JP2000040642A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JP2000040642A
JP2000040642A JP10208106A JP20810698A JP2000040642A JP 2000040642 A JP2000040642 A JP 2000040642A JP 10208106 A JP10208106 A JP 10208106A JP 20810698 A JP20810698 A JP 20810698A JP 2000040642 A JP2000040642 A JP 2000040642A
Authority
JP
Japan
Prior art keywords
sintered body
conductive polymer
polymer film
heterocyclic compound
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10208106A
Other languages
Japanese (ja)
Inventor
Manabu Takeuchi
学 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuo Electric Co Ltd
Original Assignee
Matsuo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuo Electric Co Ltd filed Critical Matsuo Electric Co Ltd
Priority to JP10208106A priority Critical patent/JP2000040642A/en
Publication of JP2000040642A publication Critical patent/JP2000040642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a solid electrolytic capacitor excellent in high frequency characteristics by forming a conductive polymer film on a sintered body of valve action metal which has an anodic oxidation film on the surface. SOLUTION: After an anodic oxidation film is formed on the surface of a valve action metal sintered body, it is dipped in mixed solution which is composed of heterocyclic compound monomer and oxidizing agent and/or dopant, and maintained at 30-60 deg.C. By chemical oxidative polymerization, a solid electrolytic capacitor wherein a conductive polymer film as solid electrolyte is formed on the valve action metal sintered body is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は導電性高分子膜を
固体電解質とした高周波特性にすぐれた固体電解コンデ
ンサの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor having a high-frequency characteristic using a conductive polymer film as a solid electrolyte.

【0002】[0002]

【従来の技術】近年、電機機器のディジタル化に伴っ
て、コンデンサも小型大容量で高周波領域でのインピー
ダンスの低い高周波特性のすぐれたコンデンサが要望さ
れている。これまで高周波領域で使用されているコンデ
ンサとしては、プラスチックフィルムコンデンサ、マイ
カコンデンサ、積層セラミックスコンデンサなどがある
が、フィルムコンデンサやマイカコンデンサでは、形状
が大きくなってしまうために大容量化が難しく、また積
層セラミックスコンデンサでは、小型大容量になればな
るほど温度特性が悪くなるという欠点がある。
2. Description of the Related Art In recent years, with the digitization of electrical equipment, there has been a demand for a capacitor having a small size, a large capacity, and a low impedance in a high frequency region and having excellent high frequency characteristics. Until now, capacitors used in the high-frequency range include plastic film capacitors, mica capacitors, and multilayer ceramic capacitors.However, film capacitors and mica capacitors are difficult to increase in capacity due to their large size. Multilayer ceramic capacitors have the disadvantage that the smaller the size and the larger the capacity, the worse the temperature characteristics.

【0003】一方、大容量のコンデンサとしては、アル
ミニウム乾式電解コンデンサあるいはアルミニウムまた
はタンタル固体電解コンデンサなどが知られている。ア
ルミニウム乾式電解コンデンサは、低コストで大容量の
ものが得られるが、電解液を用いているために、電解液
の液漏れ、蒸発等により容量の減少や損失の増大が起こ
り、また高周波特性や低温特性に劣る等の欠点がある。
On the other hand, as a large-capacity capacitor, an aluminum dry electrolytic capacitor or an aluminum or tantalum solid electrolytic capacitor is known. Aluminum dry-type electrolytic capacitors can be obtained at low cost and have a large capacity.However, since the electrolytic solution is used, a decrease in capacity or an increase in loss occurs due to leakage of the electrolytic solution, evaporation, etc. There are drawbacks such as poor low temperature characteristics.

【0004】アルミニウムあるいはタンタル固体電解コ
ンデンサは、電解質として固体の二酸化マンガンを用い
ることで容量劣化などは克服できるが、二酸化マンガン
の付着量を増加させるために、硝酸マンガン水溶液によ
る浸漬、熱分解を通常複数回乃至数十回繰り返し行わな
ければならない。このため、熱分解時に誘電体としての
酸化皮膜に損傷を来し、漏れ電流が大きくなるという欠
点が指摘されている。
The use of solid manganese dioxide as an electrolyte can overcome capacity degradation of aluminum or tantalum solid electrolytic capacitors. However, in order to increase the amount of manganese dioxide deposited, immersion in an aqueous solution of manganese nitrate and thermal decomposition are usually performed. It must be repeated several times to several tens of times. For this reason, it has been pointed out that the oxide film as a dielectric is damaged during the thermal decomposition and the leakage current increases.

【0005】上記のことから、二酸化マンガンに代えて
有機の固体電解質として7,7,8,8−テトラシアノ
キノジメタン錯塩(以下、TCNQという)を用いたコ
ンデンサも提案されているが(特開昭58−17609
号)、TCNQ錯体は高い導電性を示すが、熱安定性に
乏しいためコンデンサ製造過程で分解して絶縁体になる
ことがあり、熱特性に問題を有している。
[0005] From the above, a capacitor using a 7,7,8,8-tetracyanoquinodimethane complex salt (hereinafter, referred to as TCNQ) as an organic solid electrolyte instead of manganese dioxide has been proposed. Kaikai 58-17609
No. 2), the TCNQ complex has high conductivity, but has poor thermal stability, so that it may be decomposed into an insulator during the capacitor manufacturing process, resulting in a problem in thermal characteristics.

【0006】このほか、ピロール、チオフェン、フラン
などの複素環化合物の重合体を固体電解質として用いた
コンデンサの製造法も提案されている(特開昭60−2
44017号)。この方法は、複素環化合物の重合体を
陽極酸化皮膜上に電解酸化重合によって導電性高分子膜
として形成しようとするものであるが、陽極酸化皮膜層
が絶縁化されていて電流が流れにくいため、陽極酸化皮
膜層上に充分な複素環化合物の重合体膜を形成させるこ
とは非常に困難である。
In addition, a method for producing a capacitor using a polymer of a heterocyclic compound such as pyrrole, thiophene or furan as a solid electrolyte has been proposed (Japanese Patent Laid-Open No. Sho 60-2).
No. 44017). This method attempts to form a polymer of a heterocyclic compound as a conductive polymer film on an anodized film by electrolytic oxidation polymerization. However, since the anodized film layer is insulated, it is difficult for current to flow. It is very difficult to form a sufficient heterocyclic compound polymer film on the anodic oxide film layer.

【0007】[0007]

【発明が解決しようとする課題】複素環化合物の重合体
膜を陽極酸化皮膜上に形成するには、上記した電解酸化
重合のほかに、化学酸化重合による方法も検討されてい
るが、この方法は陽極酸化皮膜を形成した弁作用金属を
複素環化合物モノマーの溶液に浸漬したのち、直ちにこ
のモノマーの溶液よりも低温の酸化剤溶液中で化学酸化
重合を行うか、またはモノマー、酸化剤、ドーパントを
混合した室温またはそれ以下の温度に保った混合溶液に
浸漬することで高分子重合体の形成速度を抑制しつつ化
学酸化重合を行うものである。ところが、この化学酸化
重合は、上記した陽極酸化皮膜上への電解酸化重合によ
る導電性重合体膜の形成の困難さを解消するために、そ
の前段階として実施されるようになったものであり、従
ってこのような化学酸化重合だけで複素環化合物モノマ
ーによる導電性高分子膜を施し、しかもコンデンサとし
ての適正な容量を得ようとしても、このような低温条件
下ではモノマー粘度が高いために陽極酸化皮膜内への浸
透が悪く、従って浸透、乾燥の工程を数十回繰り返し行
わなければならないなど、非常に手間を要するという問
題が指摘されている。
In order to form a polymer film of a heterocyclic compound on an anodic oxide film, in addition to the electrolytic oxidation polymerization described above, a method using chemical oxidation polymerization has been studied. After immersing the valve-acting metal on which the anodic oxide film has been formed in the solution of the heterocyclic compound monomer, immediately perform chemical oxidative polymerization in an oxidant solution at a lower temperature than the solution of this monomer, or use the monomer, oxidant, dopant Is immersed in a mixed solution maintained at a room temperature or lower at a temperature equal to or lower than the above, and the chemical oxidative polymerization is performed while suppressing the formation rate of the high molecular polymer. However, this chemical oxidative polymerization has been carried out as a preceding step in order to eliminate the difficulty of forming a conductive polymer film by electrolytic oxidative polymerization on the anodic oxide film described above. Therefore, even if a conductive polymer film made of a heterocyclic compound monomer is applied only by such chemical oxidative polymerization and an appropriate capacity as a capacitor is to be obtained, the monomer viscosity is high under such a low temperature condition, but the anode viscosity is high. It has been pointed out that it is very difficult to penetrate into the oxide film, so that the steps of permeation and drying have to be repeated several tens of times, which is extremely troublesome.

【0008】この発明は、上記のような手間を要するこ
となく、化学酸化重合のみにてコンデンサとしての適正
な容量が得られる複素環化合物の重合体膜を陽極酸化皮
膜上に形成することのできる固体電解コンデンサの製造
法を提供することを目的とするものである。
According to the present invention, it is possible to form a polymer film of a heterocyclic compound on an anodized film, which can obtain a proper capacity as a capacitor only by chemical oxidation polymerization without the above-mentioned trouble. It is an object of the present invention to provide a method for manufacturing a solid electrolytic capacitor.

【0009】[0009]

【課題を解決するための手段】上記した目的を達成する
ために、この発明のうち請求項1に記載の発明は、表面
に陽極酸化皮膜を形成した弁作用金属焼結体を複素環化
合物モノマーと酸化剤および/またはドーパントを混合
した30〜60℃の混合溶液に含浸して、化学酸化重合
にて上記焼結体の陽極酸化皮膜上に導電性高分子膜を固
体電解質として形成した固体電解コンデンサを得ること
を特徴とするものである。
In order to achieve the above-mentioned object, according to the first aspect of the present invention, a valve-acting metal sintered body having an anodic oxide film formed on a surface thereof comprises a heterocyclic compound monomer. Solid electrolyte obtained by forming a conductive polymer film as a solid electrolyte on the anodic oxide film of the sintered body by chemical oxidative polymerization by impregnating with a mixed solution of 30 to 60 ° C. It is characterized by obtaining a capacitor.

【0010】請求項2に記載の発明は、上記請求項1に
おいて、複素環化合物モノマーとしてピロール、チオフ
ェン、フランあるいはそれらの誘導体から選ばれた少な
くとも1種のモノマーを用いることを特徴とするもので
ある。
A second aspect of the present invention is characterized in that, in the first aspect, at least one monomer selected from pyrrole, thiophene, furan and derivatives thereof is used as the heterocyclic compound monomer. is there.

【0011】要するに、この発明は、弁作用を有する金
属陽極体表面の陽極酸化皮膜上に固体電解質として複素
環化合物モノマーからなる導電性高分子膜を化学酸化重
合によって形成するに当たって、複素環化合物モノマー
と酸化剤、ドーパントとの混合溶液中での含浸処理を3
0〜60℃という高温で行ったのちに、室温乾燥時に重
合反応を行わせることによって導電性高分子膜を形成す
るもので、容量出現率の大きい、高周波特性にすぐれた
固体電解コンデンサを得ることができるのである。
In short, the present invention relates to forming a conductive polymer film made of a heterocyclic compound monomer as a solid electrolyte on a anodic oxide film on the surface of a metal anode body having a valve action by chemical oxidative polymerization. Impregnation treatment in a mixed solution of
After conducting at a high temperature of 0 to 60 ° C., a conductive polymer film is formed by performing a polymerization reaction when drying at room temperature. To obtain a solid electrolytic capacitor having a high capacitance appearance ratio and excellent high-frequency characteristics. You can do it.

【0012】[0012]

【発明の実施の形態】この発明において、固体電解コン
デンサの陽極として用いられる弁作用金属としては、例
えばアルミニウム、タンタル、ニオブ、チタンおよびこ
れらを基質とする合金等、弁作用を有する金属であれば
よい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, as a valve action metal used as an anode of a solid electrolytic capacitor, any metal having a valve action such as aluminum, tantalum, niobium, titanium and an alloy using these as a substrate can be used. Good.

【0013】弁作用金属の表面に形成する誘電体酸化皮
膜は、弁作用金属の表面部分に設けられた弁作用金属自
体の酸化物層であっても、あるいは弁作用金属の表面上
に設けられた他の誘電体酸化物の層であってもよいが、
特に弁作用金属自体の酸化物からなる層であることが好
ましい。
The dielectric oxide film formed on the surface of the valve metal may be an oxide layer of the valve metal itself provided on the surface portion of the valve metal, or may be provided on the surface of the valve metal. May be a layer of another dielectric oxide,
In particular, the layer is preferably a layer made of an oxide of the valve metal itself.

【0014】この発明で化学酸化重合によって導電性高
分子膜を得るに使用する複素環化合物モノマーとして
は、ピロール、チオフェン、フランあるいはそれらの誘
導体のうちの1種を用いることができる。また、化学酸
化重合において複素環化合物モノマーとともに用いる酸
化剤やドーパントとしては、1つの物質でそれ自身酸化
重合で形成された複素環ポリマーのドーパントとなり、
電導性を付与するものとして、例えばパラトルエンスル
ホン酸鉄が挙げられるが、このほか従来から酸化剤とし
て周知の、例えばFeCl3 、AsF5 、PF5 、BF
3 、SbF5 、KMnO4 、(Na2 )S2 8 、(N
4 2 2 8 、などを用いてもよい。さらに、形成
された複素環ポリマーの電導性を高めるためには、酸化
剤以外の周知のドーパントを併用することも好ましい。
In the present invention, as the heterocyclic compound monomer used for obtaining the conductive polymer film by chemical oxidation polymerization, one of pyrrole, thiophene, furan and derivatives thereof can be used. In addition, as an oxidizing agent or a dopant used together with the heterocyclic compound monomer in the chemical oxidative polymerization, one substance itself becomes a dopant of the heterocyclic polymer formed by the oxidative polymerization,
Examples of the substance imparting conductivity include iron p-toluenesulfonate. In addition, for example, FeCl 3 , AsF 5 , PF 5 , and BF which are conventionally known as oxidizing agents
3, SbF 5, KMnO 4, (Na 2) S 2 O 8, (N
H 4 ) 2 S 2 O 8 or the like may be used. Furthermore, in order to enhance the conductivity of the formed heterocyclic polymer, it is also preferable to use a well-known dopant other than the oxidizing agent.

【0015】この発明は、複素環化合物モノマー、酸化
剤、ドーパントの混合溶液を30〜60℃の高温とし、
この高温下の混合溶液中に焼結体を含浸するものであ
る。これによって混合溶液の粘性や表面張力が低下して
焼結体表面の酸化皮膜内部の細孔にまで溶液が侵入する
ことができ、酸化皮膜上に付着したモノマーとともにそ
のような内部においても侵入したモノマーの重合が起き
て、緻密な導電性高分子膜を得ることができ、それらの
部分からも容量を引き出し、容量出現率の高い高周波特
性にすぐれたコンデンサを得ることができるのである。
従って、所望の厚さの導電性高分子膜を得るに際しても
混合溶液中への焼結体の含浸回数を減ずることが可能と
なり、コンデンサ製造作業の簡素化にも寄与するのであ
る。
According to the present invention, a mixed solution of a heterocyclic compound monomer, an oxidizing agent and a dopant is heated to a high temperature of 30 to 60 ° C.,
The sintered body is impregnated in the mixed solution under the high temperature. This lowers the viscosity and surface tension of the mixed solution, allowing the solution to penetrate into the pores inside the oxide film on the surface of the sintered body, and also penetrate into such an interior together with the monomer attached to the oxide film. The polymerization of the monomer occurs, and a dense conductive polymer film can be obtained. Capacitors can be extracted from those portions, and a capacitor having a high capacitance appearance rate and excellent high-frequency characteristics can be obtained.
Therefore, even when a conductive polymer film having a desired thickness is obtained, the number of times the sintered body is impregnated into the mixed solution can be reduced, which contributes to simplification of the capacitor manufacturing operation.

【0016】[0016]

【実施例】以下、実施例によりこの発明を詳細に説明す
る。弁作用を有する金属焼結体としてアルミニウム焼結
体を用い、電解酸化してその表面に陽極酸化皮膜を形成
した。別に2.0モル/lのピロールモノマーのエタノ
ール溶液と酸化剤、ドーパントとしての0.6モル/l
のパラトルエンスルホン酸鉄塩(ドイツ、バイエル社
製)のブタノール溶液を調製した。そして、この両溶液
を混合し、エタノールで希釈して混合溶液を調製した。
The present invention will be described below in detail with reference to examples. An aluminum sintered body was used as a metal sintered body having a valve action, and was subjected to electrolytic oxidation to form an anodic oxide film on its surface. Separately, a 2.0 mol / l ethanol solution of a pyrrole monomer and an oxidizing agent, 0.6 mol / l as a dopant
Butanol solution of paratoluenesulfonic acid iron salt (manufactured by Bayer AG, Germany) was prepared. Then, the two solutions were mixed and diluted with ethanol to prepare a mixed solution.

【0017】次に、上記で調製した混合溶液を60℃に
加熱し、その温度に維持した溶液中に表面に陽極酸化皮
膜を有するアルミニウム焼結体を15分間含浸した。そ
の後、混合溶液から取り出し、室温で15分間放置する
ことで溶媒の除去および含浸したピロールモノマーの重
合反応を行わせ、次いでエタノールによって室温で10
分間洗浄を行った後、60℃で5分間乾燥することによ
ってアルミニウム焼結体の陽極酸化皮膜上に陰極層とし
てポリピロールよりなる導電性高分子膜が形成された。
上記の工程を数回繰り返したのち、得られた導電性高分
子膜上にカーボンペースト、銀ペーストを順に付着させ
て固体電解コンデンサを作製した。
Next, the mixed solution prepared above was heated to 60 ° C., and the solution maintained at that temperature was impregnated with an aluminum sintered body having an anodized film on the surface for 15 minutes. Thereafter, the mixture was taken out of the mixed solution and left at room temperature for 15 minutes to remove the solvent and to carry out the polymerization reaction of the impregnated pyrrole monomer.
After cleaning for 5 minutes, the resultant was dried at 60 ° C. for 5 minutes to form a conductive polymer film made of polypyrrole as a cathode layer on the anodized film of the aluminum sintered body.
After repeating the above steps several times, a carbon paste and a silver paste were sequentially adhered onto the obtained conductive polymer film to produce a solid electrolytic capacitor.

【0018】上記実施例では、酸化剤としてドーパント
を兼ね備えたパラトルエンスルホン酸鉄塩を用いたの
で、鉄イオンによってモノマーが酸化され、その反応と
同時にトルエンスルホン酸イオンが導入されてドーパン
トとして作用し、緻密な導電性高分子膜を得たものであ
る。
In the above embodiment, since iron para-toluenesulfonate having a dopant as an oxidizing agent was used, the monomer was oxidized by iron ions, and simultaneously with the reaction, toluenesulfonic acid ions were introduced to act as dopants. And a dense conductive polymer film.

【0019】比較のために、上記実施例と同じ混合溶液
を用いたが、その含浸処理を室温で行い、しかも上記実
施例で得た導電性高分子膜と同じ膜厚とするために、そ
の工程を20回以上繰り返し、その後は上記実施例と同
じようにして導電性高分子膜上にカーボンペースト、銀
ペーストを順に付着させて固体電解コンデンサを作製し
た。
For comparison, the same mixed solution as in the above example was used. However, in order to perform the impregnation at room temperature and to obtain the same thickness as the conductive polymer film obtained in the above example, The process was repeated 20 times or more, and thereafter, a carbon paste and a silver paste were sequentially deposited on the conductive polymer film in the same manner as in the above-described example, to produce a solid electrolytic capacitor.

【0020】かくして得られた実施例によるコンデンサ
の120Hzにおける静電容量は95.5μF(容量出
現率は97.4%)であった。これに対し、上記比較例
で得たコンデンサの120Hzにおける静電容量は2
0.2μF(容量出現率は20.6%)であって、これ
はこの発明の方法で最大の特徴とする導電性高分子膜生
成工程における複素環化合物と酸化剤、ドーパントとの
混合溶液による含浸処理を30〜60℃の高温で行うこ
との効果の如何に大きいかを如実に表している。
The capacitance at 120 Hz of the capacitor according to the example thus obtained was 95.5 μF (capacitance appearance rate was 97.4%). On the other hand, the capacitance at 120 Hz of the capacitor obtained in the comparative example is 2
0.2 μF (capacitance appearance rate is 20.6%), which is due to a mixed solution of a heterocyclic compound, an oxidizing agent and a dopant in the process of forming a conductive polymer film, which is the greatest feature of the method of the present invention. It clearly shows how great the effect of performing the impregnating treatment at a high temperature of 30 to 60 ° C. is.

【0021】[0021]

【発明の効果】以上説明したように、この発明は表面に
陽極酸化皮膜を形成した弁作用金属焼結体を複素環化合
物モノマーと酸化剤および/またはドーパントとよりな
る30〜60℃の温度に保持した混合溶液に含浸したの
ち、室温による乾燥時に化学酸化重合を行うものであ
り、含浸時の混合溶液の温度を上記の範囲に保持するこ
とによって混合溶液の粘性や表面張力が低下して焼結体
表面の酸化皮膜内部の細孔にまで溶液が侵入することが
でき、酸化皮膜上に付着したモノマーとともにそのよう
な内部においても侵入したモノマーの重合が起きて、緻
密な導電性高分子膜を得ることができ、容量出現率の高
い高周波特性にすぐれた固体電解コンデンサを得ること
ができるのである。
As described above, according to the present invention, a valve-acting metal sintered body having an anodic oxide film formed on its surface is heated to a temperature of 30 to 60 ° C. comprising a heterocyclic compound monomer and an oxidizing agent and / or a dopant. After impregnating the held mixed solution, chemical oxidative polymerization is performed during drying at room temperature.By maintaining the temperature of the mixed solution during the impregnation within the above range, the viscosity and surface tension of the mixed solution are reduced, and firing is performed. The solution can penetrate into the pores inside the oxide film on the surface of the condensate, and together with the monomer adhering to the oxide film, polymerization of the penetrated monomer occurs inside such a region, resulting in a dense conductive polymer film Thus, a solid electrolytic capacitor having a high capacitance appearance rate and excellent high-frequency characteristics can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面に陽極酸化皮膜を形成した弁作用金
属焼結体を複素環化合物モノマーと酸化剤および/また
はドーパントを混合した30〜60℃の混合溶液に含浸
したのち、化学酸化重合にて上記焼結体の陽極酸化皮膜
上に導電性高分子膜を固体電解質として形成することを
特徴とする固体電解コンデンサの製造方法。
1. A valve metal sintered body having an anodic oxide film formed on its surface is impregnated with a mixed solution of a heterocyclic compound monomer and an oxidizing agent and / or a dopant at 30 to 60 ° C., and then subjected to chemical oxidative polymerization. Forming a conductive polymer film as a solid electrolyte on the anodized film of the sintered body.
【請求項2】 複素環化合物モノマーとしてピロール、
チオフェン、フランあるいはそれらの誘導体から選ばれ
た少なくとも1種のモノマーを用いることを特徴とする
請求項1に記載の固体電解コンデンサの製造方法。
2. Pyrole as a heterocyclic compound monomer,
2. The method according to claim 1, wherein at least one monomer selected from thiophene, furan, and derivatives thereof is used.
JP10208106A 1998-07-23 1998-07-23 Manufacture of solid electrolytic capacitor Pending JP2000040642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10208106A JP2000040642A (en) 1998-07-23 1998-07-23 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10208106A JP2000040642A (en) 1998-07-23 1998-07-23 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2000040642A true JP2000040642A (en) 2000-02-08

Family

ID=16550744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10208106A Pending JP2000040642A (en) 1998-07-23 1998-07-23 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2000040642A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260964A (en) * 2000-12-28 2002-09-13 Nippon Chemicon Corp Solid electrolytic capacitor and manufacturing method therefor
JP2002260963A (en) * 2000-12-28 2002-09-13 Nippon Chemicon Corp Solid electrolytic capacitor and manufacturing method therefor
JP2006156903A (en) * 2004-12-01 2006-06-15 Tdk Corp Process for manufacturing solid electrolytic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260964A (en) * 2000-12-28 2002-09-13 Nippon Chemicon Corp Solid electrolytic capacitor and manufacturing method therefor
JP2002260963A (en) * 2000-12-28 2002-09-13 Nippon Chemicon Corp Solid electrolytic capacitor and manufacturing method therefor
JP2006156903A (en) * 2004-12-01 2006-06-15 Tdk Corp Process for manufacturing solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
KR100334918B1 (en) Solid electrolytic capacitor using a conducting polymer and method of making same
JP3202668B2 (en) Method for manufacturing solid electrolytic capacitor
JPH1154374A (en) Electrolytic capacitor and its manufacture
JP3296727B2 (en) Method for manufacturing solid electrolytic capacitor
KR100365370B1 (en) Method for producing a solid electrolytic capacitor
JP3416050B2 (en) Electrolytic capacitor and method of manufacturing the same
JP2001217159A (en) Solid electrolytic capacitor and its manufacturing method
JP2000114109A (en) Solid electrolytic capacitor and its manufacture
JP2000040642A (en) Manufacture of solid electrolytic capacitor
JP3991429B2 (en) Electrolytic capacitor and manufacturing method thereof
JPH0494110A (en) Manufacture of solid electrolytic capacitor
JP3568382B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JP3505370B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JP3223790B2 (en) Capacitor and manufacturing method thereof
JP3255091B2 (en) Method for manufacturing solid electrolytic capacitor
JPH05159979A (en) Manufacture of solid electrolytic capacitor
JP2000040643A (en) Solid electrolytic capacitor and its manufacture
JP3092512B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06120086A (en) Manufacture of solid-state electrolytic capacitor
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007305684A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2000297142A (en) Polymerization liquid for forming solid electrolyte, its preparation, and preparation of solid electrolytic capacitor using same
JP4126746B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH1187178A (en) Manufacture of solid electrolytic capacitor
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127