JPH11270305A - Turbine bypass valve control device - Google Patents

Turbine bypass valve control device

Info

Publication number
JPH11270305A
JPH11270305A JP9070398A JP9070398A JPH11270305A JP H11270305 A JPH11270305 A JP H11270305A JP 9070398 A JP9070398 A JP 9070398A JP 9070398 A JP9070398 A JP 9070398A JP H11270305 A JPH11270305 A JP H11270305A
Authority
JP
Japan
Prior art keywords
steam
pressure
turbine
turbine bypass
bypass valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9070398A
Other languages
Japanese (ja)
Other versions
JP3435450B2 (en
Inventor
Hitoshi Ishikawa
均 石川
Takehiko Ikematsu
武彦 池松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP09070398A priority Critical patent/JP3435450B2/en
Publication of JPH11270305A publication Critical patent/JPH11270305A/en
Application granted granted Critical
Publication of JP3435450B2 publication Critical patent/JP3435450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep as a whole balance of the system for avoiding an excess discharge of steam to a down stream of each turbine bypass by controlling openings of high pressure and low pressure turbine bypass valves when a load decrease suddenly by turbine load rejection. SOLUTION: This plant comprises steam generators 1 and 7, turbines 5, 13, a condenser 14, steam pipes 2, 8 guiding steam from the steam generators 1, 7 to the turbines 5, 13 and steam pipes 21, 35 which has turbine bypass valve 22, 36 bypassing turbine so as to guide the steam of the steam generator from the steam pipes 2, 8 to the condenser. In this case, means 29, 30 which set an opening upper limit obtained from steam pressure in the steam pipes 2, 8 to a control signal (output of PI25) of the turbine bypass valves are provided so as to detect a pressure return after increasing steam pressure when a load of the turbine and keep the turbine bypass valve to the opening upper limit when the pressure returns specified pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸気発生プラント
のタービンバイパス弁制御装置に係わり、特に、タービ
ン負荷急減時のタービンバイパス弁の制御技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine bypass valve control device for a steam generating plant, and more particularly, to a technique for controlling a turbine bypass valve when a turbine load is rapidly reduced.

【0002】[0002]

【従来の技術】従来のタービンバイパス弁制御装置につ
いて、一般的な火力発電プラントを例にとり、図2によ
って説明する。通常のタービン負荷運転時は、ボイラ
(蒸気発生器)1で発生した蒸気は主蒸気管2を通って
蒸気止弁3及び加減弁4を介して高圧タービン5に流入
し、仕事をした後、低温蒸気として低温再熱管6に排出
され、蒸気は再度再熱器7によって加熱され、高温蒸気
として高温再熱管8を通って再熱止弁9及びインターセ
プト弁10を介して中圧タービン11へ流入し、その後
排気管12を通って低圧タービン13に流入する。低圧
タービン13から排出された蒸気は、復水器14で凝縮
され、復水となる。この復水は、復水ポンプ15によっ
て昇圧され、復水管16を通って脱気器18の水位に基
づく演算器19によって制御される脱気器水位調節弁1
7を介して脱気器18に送水される。送水された復水
は、給水ポンプ20によって昇圧され、ボイラ1への給
水として給水管34を通って送水され、一連のサイクル
にて運転される。一方、主蒸気管2から低温再熱管6に
連結された高圧タービンバイパス管21に設けられてい
る高圧タービンバイパス弁22は、ボイラ1への燃料投
入指令条件である負荷指令値に基づいて関数発生器26
によって規定された必要主蒸気圧力値に加算器27を介
して固定値28(実圧より設定圧力を高めようとするた
めに固定値を加える。)を加えた値を制御設定値として
偏差演算器24に導き、主蒸気管2に設けた圧力検出器
23の検出値との偏差を基にしたPI演算(比例+積分
演算)結果のPI演算器25の出力信号によって制御さ
れ、通常負荷運転時、前記の制御設定値として関数発生
器26の出力値に固定値28が加えられていることか
ら、全閉待機状態となっている。高圧タービンバイパス
蒸気減温設備は、高圧タービンバイパス弁22下流の高
圧タービンバイパス管21に設けられ、減温器31、給
水管34からの水量を調整し、減温器31へ注水する高
圧注水弁32及び高圧タービンバイパス弁指令値を主信
号とし、減温器31の出口温度にて補正した信号によっ
て高圧注水弁32を調整する演算器33から構成され、
高圧タービンバイパス弁22の全閉時は全閉待機状態と
なっている。また、高温再熱管8から復水器14に連結
された低圧タービンバイパス管35に設けられている低
圧タービンバイパス弁36についても高圧タービンバイ
パス弁22と同様に、タービン運転状態を検出するため
に高圧タービン5に設けた第1段後圧力検出器37の出
力信号に基づいて関数発生器38によって規定された必
要再熱蒸気圧力に加算器39を介して固定値40を加え
た値を制御設定値として偏差演算器42に導き、高温再
熱蒸気管8に設けた圧力検出器41の検出値との偏差を
基にしたPI演算(比例+積分演算)結果のPI演算器
43の出力信号によって制御され、通常負荷運転時、前
記の制御設定値として関数発生器38の出力値に固定値
40が加えられていることから、全閉待機状態となって
いる。低圧タービンバイパス蒸気減温設備は、低圧ター
ビンバイパス弁36下流の低圧タービンバイパス管35
に設けられ、減温器46、復水管16からの水量を調整
し、減温器46へ注水する低圧注水弁48及び低圧ター
ビンバイパス弁指令値を主信号とし、減温器46の出口
温度にて補正した信号によって低圧注水弁48を調整す
る演算器49から構成され、低圧タービンバイパス弁3
6の全閉時は全閉待機状態となっている。
2. Description of the Related Art A conventional turbine bypass valve control device will be described with reference to FIG. 2 taking a general thermal power plant as an example. During normal turbine load operation, the steam generated by the boiler (steam generator) 1 flows into the high-pressure turbine 5 through the main steam pipe 2 through the steam stop valve 3 and the control valve 4 to perform work. The steam is discharged to the low-temperature reheat pipe 6 as low-temperature steam, and the steam is heated again by the reheater 7, and flows into the medium-pressure turbine 11 as high-temperature steam through the high-temperature reheat pipe 8 via the reheat stop valve 9 and the intercept valve 10. Then, it flows into the low-pressure turbine 13 through the exhaust pipe 12. The steam discharged from the low-pressure turbine 13 is condensed in the condenser 14 to be condensed. This condensate is pressurized by a condensate pump 15, passes through a condensate pipe 16, and is controlled by a computing unit 19 based on the water level of a deaerator 18.
The water is sent to the deaerator 18 via the. The condensed water fed is pressurized by the water supply pump 20, is supplied as water to the boiler 1 through the water supply pipe 34, and is operated in a series of cycles. On the other hand, a high-pressure turbine bypass valve 22 provided in a high-pressure turbine bypass pipe 21 connected from the main steam pipe 2 to the low-temperature reheat pipe 6 generates a function based on a load command value which is a fuel injection command condition to the boiler 1. Vessel 26
A deviation calculator which adds a fixed value 28 (adds a fixed value to increase the set pressure from the actual pressure) to the required main steam pressure value defined by 24, and is controlled by an output signal of a PI calculator 25 as a result of a PI calculation (proportional + integral calculation) based on a deviation from a detection value of a pressure detector 23 provided in the main steam pipe 2, during normal load operation. Since the fixed value 28 is added to the output value of the function generator 26 as the control set value, the state is in the fully closed standby state. The high-pressure turbine bypass steam deheater is provided in the high-pressure turbine bypass pipe 21 downstream of the high-pressure turbine bypass valve 22, adjusts the amount of water from the desuperheater 31 and the water supply pipe 34, and injects water to the desuperheater 31. And a calculator 33 for adjusting the high-pressure water injection valve 32 by a signal corrected with the outlet temperature of the desuperheater 31 with the main signal 32 and the high-pressure turbine bypass valve command value,
When the high-pressure turbine bypass valve 22 is fully closed, it is in a fully-closed standby state. Similarly to the high-pressure turbine bypass valve 22, the low-pressure turbine bypass valve 36 provided in the low-pressure turbine bypass pipe 35 connected to the condenser 14 from the high-temperature reheat pipe 8 A control set value is obtained by adding a fixed value 40 via an adder 39 to a required reheat steam pressure defined by a function generator 38 based on an output signal of a first-stage post-pressure detector 37 provided in the turbine 5. Is controlled by the output signal of the PI calculator 43 which is the result of the PI calculation (proportional + integral calculation) based on the difference from the detected value of the pressure detector 41 provided in the high-temperature reheat steam pipe 8. At the time of normal load operation, since the fixed value 40 is added to the output value of the function generator 38 as the above-mentioned control set value, a fully closed standby state is set. The low-pressure turbine bypass steam cooling device includes a low-pressure turbine bypass pipe 35 downstream of the low-pressure turbine bypass valve 36.
The low-pressure injection valve 48 and the low-pressure turbine bypass valve command value for adjusting the amount of water from the desuperheater 46 and the condensate pipe 16 and injecting water into the desuperheater 46 are used as main signals. The low-pressure turbine bypass valve 3 comprises a computing unit 49 for adjusting the low-pressure water injection valve 48 with the corrected signal.
6 is in the fully closed standby state.

【0003】ボイラ点火からタービンへの蒸気通気前の
プラント起動時においては、加減弁4並びにインターセ
プト弁10は全閉であり、タービンへの通気蒸気条件が
整うまで、ボイラ設備の最小運転を継続し、ボイラ1に
よって発生した蒸気は、高圧タービンバイパス管21及
び高圧タービンバイパス弁22を介して低温再熱管6に
排出し、再熱器7、高温再熱管8さらに低圧タービンバ
イパス管35及び低圧タービンバイパス弁36を介し、
復水器14へ排出され、復水器14で凝縮される。凝縮
された復水は前記のサイクルでボイラ1へ送水される。
この間、主蒸気管2内の圧力は、高圧タービン5への通
気時必要圧力となるように関数発生器26によって設定
された最小圧力となるよう高圧タービンバイパス弁22
によって、ボイラ1からの発生蒸気流量を調整し、制御
される。高温再熱管8内の圧力もまた中圧タービン11
への通気時必要圧力となるように関数発生器38によっ
て設定された最小圧力となるよう低圧タービンバイパス
弁36によって、高温再熱管8からの排出蒸気流量を調
整し、制御される。タービンへの通気蒸気条件が成立
し、加減弁4並びにインターセプト弁10が開すると、
関数発生器26及び38の出力値に各々の固定値28及
び40を加え、高圧タービンバイパス弁22及び低圧タ
ービンバイパス弁36は通常負荷運転時と同様に全閉待
機状態となる。
[0003] When the plant is started before the steam is passed from the boiler to the turbine, the control valve 4 and the intercept valve 10 are fully closed, and the minimum operation of the boiler equipment is continued until the condition of the steam to the turbine is satisfied. The steam generated by the boiler 1 is discharged to the low-temperature reheat pipe 6 through the high-pressure turbine bypass pipe 21 and the high-pressure turbine bypass valve 22, and the reheater 7, the high-temperature reheat pipe 8, the low-pressure turbine bypass pipe 35, and the low-pressure turbine bypass Via valve 36,
It is discharged to the condenser 14 and condensed in the condenser 14. The condensed condensate is sent to the boiler 1 in the above cycle.
During this time, the high-pressure turbine bypass valve 22 is set so that the pressure in the main steam pipe 2 becomes the minimum pressure set by the function generator 26 so as to be the required pressure during ventilation to the high-pressure turbine 5.
Thus, the flow rate of the generated steam from the boiler 1 is adjusted and controlled. The pressure in the high-temperature reheat pipe 8 is also
The flow rate of the steam discharged from the high-temperature reheat pipe 8 is adjusted and controlled by the low-pressure turbine bypass valve 36 so as to have the minimum pressure set by the function generator 38 so that the required pressure is attained when the air is ventilated. When the condition of the steam passing through the turbine is established and the control valve 4 and the intercept valve 10 are opened,
The fixed values 28 and 40 are respectively added to the output values of the function generators 26 and 38, and the high-pressure turbine bypass valve 22 and the low-pressure turbine bypass valve 36 are in the fully closed standby state as in the normal load operation.

【0004】外部事故によるタービン負荷遮断等の負荷
急減時においては、プラント制御装置からの負荷急減指
令によって加減弁4及びインターセプト弁10の急速絞
り込み並びにボイラ1への供給燃料絞り込み動作が行わ
れ、同時に高圧タービンバイパス弁22及び低圧タービ
ンバイパス弁36は、制御回路中の固定値28及び40
が除外され、負荷急減直前の実圧保持となる関数発生器
26及び38の出力値を制御設定値とし、加減弁4及び
インターセプト弁10の急速絞り込み並びにボイラ残熱
による蒸気発生の継続による主蒸気管2および高温再熱
管8内の圧力上昇に伴い、開動作となる。系統の動作が
落ち着いた後、プラントの再起動にそなえ、関数発生器
26及び38の出力を一定レートにて最小圧力まで減少
させ、高圧タービンバイパス弁22及び低圧タービンバ
イパス弁36の開度増加によって残留蒸気の排出を行
う。
[0004] When the load suddenly decreases due to an external accident such as a turbine load cut-off, the operation of rapidly reducing the control valve 4 and the intercept valve 10 and the operation of narrowing the fuel supplied to the boiler 1 are performed by a load rapid reduction command from the plant control device. The high pressure turbine bypass valve 22 and the low pressure turbine bypass valve 36 have fixed values 28 and 40 in the control circuit.
And the output values of the function generators 26 and 38, which maintain the actual pressure immediately before the sudden decrease in the load, are used as the control set values, and the main steam is generated by rapidly narrowing down the control valve 4 and the intercept valve 10 and continuing the steam generation due to the residual heat of the boiler. The opening operation is performed as the pressure in the pipe 2 and the high-temperature reheat pipe 8 increases. After the operation of the system is settled, the output of the function generators 26 and 38 is reduced to a minimum pressure at a constant rate in preparation for the restart of the plant, and the opening of the high-pressure turbine bypass valve 22 and the low-pressure turbine bypass valve 36 is increased. Discharge residual steam.

【0005】高圧タービンバイパス弁22及び低圧ター
ビンバイパス弁36は、前述の如くプラント起動/停止
時及び負荷急減時の余剰蒸気の排出のために設けられて
おり、その弁の最大容量はプラント起動時の運転条件に
よって決定されるため、負荷遮断時の所要弁容量は、弁
容量が処理蒸気流量に比例し、弁入口圧力に反比例する
ことから、一般的にプラント起動時の必要弁容量を1と
した場合、約2倍の弁容量を持つことになり、過大な容
量となる。また、負荷遮断等の負荷急減時には、加減弁
4及びインターセプト弁10の急速絞り込みに対して高
圧タービンバイパス弁22及び低圧タービンバイパス弁
36の開動作の追従遅れがあることから、主蒸気管2お
よび高温再熱管8内の圧力は負荷急減前の圧力以上に上
昇し、さらには新設火力プラントでは、燃料規制から石
炭焚ボイラ設備となるため、燃料の急速絞り込みが行わ
れても残炭燃焼によって蒸気発生量が継続され、より上
昇量は増大する。高圧タービンバイパス弁22及び低圧
タービンバイパス弁36は、主蒸気管2及び高温再熱管
8の圧力上昇を抑え、規定値まで減圧するように開動作
を続けるが、一時的に過大な蒸気流量の処理となる。こ
のような過大流量の処理に対し、従来技術では、最終排
出先である復水器14の熱処理能力不足から復水器内圧
が上昇し、運転継続ができなくなることを防止するため
に、常時プラント運転状態の負荷状態104及び復水器
内状態量(復水器内圧力100/海水温度103)を監
視し、受け入れ可能蒸気量を算出器101によって算出
し、開度制限器102によって低圧タービンバイパス弁
36の最大弁開度を制限し、復水器14への流入蒸気流
量を制限する装置が知られている(特開昭63−277
805号公報)。
The high-pressure turbine bypass valve 22 and the low-pressure turbine bypass valve 36 are provided for discharging excess steam when the plant is started / stopped and when the load is suddenly reduced, as described above. Since the valve capacity is proportional to the processing steam flow rate and inversely proportional to the valve inlet pressure, the required valve capacity at the time of plant startup is generally set to 1 In this case, the valve capacity is about twice as large, and the capacity becomes excessive. In addition, when the load suddenly decreases, such as when the load is cut off, there is a delay in following the opening operation of the high-pressure turbine bypass valve 22 and the low-pressure turbine bypass valve 36 with respect to the rapid narrowing of the control valve 4 and the intercept valve 10. The pressure in the high-temperature reheat pipe 8 rises above the pressure before the load suddenly decreases. In addition, in the new thermal power plant, the coal regulation will be a coal-fired boiler facility due to fuel regulations. The amount of generation continues, and the amount of rise increases. The high-pressure turbine bypass valve 22 and the low-pressure turbine bypass valve 36 continue to open so as to suppress the pressure rise of the main steam pipe 2 and the high-temperature reheat pipe 8 and to reduce the pressure to a specified value. Becomes In order to prevent such an excessive flow rate treatment, in the conventional technology, in order to prevent the condenser internal pressure from rising due to the lack of heat treatment capacity of the condenser 14 that is the final discharge destination, the plant cannot be continuously operated. The load state 104 of the operating state and the state quantity in the condenser (condenser pressure 100 / seawater temperature 103) are monitored, the acceptable steam quantity is calculated by the calculator 101, and the low-pressure turbine bypass is calculated by the opening limiter 102. A device that limits the maximum valve opening of the valve 36 and limits the flow rate of steam flowing into the condenser 14 is known (Japanese Patent Application Laid-Open No. 63-277).
805).

【0006】[0006]

【発明が解決しようとする課題】上記従来技術は、蒸気
発生器1からの発生蒸気が主蒸気管2から高圧タービン
バイパス系を介して低温再熱管6へ排出され、高温再熱
管8を経由して低圧タービンバイパス系を介して最終排
出先である復水器14へ排出される系統構成であり、こ
のような系統構成における各タービンバイパス弁22及
び36の制御は、下流側の状態に無関係(高圧タービン
パイパス弁22は低温再熱管6内の圧力と無関係/低圧
タービンバイパス弁36は復水器14内の圧力と無関
係)に上流の各蒸気管圧力を規定値とするように動作す
るため、復水器14の状態に基づいて流入蒸気流量を制
限するよう低圧タービンバイパス弁36のみの弁開度制
限を行った場合、高圧タービンパイパス弁22が下流側
の低温再熱管6内の圧力と無関係に動作することから、
低温再熱管6及び高温再熱管8の圧力が上昇し、最悪の
場合は再熱管の安全弁動作に至る可能性がある。
In the above prior art, the steam generated from the steam generator 1 is discharged from the main steam pipe 2 to the low-temperature reheat pipe 6 via the high-pressure turbine bypass system, and passes through the high-temperature reheat pipe 8. And the system is discharged to the condenser 14, which is the final discharge destination, via the low-pressure turbine bypass system. Control of each of the turbine bypass valves 22 and 36 in such a system configuration is irrelevant to the state on the downstream side ( Since the high-pressure turbine bypass valve 22 operates independently of the pressure in the low-temperature reheat pipe 6 / the low-pressure turbine bypass valve 36 does not relate to the pressure in the condenser 14), the pressure of each steam pipe upstream of the low-temperature turbine bypass valve 36 becomes constant. When the opening degree of only the low-pressure turbine bypass valve 36 is limited so as to limit the inflow steam flow rate based on the state of the condenser 14, the high-pressure turbine bypass valve 22 is connected to the downstream side of the low-temperature reheat pipe 6. From that it works independent of the force,
The pressure of the low-temperature reheating tube 6 and the high-temperature reheating tube 8 increases, and in the worst case, the safety valve of the reheating tube may operate.

【0007】本発明の課題は、タービン負荷遮断等の負
荷急減時に、高圧及び低圧タービンパイパス弁の開度を
制限し、各タービンバイパス弁下流側への過剰な蒸気排
出を回避する系統全体として協調のとれたタービンバイ
パス弁制御装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to cooperate as a whole system for limiting the opening degree of high-pressure and low-pressure turbine bypass valves and avoiding excessive steam discharge to the downstream side of each turbine bypass valve at the time of sudden load reduction such as turbine load interruption. It is another object of the present invention to provide a turbine bypass valve control device.

【0008】[0008]

【課題を解決するための手段】上記課題は、高圧及び低
圧タービンバイパス弁の制御信号に蒸気発生器からの蒸
気を前記タービンに導く蒸気管内の蒸気圧力に基づいて
求めた開度上限値を設定する手段を設け、タービンの負
荷急減時、蒸気圧力上昇後の圧力復帰を検出し、規定圧
力まで復帰した時、前記タービンバイパス弁を前記開度
上限値に保持することによって、解決される。また、高
圧及び低圧タービンバイパス弁の制御信号に蒸気発生器
からの蒸気を前記タービンに導く蒸気管内の蒸気流量に
基づいて求めた開度上限値を設定する手段を設け、ター
ビンの負荷急減時、蒸気管内の蒸気流量が規定流量設定
値を越えようとする時、前記タービンバイパス弁を前記
開度上限値に保持することによって、解決される。ま
た、高圧及び低圧タービンバイパス弁の制御信号に蒸気
発生器からの蒸気を前記タービンに導く蒸気管内の蒸気
圧力に基づいて求めた開度上限値を設定する関数発生手
段を設け、タービンの負荷急減時、蒸気管内の蒸気が適
正流量になるように前記タービンバイパス弁を前記開度
上限値に制限することによって、解決される。
SUMMARY OF THE INVENTION The object of the present invention is to set an upper limit of an opening degree obtained based on a steam pressure in a steam pipe for guiding steam from a steam generator to the turbine in a control signal of a high-pressure and low-pressure turbine bypass valve. This problem can be solved by providing a means for detecting the pressure return after the steam pressure rises when the load on the turbine suddenly decreases, and holding the turbine bypass valve at the upper limit of the opening when the pressure returns to the specified pressure. Further, a means for setting an opening upper limit determined based on a steam flow rate in a steam pipe for guiding steam from a steam generator to the turbine in a control signal of a high-pressure and low-pressure turbine bypass valve is provided. When the steam flow rate in the steam pipe is going to exceed the specified flow rate set value, this is solved by holding the turbine bypass valve at the opening upper limit value. Further, a function generating means for setting an opening upper limit value based on a steam pressure in a steam pipe for guiding steam from a steam generator to the turbine in a control signal of the high and low pressure turbine bypass valves is provided, and the load on the turbine is rapidly reduced. At this time, the problem is solved by restricting the turbine bypass valve to the opening upper limit value so that the steam in the steam pipe has an appropriate flow rate.

【0009】負荷急減後の高圧タービンバイパス弁22
及び低圧タービンバイパス弁36の処理蒸気流量は、蒸
気管内圧力最大ピーク点において負荷急減直前の蒸気発
生器の発生蒸気流量と同一となり、高圧タービンバイパ
ス弁22及び低圧タービンバイパス弁36の開度増加に
伴い、蒸気管内圧力がタービンバイパス弁制御設定圧力
まで減圧復帰する過程において過大なものとなること、
及び、ガス焚のボイラでは負荷急減と同時に燃料の急速
絞り込みを行ってもボイラからの蒸気発生は、負荷急減
直前の蒸気流量が所定時間(例えば、約4分間)継続さ
れ、その後減少となることをシミュレーション解析及び
その傾向は小容量プラントの実機によって確認した。本
発明では、負荷急減後の弁開動作継続による処理流量の
過剰増加を防止するため、負荷急減指令をタービンバイ
パス弁制御装置に取り込み、蒸気管内圧力が最大ピーク
圧力まで上昇した後、タービンバイパス弁制御設定値へ
の減圧復帰状態をとらえ、負荷急減後の蒸気管内最大ピ
ーク圧力から予め算出した可能減圧量(ΔP)を差し引
いた規定圧力まで復帰した時点でタービンバイパス弁の
開度上限値を設定し、この開度以上とならないように制
限する。蒸気発生器の蒸気発生量が減少開始となる時間
に余裕をとった時限後に、上記の開度上限値の設定を解
除し、プラント再起動時の最小圧力までタービンバイパ
ス弁設定圧力を一定レートにて減圧する。
The high pressure turbine bypass valve 22 after a sudden decrease in load
And the processing steam flow rate of the low-pressure turbine bypass valve 36 becomes the same as the generated steam flow rate of the steam generator immediately before the load suddenly decreases at the maximum peak pressure in the steam pipe, and the opening degree of the high-pressure turbine bypass valve 22 and the low-pressure turbine bypass valve 36 increases. Accompanying that, in the process of returning the pressure in the steam pipe to the pressure reduced to the turbine bypass valve control set pressure, it becomes excessive,
In addition, in a gas-fired boiler, even if the fuel is rapidly reduced at the same time as the load suddenly decreases, the steam flow from the boiler continues for a predetermined time (for example, about 4 minutes) immediately before the load suddenly decreases, and then decreases. The simulation analysis and the tendency were confirmed by the actual equipment of the small capacity plant. In the present invention, in order to prevent the processing flow rate from excessively increasing due to the continuation of the valve opening operation after the load sudden decrease, the load sudden decrease command is taken into the turbine bypass valve control device, and after the steam pipe pressure rises to the maximum peak pressure, the turbine bypass valve Capture the pressure reduction return state to the control set value, and set the upper limit of the opening of the turbine bypass valve when the pressure returns to the specified pressure obtained by subtracting the previously calculated possible pressure reduction amount (ΔP) from the maximum peak pressure in the steam pipe after the load suddenly decreases. Then, the opening degree is limited so as not to exceed the opening degree. After a sufficient time has passed for the time when the steam generation amount of the steam generator starts to decrease, the setting of the above opening degree upper limit is released, and the turbine bypass valve set pressure is maintained at a constant rate until the minimum pressure at the time of plant restart. To reduce pressure.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は、本発明の一実施形態によるタ
ービンバイパス弁制御装置を示し、火力発電プラントに
適用した例である。従来例の図2と同一の構成について
は同一符号により示してある。本実施形態は、圧力復帰
検出装置29及び44、並びに高圧タービンバイパス弁
22及び低圧タービンバイパス弁36指令値の上限値保
持装置30及び45を設け、さらに、実圧保持からの除
外タイミング合わせを行うために、圧力復帰検出装置2
9及び44からの分岐信号を関数発生器26及び38に
取り込むことを特徴とする。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of a turbine bypass valve control device according to an embodiment of the present invention, which is applied to a thermal power plant. The same components as those in FIG. 2 of the conventional example are denoted by the same reference numerals. In the present embodiment, the pressure return detection devices 29 and 44, the high pressure turbine bypass valve 22 and the low pressure turbine bypass valve 36 upper limit value holding devices 30 and 45 for the command value are provided, and the exclusion timing from the actual pressure holding is adjusted. Pressure return detection device 2
It is characterized in that the branch signals from 9 and 44 are taken into function generators 26 and 38.

【0011】図3に、圧力復帰検出装置29及び44の
ロジックを示す。圧力復帰検出装置29及び44には、
プラント制御装置(図示せず)からの負荷急減指令及び
主蒸気管2に設けた圧力検出器23あるいは高温再熱管
8に設けた圧力検出器41の圧力検出信号(実圧)を取
り込む。取り込んだ圧力検出信号は、アナログメモリー
50に制御装置のサンプリング一周期遅れをもって順次
記憶し、アナログメモリー50への順次記憶は、信号成
立後時限をもってOFFとなるタイマ54を介した負荷
急減指令成立で且つアナログメモリー50の出力値
(b)が圧力検出信号値(a)を上回った時点(b>
a)で選択器51によりカットし、出力保持とする。ア
ナログメモリー50の出力値は、負荷急減後の蒸気管圧
力最大ピーク点から蒸気発生器または蒸気管からの流出
蒸気流量が、蒸気発生器の最大公認流量、蒸気管設置の
温度計用ウエルのカルマン渦に対する耐震強度を管補で
きる許容流量、タービンバイパス蒸気減温設備における
熱バランスによって求まる処理可能最大蒸気流量、また
は、復水器部のエネルギダンバーのノズル開口総面積か
ら求められる排出処理可能最大蒸気流量の内、最も少な
い蒸気流量Q以下となるように計算によって求めた可能
減圧量ΔPを減算器52によって減算し、比較器53に
導く。
FIG. 3 shows the logic of the pressure recovery detecting devices 29 and 44. The pressure return detection devices 29 and 44 include:
A load sudden decrease command from a plant control device (not shown) and a pressure detection signal (actual pressure) of the pressure detector 23 provided in the main steam pipe 2 or the pressure detector 41 provided in the high-temperature reheating pipe 8 are taken in. The acquired pressure detection signal is sequentially stored in the analog memory 50 with a delay of one cycle of sampling of the control device. The sequential storage in the analog memory 50 is performed when a load sudden decrease command is established via the timer 54 which is turned off in a time limit after the signal is established. At the time when the output value (b) of the analog memory 50 exceeds the pressure detection signal value (a) (b>
In a), the signal is cut by the selector 51 and the output is held. The output value of the analog memory 50 is such that the steam flow from the steam generator or the steam pipe from the maximum peak point of the steam pipe pressure after the sudden decrease in load is the maximum approved flow rate of the steam generator, and the Kalman well for the thermometer installed in the steam pipe. The allowable flow rate that can compensate the seismic strength against vortices, the maximum processable steam flow rate determined by the heat balance in the turbine bypass steam deheater, or the maximum steam rate that can be processed based on the total nozzle opening area of the energy damper in the condenser section The subtraction unit 52 subtracts the possible pressure reduction amount ΔP calculated by the calculation so as to be equal to or less than the smallest steam flow rate Q among the flow rates, and leads the result to the comparator 53.

【0012】ここで、可能減圧量ΔPは、負荷急減後の
蒸気管圧力最大ピーク点における蒸気発生器1(また
は、再熱蒸気管8)からの発生蒸気流量は負荷急変直前
の発生蒸気流量と同一であること、及び、タービンバイ
パス弁の動作スピード(全開指令に対する全ストローク
動作するに要する時間)の制約に基づいて求められる負
荷急減時の圧力上昇量と時間の関係(圧力変化量ΔP’
とΔtの関係)から、理想気体の状態方程式PV=GR
T(P;圧力、V;容積、G;重量、R;ガス定数、
T;絶対温度)を用い、計算により求める。すなわち、
負荷急減後の蒸気管圧力最大ピーク点における圧力P1
での蒸気発生器1(または、再熱蒸気管8)の保有蒸気
重量G1を求め、また、P1以下の任意圧力P2での蒸
気発生器1(または、再熱蒸気管8)の保有蒸気重量G
2を求め、前述の理想気体の状態方程式に代入して求め
た(P1−P2)・V=ΔP’・V=(G1・G2)・
R・TのG1・G2にΔP’時のΔtを乗算した値を負
荷急変直前の発生蒸気流量に加えた値が前述の最も少な
い蒸気流量Qと等しくなるようにΔP’を求めることに
よって得られる。
Here, the possible pressure reduction amount ΔP is determined by calculating the flow rate of the generated steam from the steam generator 1 (or the reheated steam pipe 8) at the maximum peak point of the steam pipe pressure after the load suddenly decreases with the generated steam flow rate immediately before the sudden change in the load. The relationship between the pressure rise amount and the time (pressure change amount ΔP ′) at the time of a rapid load decrease determined based on the same and the restriction on the operation speed of the turbine bypass valve (the time required for full stroke operation in response to the full opening command).
And Δt), the equation of state of the ideal gas PV = GR
T (P: pressure, V: volume, G: weight, R: gas constant,
T; absolute temperature). That is,
Pressure P1 at peak peak of steam pipe pressure after sudden load reduction
The steam weight G1 of the steam generator 1 (or the reheat steam pipe 8) is obtained at the same time, and the steam weight of the steam generator 1 (or the reheat steam pipe 8) at an arbitrary pressure P2 equal to or less than P1. G
(P1−P2) · V = ΔP ′ · V = (G1 / G2) ·
It is obtained by calculating ΔP ′ such that a value obtained by adding the value obtained by multiplying G1 · G2 of R · T by Δt at ΔP ′ to the generated steam flow rate immediately before a sudden change in load becomes equal to the smallest steam flow rate Q described above. .

【0013】比較器53は、減算器52の出力信号と圧
力検出信号(実圧)との比較を行い、圧力検出信号が下
回った場合に比較器53の出力はONとなる。比較器5
3のON条件と負荷急減指令のAND条件55によって
圧力復帰検出装置29及び44の出力が成立したとき、
上限値保持装置30及び45を作動し、上限値保持装置
30及び45によってタービンバイパス弁開度上限値を
保持する。一方、負荷急減指令を圧力復帰検出装置29
及び44のタイマ54を介して関数発生器26及び38
に導くことによって、関数発生器26及び38の出力値
は負荷急減直前の圧力値を保持し、タイマ54のOFF
による条件リセットによって最小圧力へ一定レートにて
減少する。
The comparator 53 compares the output signal of the subtractor 52 with the pressure detection signal (actual pressure), and when the pressure detection signal falls below, the output of the comparator 53 turns ON. Comparator 5
When the outputs of the pressure recovery detectors 29 and 44 are established by the ON condition 3 and the AND condition 55 of the load sudden decrease command,
The upper limit value holding devices 30 and 45 are operated, and the upper limit value holding devices 30 and 45 hold the turbine bypass valve opening upper limit value. On the other hand, the load sudden decrease instruction is
And function generators 26 and 38 via timer 54 of
, The output values of the function generators 26 and 38 hold the pressure values immediately before the load suddenly decreases, and the timer 54 is turned off.
At a constant rate to a minimum pressure.

【0014】図4は、従来の制御系の特性であり、図5
は、圧力復帰検出装置29及び44を利用したタービン
バイパス弁上限設定を行った本実施形態の制御系の特性
である。いずれの場合も、蒸気管圧力及びタービンバイ
パス弁通過蒸気流量を含めた蒸気管内流量とタービンバ
イパス弁開度の変化を示す。特性60が蒸気管内圧力、
特性61がタービンバイパス弁の制御設定値、特性62
が蒸気管内流量、特性63がタービンバイパス弁開度で
ある。負荷急減が発生すると、負荷急減開始T1と共に
タービンバイパス弁は特性63のように開動作となる。
しかし、加減弁4またはインターセプト弁10の閉止動
作が急速であることから、蒸気管内の流れが特性62の
ように一旦閉塞状態となり、タービンバイパス弁の開度
増加と共に流量増加となる。一方、蒸気管内圧力は特性
60のように蒸気管から排出不足によって上昇し、蒸気
流量が負荷急減前の流量と同一となった時点T2におい
て最大ピーク圧力となる。タービンバイパス弁の制御設
定値は、特性61のように負荷急減開始T1にて固定値
28または40が除外され、負荷急減直前の蒸気管内圧
力と同値に保持される。従来例では、図4に示すよう
に、蒸気管内圧力60をタービンバイパス弁制御設定値
61にするようにタービンバイパス弁の開度63は増加
し、蒸気管内からの排出蒸気流量62を増加させていた
ため、蒸気管内圧力60がタービンバイパス弁制御設定
値61と同値となった点T3において蒸気流量は過大な
ものとなり、一時的にせよ、蒸気発生器の最大公認流
量、蒸気管設置の温度計用ウエルのカルマン渦に対する
耐震強度を確保できる許容流量、タービンバイパス蒸気
減温設備における熱バランスによって求まる処理可能最
大蒸気流量、または、復水器部のエネルギダンパーのノ
ズル開口総面積から求められる排出処理可能最大蒸気流
量以上となる。しかし、本実施形態では、図5に示すよ
うに、負荷急減後の蒸気管内圧力60が最大ピーク点T
2から可能減圧量(ΔP)を差し引いた規定圧力まで復
帰した時点T’2でタービンバイパス弁の開度63の上
限設定を行い、蒸気管流量62が過剰となることを抑制
する。このタービンバイパス弁の開度63の上限設定を
行うことによって、蒸気発生器の最大公認流量、蒸気管
設置の温度計用ウエルのカルマン渦に対する耐震強度を
確保できる許容流量、タービンバイパス蒸気減温設備に
おける熱バランスによって求まる処理可能最大蒸気流
量、または、復水器部のエネルギダンパーのノズル開口
総面積から求められる排出処理可能最大蒸気流量の内、
最も少ない蒸気流量Q以下を保持することができる。ま
た、前述のタービンバイパス弁の開度63の上限設定
は、蒸気管内圧力60が減少傾向T4となる蒸気発生器
からの発生蒸気流量62の減少が始まった後T5に解除
され、通常の自動制御へ移行する。
FIG. 4 shows the characteristics of a conventional control system.
Is a characteristic of the control system of the present embodiment in which the turbine bypass valve upper limit is set using the pressure return detection devices 29 and 44. In each case, changes in the flow rate in the steam pipe, including the steam pipe pressure and the steam flow rate passing through the turbine bypass valve, and changes in the opening degree of the turbine bypass valve are shown. Characteristic 60 is the pressure in the steam pipe,
The characteristic 61 is the control set value of the turbine bypass valve, and the characteristic 62
Is the steam pipe flow rate, and the characteristic 63 is the turbine bypass valve opening. If the load abruptly occurs, the turbine bypass valve with load abruptly start T 1 becomes opening operation as characteristic 63.
However, since the closing operation of the control valve 4 or the intercept valve 10 is rapid, the flow in the steam pipe is temporarily closed as indicated by a characteristic 62, and the flow rate increases with the opening degree of the turbine bypass valve. On the other hand, the steam pipe pressure rises by the discharge insufficient from the steam pipe as characteristic 60, the maximum peak pressure at the time T 2 where the steam flow rate is the same as those of the preload rapid decrease flow rate. Control setting value of the turbine bypass valve, a fixed value 28 or 40 is excluded by the load abruptly start T 1 as properties 61, is held in the steam pipe pressure equivalent to the load rapidly decreases immediately before. In the conventional example, as shown in FIG. 4, the opening 63 of the turbine bypass valve is increased so that the pressure 60 in the steam pipe is set to the turbine bypass valve control set value 61, and the flow rate 62 of steam discharged from the steam pipe is increased. and therefore, the steam flow in the steam pipe pressure 60 T 3 that was the turbine bypass valve control setting value 61 equivalent to become excessively large, transient event, the maximum certified flow rate of the steam generator, thermometer installed steam pipe Allowable flow rate to ensure seismic strength against Karman vortices in the wells, maximum processable steam flow rate determined by heat balance in the turbine bypass steam cooling system, or discharge processing determined from the total nozzle opening area of the energy damper in the condenser section It is higher than the maximum possible steam flow. However, in the present embodiment, as shown in FIG.
2 possible from the pressure reduction amount at the time T '2 has returned to the prescribed pressure minus the ([Delta] P) performs capping of the opening 63 of the turbine bypass valve, prevents the steam pipe flow 62 becomes excessive. By setting the upper limit of the opening degree 63 of the turbine bypass valve, the maximum approved flow rate of the steam generator, the allowable flow rate capable of securing the seismic strength against the Karman vortex of the thermometer well installed in the steam pipe, the turbine bypass steam deheating equipment Of the maximum processable steam flow rate determined by the heat balance in the above, or the maximum dischargeable processable steam flow rate determined from the total nozzle opening area of the condenser energy damper,
The minimum steam flow Q or less can be maintained. The upper limit setting opening 63 of the aforementioned turbine bypass valve is released T 5 after the reduction of the occurrence steam flow 62 from the steam generator steam pipe pressure 60 is decreasing T 4 began, normal Move to automatic control.

【0015】なお、本実施形態の図3の圧力復帰検出装
置29及び44のロジック中の負荷急減条件の解除をタ
イマ54のOFFタイミングとして表現しているが、こ
れに代わり、図5の特性60のように蒸気発生器からの
発生蒸気量62の減少が始まり、蒸気管内圧力60がタ
ービンバイパス弁制御設定値61と同一となった点T5
を検出し、負荷急減条件を解除する手段とすることも同
じである。
The cancellation of the rapid load reduction condition in the logic of the pressure return detection devices 29 and 44 in FIG. 3 of this embodiment is expressed as the OFF timing of the timer 54. Instead, the characteristic 60 in FIG. As shown in the figure, the steam generation amount 62 from the steam generator starts to decrease and the steam pipe pressure 60 becomes the same as the turbine bypass valve control set value 61 at the point T 5.
This is the same as the means for detecting the condition and canceling the sudden load reduction condition.

【0016】図6は、本発明の他の実施形態を示す。図
1と同一部分は同一符号で示す。図1と異なるのは、蒸
気管に流量検出器70及び73と、信号比較器72及び
75を設ける点である。本実施形態は、流量検出器70
及び73により検出した蒸気管内流量と規定流量設定値
Q71及び74との比較を信号比較器72及び75にお
いて行い、蒸気管内流量が蒸気発生器の最大公認流量、
蒸気管設置の温度計用ウエルのカルマン渦に対する耐震
強度を確保できる許容流量、タービンバイパス蒸気減温
設備における熱バランスによって求まる処理可能最大蒸
気流量、または、復水器部のエネルギダンパーのノズル
開口総面積から求められる排出処理可能最大蒸気流量の
内、最も少ない流量Qを越えようとする際に、タービン
バイパス弁指令値の上限値保持装置30及び45に信号
を与え、タービンバイパス弁の開度上限値設定を行う。
これにより、常に過剰な蒸気流量の監視を行う。
FIG. 6 shows another embodiment of the present invention. 1 are indicated by the same reference numerals. 1 in that flow detectors 70 and 73 and signal comparators 72 and 75 are provided in the steam pipe. In this embodiment, the flow rate detector 70
And 73 are compared in the signal comparators 72 and 75 with the specified flow rate set values Q71 and 74, and the flow rate in the steam pipe is the maximum approved flow rate of the steam generator,
Allowable flow rate to ensure seismic strength against Karman vortices of thermometer wells installed in steam pipes, maximum processable steam flow rate determined by heat balance in turbine bypass steam cooling system, or total nozzle opening of condenser energy damper When trying to exceed the smallest flow rate Q among the maximum dischargeable steam flow rates determined from the area, a signal is given to the turbine bypass valve command value upper limit value holding devices 30 and 45, and the turbine bypass valve opening upper limit is set. Set the value.
This constantly monitors the excess steam flow.

【0017】図7は、本発明の他の実施形態を示す。図
1と同一部分は同一符号で示す。図1と異なるのは、上
限値保持装置30及び45に代えて上限値制限器81及
び83と、圧力復帰検出装置29及び44に代えて圧力
検出器23及び41の信号に基づいてタービンバイパス
弁開度上限値を設定する関数発生器80及び82を設け
る点である。関数発生器80及び82は、圧力検出器2
3及び41の信号に基づいて、蒸気管設置の温度計用ウ
エルのカルマン渦に対する耐震強度を確保できる許容流
量、タービンバイパス蒸気減温設備での熱バランスによ
って求まる処理可能最大蒸気流量、または、復水器部の
エネルギダンパーのノズル開口総面積から求められる排
出処理可能最大蒸気流量の内、最も少ない流量(適正流
量)Q内とするよう弁容量・流量・入口圧力の関係式C
V=C・W/P(CV;弁容量、C;定数、W;流量、
P;弁入口圧力)によって求めたタービンバイパス弁開
度上限値を設定する。本実施形態は、関数発生器80及
び82からタービンバイパス弁指令値の上限値保持装置
30及び45に弁開度上限値を与え、タービンバイパス
弁の開度上限値設定を行う。これにより、常に過剰な蒸
気流量の監視を行う。
FIG. 7 shows another embodiment of the present invention. 1 are indicated by the same reference numerals. 1 is different from FIG. 1 in that upper limit value limiters 81 and 83 are used instead of the upper limit value holding devices 30 and 45, and turbine bypass valves are used based on signals from pressure detectors 23 and 41 instead of pressure return detection devices 29 and 44. The point is that function generators 80 and 82 for setting the opening upper limit value are provided. The function generators 80 and 82 include the pressure detector 2
Based on the signals of 3 and 41, the allowable flow rate that can secure the seismic strength against Karman vortex of the thermometer well installed in the steam pipe, the maximum processable steam flow rate determined by the heat balance in the turbine bypass steam deheating equipment, or The relational expression C between valve capacity, flow rate and inlet pressure so that the minimum flow rate (appropriate flow rate) Q of the maximum steam flow rate that can be discharged and calculated from the total nozzle opening area of the energy damper in the water tank section is C.
V = CW / P (CV; valve capacity, C; constant, W; flow rate,
P; valve inlet pressure), the upper limit of the turbine bypass valve opening is determined. In the present embodiment, the function generators 80 and 82 give the upper limit values of the turbine bypass valve command value upper limit value holding devices 30 and 45 to the valve opening upper limit value, and set the opening upper limit value of the turbine bypass valve. This constantly monitors the excess steam flow.

【0018】本発明は、火力発電プラントばかりでな
く、ガスタービンと蒸気タービンとのコンバインドサイ
クルプラントあるいは燃焼設備と蒸気タービンとの複合
発電設備の蒸気発生器とタービンとを連絡する蒸気配管
からタービンをバイパスして復水器へ発生蒸気を排出す
るバイパス系に設けられたタービンバイパス弁の制御、
さらには原子力発電プラントの沸騰水型原子炉、加圧水
型原子炉及び高速増殖炉の蒸気発生器とタービンとを連
絡する蒸気配管からタービンをバイパスして復水器へ発
生蒸気を排出するバイパス系に設けられたタービンバイ
パス弁の制御に適用することもできる。
According to the present invention, not only a thermal power plant but also a combined cycle plant of a gas turbine and a steam turbine or a steam generator for a combined power generation facility of a combustion facility and a steam turbine, and a steam pipe connecting a steam generator and the turbine to the turbine. Control of a turbine bypass valve provided in a bypass system for bypassing and discharging generated steam to a condenser,
In addition, a bypass system that discharges generated steam to the condenser by bypassing the turbine from the steam pipe connecting the steam generator and turbine of the boiling water reactor, pressurized water reactor and fast breeder reactor of the nuclear power plant. The present invention can be applied to control of a provided turbine bypass valve.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
プラント起動/停止時及び負荷急減時等の過渡域におけ
る過剰流量に対してタービンバイパス弁の開度上限値設
定を行うことにより、高圧及び低圧のタービンバイパス
系設備の保護を図ることができ、また、過剰流量の回避
に伴い、高圧及び低圧のタービンバイパス制御系の安定
化と信頼性が図られ、系統全体としての協調のとれた運
用が可能となる。
As described above, according to the present invention,
By setting the upper limit of the opening degree of the turbine bypass valve for an excessive flow rate in a transition region such as when starting / stopping the plant or when the load suddenly decreases, high-pressure and low-pressure turbine bypass system equipment can be protected. With the avoidance of excess flow, the high-pressure and low-pressure turbine bypass control systems are stabilized and reliable, and cooperative operation of the entire system becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態によるタービンバイパス弁
制御装置
FIG. 1 is a turbine bypass valve control device according to an embodiment of the present invention.

【図2】従来のタービンバイパス弁制御装置FIG. 2 shows a conventional turbine bypass valve control device.

【図3】本発明の圧力復帰検出装置のロジック図FIG. 3 is a logic diagram of the pressure recovery detection device of the present invention.

【図4】従来の制御装置による蒸気管圧力、蒸気管内流
量とタービンバイパス弁開度の変化を示す特性図
FIG. 4 is a characteristic diagram showing changes in a steam pipe pressure, a steam pipe flow rate, and a turbine bypass valve opening degree by a conventional control device.

【図5】本発明による蒸気管圧力、蒸気管内流量とター
ビンバイパス弁開度の変化を示す特性図
FIG. 5 is a characteristic diagram showing changes in steam pipe pressure, steam pipe flow rate, and turbine bypass valve opening degree according to the present invention.

【図6】本発明の他の実施形態FIG. 6 shows another embodiment of the present invention.

【図7】本発明の他の実施形態FIG. 7 shows another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ボイラ、2…主蒸気管、4…加減弁、5…蒸気ター
ビン、8…高温際熱管、10…インターセプト弁、11
…中圧タービン、12…復水器、21…高圧タービンバ
イパス管、22…高圧タービンバイパス弁、35…低圧
タービンバイパス管、36…低圧タービンバイパス弁、
26,38…関数発生器、27,39…加算器、28,
40…固定値、24,42…偏差演算器、25,43…
PI演算器、23,41…圧力検出器、29,44…圧
力復帰検出装置、30,45…上限値保持装置、70,
73…流量検出器、71,74…規定流量設定値、7
2,75…信号比較器、81,83…上限値制限器、8
0,82…関数発生器
DESCRIPTION OF SYMBOLS 1 ... Boiler, 2 ... Main steam pipe, 4 ... Control valve, 5 ... Steam turbine, 8 ... Hot pipe at high temperature, 10 ... Intercept valve, 11
... Medium pressure turbine, 12 ... Condenser, 21 ... High pressure turbine bypass pipe, 22 ... High pressure turbine bypass valve, 35 ... Low pressure turbine bypass pipe, 36 ... Low pressure turbine bypass valve,
26, 38 ... function generator, 27, 39 ... adder, 28,
40 ... fixed value, 24, 42 ... deviation calculator, 25, 43 ...
PI calculators, 23, 41 pressure detectors, 29, 44 pressure recovery detectors, 30, 45 upper limit value holding devices, 70,
73: flow rate detector, 71, 74: specified flow rate set value, 7
2,75 ... signal comparator, 81,83 ... upper limiter, 8
0, 82 ... function generator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 蒸気発生器と、タービンと、復水器と、
前記蒸気発生器からの蒸気を前記タービンに導く第1通
路と、前記蒸気発生器からの蒸気を前記タービンをバイ
パスし、前記第1通路から前記復水器へ導くタービンバ
イパス弁を有する第2通路からなる蒸気発生プラントに
おいて、前記タービンバイパス弁の制御信号に前記第1
通路内の蒸気圧力に基づいて求めた開度上限値を設定す
る手段を設け、タービンの負荷急減時、前記蒸気圧力上
昇後の圧力復帰を検出し、規定圧力まで復帰した時、前
記タービンバイパス弁を前記開度上限値に保持すること
を特徴とするタービンバイパス弁制御装置。
1. A steam generator, a turbine, a condenser,
A first passage that guides steam from the steam generator to the turbine; and a second passage that has a turbine bypass valve that bypasses the turbine from steam from the steam generator and guides the steam from the first passage to the condenser. A steam generation plant comprising:
Means for setting an opening upper limit value obtained based on the steam pressure in the passage is provided; when the load on the turbine is rapidly reduced, pressure recovery after the steam pressure rise is detected, and when the pressure is restored to a specified pressure, the turbine bypass valve is provided. Is maintained at the opening upper limit value.
【請求項2】 蒸気発生器と、タービンと、復水器と、
前記蒸気発生器からの蒸気を前記タービンに導く第1通
路と、前記蒸気発生器からの蒸気を前記タービンをバイ
パスし、前記第1通路から前記復水器へ導くタービンバ
イパス弁を有する第2通路からなる蒸気発生プラントに
おいて、前記タービンバイパス弁の制御信号に前記第1
通路内の蒸気流量に基づいて求めた開度上限値を設定す
る手段を設け、タービンの負荷急減時、前記第1通路内
の蒸気流量が規定流量設定値を越えようとする時、前記
タービンバイパス弁を前記開度上限値に保持することを
特徴とするタービンバイパス弁制御装置。
2. A steam generator, a turbine, a condenser,
A first passage that guides steam from the steam generator to the turbine; and a second passage that has a turbine bypass valve that bypasses the turbine from steam from the steam generator and guides the steam from the first passage to the condenser. A steam generation plant comprising:
Means for setting the upper limit of the opening determined based on the steam flow rate in the passage; and when the steam flow in the first passage tends to exceed a specified flow rate set value when the load on the turbine is rapidly reduced, the turbine bypass is set. A turbine bypass valve control device, wherein a valve is maintained at the opening upper limit value.
【請求項3】 蒸気発生器と、タービンと、復水器と、
前記蒸気発生器からの蒸気を前記タービンに導く第1通
路と、前記蒸気発生器からの蒸気を前記タービンをバイ
パスし、前記第1通路から前記復水器へ導くタービンバ
イパス弁を有する第2通路からなる蒸気発生プラントに
おいて、前記タービンバイパス弁の制御信号に前記第1
通路内の蒸気圧力に基づいて求めた開度上限値を設定す
る関数発生手段を設け、タービンの負荷急減時、前記第
1通路内の蒸気が適正流量になるように前記タービンバ
イパス弁を前記開度上限値に制限することを特徴とする
タービンバイパス弁制御装置。
3. A steam generator, a turbine, a condenser,
A first passage that guides steam from the steam generator to the turbine; and a second passage that has a turbine bypass valve that bypasses the turbine from steam from the steam generator and guides the steam from the first passage to the condenser. A steam generation plant comprising:
A function generating means for setting an opening degree upper limit value obtained based on the steam pressure in the passage is provided, and when the load on the turbine is rapidly reduced, the turbine bypass valve is opened so that the steam in the first passage has an appropriate flow rate. A turbine bypass valve control device, wherein the control is limited to an upper limit.
【請求項4】 請求項1から請求項3のいずれかにおい
て、タービンバイパス弁は、高圧タービンバイパス弁及
び低圧タービンバイパン弁からなることを特徴とするタ
ービンバイパス弁制御装置。
4. The turbine bypass valve control device according to claim 1, wherein the turbine bypass valve comprises a high-pressure turbine bypass valve and a low-pressure turbine bipan valve.
JP09070398A 1998-03-20 1998-03-20 Turbine bypass valve control device Expired - Fee Related JP3435450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09070398A JP3435450B2 (en) 1998-03-20 1998-03-20 Turbine bypass valve control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09070398A JP3435450B2 (en) 1998-03-20 1998-03-20 Turbine bypass valve control device

Publications (2)

Publication Number Publication Date
JPH11270305A true JPH11270305A (en) 1999-10-05
JP3435450B2 JP3435450B2 (en) 2003-08-11

Family

ID=14005899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09070398A Expired - Fee Related JP3435450B2 (en) 1998-03-20 1998-03-20 Turbine bypass valve control device

Country Status (1)

Country Link
JP (1) JP3435450B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177665A (en) * 2005-12-27 2007-07-12 Hitachi Ltd Steam turbine plant
JP2007332856A (en) * 2006-06-15 2007-12-27 Hitachi Ltd System and apparatus for controlling turbine bypass valve
JP2008099470A (en) * 2006-10-13 2008-04-24 Yokogawa Electric Corp Power supply unit
JP2009228617A (en) * 2008-03-25 2009-10-08 Pan Pacific Copper Co Ltd Steam turbine, steam turbine plant system, and output increasing method of steam turbine
JP2020106012A (en) * 2018-12-28 2020-07-09 三菱日立パワーシステムズ株式会社 Bypass control system of power generation plant, its control method and control program, and power generation plant
CN113027545A (en) * 2021-03-25 2021-06-25 西安热工研究院有限公司 Bypass control method for stabilizing steam drum liquid level of gas-steam combined cycle unit
CN113374542A (en) * 2021-07-07 2021-09-10 中国能源建设集团广东省电力设计研究院有限公司 Quick starting system of gas steam unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177665A (en) * 2005-12-27 2007-07-12 Hitachi Ltd Steam turbine plant
JP4560481B2 (en) * 2005-12-27 2010-10-13 株式会社日立製作所 Steam turbine plant
JP2007332856A (en) * 2006-06-15 2007-12-27 Hitachi Ltd System and apparatus for controlling turbine bypass valve
JP4665842B2 (en) * 2006-06-15 2011-04-06 株式会社日立製作所 Turbine bypass valve control system and apparatus
JP2008099470A (en) * 2006-10-13 2008-04-24 Yokogawa Electric Corp Power supply unit
JP2009228617A (en) * 2008-03-25 2009-10-08 Pan Pacific Copper Co Ltd Steam turbine, steam turbine plant system, and output increasing method of steam turbine
JP2020106012A (en) * 2018-12-28 2020-07-09 三菱日立パワーシステムズ株式会社 Bypass control system of power generation plant, its control method and control program, and power generation plant
CN113027545A (en) * 2021-03-25 2021-06-25 西安热工研究院有限公司 Bypass control method for stabilizing steam drum liquid level of gas-steam combined cycle unit
CN113374542A (en) * 2021-07-07 2021-09-10 中国能源建设集团广东省电力设计研究院有限公司 Quick starting system of gas steam unit
CN113374542B (en) * 2021-07-07 2024-06-04 中国能源建设集团广东省电力设计研究院有限公司 Quick starting system of gas steam unit

Also Published As

Publication number Publication date
JP3435450B2 (en) 2003-08-11

Similar Documents

Publication Publication Date Title
US4208882A (en) Start-up attemperator
DK2119879T3 (en) Steam and control systems therefor as well as control method
JP3435450B2 (en) Turbine bypass valve control device
CA2344137C (en) Steam control apparatus for turbine
US6651440B2 (en) Steam cooling apparatus for gas turbine
WO2020255719A1 (en) Power plant
JP4560481B2 (en) Steam turbine plant
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JP2523493B2 (en) Turbin bypass system
JPH07293809A (en) Method and device for controlling injection of water to desuperheater
JPH01248098A (en) Operating device for small and short ranged load following of boiling water nuclear reactor
JP3650277B2 (en) Thermal power plant control device and thermal power plant control method
JP3697316B2 (en) Moisture separator heater protection device for nuclear power plant
JP2504939Y2 (en) Boiler level controller
JPS6135441B2 (en)
JPS6211283Y2 (en)
JPH08178205A (en) Controller of boiler
JPH0368278B2 (en)
JPH04342806A (en) Steam turbine control device for combined power plant
JPS6158903A (en) Turbine controller for nuclear reactor
JPH09195718A (en) Main steam temperature control device
JPH10111392A (en) Controller for drain pump-up system
JPS6217081B2 (en)
JPH06129208A (en) Composite cycle plant
JPH0261402A (en) Water level control device for deaerator

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees