JPH11269609A - Fe-ni series alloy thin sheet for electronic parts - Google Patents

Fe-ni series alloy thin sheet for electronic parts

Info

Publication number
JPH11269609A
JPH11269609A JP9065698A JP9065698A JPH11269609A JP H11269609 A JPH11269609 A JP H11269609A JP 9065698 A JP9065698 A JP 9065698A JP 9065698 A JP9065698 A JP 9065698A JP H11269609 A JPH11269609 A JP H11269609A
Authority
JP
Japan
Prior art keywords
etching
annealing
alloy thin
electronic parts
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9065698A
Other languages
Japanese (ja)
Inventor
Katsuhisa Yamauchi
克久 山内
Tomoaki Hyodo
知明 兵藤
Masaki Omura
雅紀 大村
Daisuke Ozaki
大介 尾崎
Akira Yamamoto
山本  彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9065698A priority Critical patent/JPH11269609A/en
Publication of JPH11269609A publication Critical patent/JPH11269609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Fe-Ni series alloy thin sheet for electronic parts excellent in etching properties and excellent in formability even if softening is not executed after etching. SOLUTION: This is an Fe-Ni series alloy thin sheet for electronic parts contg. 32 to 38 wt.% Ni, and in which (a) the average grain size is regulated to <=32 μm. (b) The abundance ratios of the crystal planes of 100}, 111}, 110}, 311}, 210} and 211} parallel to the rolling face are all regulated to 10 to 40%. (c) Its 0.2% proof stress is regulated to <=280 MPa, also, the difference according to directions is regulated to <=20 MPa, and its elongation is regulated to >=20%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エッチング加工と
プレス成形等の加工により製造され、低熱膨張性が要求
される電子部品の素材として使用されるFe−Ni系合
金薄板およびその製造方法に関する。特に、テレビジョ
ンやコンピュータディスブレイのブラウン管に使用され
るシャドウウマスク用の素材として好適なFe−Ni系
低熱膨張合金薄板に関し、エッチング加工の形状が良好
で寸法精度の高く、かつ成形加工により高い形状の精度
が得られるFe−Ni系合金薄板の製造を可能とするも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Fe--Ni alloy thin plate manufactured by etching and press forming and used as a material for electronic parts requiring low thermal expansion, and a method of manufacturing the same. In particular, the Fe-Ni-based low-thermal-expansion alloy thin sheet suitable as a material for a shadow mask used in a cathode ray tube of a television or a computer display has a good etching shape, high dimensional accuracy, and is high due to the forming process. The object of the present invention is to enable the manufacture of an Fe-Ni-based alloy thin plate having a high shape accuracy.

【0002】[0002]

【従来の技術】Fe−Ni系低熱膨張合金薄板を使用し
エッチング加工とブレス成形などの成形加工により製造
される電子部品では、通常、エッチング加工後に焼鈍を
施し、十分に軟質化した後、成形加工を行っている。
2. Description of the Related Art Generally, electronic parts manufactured by using an Fe—Ni-based low-thermal-expansion alloy thin plate by etching and forming such as breath forming are usually subjected to annealing after etching to sufficiently soften and form. We are processing.

【0003】このような電子部品としては、例えば、テ
レビジョンやコンピュータディスプレイのブラウン管に
配設されているFe−Ni系低熱膨張合金薄板(100
℃までの平均熱膨張係数が2×10-6/℃以下、通常、
板厚0.30mm以下のFe−36Ni合金を使用)を
素材とするシャドウマスクがある。シャドウマスクは、
上記Fe−Ni系低熱膨張含金薄板をエッチング加工し
て電子ビーム通過孔を穿孔後、650℃以上の温度で軟
質化焼鈍を行っている。しかし、それでも軟鋼に比べて
強度が高いため、100〜300℃の温間プレス成形を
実施している。このうち、エッチング加工後の軟質化焼
鈍は、エッチング加工部分の形状を劣化させることがあ
り、また、生産効率の低下やコストの増加をもたらして
いる。
As such electronic components, for example, Fe—Ni-based low thermal expansion alloy thin plates (100
The average coefficient of thermal expansion up to 2 ° C. is 2 × 10 −6 / ° C. or less,
(Fe-36Ni alloy having a thickness of 0.30 mm or less is used). The shadow mask is
The Fe-Ni-based low-thermal-expansion metal-containing thin plate is etched to form an electron beam passage hole, and then subjected to softening annealing at a temperature of 650 ° C. or higher. However, since the strength is still higher than that of mild steel, warm press forming at 100 to 300 ° C. is performed. Of these, softening annealing after etching sometimes degrades the shape of the etched portion, and also causes a reduction in production efficiency and an increase in cost.

【0004】[0004]

【発明が解決しようとする課題】電子機器の高性能化や
小型化に伴って、使用される電子部品もより小さく高精
度のものが要求されるようになってきている。例えば、
高画質が要求されるコンピュータのディスブレイに用い
られる高精細シャドウマスクでは、板厚0.13mm以
下の薄板に300μm以下の間隔で直径100〜120
μmの貫通孔を穿孔し、かつ孔径の設計寸法に対するず
れが数%以内である高精細エッチング加工が必要になっ
ており、また成形形状のずれも数十μm以内であるよう
な高精度の成形加工が求められている。
As the performance and size of electronic devices have been improved, smaller and more accurate electronic components have been required. For example,
In a high-definition shadow mask used for display of a computer requiring high image quality, a thin plate having a thickness of 0.13 mm or less is formed on a thin plate having a diameter of 100 to 120 at intervals of 300 μm or less.
High-precision etching is required to drill through holes of μm and the deviation of the hole diameter from the design dimension is within a few percent, and the deviation of the molded shape is within several tens of μm. Processing is required.

【0005】しかし、従来のようにエッチング加工後に
高温で長時間の軟質化焼鈍を行うと、残留応力の解放や
組織の再結晶化によってエッチング加工寸法が変化して
精度不良が発生したり、焼鈍の際に焼鈍ムラが生じて成
形形状の不良が発生することもあった。また、生産効率
やコストの面でも不利であった。したがって、エッチン
グ性に優れ、エッチング加工後に軟質化焼鈍を行わなく
ても成形性に優れた素材が求められている。
However, if the softening annealing is performed at a high temperature for a long time after the etching process as in the prior art, the size of the etching process changes due to the release of residual stress or the recrystallization of the structure, resulting in poor accuracy or the annealing. In this case, unevenness in annealing may occur to cause a defect in the formed shape. It is also disadvantageous in terms of production efficiency and cost. Therefore, there is a demand for a material having excellent etching properties and excellent moldability without performing soft annealing after etching.

【0006】そこで従来、特開平4−74849号公報
の用にエッチング加工前に軟質化させるという技術が試
みられているが、上述したような高精度のエッチング加
工と成形加工を同時に満足する素材は未だ得られていな
い。
Therefore, a technique of softening prior to the etching process as disclosed in Japanese Patent Application Laid-Open No. 4-74849 has been attempted. However, a material which satisfies the above-described high-precision etching process and molding process simultaneously is described below. Not yet obtained.

【0007】本発明はかかる事情に鑑みてなされたもの
であって、エッチング性に優れ、かつエッチング加工後
に軟質化焼鈍を行わなくても成形性に優れる電子部品用
Fe−Ni系合金薄板を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides an Fe—Ni-based alloy thin plate for electronic parts that is excellent in etching properties and excellent in moldability without performing soft annealing after etching. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】本発明者らは、高精度の
エッチング加工と成形加工とを同時に満足するFe−N
i系低熱膨張合金薄板を得るため、種々の検討を行った
結果、主たる問題は、エッチング加工に対しては結晶粒
径と各結晶面の存在比率とを制御すること、また成形加
工に対しては各結晶面の存在比率を制御することに加え
て、強度およびその異方性、伸びを調整し、これらを所
定の範囲にすることにより解決することができることを
見出した。
Means for Solving the Problems The present inventors have found that Fe—N that satisfies both high-precision etching and forming at the same time.
As a result of various investigations to obtain an i-type low thermal expansion alloy thin plate, the main problem was that the crystal grain size and the abundance ratio of each crystal plane were controlled for etching, and the forming Found that, in addition to controlling the abundance ratio of each crystal plane, the strength and its anisotropy and elongation were adjusted, and these could be solved by setting them within a predetermined range.

【0009】本発明は、以上のような知見に基づいてな
されたものであり、Niを32〜38wt%含有する電
子部品用Fe−Ni系合金薄板であって、(a)平均結
晶粒径が32μm以下であること、(b)圧延面に対し
て平行な{100}、{111}、{110}、{31
1}、{210}、{211}の結晶面の存在比率がい
ずれも10〜40%であること、 (c)0.2%耐力
が280MPa以下で、かつその方向による差が20M
Pa以下であり、伸びが20%以上であることを特徴と
する、エッチング性と成形性に優れた電子部品用Fe−
Ni系合金薄板を提供するものである。
The present invention has been made based on the above findings, and is a Fe—Ni-based alloy sheet for electronic parts containing 32 to 38 wt% of Ni, wherein (a) the average crystal grain size is (B) {100}, {111}, {110}, {31
(C) 0.2% proof stress is 280 MPa or less, and the difference depending on the direction is 20M.
Pa—elongation of 20% or more, characterized in that the Fe—
An object of the present invention is to provide a Ni-based alloy sheet.

【0010】[0010]

【発明の実施の形態】以下、本発明について具体的に説
明する。本発明に係るFe−Ni系合金薄板は、常温か
ら100℃までの平均熱膨張係数が2×10-6/℃以下
であるようなFe−Ni系低熱膨張含金を前提とするも
のであり、そのためにはNi量を32〜38wt%含有
するFe−Ni合金とする。また、目的とする低熱膨張
特性が得られる範囲内で、Niの置換元素としてCoを
添加してもよい。また、軟質化、強度増加、弾性率増加
や耐食性向上の種々の目的に応じて、Cr、Cu、T
i、Nb、V、W、Ta、Mo、Hf、Zr等を添加し
ても問題はない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. The Fe—Ni-based alloy thin sheet according to the present invention is based on the premise that the Fe—Ni-based low-thermal-expansion metal has an average thermal expansion coefficient from room temperature to 100 ° C. of 2 × 10 −6 / ° C. or less. For this purpose, an Fe—Ni alloy containing 32 to 38 wt% of Ni is used. Also, Co may be added as a Ni-substituting element within a range in which the desired low thermal expansion characteristics can be obtained. Further, according to various purposes of softening, increasing strength, increasing elastic modulus and improving corrosion resistance, Cr, Cu, T
There is no problem even if i, Nb, V, W, Ta, Mo, Hf, Zr or the like is added.

【0011】本発明は、上記合金組成を前提として、
(1)平均結晶粒径、(2)結晶面の存在比率、(3)
強度および伸びを規定する。
The present invention is based on the premise of the above alloy composition.
(1) Average crystal grain size, (2) Crystal plane existence ratio, (3)
Specify strength and elongation.

【0012】(1)平均結晶粒径 平均結晶粒径はエッチング加工部分の形状や寸法の精度
に影響を及ぼす。平均結晶粒径が32μmを超えるとエ
ッチング界面の凹凸が大きくなり、形状や寸法の精度を
著しく劣化させる。したがって、平均結晶粒径を32μ
m以下とする。また、結晶粒はなるべく整粒であること
が望ましい。さらに、結晶粒径が微細になるほどエッチ
ング性が向上するが、微細化しすぎると強度が増加して
加工が難しくなるため、平均結晶粒径は14〜28μm
の範囲であることが好ましい。
(1) Average grain size The average grain size affects the accuracy of the shape and size of the etched portion. If the average crystal grain size exceeds 32 μm, the unevenness of the etching interface becomes large, and the accuracy of the shape and dimensions is significantly deteriorated. Therefore, the average crystal grain size is 32 μm.
m or less. Further, it is desirable that the crystal grains be as sized as possible. Further, as the crystal grain size becomes finer, the etching property is improved. However, when the grain size is too small, the strength increases and processing becomes difficult, so that the average crystal grain size is 14 to 28 μm.
Is preferably within the range.

【0013】(2)結晶面の存在比率 結晶面の存在比率は成形加工に影響を及ぼす。結晶面に
より変形しやすさが異なるため、特定の結晶面が特定の
方向に集積すると成形加工で形状不良が発生する。特に
シャドウマスクの成形のような等方的な加工で形状不良
が発生しやすい。例えば、エッチング速度やエッチング
ファクターを増加させるためには{100}結晶面の存
在比率を高めることが有効であるが、反面、他の結晶面
とのエッチング性の違いによりエッチングムラを顕在化
させたり、強度の異方性を増大させ成形精度を低下させ
る原因となる。よって、圧延面に対して平行な{10
0}、{111}、{110}、{311}、{21
0}、{211}の7つの結晶面の存在比率がいずれも
10〜40%とする必要がある。さらに、高精細シャド
ウマスクのようにエッチング加工の精度が±2%、プレ
ス成形の精度が数十μm以下であるような高精度の加工
では、上記7つの結晶面の存在比率がすべて10〜20
%であることが望ましい。なお、結晶面の存在比率は、
X線回折法により上記7つの結晶面について計測した回
折強度を各々の結晶面に対する理論回折強度で割った値
を求め、それらを7つの結晶面の比率で示した値であ
る。例えば{111}結晶面の存在比率は、{111}
結晶面について計測した回折強度を{111}結晶面の
理論回折強度で割った値を求め、同様にして求めた7つ
の結晶面の値に対する比率を示す。
(2) Crystal plane abundance The crystal plane abundance affects the forming process. Since the easiness of deformation varies depending on the crystal plane, when a specific crystal plane is accumulated in a specific direction, a shape defect occurs in the molding process. In particular, shape defects are likely to occur in isotropic processing such as shadow mask molding. For example, in order to increase the etching rate and the etching factor, it is effective to increase the ratio of the {100} crystal planes, but on the other hand, the etching unevenness becomes apparent due to the difference in the etching properties from other crystal planes. This increases the anisotropy of strength and lowers the molding accuracy. Therefore, the value of {10
0}, {111}, {110}, {311}, {21
It is necessary that the abundance ratio of the seven crystal planes of {0} and {211} is 10 to 40%. Further, in a high-precision processing such as a high-definition shadow mask in which the etching processing accuracy is ± 2% and the press-forming accuracy is several tens μm or less, the ratio of the existence of the seven crystal planes is 10 to 20%.
% Is desirable. In addition, the existence ratio of the crystal plane is
Values obtained by dividing the diffraction intensities measured for the above seven crystal planes by the X-ray diffraction method by the theoretical diffraction intensities for each of the crystal planes are obtained, and the values are shown by the ratio of the seven crystal planes. For example, the existence ratio of {111} crystal plane is {111}
A value obtained by dividing the diffraction intensity measured for the crystal plane by the theoretical diffraction intensity of the {111} crystal plane is obtained, and the ratio to the value of the seven crystal planes obtained in the same manner is shown.

【0014】(3)強度および伸び 強度や伸び特性は成形加工の精度やエッチング加工部分
の形状に影響を及ぼす。高精度の成形加工を行うために
は、少なくとも0.2%耐力が280MPa以下、伸び
が20%以上であることが必要である。また、強度の異
方性が大きいと、成形時の破断や成形後の形状不良、エ
ッチング加工部分のずれなどが発生する。よって、材料
の圧延方向に平行な方向から直角な方向までの0.2%
耐力の差が20MPa以下であることが必要である。さ
らに、高精細シャドウマスクのようにプレス成形の精度
が数十μm以下であるような高精度な加工では、0.2
%耐力の異方性が10MPaであることが望ましい。
(3) Strength and Elongation The strength and elongation characteristics affect the precision of the forming process and the shape of the etched portion. In order to perform high-precision molding, it is necessary that at least the 0.2% proof stress be 280 MPa or less and the elongation be 20% or more. Further, when the anisotropy of strength is large, breakage at the time of molding, defective shape after molding, displacement of an etched portion, and the like occur. Therefore, 0.2% from the direction parallel to the rolling direction of the material to the direction perpendicular thereto
It is necessary that the difference in proof stress is 20 MPa or less. Further, in high-precision processing such as high-definition shadow masks in which the accuracy of press forming is several tens μm or less, 0.2
It is desirable that the anisotropy of the% proof stress is 10 MPa.

【0015】このように規定される本発明の合金薄板
は、エッチング性に優れ、かつ成形性に優れたものとな
り、従来のようなエッチング加工後の軟質化焼鈍を省略
することができる。
The thin alloy sheet of the present invention defined as described above has excellent etching properties and excellent formability, so that the conventional softening annealing after etching can be omitted.

【0016】以上のような本発明に係るFe−Ni系低
熱膨張合金薄板は、熱延鋼板や薄鋳片における成分偏析
を十分に低減するとともに、介在物の清浄度を十分に低
下させ、かつ所定の圧下率の冷間圧延および焼鈍を施す
ことにより得ることができる。
The Fe—Ni-based low thermal expansion alloy sheet according to the present invention as described above sufficiently reduces the segregation of components in a hot-rolled steel sheet or thin slab, sufficiently reduces the cleanliness of inclusions, and It can be obtained by performing cold rolling and annealing at a predetermined reduction rate.

【0017】成分偏析や介在物の清浄度は、結晶粒径や
結晶面の存在比率に影響を及ぼす。鋳造時に形成される
Ni、Mn等の偏析は、冷間圧延や焼鈍における結晶方
位の変化や結晶粒成長性の変化をもたらし、組織を混粒
化すると同時に、偏析部分のエッチング性も変化させる
ため、エッチング加工の精度が著しく劣化する。よっ
て、鋼塊、連続鋳造スラブ、分塊スラブ、あるいは薄鋳
片について1150℃以上の熱処理を行ったり、鋼塊に
ついて1000℃以上で鍛造を行うことによって偏析を
十分に低減することが好ましい。また、熱延鋼板や薄鋳
片における微細な介在物は結晶粒界の移動を妨げるた
め、冷間圧延や焼鈍における結晶方位の変化や結晶粒成
長性の変化をもたらし、粗大な介在物は冷間圧延や焼鈍
後も残留しエッチングを阻害するため、いずれもエッチ
ング不良を発生させる原因となる。この場合、表面研削
または酸洗を行い冷間圧延の素材とした熱延鋼板や薄鋳
片において、JIS G0555で規定されるA系、B
系、C系を合わせた清浄度が0.05%を超えると、組
織の混粒化、特定の結晶面の高集積化によるエッチング
不良や、介在物を起点とするエッチング不良が発生す
る。よって、熱延鋼板や薄鋳片における介在物の清浄度
は0.05%以下とすることが好ましい。
The segregation of components and the cleanliness of inclusions affect the crystal grain size and the ratio of crystal planes. Segregation of Ni, Mn, etc. formed during casting causes a change in crystal orientation and a change in crystal growth during cold rolling and annealing. In addition, the accuracy of the etching process is significantly deteriorated. Therefore, it is preferable to sufficiently reduce the segregation by performing a heat treatment at 1150 ° C. or more on the steel ingot, the continuously cast slab, the ingot slab, or the thin slab, or performing a forging on the steel ingot at 1000 ° C. or more. In addition, fine inclusions in hot-rolled steel sheets and thin slabs hinder the movement of crystal grain boundaries, causing changes in crystal orientation and crystal growth during cold rolling and annealing. Since it remains even after cold rolling and annealing and inhibits etching, any of these causes a defective etching. In this case, for a hot rolled steel sheet or a thin slab which has been subjected to surface grinding or pickling and used as a material for cold rolling, the system A or B specified in JIS G0555 is used.
If the combined cleanliness of the system and the C system exceeds 0.05%, an etching defect due to a mixture of structures, high integration of a specific crystal plane, and an etching defect originating from inclusions occur. Therefore, it is preferable that the cleanliness of inclusions in the hot-rolled steel sheet or the thin slab is 0.05% or less.

【0018】このように成分偏析を十分に低減し、介在
物の清浄度を所定の範囲内に抑制した熱延鋼板や薄鋳片
に冷間圧延・焼鈍を2〜3回繰り返すことで上記特性を
有する本発明の合金薄板を得ることができる。このう
ち、中間工程における冷間圧延の圧下率は50〜95
%、最終工程における冷間圧延の圧下率は8〜50%と
し、焼鈍は中間工程および最終工程とも非酸化性または
還元性の雰囲気中で750〜1150℃で行う。
By repeating cold rolling and annealing twice or three times on a hot-rolled steel sheet or a thin slab in which component segregation is sufficiently reduced and the cleanliness of inclusions is suppressed within a predetermined range as described above. Can be obtained. Among them, the rolling reduction of the cold rolling in the intermediate step is 50-95.
%, The rolling reduction of the cold rolling in the final step is 8 to 50%, and annealing is performed at 750 to 1150 ° C. in a non-oxidizing or reducing atmosphere in both the intermediate step and the final step.

【0019】さらに、平均結晶粒径、各結晶面の存在比
率、ならびに強度および伸び特性が上記範囲内であれ
ば、形状矯正や残留応カ低減のために、最終焼鈍の前工
程あるいは後工程で伸長率4%以下のスキンパス圧延や
テンションレベラー処理を行ったり、テンションアニー
ル(張力付加焼鈍)、歪み取り焼鈍を行っても良い。
Furthermore, if the average crystal grain size, the proportion of each crystal plane, and the strength and elongation characteristics are within the above-mentioned ranges, in order to correct the shape and reduce the residual stress, it is necessary to carry out the pre-processing or post-processing of the final annealing. Skin pass rolling with an elongation of 4% or less, tension leveler treatment, tension annealing (tensile annealing), and strain relief annealing may be performed.

【0020】[0020]

【実施例】Niを34〜37wt%含むFe−Ni系合
金を溶製し、鋳塊、薄鋳片を製造した。鋳塊と薄鋳片の
一部については均質化熱処理や熱間圧延等の加工を行
い、1.6〜5.0mmの鋼板とし、酸洗または表面研
削により酸化槽の除去を行った。次いで、1〜2回の冷
間圧延と非酸化性雰囲気中での焼鈍を施し、さらに、最
終の冷間圧延と焼鈍を施して板厚0.10〜0.13m
mの合金薄板を作製した。この際に、平坦性が悪い薄板
については伸長率2%以下のテンションレベラー処理を
施した。得られた薄板の結晶粒径、各結晶面の存在比
率、0.2%耐力の値、その異方性、伸びの値を表1に
示す。
EXAMPLE An Fe-Ni alloy containing 34 to 37 wt% of Ni was melted to produce an ingot and a thin slab. A part of the ingot and the thin slab were subjected to processing such as homogenization heat treatment and hot rolling to form a steel sheet of 1.6 to 5.0 mm, and the oxidation tank was removed by pickling or surface grinding. Next, cold rolling is performed once or twice and annealing is performed in a non-oxidizing atmosphere. Further, final cold rolling and annealing are performed to obtain a sheet thickness of 0.10 to 0.13 m.
m was prepared. At this time, the thin plate having poor flatness was subjected to a tension leveler treatment with an elongation ratio of 2% or less. Table 1 shows the crystal grain size of the obtained thin plate, the proportion of each crystal plane, the value of 0.2% proof stress, its anisotropy, and the value of elongation.

【0021】表1の中で、No.1〜7が本発明例であ
り、No.8〜14が比較例である。本発明例について
は、1200〜1300℃で20〜60時間の熱処理に
より十分に均質化し、溶製時に十分に精錬を行うことに
より冷間圧延前の鋼板においてJIS G0555の規
定による清浄度(400倍で60視野以上)を0.05
%以下とした。また、中間工程として圧下率30〜95
%の冷間圧延と750〜1150℃の非酸化性雰囲気中
での焼鈍を1〜2回施し、最終の冷間圧延を8〜50
%、焼鈍を750〜1150℃の非酸化性雰囲気中で行
った。
In Table 1, No. Nos. 1 to 7 are examples of the present invention. 8 to 14 are comparative examples. Regarding the present invention example, the steel sheet before cold rolling is sufficiently homogenized by heat treatment at 1200 to 1300 ° C. for 20 to 60 hours and sufficiently refined at the time of smelting to obtain a cleanliness (400 times) according to JIS G0555. Over 60 fields of view) 0.05
% Or less. In addition, the rolling reduction is 30 to 95 as an intermediate step.
% Cold annealing and annealing in a non-oxidizing atmosphere at 750 to 1150 ° C. once or twice, and final cold rolling is 8 to 50 times.
%, Annealing was performed in a non-oxidizing atmosphere at 750 to 1150 ° C.

【0022】これら合金薄板について、平均結晶粒径、
各結晶面の存在比率、0.2%耐力と伸びを測定した。
この時、0.2%耐力と伸びは、圧延方向に対して平行
な方向から直角な方向まで角度10°毎の方向について
測定し、0.2%耐力の欄にはその最大値を表示し、伸
びの欄にはその最小値を表示した。また、0.2%耐力
の異方性は0.2%耐力の最大値と最小値の差とした。
その値を表1に示す。
The average crystal grain size,
The existence ratio of each crystal face, 0.2% proof stress and elongation were measured.
At this time, the 0.2% proof stress and elongation were measured in a direction at an angle of 10 ° from a direction parallel to the rolling direction to a direction perpendicular to the rolling direction, and the maximum value was displayed in the 0.2% proof stress column. , The minimum value is shown in the column of elongation. The 0.2% proof stress anisotropy was defined as the difference between the maximum value and the minimum value of 0.2% proof stress.
The values are shown in Table 1.

【0023】本発明例は上述のような処理を施すことに
より、平均結晶粒径、各結晶面の存在比率、ならびに強
度および伸びを本発明の範囲内としたものであり、一
方、比較例はこれら製造条件の一つ以上がこれらの範囲
から外れることにより、平均結晶粒径、各結晶面の存在
比率、強度およびそのばらつきのうち一つ以上が本発明
の範囲から外れているものである。
In the present invention, the average crystal grain size, the ratio of each crystal plane, and the strength and elongation are within the scope of the present invention by performing the above-mentioned treatment. When one or more of these manufacturing conditions deviate from these ranges, one or more of the average crystal grain size, the abundance ratio of each crystal plane, the strength, and the variation thereof are out of the range of the present invention.

【0024】その後エッチング加工を行い、さらに10
0〜300℃で温間プレス成形を行った。その結果、エ
ッチング加工後の孔の形状や界面に異常が見られず、寸
法精度が±2%以下で良好なものを○、特に±1%未満
で良好なものを◎とし、エッチング性に問題があったも
のを×としてエッチング性を評価した。また、成形時に
破断がなく成形後の形状寸法や精度が良好なものを○、
特にその精度が十μm以下であるような良好なものを◎
とし、成形性に問題があったものを×として成形性を評
価した。その結果を表1に示す。
Thereafter, an etching process is performed,
Warm press molding was performed at 0 to 300 ° C. As a result, no abnormality was found in the shape or interface of the hole after the etching process, and a sample having a good dimensional accuracy of ± 2% or less was rated as ○, and a sample with a dimensional accuracy of less than ± 1% was rated as ◎. The sample which had a defect was evaluated as x and the etching property was evaluated. In addition, those with good shape dimensions and accuracy after molding without breakage during molding are indicated by ○,
Especially good ones whose accuracy is 10 μm or less.
The moldability was evaluated as x when there was a problem with the moldability. Table 1 shows the results.

【0025】[0025]

【表1】 [Table 1]

【0026】表1に示すように、本発明例であるNo.
1〜7はいずれも良好なエッチング性および成形性を示
した。これに対して、比較例であるNo.8は0.2%
耐力とその異方性がともに大きく、No.9は0.2%
耐力が高く、No.10は0.2%耐力の異方性が大き
いため、成型時に破断を発生したり、成形形状の精度が
著しく劣っていた。また、No.11は平均粒径が非常
に大きいため、エッチング界面の荒れが大きく加工精度
も著しく劣っていた。さらに、No.12は{100}
結晶面の存在比率と0.2%耐力の異方性が大きく、N
o.13は{100}結晶面の存在比率が高く、No.
14は{110}結晶面の存在比率が高いため、エッチ
ング性、成形性ともに劣っていた。
As shown in Table 1, No. 1 of the present invention was used.
1 to 7 all exhibited good etching properties and moldability. On the other hand, in Comparative Example No. 8 is 0.2%
The proof stress and its anisotropy are both large. 9 is 0.2%
The proof stress is high. Since No. 10 had a large 0.2% proof stress anisotropy, a break occurred at the time of molding, and the precision of the molded shape was extremely poor. In addition, No. Sample No. 11 had a very large average particle size, so the etching interface was rough and the processing accuracy was extremely poor. In addition, No. 12 is {100}
The anisotropy of the crystal plane existence ratio and 0.2% proof stress is large.
o. No. 13 has a high percentage of {100} crystal planes.
No. 14 was inferior in both etching properties and moldability because of the high proportion of {110} crystal planes.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
高精度のエッチング加工や成形を必要とする電子部品用
Fe−Ni系低熱膨張合金薄板であって、テレビジョン
やコンピュータディスブレイのブラウン管に使用される
高精細シャドウマスク用の素材として特に好適な、エッ
チング性に優れしかも成形加工性に優れたFe−Ni系
低熱膨張合金薄板を得ることができ、エッチング加工後
の軟質化焼鈍が不要となる。このように本発明に係る合
金薄板は、エッチング加工後の軟質化焼鈍が省略可能で
あるため、工期短縮やコスト低減に繋がり、また、エッ
チング加工部の寸法変化や成形後の局部変形を防止する
ことができ、極めて工業的価値が高い。
As described above, according to the present invention,
Fe-Ni-based low thermal expansion alloy thin plate for electronic components that require high-precision etching and molding, particularly suitable as a material for high-definition shadow masks used in televisions and CRTs of computer displays, An Fe—Ni-based low-thermal-expansion alloy thin plate having excellent etching properties and excellent formability can be obtained, and soft annealing after etching is not required. As described above, in the alloy thin plate according to the present invention, softening annealing after etching can be omitted, which leads to shortening of the construction period and cost reduction, and also prevents dimensional change of the etched portion and local deformation after forming. Can be extremely industrial value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾崎 大介 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 山本 彰 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Daisuke Ozaki 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Akira Yamamoto 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun Honko Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Niを32〜38wt%含有する電子部
品用Fe−Ni系合金薄板であって、 (a)平均結晶粒径が32μm以下であること、 (b)圧延面に対して平行な{100}、{111}、
{110}、{311}、{210}、{211}の結
晶面の存在比率がいずれも10〜40%であること、
(c)0.2%耐力が280MPa以下で、かつその方
向による差が20MPa以下であり、伸びが20%以上
であることを特徴とする、エッチング性と成形性に優れ
た電子部品用Fe−Ni系合金薄板。
1. A thin Fe—Ni alloy sheet for electronic components containing 32 to 38 wt% of Ni, wherein (a) the average crystal grain size is 32 μm or less; {100}, {111},
{110}, {311}, {210}, {211} crystal plane abundance ratio is 10-40%,
(C) Fe- for electronic parts excellent in etching property and formability, characterized in that the 0.2% proof stress is 280 MPa or less, the difference depending on the direction is 20 MPa or less, and the elongation is 20% or more. Ni-based alloy thin plate.
JP9065698A 1998-03-20 1998-03-20 Fe-ni series alloy thin sheet for electronic parts Pending JPH11269609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9065698A JPH11269609A (en) 1998-03-20 1998-03-20 Fe-ni series alloy thin sheet for electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9065698A JPH11269609A (en) 1998-03-20 1998-03-20 Fe-ni series alloy thin sheet for electronic parts

Publications (1)

Publication Number Publication Date
JPH11269609A true JPH11269609A (en) 1999-10-05

Family

ID=14004579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9065698A Pending JPH11269609A (en) 1998-03-20 1998-03-20 Fe-ni series alloy thin sheet for electronic parts

Country Status (1)

Country Link
JP (1) JPH11269609A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017393A (en) * 1998-04-30 2000-01-18 Dainippon Printing Co Ltd Shadow mask for color cathode-ray tube
JP2002004006A (en) * 2000-04-21 2002-01-09 Nippon Yakin Kogyo Co Ltd Fe-Ni ALLOY COLD ROLLED SHEET AND METHOD FOR REFINING Fe-Ni ALLOY
JP2002004007A (en) * 2000-04-21 2002-01-09 Nippon Yakin Kogyo Co Ltd Fe-Ni ALLOY COLD ROLLED SHEET AND METHOD FOR REFINING Fe-Ni ALLOY
WO2003106720A1 (en) * 2002-06-18 2003-12-24 Jfeスチール株式会社 Low-thermal expansion alloy thin sheet and its manufacturing method
CN109715834A (en) * 2016-09-15 2019-05-03 日立金属株式会社 Metal mask raw material and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017393A (en) * 1998-04-30 2000-01-18 Dainippon Printing Co Ltd Shadow mask for color cathode-ray tube
JP2002004006A (en) * 2000-04-21 2002-01-09 Nippon Yakin Kogyo Co Ltd Fe-Ni ALLOY COLD ROLLED SHEET AND METHOD FOR REFINING Fe-Ni ALLOY
JP2002004007A (en) * 2000-04-21 2002-01-09 Nippon Yakin Kogyo Co Ltd Fe-Ni ALLOY COLD ROLLED SHEET AND METHOD FOR REFINING Fe-Ni ALLOY
WO2003106720A1 (en) * 2002-06-18 2003-12-24 Jfeスチール株式会社 Low-thermal expansion alloy thin sheet and its manufacturing method
CN109715834A (en) * 2016-09-15 2019-05-03 日立金属株式会社 Metal mask raw material and its manufacturing method
JPWO2018052135A1 (en) * 2016-09-15 2019-06-27 日立金属株式会社 Material for metal mask and method of manufacturing the same
CN109715834B (en) * 2016-09-15 2021-06-15 日立金属株式会社 Material for metal mask and method for producing the same

Similar Documents

Publication Publication Date Title
EP1134300A2 (en) Fe-Ni alloy
JPWO2008013305A1 (en) Stainless steel sheet for parts and manufacturing method thereof
EP0567989A1 (en) Shadow mask sheet, method of producing the same and cathode ray tube provided therewith
KR100519520B1 (en) Invar alloy steel sheet material for shadow mask, method of production thereof, shadow mask, and color picture tube
JPH11269609A (en) Fe-ni series alloy thin sheet for electronic parts
JP2871414B2 (en) Alloy thin plate for shadow mask excellent in press formability and method for producing the same
JP3211569B2 (en) High strength and low thermal expansion alloy sheet for electronics with excellent etching and surface treatment properties and its manufacturing method
JP2929881B2 (en) Metal sheet for shadow mask with excellent etching processability
JP3379301B2 (en) Method for producing low thermal expansion alloy thin plate for shadow mask excellent in plate shape and heat shrink resistance
JP3348565B2 (en) Method of producing Fe-Ni-based alloy thin plate for electronic parts and Fe-Ni-Co-based alloy thin plate excellent in degreasing property
JP3542024B2 (en) High strength low thermal expansion Fe-Ni alloy, shadow mask, lead frame
JPH07116558B2 (en) Fe-Ni alloy thin plate for shadow mask and method for manufacturing the same
JP3353321B2 (en) Method for producing Fe-Ni alloy sheet for shadow mask excellent in press formability and Fe-Ni alloy sheet for shadow mask excellent in press formability
JP2002069535A (en) PRODUCTION METHOD FOR PREVENTING HOT ROLLING CRACK OF Fe-Ni BASED ALLOY MATERIAL HAVING FALLING IMPACT DEFORMATION RESISTANCE AND LOW THERMAL EXPANSION
JP3515769B2 (en) Fe-Ni-Co alloy ribbon for press-molded flat mask
JP2004331997A (en) HIGH-STRENGTH Fe-Ni-Co ALLOY FOR SHADOW MASK
JPH06279946A (en) Shadow mask material having excellent etching property, its intermediate material, its production, production of shadow mask, and cathode ray tube
JP3538850B2 (en) Fe-Ni alloy thin plate and Fe-Ni-Co alloy thin plate for shadow mask excellent in press formability and method for producing the same
JP2909299B2 (en) Material for high-definition shadow mask, mask material and manufacturing method thereof
JP2795028B2 (en) Metal sheet for shadow mask with excellent etching processability
JPH11189845A (en) Fe-ni alloy sheet for electronic parts, and its production
JP3367147B2 (en) Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for shadow mask having excellent press formability and method for producing the same
JP3327902B2 (en) Fe-Ni shadow mask material
JP3326897B2 (en) Fe-Ni alloy thin plate for shadow mask
JP3367153B2 (en) Fe-Ni-Cr-based alloy thin plate and Fe-Ni-Co-Cr-based alloy thin plate for shadow mask excellent in press formability, and method for producing the same