができる。
Further, the present invention includes an electrolytic capacitor manufactured by the above-described manufacturing method. As described above, in any of the methods, the conductive polymer can be efficiently and uniformly formed not only on the surface of the valve metal porous body but also on the inside thereof. In addition, when manufactured by this manufacturing method, a foreign substance such as a surfactant layer is not interposed between the conductive polymer and the dielectric oxide film. Has good adhesion. As a result, a capacitor having a high capacitance appearance rate can be manufactured efficiently.

【0016】また本発明には、上述の製造方法を用いて
製造された電解コンデンサを含み、これにより、高容量
の電解コンデンサを提供することができる。
Further, the present invention includes an electrolytic capacitor manufactured by using the above-described manufacturing method, whereby a high-capacity electrolytic capacitor can be provided.

【0017】[0017]

【発明の実施の形態】本発明の電解コンデンサにおいて
は、陽極は弁金属多孔体とされており、弁金属は、好ま
しくは、アルミニウム又はタンタルが使用される。弁金
属多孔体には、外面に連通する多数の微細な空孔ないし
細孔を有している。
BEST MODE FOR CARRYING OUT THE INVENTION In the electrolytic capacitor of the present invention, the anode is a valve metal porous body, and the valve metal is preferably aluminum or tantalum. The valve metal porous body has a large number of fine holes or pores communicating with the outer surface.

【0018】陽極の例として、例えば、アルミニウムの
場合は、アルミニウム箔をエッチング処理して多数の小
孔を形成した後アルミニウム箔を捲回した多孔体もしく
は積層した多孔体であり、タンタルの場合は、タンタル
粉末から圧縮成形後焼結して、多孔体とされている。
As an example of the anode, for example, in the case of aluminum, a porous body obtained by forming a large number of small holes by etching an aluminum foil and then winding the aluminum foil, or in the case of tantalum, After compression molding from tantalum powder, it is sintered to form a porous body.

【0019】誘電体層は、その金属の表面に陽極酸化に
より形成されたその金属の薄い酸化皮膜が利用され、多
孔体の多数の微細な空孔の表面にも形成されている。
The dielectric layer uses a thin oxide film of the metal formed on the surface of the metal by anodic oxidation, and is also formed on the surface of a large number of fine holes in the porous body.

【0020】本発明において、陰極電解質には導電性高
分子材料が利用され、導電性高分子が誘電体酸化皮膜上
に形成される。この導電性高分子としては特に限定され
ないが、好ましくは、複素環式五員環化合物またはその
誘導体の導電性ポリマーが利用される。導電性ポリマー
に利用可能な複素環式五員環ポリマーを例示すると、ピ
ロール、チオフェン、3−アルキルチオフェン、イソチ
アナフテンなどのポリマーがある。
In the present invention, a conductive polymer material is used for the cathode electrolyte, and the conductive polymer is formed on the dielectric oxide film. The conductive polymer is not particularly limited, but preferably, a conductive polymer of a heterocyclic five-membered ring compound or a derivative thereof is used. Examples of the heterocyclic five-membered ring polymer that can be used for the conductive polymer include pyrrole, thiophene, 3-alkylthiophene, and isothianaphthene.

【0021】モノマーからの重合においては、本発明で
は、電解酸化重合法および化学酸化重合法が使用され
る。化学酸化重合法においては、モノマーに酸化剤を反
応させて導電性ポリマーにするが、個々で使用される酸
化剤には、過酸化水素、その他の過酸化物の他、3価の
鉄イオンなどの金属イオンが好適に使用される。
In the polymerization from a monomer, in the present invention, an electrolytic oxidation polymerization method and a chemical oxidation polymerization method are used. In the chemical oxidative polymerization method, a monomer is reacted with an oxidizing agent to form a conductive polymer. The oxidizing agent used individually includes hydrogen peroxide, other peroxides, and trivalent iron ions. Are preferably used.

【0022】化学酸化重合法においては、導電性ポリマ
ーの形成は、既に誘電体層を形成した弁金属多孔体を、
導電性高分子となるべきモノマーと重合用の酸化剤とを
含む溶液中に、浸漬して保持することにより、モノマー
が酸化剤により重合化して、弁金属多孔体誘電体上に導
電性ポリマーが形成される(以後、1液化学酸化重合法
と略す)。あるいは、既に誘電体層を形成した弁金属多
孔体を、導電性高分子となるべきモノマーを含む溶液
と、酸化重合用の酸化剤を含む溶液とに、交互に浸漬す
ることにより、モノマーが酸化剤により重合化して、弁
金属多孔体誘電体上に導電性ポリマーが形成される(以
後、2液化学酸化重合法と略す)。
In the chemical oxidation polymerization method, the conductive polymer is formed by removing the valve metal porous body on which the dielectric layer has already been formed,
By dipping and holding in a solution containing a monomer to be a conductive polymer and an oxidizing agent for polymerization, the monomer is polymerized by the oxidizing agent, and the conductive polymer is formed on the valve metal porous dielectric. (Hereinafter abbreviated as one-component chemical oxidative polymerization). Alternatively, the monomer is oxidized by alternately immersing the valve metal porous body on which the dielectric layer is already formed in a solution containing a monomer to be a conductive polymer and a solution containing an oxidizing agent for oxidative polymerization. The polymer is polymerized by the agent to form a conductive polymer on the valve metal porous dielectric (hereinafter abbreviated as a two-part chemical oxidation polymerization method).

【0023】電解酸化重合法においては、導電性ポリマ
ーの形成は、既に誘電体層を形成した弁金属多孔体の誘
電体皮膜上に二酸化マンガンや導電性高分子などからな
るのプレコート層を形成した後、モノマーを含む溶液中
に弁金属多孔体を浸漬し、該溶液中でプレコート層を電
極としてモノマーを電解酸化重合化することにより、弁
金属多孔体誘電体上のプレコート層上に、導電性ポリマ
ーが形成される。
In the electrolytic oxidation polymerization method, a conductive polymer is formed by forming a pre-coat layer made of manganese dioxide, a conductive polymer, or the like on a dielectric film of a valve metal porous body on which a dielectric layer has already been formed. Thereafter, the valve metal porous body is immersed in a solution containing the monomer, and the monomer is electrolytically oxidized and polymerized using the precoat layer as an electrode in the solution to form a conductive material on the precoat layer on the valve metal porous dielectric. A polymer is formed.

【0024】ここでいずれの導電性高分子形成方法にお
いても、弁金属多孔体に含浸させる溶液(1液化学酸化
重合法においてはモノマーと酸化剤の混合溶液、2液化
学酸化重合法においては交互に浸漬する溶液のうち先に
浸漬する溶液、電解酸化重合法においてはモノマー溶
液)中に弁金属多孔体を浸漬した後、溶液ごと減圧して
弁金属多孔体の空孔細部にまで内部に溶液を含浸させる
ことが好ましい。この操作を1ないし複数回繰り返し、
導電性高分子を誘電体皮膜上に十分形成することによ
り、減圧処理を行わない従来の導電性高分子形成法に比
較して、多孔体表面から空孔細部に至るまで誘電体酸化
皮膜の導電性高分子による被覆率が向上する。これによ
り、従来法では多孔体の設計容量の7〜8割程度しか容
量が引き出せないのに対し、本発明の製造方法では静電
容量出現率が1割以上向上し、設計容量の9割以上の容
量が引き出せる。また、従来提案されている界面活性剤
層を介在させる手法の場合、初期的には9割以上の容量
出現率が達成できるが、熱処理等により導電性高分子が
誘電体皮膜上から剥離し、容量出現率が6〜7割程度に
低下する場合がある。一方、本発明の製造方法による電
解コンデンサの場合、熱処理等を行っても容量低下が比
較的少なく、容量出現率を8割以上確保できる。
In any of the methods for forming a conductive polymer, a solution for impregnating the valve metal porous body (a mixed solution of a monomer and an oxidizing agent in the one-component chemical oxidation polymerization method and an alternating solution in the two-component chemical oxidation polymerization method) is used. The valve metal porous body is immersed in the solution that is immersed first in the solution immersed in the solution, or the monomer solution in the electrolytic oxidation polymerization method. Is preferably impregnated. Repeat this operation one or more times,
By sufficiently forming the conductive polymer on the dielectric film, the conductivity of the dielectric oxide film from the surface of the porous body to the details of the pores can be reduced compared to the conventional method of forming a conductive polymer without decompression treatment. The coverage by the conductive polymer is improved. As a result, in the conventional method, only about 70 to 80% of the design capacity of the porous body can be extracted, whereas in the manufacturing method of the present invention, the capacitance appearance rate is improved by 10% or more, and 90% or more of the design capacity. Of capacity. In addition, in the case of a conventionally proposed method of interposing a surfactant layer, a capacity appearance rate of 90% or more can be achieved initially, but the conductive polymer peels off from the dielectric film by heat treatment or the like, The capacity appearance rate may decrease to about 60 to 70%. On the other hand, in the case of the electrolytic capacitor according to the manufacturing method of the present invention, even if heat treatment or the like is performed, the decrease in capacity is relatively small, and the capacity appearance rate can be secured to 80% or more.

【0025】また、好ましくは、該溶液の溶媒蒸気ある
いは該溶液と親和性を有する溶媒の蒸気で弁金属多孔体
の誘電体酸化皮膜上を湿潤させる方法も採用できる。こ
れにより、誘電体酸化皮膜と該溶液の親和性が高まり該
溶液が細孔深部にまで容易に浸透し、誘電体皮膜上全体
に導電性高分子を形成することができる。この溶媒とし
ては、たとえば反応溶液系が水溶液系であれば水が利用
でき、モノマーを含む溶液を含浸させる場合には、モノ
マーとの親和性が高いことから有機溶媒各種を用いるこ
とができる。場合によっては、モノマー蒸気で湿潤する
方法も利用できる。さらに、繰り返し導電性高分子形成
操作を行う場合も、この湿潤操作を施すことにより、先
に形成された導電性高分子上への該溶液の親和性が高ま
り、該溶液が細孔深部にまで容易に浸透し、誘電体皮膜
全体に十分量の導電性高分子を容易に形成することがで
きる。これにより、従来の導電性高分子形成法に比較し
て、誘電体酸化皮膜の導電性高分子による被覆率が向上
し、上述の方法と同様の効果が得られ、設計容量の9割
以上の容量が引き出せる。
Also, preferably, a method of wetting the dielectric oxide film of the valve metal porous body with the solvent vapor of the solution or the vapor of the solvent having an affinity for the solution can be adopted. As a result, the affinity between the dielectric oxide film and the solution is increased, and the solution easily penetrates into the deep part of the pores, so that a conductive polymer can be formed on the entire dielectric film. As this solvent, for example, water can be used if the reaction solution system is an aqueous solution system, and when impregnating with a solution containing a monomer, various organic solvents can be used because of its high affinity with the monomer. In some cases, a method of wetting with monomer vapor can also be used. Furthermore, even when the conductive polymer forming operation is repeatedly performed, by performing the wetting operation, the affinity of the solution on the conductive polymer previously formed is increased, and the solution is extended to the deep portion of the pores. It easily penetrates and a sufficient amount of conductive polymer can be easily formed on the entire dielectric film. As a result, as compared with the conventional conductive polymer forming method, the coverage of the dielectric oxide film with the conductive polymer is improved, and the same effect as the above-described method is obtained. We can draw capacity.

【0026】また、電解酸化重合法の場合に施すプレコ
ート層の形成においても、上述の減圧含浸法および溶媒
湿潤法を採用することができる。特にプレコート層が導
電性高分子層である場合、上記本発明である2つの化学
酸化重合法を用いて1ないし数回処理を行うことによ
り、多孔体表面から空孔細部に至るまでプレコート層を
均質に誘電体酸化皮膜上に形成することができ、その後
の電解酸化重合によるプレコート層上への導電性高分子
形成により、誘電体皮膜全体に導電性高分子を容易に形
成することが可能となる。これにより、プレコート層の
不均質さに起因する容量出現率の低下を抑制することが
でき、本発明の方法により9割以上の容量出現率を安定
に再現することができる。
In the formation of the precoat layer in the case of the electrolytic oxidation polymerization method, the above-described vacuum impregnation method and solvent wetting method can be adopted. In particular, when the precoat layer is a conductive polymer layer, the precoat layer is subjected to one or several treatments using the two chemical oxidation polymerization methods of the present invention to cover the precoat layer from the surface of the porous body to the fine pores. It can be formed uniformly on the dielectric oxide film, and then the conductive polymer can be easily formed on the entire dielectric film by forming the conductive polymer on the precoat layer by electrolytic oxidation polymerization. Become. As a result, it is possible to suppress a decrease in the capacity appearance rate due to the inhomogeneity of the precoat layer, and to stably reproduce the capacity appearance rate of 90% or more by the method of the present invention.

【0027】ここで、減圧含浸法における減圧度は、大
気圧以下で溶媒が沸騰しない程度の気圧範囲であれば特
に限定されるものではない。
Here, the degree of reduced pressure in the reduced pressure impregnation method is not particularly limited as long as the pressure is within the atmospheric pressure or lower and the solvent does not boil.

【0028】また湿潤に用いる溶媒の蒸気圧も特に限定
されるものではないが、溶媒の表面や内部に結露しない
程度に、その蒸気圧を制御することが好ましい。
The vapor pressure of the solvent used for wetting is not particularly limited, but it is preferable to control the vapor pressure so that dew does not form on the surface or inside of the solvent.

【0029】[0029]

【実施例】本例では、導電性高分子として、ポリピロー
ルを使用し、コンデンサ多孔体の弁金属としてはタンタ
ルを使用し、導電性高分子形成方法としては2液化学酸
化重合法を採用した。
EXAMPLE In this example, polypyrrole was used as the conductive polymer, tantalum was used as the valve metal of the porous body of the capacitor, and the two-component chemical oxidation polymerization method was used as the method of forming the conductive polymer.

【0030】図1および図2に本発明の実施例における
電解コンデンサの製造方法の概略を示す。
1 and 2 show an outline of a method for manufacturing an electrolytic capacitor according to an embodiment of the present invention.

【0031】タンタル粉末をリードとともに成形焼成し
て1.4mm×3.0mm×3.8mmの多孔体を形成
した後、タンタルの空孔表面をリン酸水溶液中にて化成
電圧30Vで化成して酸化皮膜誘電体層を形成し、コン
デンサ多孔体素子とした。
The tantalum powder is molded and fired together with the leads to form a porous body of 1.4 mm × 3.0 mm × 3.8 mm, and then the surface of the pores of tantalum is formed in a phosphoric acid aqueous solution at a formation voltage of 30 V. An oxide film dielectric layer was formed to obtain a porous capacitor element.

【0032】モノマー溶液は、イソプロピルアルコール
を10vol%含有する水溶液中に、ポリピロール形成
用のモノマーとして、ピロールを0.1mol/lとな
るように溶解させて、作製した。
The monomer solution was prepared by dissolving pyrrole as a monomer for forming polypyrrole at a concentration of 0.1 mol / l in an aqueous solution containing 10 vol% of isopropyl alcohol.

【0033】また酸化剤溶液は、イソプロピルアルコー
ルを10vol%含有する水溶液に、酸化剤として硫酸
鉄(III)を0.1mol/l、その他の添加物としてア
ルキルナフタレンスルホン酸イオンをNa塩の形で0.
05mol/lとなるように溶解させ作製した。
The oxidizing agent solution is prepared by adding 0.1 mol / l of iron (III) sulfate as an oxidizing agent to an aqueous solution containing 10 vol% of isopropyl alcohol, and alkylnaphthalenesulfonic acid ions as other additives in the form of Na salt. 0.
It was prepared by dissolving it at a concentration of 05 mol / l.

【0034】準備したコンデンサ素子の誘電体層上に、
以下の化学酸化重合法により導電性ポリマーを形成して
陰極とし、さらに外部に陰極の集電体としてのリード板
を設けて電解コンデンサとし、120Hzでの静電容量
を測定した。
On the dielectric layer of the prepared capacitor element,
A conductive polymer was formed by the following chemical oxidation polymerization method to form a cathode, and a lead plate as a current collector for the cathode was provided outside to form an electrolytic capacitor, and the capacitance at 120 Hz was measured.

【0035】(1)前記コンデンサ素子を、モノマー溶
液に浸漬した後、酸化剤溶液に浸漬し、コンデンサ素子
多孔体表面および空孔内部の誘電体酸化皮膜上に導電性
ポリマーを重合形成し、洗浄および乾燥を行った。さら
に、この操作を20回繰り返し、十分量の導電性高分子
をコンデンサ素子に形成した。
(1) The capacitor element is immersed in a monomer solution, then immersed in an oxidizing agent solution, and a conductive polymer is polymerized on the dielectric oxide film on the surface of the capacitor element porous body and in the pores, and is washed. And drying. This operation was repeated 20 times to form a sufficient amount of the conductive polymer on the capacitor element.

【0036】(2)前記コンデンサ素子を、モノマー溶
液に浸漬したのち、溶液ごと0.2気圧まで減圧処理を
行った。その後、酸化剤溶液に浸漬し、コンデンサ素子
多孔体表面および空孔内部の誘電体酸化皮膜上に導電性
ポリマーを重合形成し、洗浄および乾燥を行った。さら
に、この減圧および重合操作を20回繰り返し、十分量
の導電性高分子をコンデンサ素子に形成した。
(2) After the capacitor element was immersed in the monomer solution, the pressure of the entire solution was reduced to 0.2 atm. Thereafter, the resultant was immersed in an oxidizing agent solution to polymerize and form a conductive polymer on the surface of the capacitor element porous body and on the dielectric oxide film inside the pores, followed by washing and drying. Further, the pressure reduction and polymerization operations were repeated 20 times to form a sufficient amount of the conductive polymer on the capacitor element.

【0037】(3)前記コンデンサ素子を、室温でエタ
ノールの飽和蒸気圧中に2分間放置し、エタノール蒸気
で多孔体表面および空孔内部表面を湿潤させた。その
後、モノマー溶液に浸漬し、さらに酸化剤溶液に浸漬
し、コンデンサ素子多孔体表面および空孔内部の誘電体
酸化皮膜上に導電性ポリマーを重合形成し、洗浄および
乾燥を行った。さらに、この湿潤および重合操作を20
回繰り返し、十分量の導電性高分子をコンデンサ素子に
形成した。
(3) The capacitor element was left at room temperature in a saturated vapor pressure of ethanol for 2 minutes to wet the surface of the porous body and the inner surface of the pores with ethanol vapor. Thereafter, the resultant was immersed in a monomer solution and further immersed in an oxidizing agent solution to polymerize and form a conductive polymer on the surface of the capacitor element porous body and on the dielectric oxide film inside the pores, followed by washing and drying. In addition, this wetting and polymerization operation is
This was repeated twice to form a sufficient amount of the conductive polymer on the capacitor element.

【0038】(4)前記コンデンサ素子の誘電体酸化皮
膜上に界面活性剤を処理するために、界面活性剤として
のアルキル燐酸エステルの水溶液中にコンデンサ素子を
浸し、引き上げて乾燥した。その後、(1)と同様にし
て十分量の導電性高分子をコンデンサ素子に形成した。
(4) In order to treat a surfactant on the dielectric oxide film of the capacitor element, the capacitor element was immersed in an aqueous solution of an alkyl phosphate as a surfactant, pulled up and dried. Thereafter, a sufficient amount of conductive polymer was formed on the capacitor element in the same manner as in (1).

【0039】以上のようにして作製した電解コンデンサ
の120Hzにおける静電容量の値を表1に示す。
Table 1 shows the value of the capacitance at 120 Hz of the electrolytic capacitor manufactured as described above.

【0040】[0040]

【表1】 [Table 1]

【0041】表1から明かなように、従来例(1)に比
較して本発明の製造方法である(2)および(3)の方
法で導電性ポリマーを形成した場合の電解コンデンサで
は、容量出現率が高くなった。また、150℃1時間処
理し冷却した後の静電容量も表1に併記するが、従来例
(4)に比較して、本発明の製造方法である(2)およ
び(3)の方法で導電性高分子を形成した場合、容量低
下が少なく、良好な特性を維持できた。
As is clear from Table 1, the capacitance of the electrolytic capacitor in which the conductive polymer was formed by the methods (2) and (3) of the present invention was compared to the conventional example (1). Increased spawn rate. The capacitance after cooling at 150 ° C. for 1 hour is also shown in Table 1. However, compared to the conventional example (4), the methods (2) and (3) according to the production method of the present invention were compared. In the case where the conductive polymer was formed, a decrease in capacity was small and good characteristics could be maintained.

【0042】以上のように、本発明の製造方法によれ
ば、導電性高分子による誘電体酸化皮膜の被覆率を容易
に向上させることができ、かつ誘電体皮膜との密着性も
高く維持できるので、高容量の電解コンデンサを安定に
提供することができる。
As described above, according to the production method of the present invention, the coverage of the dielectric oxide film with the conductive polymer can be easily improved, and the adhesion to the dielectric film can be maintained high. Therefore, a high-capacity electrolytic capacitor can be stably provided.

【0043】本実施例においては、2液化学酸化重合法
を用いた場合の例を示したが、1液化学酸化重合法にお
いても、また、電解酸化重合法においても同様の効果が
得られた。
In this embodiment, an example in which the two-component chemical oxidation polymerization method is used is shown. However, the same effect was obtained in the one-liquid chemical oxidation polymerization method and in the electrolytic oxidation polymerization method. .

【0044】本実施例においては、モノマーとしてピロ
ールを用いた例を示したが、重合して導電性ポリマーと
なるものであればその種類は限定されるものでない。
In this embodiment, an example in which pyrrole is used as a monomer is shown, but the type is not limited as long as it is polymerized into a conductive polymer.

【0045】さらに、本実施例では、溶液を減圧含浸す
る際の気圧を0.2気圧として効果を確認したが、気圧
範囲は大気圧以下で溶液が沸騰しない範囲であれば、特
に限定されるものではない。
Further, in this example, the effect was confirmed by setting the pressure at the time of impregnating the solution under reduced pressure to 0.2 atm. However, the pressure range is not particularly limited as long as the solution does not boil below the atmospheric pressure. Not something.

【0046】また、本実施例においては、湿潤処理をエ
タノール蒸気で行ったが、含浸させる溶液の溶媒蒸気あ
るいは該溶液との親和性を有する各種の溶媒蒸気で同様
の効果が確認された。
Further, in this example, the wet treatment was carried out with ethanol vapor, but the same effect was confirmed with the solvent vapor of the solution to be impregnated or various solvent vapors having an affinity for the solution.

【0047】また、酸化剤溶液およびモノマー溶液にコ
ンデンサ素子を交互に浸漬する場合、酸化剤溶液および
モノマー溶液のうちどちらに先に浸漬するかは問わな
い。
When the capacitor element is alternately immersed in the oxidizing agent solution and the monomer solution, it does not matter which of the oxidizing agent solution and the monomer solution is immersed first.

【0048】また、本実施例においてはタンタル電解コ
ンデンサについて示したが、アルミ電解コンデンサにも
同様に適用できる。
In this embodiment, a tantalum electrolytic capacitor is described, but the present invention can be similarly applied to an aluminum electrolytic capacitor.

【0049】[0049]

【発明の効果】以上のように、本発明によれば、溶液含
浸の際に減圧含浸法を用いることにより、導電性高分子
による誘電体酸化皮膜の被覆率を向上させ、容量出現率
の高い優れた電解コンデンサを提供できる。
As described above, according to the present invention, the coverage of the dielectric oxide film with the conductive polymer is improved by using the reduced pressure impregnation method during the solution impregnation, and the capacitance appearance rate is increased. An excellent electrolytic capacitor can be provided.

【0050】また、本発明によれば、溶液含浸に先立
ち、溶液の溶媒蒸気あるいは該溶液と親和性を有する溶
媒蒸気で予め多孔体空孔表面を湿潤させることにより、
導電性高分子による誘電体酸化皮膜の被覆率を向上さ
せ、容量出現率の高い優れた電解コンデンサを提供でき
る。
According to the present invention, prior to the impregnation of the solution, the surface of the porous pores is wetted with the solvent vapor of the solution or a solvent vapor having an affinity for the solution in advance.
It is possible to improve the coverage of the dielectric oxide film with the conductive polymer and provide an excellent electrolytic capacitor having a high capacitance appearance rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における電解コンデンサの製
造方法の概略を示す図
FIG. 1 is a diagram schematically illustrating a method for manufacturing an electrolytic capacitor according to an embodiment of the present invention.

【図2】本発明の一実施例における電解コンデンサの製
造方法の概略を示す図
FIG. 2 is a diagram schematically illustrating a method for manufacturing an electrolytic capacitor according to an embodiment of the present invention.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 陽極が弁金属の多孔体からなり、誘電体
層が該弁金属の酸化物皮膜層で、陰極用電解質が導電性
高分子である電解コンデンサの製造方法において、 前記導電性高分子が、モノマーを溶液中で化学酸化重合
させて成る導電性ポリマーであって、その形成方法が、
前記モノマーと酸化剤とを含む溶液中に誘電体層を形成
した弁金属多孔体を浸漬することにより多孔体内部およ
び表面に該導電性高分子を形成するものである電解コン
デンサの製造方法において、 前記導電性高分子の形成方法が、前記溶液中に弁金属多
孔体を浸漬する際に、該溶液を多孔体中に減圧含浸させ
ることを特徴とする電解コンデンサの製造方法。
1. A method for manufacturing an electrolytic capacitor in which an anode is formed of a valve metal porous body, a dielectric layer is an oxide film layer of the valve metal, and a cathode electrolyte is a conductive polymer. The molecule is a conductive polymer formed by chemically oxidizing and polymerizing a monomer in a solution.
A method for manufacturing an electrolytic capacitor, wherein the conductive polymer is formed inside and on the surface of a porous body by immersing a valve metal porous body having a dielectric layer in a solution containing the monomer and the oxidizing agent, The method of manufacturing an electrolytic capacitor, wherein the method of forming the conductive polymer comprises, when immersing the porous valve metal body in the solution, impregnating the porous body with the solution under reduced pressure.
【請求項2】 陽極が弁金属の多孔体からなり、誘電体
層が該弁金属の酸化物皮膜層で、陰極用電解質が導電性
高分子である電解コンデンサの製造方法において、 前記導電性高分子が、モノマーを溶液中で化学酸化重合
させて成る導電性ポリマーであって、その形成方法が、
前記モノマーと酸化剤とを含む溶液中に誘電体層を形成
した弁金属多孔体を浸漬することにより多孔体内部およ
び表面に該導電性高分子を形成するものである電解コン
デンサの製造方法において、 前記導電性高分子の形成方法が、前記溶液に浸漬するに
先立ち、前記溶液の溶媒蒸気あるいは該溶液と親和性を
有する溶媒の蒸気に弁金属多孔体をさらすことにより、
弁金属多孔体空孔内部表面を前記溶媒で湿潤することを
特徴とする電解コンデンサの製造方法。
2. The method of manufacturing an electrolytic capacitor, wherein the anode is made of a valve metal porous material, the dielectric layer is an oxide film layer of the valve metal, and the cathode electrolyte is a conductive polymer. The molecule is a conductive polymer formed by chemically oxidizing and polymerizing a monomer in a solution.
A method for manufacturing an electrolytic capacitor, wherein the conductive polymer is formed inside and on the surface of a porous body by immersing a valve metal porous body having a dielectric layer in a solution containing the monomer and the oxidizing agent, The method of forming the conductive polymer, prior to immersion in the solution, by exposing the valve metal porous body to a solvent vapor of the solution or a solvent vapor having an affinity for the solution,
A method for producing an electrolytic capacitor, comprising wetting the inner surface of a porous valve metal body with the solvent.
【請求項3】 陽極が弁金属の多孔体からなり、誘電体
層が該弁金属の酸化物皮膜層で、陰極用電解質が導電性
高分子である電解コンデンサの製造方法において、 前記導電性高分子が、モノマーを溶液中で化学酸化重合
させて成る導電性ポリマーであって、その形成方法が、
前記モノマーを含む溶液中と酸化剤を含む溶液中とに、
前記誘電体層を形成した弁金属多孔体を交互に浸漬する
ことにより、多孔体内部および表面に該導電性高分子を
形成するものである電解コンデンサの製造方法におい
て、 前記導電性高分子の形成方法が、前記溶液のうち先に浸
漬する溶液中に弁金属多孔体を浸漬する際に、該溶液を
多孔体中に減圧含浸させることを特徴とする電解コンデ
ンサの製造方法。
3. The method of manufacturing an electrolytic capacitor, wherein the anode comprises a valve metal porous body, the dielectric layer is an oxide film layer of the valve metal, and the cathode electrolyte is a conductive polymer. The molecule is a conductive polymer formed by chemically oxidizing and polymerizing a monomer in a solution.
In the solution containing the monomer and the solution containing the oxidizing agent,
The method of manufacturing an electrolytic capacitor, wherein the conductive polymer is formed inside and on the surface of the porous body by alternately immersing the valve metal porous body having the dielectric layer formed thereon, wherein the conductive polymer is formed. A method for producing an electrolytic capacitor, characterized in that, when immersing a valve metal porous body in a solution to be immersed first among the above-mentioned solutions, the solution is impregnated in the porous body under reduced pressure.
【請求項4】 陽極が弁金属の多孔体からなり、誘電体
層が該弁金属の酸化物皮膜層で、陰極用電解質が導電性
高分子である電解コンデンサの製造方法において、 前記導電性高分子が、モノマーを溶液中で化学酸化重合
させて成る導電性ポリマーであって、その形成方法が、
前記モノマーを含む溶液中と酸化剤を含む溶液中とに、
前記誘電体層を形成した弁金属多孔体を交互に浸漬する
ことにより、多孔体内部および表面に該導電性高分子を
形成するものである電解コンデンサの製造方法におい
て、 前記導電性高分子の形成方法が、前記溶液のうち先に浸
漬する溶液中に弁金属多孔体を浸漬する際に、前記先に
浸漬する溶液に浸漬するに先立ち、前記先に浸漬する溶
液の溶媒蒸気あるいは該溶液と親和性を有する溶媒の蒸
気に弁金属多孔体をさらすことにより、弁金属多孔体空
孔内部表面を前記溶媒で湿潤することを特徴とする電解
コンデンサの製造方法。
4. The method of manufacturing an electrolytic capacitor, wherein the anode comprises a valve metal porous body, the dielectric layer is an oxide film layer of the valve metal, and the cathode electrolyte is a conductive polymer. The molecule is a conductive polymer formed by chemically oxidizing and polymerizing a monomer in a solution.
In the solution containing the monomer and the solution containing the oxidizing agent,
The method of manufacturing an electrolytic capacitor, wherein the conductive polymer is formed inside and on the surface of the porous body by alternately immersing the valve metal porous body having the dielectric layer formed thereon, wherein the conductive polymer is formed. In the method, when the valve metal porous body is immersed in the solution to be immersed first among the above solutions, prior to immersion in the solution to be immersed before, the solvent vapor of the solution to be immersed first or the affinity to the solution is applied. A method for manufacturing an electrolytic capacitor, comprising exposing a porous body of a valve metal to vapor of a solvent having a property to wet the inner surface of the pores of the valve metal porous body with the solvent.
【請求項5】 前記導電性高分子を形成する操作を1な
いし複数回繰り返すことを特徴とする請求項1から4い
ずれかに記載の電解コンデンサの製造方法。
5. The method for manufacturing an electrolytic capacitor according to claim 1, wherein the operation of forming the conductive polymer is repeated one or more times.
【請求項6】 陽極が弁金属の多孔体からなり、誘電体
層が該弁金属の酸化物皮膜層で、陰極用電解質が導電性
高分子である電解コンデンサの製造方法において、 前記導電性高分子が、モノマーを溶液中で電解酸化重合
させて成る導電性ポリマーであって、その形成方法が、
前記モノマーを含む溶液中に、予め導電性を有するプレ
コート層を誘電体層上に形成した弁金属多孔体を浸漬
し、プレコート層を電極としてモノマーを酸化重合する
ことにより多孔体内部および表面に該導電性高分子を形
成するものである電解コンデンサの製造方法において、 前記導電性高分子の形成方法が、前記溶液中に弁金属多
孔体を浸漬し電解酸化重合する際に、前記溶液を多孔体
に減圧含浸させたのちに電解酸化重合処理を施すことを
特徴とする電解コンデンサの製造方法。
6. A method for manufacturing an electrolytic capacitor in which an anode is made of a valve metal porous body, a dielectric layer is an oxide film layer of the valve metal, and a cathode electrolyte is a conductive polymer. The molecule is a conductive polymer obtained by electrolytically oxidizing and polymerizing a monomer in a solution.
In a solution containing the monomer, a valve metal porous body in which a pre-coat layer having conductivity is formed in advance on a dielectric layer is immersed, and the monomer is oxidized and polymerized using the pre-coat layer as an electrode to form the inside and the surface of the porous body. In a method for manufacturing an electrolytic capacitor that forms a conductive polymer, the method for forming a conductive polymer includes immersing a valve metal porous body in the solution and performing electrolytic oxidative polymerization. A method for producing an electrolytic capacitor, comprising: performing impregnation under reduced pressure followed by electrolytic oxidation polymerization treatment.
【請求項7】 陽極が弁金属の多孔体からなり、誘電体
層が該弁金属の酸化物皮膜層で、陰極用電解質が導電性
高分子である電解コンデンサの製造方法において、 前記導電性高分子が、モノマーを溶液中で電解酸化重合
させて成る導電性ポリマーであって、その形成方法が、
前記モノマーを含む溶液中に、予め導電性を有するプレ
コート層を誘電体層上に形成した弁金属多孔体を浸漬
し、プレコート層を電極としてモノマーを酸化重合する
ことにより多孔体内部および表面に該導電性高分子を形
成するものである電解コンデンサの製造方法において、 前記導電性高分子の形成方法が、前記溶液中に弁金属多
孔体を浸漬して電解酸化重合を施すに先立ち、前記溶液
の溶媒蒸気あるいは該溶液と親和性を有する溶媒の蒸気
に弁金属多孔体をさらすことにより、弁金属多孔体空孔
内部表面を前記溶媒で湿潤することを特徴とする電解コ
ンデンサの製造方法。
7. A method for manufacturing an electrolytic capacitor in which an anode is made of a valve metal porous body, a dielectric layer is an oxide film layer of the valve metal, and a cathode electrolyte is a conductive polymer. The molecule is a conductive polymer obtained by electrolytically oxidizing and polymerizing a monomer in a solution.
In a solution containing the monomer, a valve metal porous body in which a pre-coat layer having conductivity is formed in advance on a dielectric layer is immersed, and the monomer is oxidized and polymerized using the pre-coat layer as an electrode to form the inside and the surface of the porous body. In a method for producing an electrolytic capacitor that forms a conductive polymer, the method for forming the conductive polymer is performed before immersing the valve metal porous body in the solution to perform electrolytic oxidation polymerization. A method for manufacturing an electrolytic capacitor, comprising exposing a valve metal porous body to a solvent vapor or a solvent vapor having an affinity for the solution to wet the inner surface of the valve metal porous body pores with the solvent.
【請求項8】 前記プレコート層が導電性高分子からな
り、その形成方法が請求項1ないし4いずれかに記載の
方法である請求項6または7記載の電解コンデンサの製
造方法。
8. The method for manufacturing an electrolytic capacitor according to claim 6, wherein the precoat layer is made of a conductive polymer, and the forming method is the method according to any one of claims 1 to 4.
【請求項9】 前記弁金属が、アルミニウム又はタンタ
ルである請求項1から8いずれかに記載の電解コンデン
サの製造方法。
9. The method according to claim 1, wherein the valve metal is aluminum or tantalum.
【請求項10】 請求項1から9いずれかに記載の製造
方法を用いて製造された電解コンデンサ。
10. An electrolytic capacitor manufactured by using the manufacturing method according to claim 1.
JP07705898A 1998-03-25 1998-03-25 Electrolytic capacitor and manufacturing method thereof Expired - Fee Related JP3991429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07705898A JP3991429B2 (en) 1998-03-25 1998-03-25 Electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07705898A JP3991429B2 (en) 1998-03-25 1998-03-25 Electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11274008A true JPH11274008A (en) 1999-10-08
JP3991429B2 JP3991429B2 (en) 2007-10-17

Family

ID=13623203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07705898A Expired - Fee Related JP3991429B2 (en) 1998-03-25 1998-03-25 Electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3991429B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1154449A2 (en) * 2000-05-11 2001-11-14 Nec Corporation Manufacturing method of solid electrolytic capacitor
JP2006269693A (en) * 2005-03-23 2006-10-05 Sanyo Electric Co Ltd Solid electrolytic capacitor and manufacturing method thereof
JP2007116028A (en) * 2005-10-24 2007-05-10 Showa Denko Kk Method for manufacturing solid electrolytic capacitor
JP2008270536A (en) * 2007-04-20 2008-11-06 Sanyo Electric Co Ltd Solid electrolytic capacitor and manufacturing method thereof
CN109778029A (en) * 2019-03-07 2019-05-21 上海交通大学 Rare-earth containing aluminium alloy anode material and its preparation method and application
EP4361320A1 (en) 2022-10-24 2024-05-01 Gramm Technik GmbH Electrochemical substitution under vacuum of oxide layers on light metals

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1154449A2 (en) * 2000-05-11 2001-11-14 Nec Corporation Manufacturing method of solid electrolytic capacitor
EP1154449A3 (en) * 2000-05-11 2006-05-10 NEC TOKIN Toyama, Ltd. Manufacturing method of solid electrolytic capacitor
JP2006269693A (en) * 2005-03-23 2006-10-05 Sanyo Electric Co Ltd Solid electrolytic capacitor and manufacturing method thereof
JP4557766B2 (en) * 2005-03-23 2010-10-06 三洋電機株式会社 Solid electrolytic capacitor and method of manufacturing the solid electrolytic capacitor
JP2007116028A (en) * 2005-10-24 2007-05-10 Showa Denko Kk Method for manufacturing solid electrolytic capacitor
JP4632134B2 (en) * 2005-10-24 2011-02-16 株式会社村田製作所 Manufacturing method of solid electrolytic capacitor
JP2008270536A (en) * 2007-04-20 2008-11-06 Sanyo Electric Co Ltd Solid electrolytic capacitor and manufacturing method thereof
US7787235B2 (en) 2007-04-20 2010-08-31 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
CN109778029A (en) * 2019-03-07 2019-05-21 上海交通大学 Rare-earth containing aluminium alloy anode material and its preparation method and application
EP4361320A1 (en) 2022-10-24 2024-05-01 Gramm Technik GmbH Electrochemical substitution under vacuum of oxide layers on light metals

Also Published As

Publication number Publication date
JP3991429B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
JP3741539B2 (en) Electrolytic capacitor and manufacturing method thereof
JP3667531B2 (en) Electrolytic capacitor manufacturing method
JPH05121274A (en) Solid electrolytic capacitor and its manufacture
JPH1064761A (en) Method of manufacturing solid electrolytic capacitor
JP3416050B2 (en) Electrolytic capacitor and method of manufacturing the same
JP2001044080A (en) Solid electrolytic capacitor and manufacture thereof
JPH11274008A (en) Electrolytic capacitor and manufacture thereof
JP2001217159A (en) Solid electrolytic capacitor and its manufacturing method
JP3273761B2 (en) Electrolytic capacitor and method of manufacturing the same
JP4345227B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3255091B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0318009A (en) Manufacture of solid tantalum electrolytic capacitor
JPH0682591B2 (en) Method for manufacturing solid electrolytic capacitor
JPH11121279A (en) Organic solid electrolytic capacitor and manufacturing method therefor
JP3663104B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3974706B2 (en) Manufacturing method of solid electrolytic capacitor
JP3092512B2 (en) Method for manufacturing solid electrolytic capacitor
JP2000040642A (en) Manufacture of solid electrolytic capacitor
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JP2001167980A (en) Manufacturing method of solid electrolytic capacitor
JPH10275746A (en) Manufacture of solid-state electrolytic capacitor
JPH06120086A (en) Manufacture of solid-state electrolytic capacitor
JP3800913B2 (en) Manufacturing method of solid electrolytic capacitor
JP3150464B2 (en) Manufacturing method of solid electrolytic capacitor
JP2000040643A (en) Solid electrolytic capacitor and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041014

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees