JP3697316B2 - Moisture separator heater protection device for nuclear power plant - Google Patents

Moisture separator heater protection device for nuclear power plant Download PDF

Info

Publication number
JP3697316B2
JP3697316B2 JP12927496A JP12927496A JP3697316B2 JP 3697316 B2 JP3697316 B2 JP 3697316B2 JP 12927496 A JP12927496 A JP 12927496A JP 12927496 A JP12927496 A JP 12927496A JP 3697316 B2 JP3697316 B2 JP 3697316B2
Authority
JP
Japan
Prior art keywords
valve
pressure
main steam
steam
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12927496A
Other languages
Japanese (ja)
Other versions
JPH09292107A (en
Inventor
賢治 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12927496A priority Critical patent/JP3697316B2/en
Publication of JPH09292107A publication Critical patent/JPH09292107A/en
Application granted granted Critical
Publication of JP3697316B2 publication Critical patent/JP3697316B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子炉圧力制御を行う原子力発電所における湿分分離加熱器を保護するための原子力発電所の湿分分離加熱器保護装置に関する。
【0002】
【従来の技術】
図11は、原子炉圧力制御を行う原子力発電所におけるタービン設備の概略図である。原子炉1で発生した蒸気は、主蒸気管2を介して蒸気止め弁4及び蒸気加減弁5に至り高圧タービン3に導かれ、高圧タービン3を駆動する。
【0003】
一方、主蒸気管2の途中には、主蒸気隔離弁6と主蒸気ヘッダ7とがあり、主蒸気ヘッダ7からは主蒸気を直接復水器8へ導くタービンバイパス管9と、湿分分離加熱器10に主蒸気を供給する加熱蒸気管11とが分岐している。タービンバイパス配管9には、タービンバイパス弁13が設けられ、このタービンバイパス弁13は原子炉圧力検出器12からの原子炉圧力に基づいてタービンバイパス弁制御装置23により制御される。また、湿分分離加熱器10に主蒸気を供給する加熱蒸気管11には湿分分離加熱器10への加熱蒸気の流入を閉止する加熱蒸気元弁14と、加熱蒸気圧力調節弁15が設置されている。
【0004】
高圧タービン3と低圧タービン16とはクロスアラウンド管17によって連絡されており、このクロスアラウンド管17の途中に主蒸気を加熱源とする加熱器18を内蔵した湿分分離加熱器10が設置されている。つまり、高圧タービン3で仕事を終えた蒸気は湿分分離加熱器10を通って低圧タービン16に導かれ、低圧タービン16を駆動する。低圧タービン16で仕事を終えた排気蒸気は、復水器8において凝縮され、その後、昇圧ポンプ20および給水加熱器19を介して昇温、昇圧されて原子炉1へ戻される。
【0005】
この様な原子炉圧力制御を行う原子力発電所のタービン設備において、主蒸気隔離弁6が全閉した場合は、原子炉1の炉圧力が上昇し、プラント停止となる。その過程で原子炉圧力検出器12からの信号を受けたタービンバイパス弁制御装置23は、タービンバイパス弁13を開動作する。つまり、主蒸気隔離弁6が閉すると原子炉圧力が上昇を始めるので、このとき炉圧力の上昇を抑制すべくタービンバイパス弁13は開動作して、主蒸気ヘッダ7から復水器8へ主蒸気が排出される。
【0006】
【発明が解決しようとする課題】
しかし、原子炉1からタービンバイパス弁13への主蒸気管2の途中に設置された主蒸気隔離弁6の閉により、原子炉1内の蒸気を復水器8へ導くことができず、結果としてはタービンバイパス弁13の開により主蒸気隔離弁6の2次側の蒸気圧力が急速に低下していくことになる。
【0007】
主蒸気隔離弁6の2次側圧力の低下により加熱器18の器内圧力は低下し、加熱器18の蒸気温度はその器内圧力の飽和温度に従い低下する。このため、加熱器18の器内温度も低下する。したがって、急激な器内圧力の変化は器内の温度分布を急変させるため過度の熱応力を発生させる可能性があり、湿分分離加熱器10の健全性が維持出来ずプラントの信頼性の面で問題があった。
【0008】
本発明の目的は、主蒸気隔離弁が閉した場合であっても、湿分分離加熱器の器内圧力の急減を防止しその健全性を維持することができる原子力発電所の湿分分離加熱器保護装置を提供することである。
【0009】
【課題を解決するための手段】
請求項1の発明は、原子力発電所の主タービンで仕事を終えた蒸気に含まれる湿分を、原子炉からの主蒸気を供給して除去するようにした湿分分離加熱器を保護するための原子力発電所の湿分分離加熱器保護装置であり、原子炉出口に設けられた主蒸気隔離弁の弁状態を検出する弁状態検出装置と、弁状態検出装置からの信号に基づいて主蒸気隔離弁の弁状態を判定する弁状態判定手段と、弁状態判定手段により主蒸気隔離弁が全開以外の弁状態であると判定されたときはタービンバイパス弁の全閉操作を行うと共にタービントリップ操作を行う制御手段とを備えたものである。
【0010】
請求項1の発明では、主蒸気隔離弁の弁状態を弁状態検出装置で検出し、弁状態判定手段は弁状態検出装置からの信号に基づいて主蒸気隔離弁の弁状態を判定する。そして、制御手段は、弁状態判定手段により主蒸気隔離弁が全開以外の弁状態であると判定されたときは、タービンバイパス弁の全閉操作を行うと共にタービントリップ操作を行う。
【0011】
請求項2の発明は、原子力発電所の主タービンで仕事を終えた蒸気に含まれる湿分を原子炉からの主蒸気を供給して除去するようにした湿分分離加熱器を保護するための原子力発電所の湿分分離加熱器保護装置であり、原子炉出口に設けられた主蒸気隔離弁の2次側圧力を検出する2次側圧力検出器と、2次側圧力検出器からの信号に基づいて主蒸気隔離弁の2次側圧力が所定値以下であるか否かを判定する2次側圧力判定手段と、2次側圧力判定手段により主蒸気隔離弁の2次側圧力が所定値以下であると判定されたときはタービンバイパス弁の全閉操作を行うと共にタービントリップ操作を行う制御手段とを備えたものである。
【0012】
請求項2の発明では、主蒸気隔離弁の2次側圧力を2次側圧力検出器で検出し、2次側圧力判定手段は、2次側圧力検出器からの信号に基づいて主蒸気隔離弁の2次側圧力が所定値以下であるか否かを判定する。そして、制御手段は、2次側圧力判定手段により主蒸気隔離弁の2次側圧力が所定値以下であると判定されたときはタービンバイパス弁の全閉操作を行うと共にタービントリップ操作を行う。
【0013】
請求項3の発明は、原子力発電所の主タービンで仕事を終えた蒸気に含まれる湿分を原子炉からの主蒸気を供給して除去するようにした湿分分離加熱器を保護するための原子力発電所の湿分分離加熱器保護装置であり、原子炉出口に設けられた主蒸気隔離弁の2次側圧力を検出する2次側圧力検出器と、2次側圧力検出器からの信号に基づいて主蒸気隔離弁の2次側圧力の変化率が所定値より大であるか否かを判定する2次側圧力変化率判定手段と、2次側圧力変化率判定手段により主蒸気隔離弁の2次側圧力変化率が所定値より大であると判定されたときはタービンバイパス弁の全閉操作を行うと共にタービントリップ操作を行う制御手段とを備えたものである。
【0014】
請求項3の発明では、主蒸気隔離弁の2次側圧力を2次側圧力検出器で検出し、2次側圧力変化率判定手段は、2次側圧力検出器からの信号に基づいて主蒸気隔離弁の2次側圧力の変化率が所定値より大であるか否かを判定する。そして、制御手段は、2次側圧力変化率判定手段により主蒸気隔離弁の2次側圧力変化率が所定値より大であると判定されたときはタービンバイパス弁の全閉操作を行うと共にタービントリップ操作を行う。
【0015】
請求項4の発明は、原子力発電所の主タービンで仕事を終えた蒸気に含まれる湿分を原子炉からの主蒸気を供給して除去するようにした湿分分離加熱器を保護するための原子力発電所の湿分分離加熱器保護装置であり、原子炉出口に設けられた主蒸気隔離弁の1次側圧力を検出する1次側圧力検出器と、主蒸気隔離弁の2次側圧力を検出する2次側圧力検出器と、1次側圧力検出器及び2次側圧力検出器からの信号に基づいて主蒸気隔離弁の1次側圧力と2次側圧力との圧力偏差が所定値より大であるか否かを判定する圧力偏差判定手段と、圧力偏差判定手段により主蒸気隔離弁の1次側圧力と2次側圧力との圧力偏差が所定値より大であると判定されたときはタービンバイパス弁の全閉操作を行うと共にタービントリップ操作を行う制御手段とを備えたものである。
【0016】
請求項4の発明では、主蒸気隔離弁の1次側圧力を1次側圧力検出器で検出し、主蒸気隔離弁の2次側圧力を2次側圧力検出器で検出し、圧力偏差判定手段は、1次側圧力検出器及び2次側圧力検出器からの信号に基づいて主蒸気隔離弁の1次側圧力と2次側圧力との圧力偏差が所定値より大であるか否かを判定する。そして、制御手段は、圧力偏差判定手段により主蒸気隔離弁の1次側圧力と2次側圧力との圧力偏差が所定値より大であると判定されたときはタービンバイパス弁の全閉操作を行うと共にタービントリップ操作を行う。
【0017】
請求項5の発明は、原子炉からの主蒸気を加熱蒸気元弁及び加熱蒸気圧力調整弁を介して湿分分離加熱器に導き、主タービンで仕事を終えた蒸気に含まれる湿分を湿分分離加熱器で除去するようにした原子力発電所の湿分分離加熱器保護装置であり、原子炉出口に設けられた主蒸気隔離弁の弁状態を検出する弁状態検出装置と、弁状態検出装置からの信号に基づいて主蒸気隔離弁の弁状態を判定する弁状態判定手段と、弁状態判定手段により主蒸気隔離弁が全開以外の弁状態であると判定されたときは加熱蒸気元弁又は加熱蒸気調節弁の全閉操作を行う制御手段とを備えたものである。
【0018】
請求項5の発明では、主蒸気隔離弁の弁状態を弁状態検出装置で検出し、弁状態判定手段は、弁状態検出装置からの信号に基づいて主蒸気隔離弁の弁状態を判定する。そして、制御手段は、弁状態判定手段により主蒸気隔離弁が全開以外の弁状態であると判定されたときは加熱蒸気元弁又は加熱蒸気調節弁の全閉操作を行う。
【0019】
請求項6の発明は、原子炉からの主蒸気を加熱蒸気元弁及び加熱蒸気圧力調整弁を介して湿分分離加熱器に導き、主タービンで仕事を終えた蒸気に含まれる湿分を湿分分離加熱器で除去するようにした原子力発電所の湿分分離加熱器保護装置であり、原子炉出口に設けられた主蒸気隔離弁の2次側圧力を検出する2次側圧力検出器と、2次側圧力検出器からの信号に基づいて主蒸気隔離弁の2次側圧力が所定値以下であるか否かを判定する2次側圧力判定手段と、2次側圧力判定手段により主蒸気隔離弁の2次側圧力が所定値以下であると判定されたときは加熱蒸気元弁又は加熱蒸気調節弁の全閉操作を行う制御手段とを備えたものである。
【0020】
請求項6の発明では、主蒸気隔離弁の2次側圧力を2次側圧力検出器で検出し、2次側圧力判定手段は、2次側圧力検出器からの信号に基づいて主蒸気隔離弁の2次側圧力が所定値以下であるか否かを判定する。そして、制御手段は、2次側圧力判定手段により主蒸気隔離弁の2次側圧力が所定値以下であると判定されたときは加熱蒸気元弁又は加熱蒸気調節弁の全閉操作を行う。
【0021】
請求項7の発明は、原子炉からの主蒸気を加熱蒸気元弁及び加熱蒸気圧力調整弁を介して湿分分離加熱器に導き、主タービンで仕事を終えた蒸気に含まれる湿分を湿分分離加熱器で除去するようにした原子力発電所の湿分分離加熱器保護装置であり、原子炉出口に設けられた主蒸気隔離弁の2次側圧力を検出する2次側圧力検出器と、2次側圧力検出器からの信号に基づいて主蒸気隔離弁の2次側圧力の変化率が所定値より大であるか否かを判定する2次側圧力変化率判定手段と、2次側圧力変化率判定手段により主蒸気隔離弁の2次側圧力変化率が所定値より大であると判定されたときは加熱蒸気元弁又は加熱蒸気調節弁の全閉操作を行う制御手段とを備えたものである。
【0022】
請求項7の発明では、主蒸気隔離弁の2次側圧力を2次側圧力検出器で検出し、2次側圧力変化率判定手段は、2次側圧力検出器からの信号に基づいて主蒸気隔離弁の2次側圧力の変化率が所定値より大であるか否かを判定する。そして、制御手段は、2次側圧力変化率判定手段により主蒸気隔離弁の2次側圧力変化率が所定値より大であると判定されたときは加熱蒸気元弁又は加熱蒸気調節弁の全閉操作を行う。
【0023】
請求項8の発明は、原子炉からの主蒸気を加熱蒸気元弁及び加熱蒸気圧力調整弁を介して湿分分離加熱器に導き、主タービンで仕事を終えた蒸気に含まれる湿分を湿分分離加熱器で除去するようにした原子力発電所の湿分分離加熱器保護装置であり、原子炉出口に設けられた主蒸気隔離弁の1次側圧力を検出する1次側圧力検出器と、主蒸気隔離弁の2次側圧力を検出する2次側圧力検出器と、1次側圧力検出器及び2次側圧力検出器からの信号に基づいて主蒸気隔離弁の1次側圧力と2次側圧力との圧力偏差が所定値より大であるか否かを判定する圧力偏差判定手段と、圧力偏差判定手段により主蒸気隔離弁の1次側圧力と2次側圧力との圧力偏差が所定値より大であると判定されたときは加熱蒸気元弁又は加熱蒸気調節弁の全閉操作を行う制御手段とを備えたものである。
【0024】
請求項8の発明では、主蒸気隔離弁の1次側圧力を1次側圧力検出器で検出し、主蒸気隔離弁の2次側圧力を2次側圧力検出器で検出し、圧力偏差判定手段は、1次側圧力検出器及び2次側圧力検出器からの信号に基づいて主蒸気隔離弁の1次側圧力と2次側圧力との圧力偏差が所定値より大であるか否かを判定する。そして、制御手段は、圧力偏差判定手段により主蒸気隔離弁の1次側圧力と2次側圧力との圧力偏差が所定値より大であると判定されたときは加熱蒸気元弁又は加熱蒸気調節弁の全閉操作を行う。
【0027】
請求項の発明は、請求項5乃至請求項8の発明において、湿分分離加熱器に供給する主蒸気を遮断するための遮断弁を加熱蒸気元弁の上流側に設け、制御手段は加熱蒸気元弁又は加熱蒸気調節弁に代えて遮断弁の全閉操作を行うようにしたものである。
【0028】
請求項の発明では、主蒸気隔離弁の2次側圧力が低下した状態のときに、遮断弁を全閉し湿分分離加熱器の器内圧力の低下を防止する。
【0029】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。図1は、本発明の第1の実施の形態を示す構成図である。図1において、弁状態検出装置24は主蒸気隔離弁6の弁状態を検出するものであり、この弁状態検出装置24で検出された主蒸気隔離弁の弁状態は、弁状態判定手段25に入力される。弁状態判定手段25は入力した弁状態に基づいて、主蒸気隔離弁6が全開以外の状態か否かを判定し、主蒸気隔離弁6の弁状態が全開以外の状態であるときは、制御手段26に論理信号「1」を出力する。制御手段26は、主蒸気隔離弁6が全開以外である信号を受けると、タービンバイパス弁13の全閉操作と、タービントリップ操作とを行う。
【0030】
すなわち、主蒸気隔離弁6に全閉事象が発生した場合には、原子炉圧力の入力信号に応じて動作するタービンバイパス弁13への全閉操作と、タービントリップ操作による主蒸気止め弁4の全閉操作により、主蒸気隔離弁6の2次側圧力の急減を防ぐ。これにより、湿分分離加熱器10の主蒸気を加熱源とする加熱器18に過度の熱応力を発生させず、湿分分離加熱器10の健全性を維持することができる。
【0031】
以上の説明では、弁状態判定手段25は主蒸気隔離弁6が全開以外の状態か否かを判定し、主蒸気隔離弁6が全開以外の状態のときに、制御手段26はタービンバイパス弁13の全閉操作及びタービントリップ操作とを行うようにしたが、主蒸気隔離弁6の弁開度が全閉となった場合に、そのように操作を行うようにしても良い。
【0032】
次に、本発明の第2の実施の形態を説明する。図2は、本発明の第2の実施の形態を示す構成図である。図2において、2次側圧力検出器27は主蒸気隔離弁6の2次側圧力を検出するものであり、この2次側圧力検出器27で検出された主蒸気隔離弁の2次側圧力は、2次側圧力判定手段28に入力される。2次側圧力判定手段28では、2次側圧力検出器27からの信号に基づいて主蒸気隔離弁6の2次側圧力が所定値以下であるか否かを判定する。そして、制御手段26では、2次側圧力判定手段28により主蒸気隔離弁6の2次側圧力が所定値以下であると判定されたときは、タービンバイパス弁13の全閉操作を行うと共にタービントリップ操作を行う。
【0033】
すなわち、主蒸気隔離弁6の2次側圧力が所定値を下回った場合に、タービンバイパス弁13の全閉操作及びタービントリップ操作を行う。これにより、主蒸気隔離弁6の2次側圧力の急減を防ぐことが可能となり、湿分分離加熱器10の主蒸気を加熱源とする加熱器18に過度の熱応力を発生させず湿分分離加熱器の健全性を維持することができる。
【0034】
次に、本発明の第3の実施の形態を説明する。図3は、本発明の第3の実施の形態を示す構成図である。図3において、2次側圧力検出器27は主蒸気隔離弁6の2次側圧力を検出するものであり、この2次側圧力検出器27で検出された主蒸気隔離弁の2次側圧力は、圧力変化率判定手段29に入力される。圧力変化率判定手段29は、2次側圧力検出器27からの信号に基づいて主蒸気隔離弁6の2次側圧力の変化率を求め、その圧力変化率が所定値より大であるか否かを判定する。そして、制御手段26では、圧力変化率判定手段29により主蒸気隔離弁6の圧力変化率が所定値より大であると判定されたときは、タービンバイパス弁13の全閉操作を行うと共にタービントリップ操作を行う。
【0035】
すなわち、主蒸気隔離弁6の2次側圧力変化率が所定値を上回った場合に、タービンバイパス弁13の全閉操作とタービントリップ操作とを行う。これにより、主蒸気隔離弁6の2次側圧力の急減を防ぐことが可能となり、湿分分離加熱器10に過度の熱応力で発生させることを防止し、湿分分離加熱器10の健全性を維持することができる。
【0036】
次に、本発明の第4の実施の形態を説明する。図4は、本発明の第4の実施の形態を示す構成図である。図4において、主蒸気隔離弁6の1次側圧力は1次側圧力検出器30で検出され、また、主蒸気隔離弁6の2次側圧力は2次側圧力検出器27で検出される。1次側圧力検出器30で検出された主蒸気隔離弁6の1次側圧力及び2次側圧力検出器27で検出された主蒸気隔離弁6の2次側圧力は、圧力偏差判定手段31に入力される。圧力偏差判定手段31は、1次側圧力検出器30及び2次側圧力検出器27からの信号に基づいて、主蒸気隔離弁6の1次側圧力と2次側圧力との圧力偏差が所定値より大であるか否かを判定する。そして、圧力偏差判定手段31により主蒸気隔離弁6の1次側圧力と2次側圧力との圧力偏差が所定値より大であると判定されたときは、制御手段26はタービンバイパス弁の全閉操作を行うと共にタービントリップ操作を行う。
【0037】
すなわち、主蒸気隔離弁6の2次側圧力と原子炉圧力(主蒸気隔離弁6の1次側圧力)との圧力偏差により、タービンバイパス弁13の全閉操作とタービントリップを行う。これにより、主蒸気隔離弁6の2次側圧力の急減を防ぐことが可能となり、湿分分離加熱器10に過度の熱応力を発生させず、湿分分離加熱器10の健全性を維持することができる。
【0038】
次に、本発明の第5の実施の形態を説明する。図5は本発明の第5の実施の形態を示す構成図である。図5において、主蒸気隔離弁6の弁状態は弁状態検出装置24で検出され、弁状態判定手段25は、弁状態検出装置24からの信号に基づいて主蒸気隔離弁6の弁状態を判定する。そして、制御手段26は、弁状態判定手段25により主蒸気隔離弁6が全開以外の弁状態であると判定されたときは加熱蒸気元弁14又は加熱蒸気調節弁15の全閉操作を行う。
【0039】
すなわち、湿分分離加熱器10は主蒸気を加熱源とする加熱器18を有しており、この加熱器18に主蒸気を供給する加熱蒸気管11には、加熱蒸気元弁14と加熱蒸気圧力調節弁15とが設けられている。そこで、主蒸気隔離弁6が全開以外の弁状態であると判定されたときは加熱蒸気元弁14の全閉操作を行う。たとえば、加熱蒸気元弁14を1分以内に全閉する。これにより、加熱蒸気元弁14の2次側圧力の急減を防ぐことが可能となり、湿分分離加熱器10に過度の熱応力を発生させず湿分分離加熱器10の健全性を維持することができる。また、加熱蒸気圧力調節弁15を1分以内に全閉するようにしても良い。
【0040】
次に、本発明の第6の実施の形態を説明する。図6は本発明の第6の実施の形態を示す構成図である。図6において、主蒸気隔離弁6の2次側圧力は2次側圧力検出器27検出され、2次側圧力判定手段28は、2次側圧力検出器27からの信号に基づいて主蒸気隔離弁6の2次側圧力が所定値以下であるか否かを判定する。そして、制御手段26は、2次側圧力判定手段28により主蒸気隔離弁6の2次側圧力が所定値以下であると判定されたときは加熱蒸気元弁14又は加熱蒸気調節弁15の全閉操作を行う。
【0041】
すなわち、湿分分離加熱器10は主蒸気を加熱源とする加熱器18を有しており、この加熱器18に主蒸気を供給する加熱蒸気管11には、加熱蒸気元弁14と加熱蒸気圧力調節弁15とが設けられている。そこで、主蒸気隔離弁6の2次側圧力が所定値以下であると判定されたときは加熱蒸気元弁14の全閉操作を行う。たとえば、加熱蒸気元弁14を1分以内に全閉する。これにより、加熱蒸気元弁14の2次側圧力の急減を防ぐことが可能となり、湿分分離加熱器10に過度の熱応力を発生させず湿分分離加熱器10の健全性を維持することができる。また、加熱蒸気圧力調節弁15を1分以内に全閉するようにしても良い。
【0042】
次に、本発明の第7の実施の形態を説明する。図7は本発明の第7の実施の形態を示す構成図である。図7において、主蒸気隔離弁6の2次側圧力は2次側圧力検出器27で検出し、2次側圧力変化率判定手段29は、2次側圧力検出器27からの信号に基づいて主蒸気隔離弁6の2次側圧力の変化率が所定値より大であるか否かを判定する。そして、制御手段26は、2次側圧力変化率判定手段29により主蒸気隔離弁6の2次側圧力変化率が所定値より大であると判定されたときは加熱蒸気元弁14又は加熱蒸気調節弁15の全閉操作を行う。
【0043】
すなわち、湿分分離加熱器10は主蒸気を加熱源とする加熱器18を有しており、この加熱器18に主蒸気を供給する加熱蒸気管11には、加熱蒸気元弁14と加熱蒸気圧力調節弁15とが設けられている。そこで、主蒸気隔離弁6の2次側圧力変化率が所定値より大であると判定されたときは加熱蒸気元弁14の全閉操作を行う。たとえば、加熱蒸気元弁14を1分以内に全閉する。これにより、加熱蒸気元弁14の2次側圧力の急減を防ぐことが可能となり、湿分分離加熱器10に過度の熱応力を発生させず湿分分離加熱器10の健全性を維持することができる。また、加熱蒸気圧力調節弁15を1分以内に全閉するようにしても良い。
【0044】
次に、本発明の第8の実施の形態を説明する。図8は本発明の第8の実施の形態を示す構成図である。図8において、主蒸気隔離弁6の1次側圧力を1次側圧力検出器30で検出し、主蒸気隔離弁6の2次側圧力を2次側圧力検出器27で検出し、圧力偏差判定手段31は、1次側圧力検出器30及び2次側圧力検出器27からの信号に基づいて主蒸気隔離弁6の1次側圧力と2次側圧力との圧力偏差が所定値より大であるか否かを判定する。そして、制御手段26は、圧力偏差判定手段31により主蒸気隔離弁6の1次側圧力と2次側圧力との圧力偏差が所定値より大であると判定されたときは加熱蒸気元弁14又は加熱蒸気調節弁15の全閉操作を行う。
【0045】
すなわち、湿分分離加熱器10は主蒸気を加熱源とする加熱器18を有しており、この加熱器18に主蒸気を供給する加熱蒸気管11には、加熱蒸気元弁14と加熱蒸気圧力調節弁15とが設けられている。そこで、主蒸気隔離弁6の1次側圧力と2次側圧力との圧力偏差が所定値より大であると判定されたときは加熱蒸気元弁14の全閉操作を行う。たとえば、加熱蒸気元弁14を1分以内に全閉する。これにより、加熱蒸気元弁14の2次側圧力の急減を防ぐことが可能となり、湿分分離加熱器10に過度の熱応力を発生させず湿分分離加熱器10の健全性を維持することができる。また、加熱蒸気圧力調節弁15を1分以内に全閉するようにしても良い。
【0046】
次に、図9は、本発明の第9の実施の形態における系統構成の説明図である。図9において、主蒸気ヘッダ7には原子炉1から主蒸気が供給される。主蒸気ヘッダ7からの主蒸気は、湿分分離加熱器10の加熱器18に供給されることになるが、その加熱蒸気管11に加熱蒸気元弁14及び加熱蒸気圧力調整弁15に加えて、加熱蒸気元弁14の上流側に遮断弁21を設けている。
【0047】
すなわち、主蒸気を加熱源とする加熱器18を有した湿分分離加熱器10に主蒸気を供給する加熱蒸気管11には、加熱蒸気元弁14と加熱蒸気圧力調節弁15が設けられているが、さらに遮断弁21を追加して設ける。そして、第5の実施の形態乃至第8の実施の形態における加熱蒸気元弁14及び加熱蒸気圧力調整弁15を全閉にする代わりに、この遮断弁21を1分以内で全閉する。これにより、遮断弁21の2次側の圧力の急減を防止することが可能となり、湿分分離加熱器10に過度の熱応力を発生させず、湿分分離加熱器10の健全性を維持することができる。
【0048】
次に、図10は、本発明の第10の実施の形態における系統構成の説明図である。図9に示した第9の実施の形態における系統構成の遮断弁21に代えて、逆止弁22を設けたものである。この逆止弁22は湿分分離加熱器10に供給する主蒸気の原子炉側への逆流を阻止するものであり、主蒸気隔離弁6の2次側圧力が低下した状態のときに、湿分分離加熱器10の器内圧力の低下を防止する。
【0049】
すなわち、加熱蒸気管11の途中に逆止弁22を設置し、この逆止弁22の1次側圧力と2次側圧力が逆転した場合であっても、逆止弁22の2次側の圧力が急減することを防止することが可能となり、湿分分離加熱器に過度の熱応力を発生させず、湿分分離加熱器の健全性を維持することができる。また、逆止弁22には通常の起動停止時の圧力調節で円滑に行えるように任意に強制開または強制閉の操作が可能な設備としてもよい。
【0050】
【発明の効果】
以上述べたように、本発明によれば、主蒸気隔離弁の全閉事象が発生し、湿分分離加熱器の主蒸気を加熱源とする加熱器の器内圧力が急減しようとするときは、タービンバイパス弁の全閉操作とタービントリップ操作を行うので、加熱器の器内圧力の圧力変化量を抑えることができる。また、湿分分離加熱器に主蒸気を供給する加熱蒸気管の途中に設置した弁により加熱器の器内圧力の圧力変化量を抑えることができる。したがって、湿分分離加熱器に過度の熱応力を発生させずに湿分分離加熱器の健全性を維持でき、プラントの信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す構成図。
【図2】本発明の第2の実施の形態を示す構成図。
【図3】本発明の第3の実施の形態を示す構成図。
【図4】本発明の第4の実施の形態を示す構成図。
【図5】本発明の第5の実施の形態を示す構成図。
【図6】本発明の第6の実施の形態を示す構成図。
【図7】本発明の第7の実施の形態を示す構成図。
【図8】本発明の第8の実施の形態を示す構成図。
【図9】本発明の第9の実施の形態における系統構成の説明図。
【図10】本発明の第10の実施の形態における系統構成の説明図。
【図11】原子炉圧力制御を行う原子力発電所におけるタービン設備の概略図。
【符号の説明】
1 原子炉
2 主蒸気管
3 高圧タービン
4 主蒸気止め弁
5 蒸気加減弁
6 主蒸気隔離弁
7 主蒸気ヘッダ
8 復水器
9 タービンバイパス管
10 湿分分離加熱器
11 加熱蒸気管
12 原子炉圧力検出器
13 タービンバイパス弁
14 加熱蒸気元弁
15 加熱蒸気圧力調整弁
16 低圧タービン
17 クロスアラウンド管
18 加熱器
19 給水加熱器
20 昇圧ポンプ
21 遮断弁
22 逆止弁
23 タービンバイパス弁制御装置
24 弁状態検出装置
25 弁状態判定手段
26 制御手段
27 2次側圧力検出手段
28 2次側圧力判定手段
29 圧力変化率判定手段
30 1次側圧力検出器
31 圧力偏差判定手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a moisture separator heater protection device for a nuclear power plant for protecting a moisture separator heater in a nuclear power plant that performs reactor pressure control.
[0002]
[Prior art]
FIG. 11 is a schematic diagram of turbine equipment in a nuclear power plant that performs reactor pressure control. The steam generated in the nuclear reactor 1 reaches the steam stop valve 4 and the steam control valve 5 through the main steam pipe 2 and is guided to the high pressure turbine 3 to drive the high pressure turbine 3.
[0003]
On the other hand, in the middle of the main steam pipe 2, there are a main steam isolation valve 6 and a main steam header 7. From the main steam header 7, a turbine bypass pipe 9 that leads the main steam directly to the condenser 8 and moisture separation are provided. A heating steam pipe 11 for supplying main steam to the heater 10 is branched. A turbine bypass valve 13 is provided in the turbine bypass pipe 9, and the turbine bypass valve 13 is controlled by a turbine bypass valve control device 23 based on the reactor pressure from the reactor pressure detector 12. In addition, a heating steam source valve 14 that closes the inflow of heating steam to the moisture separation heater 10 and a heating steam pressure control valve 15 are installed in the heating steam pipe 11 that supplies main steam to the moisture separation heater 10. Has been.
[0004]
The high-pressure turbine 3 and the low-pressure turbine 16 are connected to each other by a cross-around pipe 17, and a moisture separation heater 10 including a heater 18 that uses main steam as a heating source is installed in the middle of the cross-around pipe 17. Yes. That is, the steam that has finished work in the high-pressure turbine 3 is guided to the low-pressure turbine 16 through the moisture separator and heater 10 to drive the low-pressure turbine 16. The exhaust steam that has finished its work in the low-pressure turbine 16 is condensed in the condenser 8, and then heated and boosted via the booster pump 20 and the feed water heater 19 and returned to the nuclear reactor 1.
[0005]
In a turbine facility of a nuclear power plant that performs such reactor pressure control, when the main steam isolation valve 6 is fully closed, the reactor pressure of the reactor 1 increases and the plant is stopped. In the process, the turbine bypass valve control device 23 that has received a signal from the reactor pressure detector 12 opens the turbine bypass valve 13. That is, when the main steam isolation valve 6 is closed, the reactor pressure starts to increase. At this time, the turbine bypass valve 13 is opened to suppress the increase in the reactor pressure, and the main steam header 7 is connected to the condenser 8. Steam is discharged.
[0006]
[Problems to be solved by the invention]
However, due to the closing of the main steam isolation valve 6 installed in the middle of the main steam pipe 2 from the reactor 1 to the turbine bypass valve 13, the steam in the reactor 1 cannot be guided to the condenser 8. As a result, the opening of the turbine bypass valve 13 causes the steam pressure on the secondary side of the main steam isolation valve 6 to rapidly decrease.
[0007]
As the secondary pressure of the main steam isolation valve 6 decreases, the internal pressure of the heater 18 decreases, and the steam temperature of the heater 18 decreases according to the saturation temperature of the internal pressure. For this reason, the internal temperature of the heater 18 also falls. Therefore, a sudden change in the internal pressure causes an abrupt change in the temperature distribution in the internal storage, which may cause excessive thermal stress, and the soundness of the moisture separation heater 10 cannot be maintained. There was a problem.
[0008]
It is an object of the present invention to prevent moisture from being separated and to maintain its soundness in a moisture separation heater even if the main steam isolation valve is closed. Is to provide a protective device.
[0009]
[Means for Solving the Problems]
The invention of claim 1 protects a moisture separation heater that removes moisture contained in steam that has finished work in a main turbine of a nuclear power plant by supplying main steam from a nuclear reactor. Is a moisture separator / heater protection device for nuclear power plants in Japan, which detects the valve state of the main steam isolation valve provided at the reactor outlet, and the main steam based on the signal from the valve state detection device When the main steam isolation valve is determined to be in a valve state other than the fully open state by the valve state determining unit for determining the valve state of the isolation valve and the turbine state determining unit, the turbine bypass valve is fully closed and the turbine trip operation is performed. And a control means for performing the above.
[0010]
In the first aspect of the invention, the valve state of the main steam isolation valve is detected by the valve state detection device, and the valve state determination means determines the valve state of the main steam isolation valve based on the signal from the valve state detection device. When the valve state determining unit determines that the main steam isolation valve is in a valve state other than the fully open state, the control unit performs the turbine trip operation while performing the fully closing operation of the turbine bypass valve.
[0011]
The invention of claim 2 protects a moisture separation heater that removes moisture contained in steam that has finished work at the main turbine of a nuclear power plant by supplying main steam from a nuclear reactor. This is a moisture separator heater protection device for a nuclear power plant, and a secondary pressure detector for detecting the secondary pressure of the main steam isolation valve provided at the reactor outlet, and a signal from the secondary pressure detector The secondary pressure of the main steam isolation valve is determined by the secondary pressure determination means for determining whether or not the secondary pressure of the main steam isolation valve is below a predetermined value based on the When it is determined that the value is equal to or less than the value, the control unit performs a full trip operation of the turbine bypass valve and a turbine trip operation.
[0012]
In the invention of claim 2, the secondary side pressure of the main steam isolation valve is detected by the secondary side pressure detector, and the secondary side pressure determination means is based on the signal from the secondary side pressure detector. It is determined whether or not the secondary pressure of the valve is equal to or less than a predetermined value. When the secondary pressure determining means determines that the secondary pressure of the main steam isolation valve is equal to or less than a predetermined value, the control means performs the turbine trip operation while fully closing the turbine bypass valve.
[0013]
According to a third aspect of the present invention, there is provided a moisture separator for protecting a moisture separator heater that removes moisture contained in steam that has finished work in a main turbine of a nuclear power plant by supplying main steam from a nuclear reactor. This is a moisture separator heater protection device for a nuclear power plant, and a secondary pressure detector for detecting the secondary pressure of the main steam isolation valve provided at the reactor outlet, and a signal from the secondary pressure detector The secondary steam pressure change rate determination means for determining whether or not the change rate of the secondary pressure of the primary steam isolation valve is greater than a predetermined value based on the main steam isolation by the secondary pressure change rate determination means and the secondary pressure change rate determination means When it is determined that the secondary pressure change rate of the valve is larger than a predetermined value, a control means for performing a turbine trip operation as well as a fully closing operation of the turbine bypass valve is provided.
[0014]
In the invention of claim 3, the secondary side pressure of the main steam isolation valve is detected by the secondary side pressure detector, and the secondary side pressure change rate judging means is based on the signal from the secondary side pressure detector. It is determined whether the rate of change of the secondary pressure of the steam isolation valve is greater than a predetermined value. When the secondary pressure change rate determining means determines that the secondary pressure change rate of the main steam isolation valve is larger than a predetermined value, the control means performs the fully closing operation of the turbine bypass valve and the turbine. Perform a trip operation.
[0015]
According to a fourth aspect of the present invention, there is provided a moisture separator / heater for protecting a moisture separation heater that removes moisture contained in steam that has finished work in a main turbine of a nuclear power plant by supplying main steam from a nuclear reactor. It is a moisture separator heater protection device for nuclear power plants, and a primary pressure detector for detecting the primary pressure of the main steam isolation valve provided at the reactor outlet, and a secondary pressure of the main steam isolation valve The pressure deviation between the primary side pressure and the secondary side pressure of the main steam isolation valve is predetermined based on a signal from the secondary side pressure detector for detecting the pressure and a signal from the primary side pressure detector and the secondary side pressure detector. Pressure deviation determining means for determining whether or not the pressure is larger than the value, and the pressure deviation determining means determines that the pressure deviation between the primary side pressure and the secondary side pressure of the main steam isolation valve is greater than a predetermined value. When the control is performed, the turbine bypass valve is fully closed and the turbine trip operation is performed. It is those with a door.
[0016]
In the invention of claim 4, the primary side pressure of the main steam isolation valve is detected by the primary side pressure detector, the secondary side pressure of the main steam isolation valve is detected by the secondary side pressure detector, and the pressure deviation is determined. The means determines whether or not the pressure deviation between the primary side pressure and the secondary side pressure of the main steam isolation valve is larger than a predetermined value based on signals from the primary side pressure detector and the secondary side pressure detector. Determine. When the pressure deviation determining means determines that the pressure deviation between the primary side pressure and the secondary side pressure of the main steam isolation valve is greater than a predetermined value, the control means performs the fully closing operation of the turbine bypass valve. And a turbine trip operation.
[0017]
According to the fifth aspect of the present invention, the main steam from the nuclear reactor is guided to the moisture separator / heater via the heating steam main valve and the heating steam pressure regulating valve, and the moisture contained in the steam finished work in the main turbine is humidified. A moisture separation heater protection device for nuclear power plants that is removed by a separation heater, a valve state detection device that detects the valve state of the main steam isolation valve provided at the reactor outlet, and a valve state detection A valve state determining means for determining the valve state of the main steam isolation valve based on a signal from the apparatus, and a steam source valve when the valve state determining means determines that the main steam isolation valve is in a valve state other than fully open Or a control means for fully closing the heating steam control valve is provided.
[0018]
In the invention of claim 5, the valve state of the main steam isolation valve is detected by the valve state detection device, and the valve state determination means determines the valve state of the main steam isolation valve based on the signal from the valve state detection device. When the valve state determining unit determines that the main steam isolation valve is in a valve state other than the fully open state, the control unit performs a fully closing operation of the heating steam source valve or the heating steam control valve.
[0019]
According to the sixth aspect of the present invention, the main steam from the nuclear reactor is led to the moisture separation heater through the heating steam main valve and the heating steam pressure regulating valve, and the moisture contained in the steam finished work in the main turbine is humidified. A moisture separator heater protection device for a nuclear power plant that is removed by a separator heater, a secondary pressure detector for detecting a secondary pressure of a main steam isolation valve provided at a reactor outlet; Based on the signal from the secondary pressure detector, the main pressure isolation means for determining whether or not the secondary pressure of the main steam isolation valve is equal to or lower than a predetermined value and the secondary pressure determination means When it is determined that the secondary pressure of the steam isolation valve is equal to or lower than a predetermined value, a control means for performing a fully closing operation of the heating steam source valve or the heating steam control valve is provided.
[0020]
In the invention of claim 6, the secondary side pressure of the main steam isolation valve is detected by the secondary side pressure detector, and the secondary side pressure determination means is based on the signal from the secondary side pressure detector. It is determined whether or not the secondary pressure of the valve is equal to or less than a predetermined value. When the secondary pressure determining means determines that the secondary pressure of the main steam isolation valve is equal to or less than a predetermined value, the control means performs a fully closing operation of the heating steam source valve or the heating steam control valve.
[0021]
According to the seventh aspect of the present invention, the main steam from the nuclear reactor is guided to the moisture separator / heater via the heating steam main valve and the heating steam pressure regulating valve, and the moisture contained in the steam finished work in the main turbine is humidified. A moisture separator heater protection device for a nuclear power plant that is removed by a separator heater, a secondary pressure detector for detecting a secondary pressure of a main steam isolation valve provided at a reactor outlet; A secondary-side pressure change rate determining means for determining whether or not the change rate of the secondary-side pressure of the main steam isolation valve is greater than a predetermined value based on a signal from the secondary-side pressure detector; Control means for fully closing the heating steam source valve or the heating steam control valve when the secondary pressure change rate of the main steam isolation valve is determined to be greater than a predetermined value by the side pressure change rate determination means; It is provided.
[0022]
In the invention of claim 7, the secondary side pressure of the main steam isolation valve is detected by the secondary side pressure detector, and the secondary side pressure change rate judging means is based on the signal from the secondary side pressure detector. It is determined whether the rate of change of the secondary pressure of the steam isolation valve is greater than a predetermined value. When the secondary pressure change rate determining means determines that the secondary pressure change rate of the main steam isolation valve is greater than a predetermined value, the control means determines that all of the heating steam source valve or the heating steam control valve is Perform the closing operation.
[0023]
According to the eighth aspect of the invention, the main steam from the nuclear reactor is guided to the moisture separation heater through the heating steam main valve and the heating steam pressure regulating valve, and the moisture contained in the steam that has finished work in the main turbine is humidified. A moisture separator heater protection device for a nuclear power plant that is removed by a separator heater, and a primary pressure detector for detecting a primary pressure of a main steam isolation valve provided at a reactor outlet; A secondary side pressure detector for detecting a secondary side pressure of the main steam isolation valve, and a primary side pressure of the main steam isolation valve based on signals from the primary side pressure detector and the secondary side pressure detector; Pressure deviation determination means for determining whether or not the pressure deviation from the secondary side pressure is greater than a predetermined value, and the pressure deviation between the primary side pressure and the secondary side pressure of the main steam isolation valve by the pressure deviation judgment means Is determined to be larger than the predetermined value, the heating steam source valve or heating steam control valve is fully closed. It is obtained by a control means.
[0024]
According to the eighth aspect of the invention, the primary pressure of the main steam isolation valve is detected by the primary pressure detector, the secondary pressure of the main steam isolation valve is detected by the secondary pressure detector, and the pressure deviation is determined. The means determines whether or not the pressure deviation between the primary side pressure and the secondary side pressure of the main steam isolation valve is larger than a predetermined value based on signals from the primary side pressure detector and the secondary side pressure detector. Determine. When the pressure deviation determining means determines that the pressure deviation between the primary side pressure and the secondary side pressure of the main steam isolation valve is larger than a predetermined value, the control means determines the heating steam source valve or the heating steam adjustment. Fully close the valve.
[0027]
Claim 9 According to the invention of claim 5, in the invention of claims 5 to 8, a shutoff valve for shutting off the main steam supplied to the moisture separation heater is provided upstream of the heating steam source valve, and the control means is the heating steam source valve. Alternatively, the shut-off valve is fully closed instead of the heating steam control valve.
[0028]
Claim 9 In this invention, when the secondary side pressure of the main steam isolation valve is lowered, the shut-off valve is fully closed to prevent the internal pressure of the moisture separation heater from being lowered.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 is a block diagram showing a first embodiment of the present invention. In FIG. 1, the valve state detection device 24 detects the valve state of the main steam isolation valve 6, and the valve state of the main steam isolation valve detected by the valve state detection device 24 is sent to the valve state determination means 25. Entered. Based on the input valve state, the valve state determination means 25 determines whether or not the main steam isolation valve 6 is in a state other than fully open. If the valve state of the main steam isolation valve 6 is in a state other than fully open, the control is performed. The logic signal “1” is output to the means 26. When the control means 26 receives a signal indicating that the main steam isolation valve 6 is not fully opened, the control means 26 performs a fully closing operation of the turbine bypass valve 13 and a turbine trip operation.
[0030]
That is, when a fully-closed event occurs in the main steam isolation valve 6, the fully-closed operation to the turbine bypass valve 13 that operates according to the reactor pressure input signal, and the main steam stop valve 4 by the turbine trip operation. The fully closed operation prevents a sudden decrease in the secondary pressure of the main steam isolation valve 6. Thereby, the soundness of the moisture separation heater 10 can be maintained without generating excessive thermal stress in the heater 18 using the main steam of the moisture separation heater 10 as a heating source.
[0031]
In the above description, the valve state determination means 25 determines whether or not the main steam isolation valve 6 is in a state other than the fully open state, and when the main steam isolation valve 6 is in a state other than the fully open state, the control means 26 determines the turbine bypass valve 13. However, when the valve opening of the main steam isolation valve 6 is fully closed, such operation may be performed.
[0032]
Next, a second embodiment of the present invention will be described. FIG. 2 is a block diagram showing a second embodiment of the present invention. In FIG. 2, the secondary side pressure detector 27 detects the secondary side pressure of the main steam isolation valve 6, and the secondary side pressure of the main steam isolation valve detected by the secondary side pressure detector 27. Is input to the secondary pressure determination means 28. The secondary pressure determination means 28 determines whether the secondary pressure of the main steam isolation valve 6 is equal to or lower than a predetermined value based on the signal from the secondary pressure detector 27. When the secondary side pressure determination unit 28 determines that the secondary side pressure of the main steam isolation valve 6 is equal to or lower than a predetermined value, the control unit 26 performs the fully closing operation of the turbine bypass valve 13 and the turbine. Perform a trip operation.
[0033]
That is, when the secondary pressure of the main steam isolation valve 6 falls below a predetermined value, the turbine bypass valve 13 is fully closed and the turbine trip is performed. As a result, it is possible to prevent a sudden decrease in the secondary pressure of the main steam isolation valve 6, and moisture without causing excessive thermal stress in the heater 18 using the main steam of the moisture separation heater 10 as a heating source. The soundness of the separation heater can be maintained.
[0034]
Next, a third embodiment of the present invention will be described. FIG. 3 is a block diagram showing a third embodiment of the present invention. In FIG. 3, the secondary side pressure detector 27 detects the secondary side pressure of the main steam isolation valve 6, and the secondary side pressure of the main steam isolation valve detected by the secondary side pressure detector 27. Is input to the pressure change rate determination means 29. The pressure change rate determination means 29 obtains the change rate of the secondary side pressure of the main steam isolation valve 6 based on the signal from the secondary side pressure detector 27, and whether or not the pressure change rate is greater than a predetermined value. Determine whether. When the pressure change rate determination means 29 determines that the pressure change rate of the main steam isolation valve 6 is greater than a predetermined value, the control means 26 performs a fully-close operation of the turbine bypass valve 13 and a turbine trip. Perform the operation.
[0035]
That is, when the secondary side pressure change rate of the main steam isolation valve 6 exceeds a predetermined value, the turbine bypass valve 13 is fully closed and the turbine trip operation is performed. This makes it possible to prevent a sudden decrease in the secondary side pressure of the main steam isolation valve 6, prevents the moisture separation heater 10 from being generated due to excessive thermal stress, and the soundness of the moisture separation heater 10. Can be maintained.
[0036]
Next, a fourth embodiment of the present invention will be described. FIG. 4 is a block diagram showing a fourth embodiment of the present invention. In FIG. 4, the primary side pressure of the main steam isolation valve 6 is detected by the primary side pressure detector 30, and the secondary side pressure of the main steam isolation valve 6 is detected by the secondary side pressure detector 27. . The primary side pressure of the main steam isolation valve 6 detected by the primary side pressure detector 30 and the secondary side pressure of the main steam isolation valve 6 detected by the secondary side pressure detector 27 are the pressure deviation determining means 31. Is input. Based on the signals from the primary pressure detector 30 and the secondary pressure detector 27, the pressure deviation determination means 31 has a predetermined pressure deviation between the primary pressure and the secondary pressure of the main steam isolation valve 6. It is determined whether or not it is larger than the value. When the pressure deviation determining means 31 determines that the pressure deviation between the primary side pressure and the secondary side pressure of the main steam isolation valve 6 is greater than a predetermined value, the control means 26 determines that all of the turbine bypass valves are Perform the closing operation and the turbine trip operation.
[0037]
That is, the turbine bypass valve 13 is fully closed and the turbine trip is performed based on the pressure deviation between the secondary side pressure of the main steam isolation valve 6 and the reactor pressure (primary side pressure of the main steam isolation valve 6). This makes it possible to prevent a sudden decrease in the secondary side pressure of the main steam isolation valve 6 and maintain the soundness of the moisture separation heater 10 without generating excessive thermal stress in the moisture separation heater 10. be able to.
[0038]
Next, a fifth embodiment of the present invention will be described. FIG. 5 is a block diagram showing a fifth embodiment of the present invention. In FIG. 5, the valve state of the main steam isolation valve 6 is detected by the valve state detection device 24, and the valve state determination means 25 determines the valve state of the main steam isolation valve 6 based on the signal from the valve state detection device 24. To do. When the valve state determination unit 25 determines that the main steam isolation valve 6 is in a valve state other than the fully open state, the control unit 26 performs the fully closing operation of the heating steam source valve 14 or the heating steam control valve 15.
[0039]
That is, the moisture separation heater 10 has a heater 18 that uses main steam as a heating source. A heating steam source valve 14 and heating steam are provided in a heating steam pipe 11 that supplies main steam to the heater 18. A pressure control valve 15 is provided. Therefore, when it is determined that the main steam isolation valve 6 is in a valve state other than the fully open state, the heating steam source valve 14 is fully closed. For example, the heating steam source valve 14 is fully closed within 1 minute. This makes it possible to prevent a sudden decrease in the secondary pressure of the heating steam source valve 14, and maintain the soundness of the moisture separation heater 10 without generating excessive thermal stress in the moisture separation heater 10. Can do. Moreover, you may make it fully close the heating steam pressure control valve 15 within 1 minute.
[0040]
Next, a sixth embodiment of the present invention will be described. FIG. 6 is a block diagram showing a sixth embodiment of the present invention. In FIG. 6, the secondary side pressure of the main steam isolation valve 6 is detected by the secondary side pressure detector 27, and the secondary side pressure determination means 28 is based on the signal from the secondary side pressure detector 27. It is determined whether or not the secondary pressure of the valve 6 is not more than a predetermined value. When the secondary side pressure determination unit 28 determines that the secondary side pressure of the main steam isolation valve 6 is equal to or less than a predetermined value, the control unit 26 controls all of the heating steam source valve 14 or the heating steam control valve 15. Perform the closing operation.
[0041]
That is, the moisture separation heater 10 has a heater 18 that uses main steam as a heating source. A heating steam source valve 14 and heating steam are provided in a heating steam pipe 11 that supplies main steam to the heater 18. A pressure control valve 15 is provided. Therefore, when it is determined that the secondary side pressure of the main steam isolation valve 6 is not more than a predetermined value, the heating steam source valve 14 is fully closed. For example, the heating steam source valve 14 is fully closed within 1 minute. This makes it possible to prevent a sudden decrease in the secondary pressure of the heating steam source valve 14, and maintain the soundness of the moisture separation heater 10 without generating excessive thermal stress in the moisture separation heater 10. Can do. Moreover, you may make it fully close the heating steam pressure control valve 15 within 1 minute.
[0042]
Next, a seventh embodiment of the present invention will be described. FIG. 7 is a block diagram showing a seventh embodiment of the present invention. In FIG. 7, the secondary side pressure of the main steam isolation valve 6 is detected by the secondary side pressure detector 27, and the secondary side pressure change rate determination means 29 is based on the signal from the secondary side pressure detector 27. It is determined whether or not the rate of change of the secondary side pressure of the main steam isolation valve 6 is greater than a predetermined value. When the secondary side pressure change rate determining unit 29 determines that the secondary side pressure change rate of the main steam isolation valve 6 is greater than a predetermined value, the control unit 26 or the heated steam source valve 14 or the heated steam is used. The control valve 15 is fully closed.
[0043]
That is, the moisture separation heater 10 has a heater 18 that uses main steam as a heating source. A heating steam source valve 14 and heating steam are provided in a heating steam pipe 11 that supplies main steam to the heater 18. A pressure control valve 15 is provided. Therefore, when it is determined that the secondary pressure change rate of the main steam isolation valve 6 is larger than a predetermined value, the heating steam source valve 14 is fully closed. For example, the heating steam source valve 14 is fully closed within 1 minute. This makes it possible to prevent a sudden decrease in the secondary pressure of the heating steam source valve 14 and maintain the soundness of the moisture separation heater 10 without generating excessive thermal stress in the moisture separation heater 10. Can do. Moreover, you may make it fully close the heating steam pressure control valve 15 within 1 minute.
[0044]
Next, an eighth embodiment of the present invention will be described. FIG. 8 is a block diagram showing an eighth embodiment of the present invention. In FIG. 8, the primary pressure of the main steam isolation valve 6 is detected by the primary pressure detector 30, the secondary pressure of the main steam isolation valve 6 is detected by the secondary pressure detector 27, and the pressure deviation is detected. Based on the signals from the primary side pressure detector 30 and the secondary side pressure detector 27, the judging means 31 has a pressure deviation between the primary side pressure and the secondary side pressure of the main steam isolation valve 6 larger than a predetermined value. It is determined whether or not. When the pressure deviation determining means 31 determines that the pressure deviation between the primary side pressure and the secondary side pressure of the main steam isolation valve 6 is greater than a predetermined value, the control means 26 determines the heating steam source valve 14. Alternatively, the heating steam control valve 15 is fully closed.
[0045]
That is, the moisture separation heater 10 has a heater 18 that uses main steam as a heating source. A heating steam source valve 14 and heating steam are provided in a heating steam pipe 11 that supplies main steam to the heater 18. A pressure control valve 15 is provided. Therefore, when it is determined that the pressure deviation between the primary side pressure and the secondary side pressure of the main steam isolation valve 6 is larger than a predetermined value, the heating steam source valve 14 is fully closed. For example, the heating steam source valve 14 is fully closed within 1 minute. This makes it possible to prevent a sudden decrease in the secondary pressure of the heating steam source valve 14 and maintain the soundness of the moisture separation heater 10 without generating excessive thermal stress in the moisture separation heater 10. Can do. Moreover, you may make it fully close the heating steam pressure control valve 15 within 1 minute.
[0046]
Next, FIG. 9 is an explanatory diagram of a system configuration in the ninth embodiment of the present invention. In FIG. 9, main steam is supplied from the reactor 1 to the main steam header 7. The main steam from the main steam header 7 is supplied to the heater 18 of the moisture separation heater 10, and is added to the heating steam pipe 11 in addition to the heating steam main valve 14 and the heating steam pressure adjustment valve 15. A shut-off valve 21 is provided upstream of the heating steam source valve 14.
[0047]
That is, a heating steam source valve 14 and a heating steam pressure control valve 15 are provided in the heating steam pipe 11 for supplying the main steam to the moisture separation heater 10 having the heater 18 using the main steam as a heating source. However, a shutoff valve 21 is additionally provided. Then, instead of fully closing the heating steam source valve 14 and the heating steam pressure adjusting valve 15 in the fifth to eighth embodiments, the shutoff valve 21 is fully closed within one minute. As a result, it is possible to prevent a sudden decrease in the pressure on the secondary side of the shut-off valve 21, so that excessive thermal stress is not generated in the moisture separation heater 10 and the soundness of the moisture separation heater 10 is maintained. be able to.
[0048]
Next, FIG. 10 is an explanatory diagram of a system configuration in the tenth embodiment of the present invention. A check valve 22 is provided in place of the shutoff valve 21 of the system configuration in the ninth embodiment shown in FIG. This check valve 22 prevents the main steam supplied to the moisture separator / heater 10 from flowing back to the reactor side. When the secondary pressure of the main steam isolation valve 6 is lowered, the check valve 22 A drop in the internal pressure of the separation heater 10 is prevented.
[0049]
That is, even if the check valve 22 is installed in the middle of the heating steam pipe 11 and the primary side pressure and the secondary side pressure of the check valve 22 are reversed, the secondary side of the check valve 22 It is possible to prevent the pressure from rapidly decreasing, and it is possible to maintain the soundness of the moisture separation heater without generating excessive thermal stress in the moisture separation heater. Further, the check valve 22 may be a facility that can be arbitrarily forcibly opened or forcibly closed so that it can be smoothly adjusted by adjusting the pressure at the time of normal starting and stopping.
[0050]
【The invention's effect】
As described above, according to the present invention, when the fully closed event of the main steam isolation valve occurs and the internal pressure of the heater using the main steam of the moisture separation heater as a heating source is about to suddenly decrease, Since the turbine bypass valve is fully closed and the turbine trip is performed, the amount of change in the internal pressure of the heater can be suppressed. Moreover, the amount of pressure change of the internal pressure of the heater can be suppressed by a valve installed in the middle of the heating steam pipe for supplying the main steam to the moisture separation heater. Therefore, the soundness of the moisture separation heater can be maintained without generating excessive thermal stress in the moisture separation heater, and the reliability of the plant can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.
FIG. 2 is a configuration diagram showing a second embodiment of the present invention.
FIG. 3 is a configuration diagram showing a third embodiment of the present invention.
FIG. 4 is a configuration diagram showing a fourth embodiment of the present invention.
FIG. 5 is a configuration diagram showing a fifth embodiment of the present invention.
FIG. 6 is a configuration diagram showing a sixth embodiment of the present invention.
FIG. 7 is a configuration diagram showing a seventh embodiment of the present invention.
FIG. 8 is a configuration diagram showing an eighth embodiment of the present invention.
FIG. 9 is an explanatory diagram of a system configuration according to a ninth embodiment of the present invention.
FIG. 10 is an explanatory diagram of a system configuration in the tenth embodiment of the present invention.
FIG. 11 is a schematic diagram of turbine equipment in a nuclear power plant that performs reactor pressure control.
[Explanation of symbols]
1 Reactor
2 Main steam pipe
3 High-pressure turbine
4 Main steam stop valve
5 Steam control valve
6 Main steam isolation valve
7 Main steam header
8 Condenser
9 Turbine bypass pipe
10 Moisture separation heater
11 Heated steam pipe
12 Reactor pressure detector
13 Turbine bypass valve
14 Heating steam valve
15 Heating steam pressure adjustment valve
16 Low pressure turbine
17 Cross-around tube
18 Heater
19 Water heater
20 Booster pump
21 Shut-off valve
22 Check valve
23 Turbine bypass valve control device
24 Valve state detection device
25 Valve state determination means
26 Control means
27 Secondary pressure detection means
28 Secondary pressure judgment means
29 Pressure change rate determination means
30 Primary pressure detector
31 Pressure deviation judging means

Claims (9)

原子力発電所の主タービンで仕事を終えた蒸気に含まれる湿分を原子炉からの主蒸気を供給して除去するようにした湿分分離加熱器を保護するための原子力発電所の湿分分離加熱器保護装置において、前記原子炉出口に設けられた主蒸気隔離弁の弁状態を検出する弁状態検出装置と、前記弁状態検出装置からの信号に基づいて前記主蒸気隔離弁の弁状態を判定する弁状態判定手段と、前記弁状態判定手段により前記主蒸気隔離弁が全開以外の弁状態であると判定されたときはタービンバイパス弁の全閉操作を行うと共にタービントリップ操作を行う制御手段とを備えたことを特徴とする原子力発電所の湿分分離加熱器保護装置。  Moisture separation in nuclear power plants to protect moisture separator heaters that supply main steam from the reactor to remove moisture contained in steam that has finished work at the main turbine of the nuclear power plant In the heater protection device, a valve state detection device for detecting a valve state of a main steam isolation valve provided at the reactor outlet, and a valve state of the main steam isolation valve based on a signal from the valve state detection device A valve state determining unit for determining, and a control unit for performing a turbine trip operation while performing a fully closed operation of the turbine bypass valve when the valve state determining unit determines that the main steam isolation valve is in a valve state other than a fully open state A moisture separator heater protection device for a nuclear power plant. 原子力発電所の主タービンで仕事を終えた蒸気に含まれる湿分を原子炉からの主蒸気を供給して除去するようにした湿分分離加熱器を保護するための原子力発電所の湿分分離加熱器保護装置において、前記原子炉出口に設けられた主蒸気隔離弁の2次側圧力を検出する2次側圧力検出器と、前記2次側圧力検出器からの信号に基づいて前記主蒸気隔離弁の2次側圧力が所定値以下であるか否かを判定する2次側圧力判定手段と、前記2次側圧力判定手段により前記主蒸気隔離弁の2次側圧力が所定値以下であると判定されたときはタービンバイパス弁の全閉操作を行うと共にタービントリップ操作を行う制御手段とを備えたことを特徴とする原子力発電所の湿分分離加熱器保護装置。  Moisture separation in nuclear power plants to protect moisture separator heaters that supply main steam from the reactor to remove moisture contained in steam that has finished work at the main turbine of the nuclear power plant In the heater protection device, a secondary pressure detector for detecting a secondary pressure of a main steam isolation valve provided at the reactor outlet, and the main steam based on a signal from the secondary pressure detector A secondary-side pressure determining means for determining whether or not the secondary-side pressure of the isolation valve is less than or equal to a predetermined value; and the secondary-side pressure of the main steam isolation valve is less than or equal to a predetermined value by the secondary-side pressure determining means A moisture separator heater protection device for a nuclear power plant, comprising: a control means for performing a turbine trip operation while performing a fully-closed operation of the turbine bypass valve when it is determined that the turbine bypass valve is present. 原子力発電所の主タービンで仕事を終えた蒸気に含まれる湿分を原子炉からの主蒸気を供給して除去するようにした湿分分離加熱器を保護するための原子力発電所の湿分分離加熱器保護装置において、前記原子炉出口に設けられた主蒸気隔離弁の2次側圧力を検出する2次側圧力検出器と、前記2次側圧力検出器からの信号に基づいて前記主蒸気隔離弁の2次側圧力の変化率が所定値より大であるか否かを判定する2次側圧力変化率判定手段と、前記2次側圧力変化率判定手段により前記主蒸気隔離弁の2次側圧力変化率が所定値より大であると判定されたときはタービンバイパス弁の全閉操作を行うと共にタービントリップ操作を行う制御手段とを備えたことを特徴とする原子力発電所の湿分分離加熱器保護装置。  Moisture separation in nuclear power plants to protect moisture separator heaters that supply main steam from the reactor to remove moisture contained in steam that has finished work at the main turbine of the nuclear power plant In the heater protection device, a secondary pressure detector for detecting a secondary pressure of a main steam isolation valve provided at the reactor outlet, and the main steam based on a signal from the secondary pressure detector The secondary side pressure change rate determining means for determining whether or not the change rate of the secondary side pressure of the isolation valve is larger than a predetermined value, and 2 of the main steam isolation valve by the secondary side pressure change rate determining means. And a control means for performing a turbine trip operation while fully closing the turbine bypass valve when it is determined that the secondary pressure change rate is greater than a predetermined value. Separation heater protection device. 原子力発電所の主タービンで仕事を終えた蒸気に含まれる湿分を原子炉からの主蒸気を供給して除去するようにした湿分分離加熱器を保護するための原子力発電所の湿分分離加熱器保護装置において、前記原子炉出口に設けられた主蒸気隔離弁の1次側圧力を検出する1次側圧力検出器と、前記主蒸気隔離弁の2次側圧力を検出する2次側圧力検出器と、前記1次側圧力検出器及び前記2次側圧力検出器からの信号に基づいて前記主蒸気隔離弁の1次側圧力と2次側圧力との圧力偏差が所定値より大であるか否かを判定する圧力偏差判定手段と、前記圧力偏差判定手段により前記主蒸気隔離弁の1次側圧力と2次側圧力との圧力偏差が所定値より大であると判定されたときはタービンバイパス弁の全閉操作を行うと共にタービントリップ操作を行う制御手段とを備えたことを特徴とする原子力発電所の湿分分離加熱器保護装置。  Moisture separation in nuclear power plants to protect moisture separator heaters that supply main steam from the reactor to remove moisture contained in steam that has finished work at the main turbine of the nuclear power plant In the heater protection device, a primary pressure detector for detecting a primary side pressure of a main steam isolation valve provided at the reactor outlet, and a secondary side for detecting a secondary side pressure of the main steam isolation valve Based on the pressure detector and signals from the primary pressure detector and the secondary pressure detector, the pressure deviation between the primary side pressure and the secondary side pressure of the main steam isolation valve is larger than a predetermined value. It is determined that the pressure deviation between the primary side pressure and the secondary side pressure of the main steam isolation valve is larger than a predetermined value by the pressure deviation judging means for judging whether or not When the turbine bypass valve is fully closed, the turbine trip operation Moisture separator heater protection device of a nuclear power plant, characterized in that a control means for performing. 原子炉からの主蒸気を加熱蒸気元弁及び加熱蒸気圧力調整弁を介して湿分分離加熱器に導き、主タービンで仕事を終えた蒸気に含まれる湿分を前記湿分分離加熱器で除去するようにした原子力発電所の湿分分離加熱器保護装置において、前記原子炉出口に設けられた主蒸気隔離弁の弁状態を検出する弁状態検出装置と、前記弁状態検出装置からの信号に基づいて前記主蒸気隔離弁の弁状態を判定する弁状態判定手段と、前記弁状態判定手段により前記主蒸気隔離弁が全開以外の弁状態であると判定されたときは前記加熱蒸気元弁又は前記加熱蒸気圧力調整弁の全閉操作を行う制御手段とを備えたことを特徴とする原子力発電所の湿分分離加熱器保護装置。  The main steam from the reactor is guided to the moisture separator / heater via the heating steam main valve and the heating steam pressure regulating valve, and the moisture contained in the steam that has finished work in the main turbine is removed by the moisture separator / heater. In the moisture separator heater protection device for a nuclear power plant, a valve state detection device for detecting a valve state of a main steam isolation valve provided at the reactor outlet, and a signal from the valve state detection device A valve state determination means for determining a valve state of the main steam isolation valve based on the heating steam source valve or the valve state determination means when the valve state determination means determines that the main steam isolation valve is in a valve state other than full open A moisture separator heater protection device for a nuclear power plant, comprising control means for performing a fully closing operation of the heating steam pressure regulating valve. 原子炉からの主蒸気を加熱蒸気元弁及び加熱蒸気圧力調整弁を介して湿分分離加熱器に導き、主タービンで仕事を終えた蒸気に含まれる湿分を前記湿分分離加熱器で除去するようにした原子力発電所の湿分分離加熱器保護装置において、前記原子炉出口に設けられた主蒸気隔離弁の2次側圧力を検出する2次側圧力検出器と、前記2次側圧力検出器からの信号に基づいて前記主蒸気隔離弁の2次側圧力が所定値以下であるか否かを判定する2次側圧力判定手段と、前記2次側圧力判定手段により前記主蒸気隔離弁の2次側圧力が所定値以下であると判定されたときは前記加熱蒸気元弁又は前記加熱蒸気調節弁の全閉操作を行う制御手段とを備えたことを特徴とする原子力発電所の湿分分離加熱器保護装置。  The main steam from the reactor is guided to the moisture separator / heater via the heating steam main valve and the heating steam pressure regulating valve, and the moisture contained in the steam that has finished work in the main turbine is removed by the moisture separator / heater. In the moisture separator / heater protection apparatus for a nuclear power plant, a secondary pressure detector for detecting a secondary pressure of a main steam isolation valve provided at the reactor outlet, and the secondary pressure Based on the signal from the detector, secondary pressure determining means for determining whether or not the secondary pressure of the main steam isolation valve is equal to or lower than a predetermined value, and the main steam isolation by the secondary pressure determining means A control means for performing a fully closing operation of the heating steam source valve or the heating steam control valve when it is determined that the secondary pressure of the valve is equal to or less than a predetermined value. Moisture separator heater protection device. 原子炉からの主蒸気を加熱蒸気元弁及び加熱蒸気圧力調整弁を介して湿分分離加熱器に導き、主タービンで仕事を終えた蒸気に含まれる湿分を前記湿分分離加熱器で除去するようにした原子力発電所の湿分分離加熱器保護装置において、前記原子炉出口に設けられた主蒸気隔離弁の2次側圧力を検出する2次側圧力検出器と、前記2次側圧力検出器からの信号に基づいて前記主蒸気隔離弁の2次側圧力の変化率が所定値より大であるか否かを判定する2次側圧力変化率判定手段と、前記2次側圧力変化率判定手段により前記主蒸気隔離弁の2次側圧力変化率が所定値より大であると判定されたときは前記加熱蒸気元弁又は前記加熱蒸気調節弁の全閉操作を行う制御手段とを備えたことを特徴とする原子力発電所の湿分分離加熱器保護装置。  The main steam from the reactor is guided to the moisture separator / heater via the heating steam main valve and the heating steam pressure regulating valve, and the moisture contained in the steam that has finished work in the main turbine is removed by the moisture separator / heater. In the moisture separator / heater protection apparatus for a nuclear power plant, a secondary pressure detector for detecting a secondary pressure of a main steam isolation valve provided at the reactor outlet, and the secondary pressure Secondary pressure change rate determining means for determining whether the change rate of the secondary pressure of the main steam isolation valve is larger than a predetermined value based on a signal from the detector; and the secondary pressure change Control means for fully closing the heating steam source valve or the heating steam control valve when the rate determining means determines that the secondary pressure change rate of the main steam isolation valve is greater than a predetermined value; A moisture separator heater protection device for a nuclear power plant, comprising: 原子炉からの主蒸気を加熱蒸気元弁及び加熱蒸気圧力調整弁を介して湿分分離加熱器に導き、主タービンで仕事を終えた蒸気に含まれる湿分を前記湿分分離加熱器で除去するようにした原子力発電所の湿分分離加熱器保護装置において、前記原子炉出口に設けられた主蒸気隔離弁の1次側圧力を検出する1次側圧力検出器と、前記主蒸気隔離弁の2次側圧力を検出する2次側圧力検出器と、前記1次側圧力検出器及び前記2次側圧力検出器からの信号に基づいて前記主蒸気隔離弁の1次側圧力と2次側圧力との圧力偏差が所定値より大であるか否かを判定する圧力偏差判定手段と、前記圧力偏差判定手段により前記主蒸気隔離弁の1次側圧力と2次側圧力との圧力偏差が所定値より大であると判定されたときは前記加熱蒸気元弁又は前記加熱蒸気調節弁の全閉操作を行う制御手段とを備えたことを特徴とする原子力発電所の湿分分離加熱器保護装置。  The main steam from the reactor is guided to the moisture separator / heater via the heating steam main valve and the heating steam pressure regulating valve, and the moisture contained in the steam that has finished work in the main turbine is removed by the moisture separator / heater. In the moisture separator / heater protection device for a nuclear power plant, a primary pressure detector for detecting a primary pressure of a main steam isolation valve provided at the reactor outlet, and the main steam isolation valve A secondary side pressure detector for detecting the secondary side pressure of the main steam isolation valve based on signals from the primary side pressure detector and the secondary side pressure detector. Pressure deviation determining means for determining whether or not the pressure deviation from the side pressure is greater than a predetermined value, and the pressure deviation between the primary side pressure and the secondary side pressure of the main steam isolation valve by the pressure deviation determining means. Is determined to be greater than a predetermined value, the heating steam source valve or the heating Moisture separator heater protection device of a nuclear power plant, characterized in that a control means for performing all the closing operation of the gas regulating valve. 前記湿分分離加熱器に供給する主蒸気を遮断するための遮断弁を前記加熱蒸気元弁の上流側に設け、前記制御手段は前記加熱蒸気元弁又は前記加熱蒸気調節弁に代えて前記遮断弁の全閉操作を行うようにしたことを特徴とする請求項5乃至請求項8に記載の原子力発電所の湿分分離加熱器保護装置 A shut-off valve for shutting off the main steam supplied to the moisture separation heater is provided upstream of the heating steam source valve, and the control means replaces the heating steam source valve or the heating steam control valve with the shut-off valve. The apparatus for protecting a moisture separator and heater of a nuclear power plant according to any one of claims 5 to 8, wherein the valve is fully closed .
JP12927496A 1996-04-26 1996-04-26 Moisture separator heater protection device for nuclear power plant Expired - Lifetime JP3697316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12927496A JP3697316B2 (en) 1996-04-26 1996-04-26 Moisture separator heater protection device for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12927496A JP3697316B2 (en) 1996-04-26 1996-04-26 Moisture separator heater protection device for nuclear power plant

Publications (2)

Publication Number Publication Date
JPH09292107A JPH09292107A (en) 1997-11-11
JP3697316B2 true JP3697316B2 (en) 2005-09-21

Family

ID=15005542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12927496A Expired - Lifetime JP3697316B2 (en) 1996-04-26 1996-04-26 Moisture separator heater protection device for nuclear power plant

Country Status (1)

Country Link
JP (1) JP3697316B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840208A (en) * 2010-03-29 2010-09-22 中广核工程有限公司 Method and system for interlocking main valve and pressure balance valve of heater system of nuclear power station

Also Published As

Publication number Publication date
JPH09292107A (en) 1997-11-11

Similar Documents

Publication Publication Date Title
JP2809977B2 (en) Control device
CA2264157C (en) Steam cooling apparatus for gas turbine
US6223520B1 (en) Gas turbine combined plant, method of operating the same, and steam-cooling system for gas turbine hot section
JP3697316B2 (en) Moisture separator heater protection device for nuclear power plant
US4254627A (en) Steam turbine plant
CA2364125C (en) Steam cooling apparatus for gas turbine
JP3435450B2 (en) Turbine bypass valve control device
JP3029440B2 (en) Steam turbine for power generation
JPS6239646B2 (en)
JPH06331104A (en) Steam drain discharging device
JP2000345811A (en) Exhaust heat recovery boiler plant and operating method thereof
JPH06330706A (en) Back pressure steam turbine system
JPH07279614A (en) By-pass valve automatically warming device
JP2934984B2 (en) Steam motor plant
JPS646716B2 (en)
JPS63192905A (en) Main steam pressure control method for power generating plant
JPS61138806A (en) Steam turbine plant
JPH07189609A (en) Control method for moisture content separation heater
JPS5985403A (en) Bypass-valve warming apparatus for turbine
JPH01193507A (en) Pressure and wafer level controller of aerator at the time of sudden decrease of load
JPH0222360B2 (en)
JPS58100795A (en) Bwr type reactor power plant
JPS6364758B2 (en)
JPH034722B2 (en)
JPH07293808A (en) Control device for feedwater heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050315

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

EXPY Cancellation because of completion of term