JPH11267652A - Method of generating ozone water and hydrogen water, and device therefor - Google Patents

Method of generating ozone water and hydrogen water, and device therefor

Info

Publication number
JPH11267652A
JPH11267652A JP10114070A JP11407098A JPH11267652A JP H11267652 A JPH11267652 A JP H11267652A JP 10114070 A JP10114070 A JP 10114070A JP 11407098 A JP11407098 A JP 11407098A JP H11267652 A JPH11267652 A JP H11267652A
Authority
JP
Japan
Prior art keywords
gas
ozone
water
hydrogen
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10114070A
Other languages
Japanese (ja)
Inventor
Isao Sawamoto
勲 澤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10114070A priority Critical patent/JPH11267652A/en
Publication of JPH11267652A publication Critical patent/JPH11267652A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PROBLEM TO BE SOLVED: To produce safe and stable high purity pure water with dissolved gas by separating an ozone gas and/or oxygen gas from an anode liquid and bringing the separated ozone gas and/or oxygen gas into contact with a soln. to dissolve the ozone gas and/or oxygen gas in the soln. SOLUTION: The ozone and hydrogen gas generating part 17 is equipped with a solid electrolyte 1 at the center, an anode 2 and cathode 3 facing each other and disposed on both sides of the electrolyte 1, and a rectifier 6 connected to the anode 2 and the cathode 3. When a pure water 18 as the source material is supplied, a gas is produced by the current from the rectifier 6. The produced ozone and hydrogen gas is separated in an anode gas separation tower 7 and a cathode gas separation tower 8, and introduced to an ozone gas dissolving part 12 and a hydrogen gas dissolving part 15, respectively. Superpure water 11 is introduced as a soln. to the ozone gas dissolving part 12 to obtain an effluent of an ozone-added superpure water 13 with dissolved ozone. Superpure water 14 is introduced as a soln. to the hydrogen gas dissolving part 15 to obtain an effluent of a hydrogen-added superpure water 16 with dissolved hydrogen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解オゾン水素ガ
ス発生装置を使用して、オゾン水、水素水を製造するた
めの方法、及び装置に関するものである。
The present invention relates to a method and an apparatus for producing ozone water and hydrogen water using an electrolytic ozone hydrogen gas generator.

【0002】[0002]

【従来の技術】水を電解する事によりオゾンガスを生成
する工夫は古く、100年以上昔より行われている。古
くは、高電気陰性度の陰イオンを含む液を電解してオゾ
ンを生成する溶液電解法であったが、近年では高分子固
体電解質の発達につれ、高分子固体電解質を用いた水電
解によるオゾン発生装置が製造され、市販されるように
なった。
2. Description of the Related Art Ozone gas is generated by electrolyzing water, which has been used for more than 100 years. In the old days, the solution electrolysis method of electrolyzing a solution containing a high electronegativity anion to generate ozone was used.In recent years, with the development of polymer solid electrolytes, ozone by water electrolysis using a polymer solid electrolyte has been developed. Generators have been manufactured and become commercially available.

【0003】パーフルオロカーボンスルフォン酸系陽イ
オン交換膜を固体電解質とし、その両側に陽極、陰極を
密着させたいわゆるゼロギャップ方式の水電解は、構造
が簡単で取り扱いが容易であり、腐食性もオゾンガス以
外は無い為近年の水電解法オゾン発生の殆どを占めるよ
うになった。オゾンガス濃度は20%前後で、その他は
飽和水蒸気を含んだ酸素ガスであり、殆ど不純物を含ま
ないオゾン、酸素の混合ガスである。
The so-called zero-gap type water electrolysis, in which a perfluorocarbon sulfonic acid-based cation exchange membrane is used as a solid electrolyte and an anode and a cathode are adhered to both sides thereof, has a simple structure, is easy to handle, and is corrosive to ozone gas. Owing to water electrolysis ozone generation in recent years. The ozone gas concentration is about 20%, and the others are oxygen gas containing saturated water vapor, which is a mixed gas of ozone and oxygen containing almost no impurities.

【0004】従って、殺菌の分野や最近では半導体の分
野にもオゾンの利用が広まっている。酸素を原料とし、
高周波高電圧をかけることによってオゾンを生成する無
声放電法に比べ、消費電力が多少大きくなる欠点はある
が、オゾンガス濃度が高いこと、又、純度が良いことよ
り電解によるオゾン生成が特に半導体の湿式洗浄の分野
等で注目を受けるようになってきた。
Accordingly, the use of ozone has been widespread in the field of sterilization and recently in the field of semiconductors. Using oxygen as a raw material,
Compared to the silent discharge method that generates ozone by applying high frequency and high voltage, there is a drawback that the power consumption is slightly larger, but ozone generation by electrolysis is particularly difficult due to the high ozone gas concentration and high purity. Attention has come to the field of cleaning and the like.

【0005】電解による酸素ガス発生でも、オゾンガス
発生と同様の構成で陽極活物質を変えることによってオ
ゾンガスの発生を押さえ、酸素ガスのみの発生をさせる
ことができる。又、オゾンガス発生、酸素ガス発生問わ
ず、対極である陰極からは水素ガスが発生する。純水を
原料としているため、どのガスとも非常に高い純度のガ
スを簡単に得ることができる。
[0005] Even in the generation of oxygen gas by electrolysis, the generation of ozone gas can be suppressed and the generation of only oxygen gas can be suppressed by changing the anode active material in the same configuration as the generation of ozone gas. In addition, regardless of the generation of ozone gas or oxygen gas, hydrogen gas is generated from the cathode serving as the counter electrode. Since pure water is used as a raw material, very high purity gas can be easily obtained with any gas.

【0006】しかしながら、近年使用されるようになっ
てきた水素水やオゾン水では、純水を電解糟に導き、電
解する事により発生したガスを直接溶解して水素水やオ
ゾン水を生成し、半導体洗浄に使用したりもしている、
However, in the case of hydrogen water or ozone water which has recently been used, pure water is introduced into an electrolysis tank, and gas generated by electrolysis is directly dissolved to produce hydrogen water or ozone water. Also used for semiconductor cleaning,

【0007】[0007]

【発明が解決しようとする課題】しかしながら、この様
に純水を直接電解槽に導く方法は、装置上コンパクトに
はなるが、電解槽を溶出の殆どないテフロンで形成した
としても、電解する事により発生する特に電極活物質が
微量に溶出する。その溶出は、陽極からはオゾン発生の
時には主として二酸化鉛が、又酸素発生の時にはイリジ
ウムや白金が、又、陰極からは白金の溶出があり、トー
タル金属として各々300〜1000pptが純水中に
混入するのが現状であった。又、電解によって発生する
パーツィクルも多数純水中に混入していくため、その純
水を使用することにより半導体の洗浄不良を起こす結果
となっていた。
However, such a method of introducing pure water directly into the electrolytic cell is compact in terms of the apparatus, but it is possible to perform electrolysis even if the electrolytic cell is made of Teflon with little elution. In particular, a very small amount of the electrode active material generated by elution is eluted. The elution is mainly of lead dioxide when generating ozone from the anode, iridium and platinum when generating oxygen, and platinum from the cathode. 300 to 1000 ppt of total metals are mixed in pure water. It was the current situation. Further, since a large number of parts generated by the electrolysis are mixed into the pure water, the use of the pure water results in defective cleaning of the semiconductor.

【0008】[0008]

【課題を解決するための手段】上記の問題点を解決する
ために、本発明は、オゾンや酸素、又は水素ガスを溶解
した純水(いわゆるガス溶解純水)中のコンタミネーシ
ョン、特にガス溶解純水中の金属溶出を最小にするた
め、純水を直接電解槽に導くのではなく、電解により生
成したガスを一旦陽極水又は陰極水から分離し、再度純
水に溶解することで安全で安定な高純度のガス溶解純水
を生成することができる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method for contaminating ozone, oxygen, or hydrogen gas in pure water (so-called gas-dissolved pure water). In order to minimize metal elution in pure water, instead of directing pure water to the electrolytic cell, gas generated by electrolysis is separated from anode water or cathodic water once and dissolved in pure water again for safety. Stable high-purity gas-dissolved pure water can be generated.

【0009】[0009]

【発明の実施の形態】本発明は、第1に、その両側にそ
れぞれ多孔質の陽極物質、及び、陰極物質を密着配置さ
せたパーフルオロカーボン系陽イオン交換膜を固体電解
質とし、陽極側に純水を供給して電解する事により陽極
側よりオゾンガス及び/又は酸素ガスを、又、陰極側よ
り水素ガスを生成する電解オゾン水素ガス発生装置にお
いて、該オゾンガス及び/又は該酸素ガスを陽極液から
分離し、分離したオゾンガス及び/又は酸素ガスを溶液
と接触させ、該溶液にオゾンガス及び/又は酸素ガスを
溶解させることを特徴とするオゾン水水素水発生方法で
あり、第2に、その両側にそれぞれ多孔質の陽極物質、
及び、陰極物質を密着配置させたパーフルオロカーボン
系陽イオン交換膜を固体電解質とし、陽極側に純水を供
給して電解する事により陽極側よりオゾンガス及び/又
は酸素ガスを、又、陰極側より水素ガスを生成する電解
オゾン水素ガス発生装置において、該水素ガスを陰極液
から分離し、分離した水素ガスを溶液と接触させ、該溶
液に水素ガスを溶解させることを特徴とするオゾン水水
素水発生方法である。本発明は、更に上記両発明方法に
使用する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION First, the present invention provides a solid electrolyte comprising a perfluorocarbon cation exchange membrane having a porous anode material and a cathode material closely attached to both sides thereof, and a pure electrolyte on the anode side. In an electrolytic ozone hydrogen gas generator that generates ozone gas and / or oxygen gas from the anode side by supplying water and electrolyzes, and hydrogen gas from the cathode side, the ozone gas and / or the oxygen gas is converted from the anolyte. An ozone water hydrogen water generation method characterized by contacting a separated and separated ozone gas and / or oxygen gas with a solution, and dissolving the ozone gas and / or oxygen gas in the solution. Each porous anode material,
And a perfluorocarbon cation exchange membrane in which a cathode material is closely arranged is used as a solid electrolyte, and pure water is supplied to the anode side to perform electrolysis, thereby supplying ozone gas and / or oxygen gas from the anode side, and from the cathode side. An electrolytic ozone hydrogen gas generator for generating hydrogen gas, wherein the hydrogen gas is separated from a catholyte solution, the separated hydrogen gas is brought into contact with a solution, and the hydrogen gas is dissolved in the solution. It is a generation method. The present invention further relates to an apparatus used in the above two methods.

【0010】以下本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0011】半導体に使用される溶液のコンタミネーシ
ョンのレベルは、使用される場所にもよるが各金属とし
て10ppt以下であり、パーツィクルは10個以下と
なっている。溶液を電解糟に導き、電解しながら取り出
すとこの様な純度の溶液を得ることが出来ないのは上記
の通りである。又、一度ガス分離をすることにより、溶
液の圧力変動が直接電解に影響する事が無くなること、
更には、オゾンガス発生で、は陽極液の温度による発生
効率の変動があるため、電解糟に直接溶液を導くことは
ガス発生の安定を妨げる要因となる。
[0011] The level of contamination of the solution used for the semiconductor is 10 ppt or less for each metal and 10 parts or less, depending on the place where it is used. It is as described above that a solution of such purity cannot be obtained if the solution is introduced into an electrolytic cell and taken out during electrolysis. Also, once the gas is separated, the pressure fluctuation of the solution will not directly affect the electrolysis,
Furthermore, since the generation efficiency of ozone gas varies depending on the temperature of the anolyte, direct introduction of the solution into the electrolytic cell is a factor that hinders the stability of gas generation.

【0012】発生ガスの水への溶解は基本的にヘンリー
の法則に従い、溶液中の溶質モル分率に比例する。溶解
ガスは半導体で用いられるような超純水のように溶液中
に反応する物質が無いときには、水分子間の空間にガス
として存在すると考えられている。水分子の空間はガス
を閉じこめる以上に非常に大きな空間を有しているため
ガスは十分水分子の空間に存在する。オゾンガスの場合
でも同様に水分子の空間にガスとして存在するが、オゾ
ンガスは他のガスと異なり、水と加水分解して速やかに
酸素へと分解する。
The dissolution of the generated gas in water basically follows Henry's law and is proportional to the solute mole fraction in the solution. It is considered that a dissolved gas exists as a gas in a space between water molecules when there is no substance that reacts in a solution such as ultrapure water used in a semiconductor. The gas is sufficiently present in the space of the water molecule because the space of the water molecule has a space much larger than that of confining the gas. Ozone gas also exists as a gas in the space of water molecules similarly, but unlike other gases, ozone gas is hydrolyzed with water and rapidly decomposed into oxygen.

【0013】その機構は各種提唱されているが、一般的
にはO↓3+H↓2O→HO↓3↑++OH↑−、HO
↓3↑++OH↑−→2HO↓2・、O↓3+HO↓2
・→OH・+2O↓2等であり、超純水の様に溶液中に
反応する物質が無い時でもオゾンは減少する。これは溶
液との反応とは関係のないオゾンの自己分解であり、ガ
スが溶液に溶解する機構も前記したように溶液の空間に
ガスとして存在するだけなので、オゾン水濃度の減少が
決してオゾンガスによる溶液の処理を意味するわけでは
ない。
Various mechanisms have been proposed, but in general O ↓ 3 + H ↓ 20 → HO ↓ 3 ↑ ++ OH ↑-, HO
↓ 3 ↑ ++ OH ↑-→ 2HO ↓ 2 ・, O ↓ 3 + HO ↓ 2
・ → OH ・ + 2O ↓ 2, etc., and ozone decreases even when there is no reactant in the solution like ultrapure water. This is the self-decomposition of ozone irrespective of the reaction with the solution, and the mechanism by which the gas dissolves in the solution only exists as a gas in the space of the solution as described above, so the decrease in ozone water concentration is never caused by ozone gas. It does not imply treatment of the solution.

【0014】従って、本発明で用いられる溶液は、反応
物質を殆ど含まないことが条件であり、純水や超純水、
又はそれに少量のガス及び/又は薬液を1000mg/
L以下添加したもの、出来れば100mg/L以下添加
したものが望ましい。
Therefore, the solution used in the present invention must contain almost no reactants, and pure water, ultrapure water,
Alternatively, add a small amount of gas and / or
L or less, preferably 100 mg / L or less is desirable.

【0015】[0015]

【実施例】次に添付図面に基づいて本発明に係わる水電
解によるオゾン水、及び、水素水の発生装置の一例を示
す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an example of an apparatus for generating ozone water and hydrogen water by water electrolysis according to the present invention will be described with reference to the accompanying drawings.

【0016】図1は、本発明に係わる電解オゾン水水素
水発生装置のフロー図である。オゾン水素ガスの発生部
17には中心に固体電解質1、その両側に陽極2と陰極
3が対向し各々整流器6が接続されている。原料として
の純水18が供給され、整流器6からの電流によってガ
スが発生する。発生したオゾン及び水素ガスは、各々陽
極管路4,陰極管路5を通って陽極ガス分離塔7,陰極
ガス分離塔8により分離され各々ガス導管9,10を通
ってオゾンガス溶解部12と水素ガス溶解部15に導か
れる。オゾンガス溶解部12には、溶液として超純水1
1が流入し、オゾンを溶解してオゾン添加超純水13と
なって出口より出てくる。一方、水素ガス溶解部15に
は、溶液として超純水14が流入し、水素を溶解して水
素添加超純水16となって出口より出てくる。
FIG. 1 is a flow chart of an electrolytic ozone water / hydrogen water generator according to the present invention. The ozone hydrogen gas generating section 17 has a solid electrolyte 1 at the center, an anode 2 and a cathode 3 on both sides thereof, and a rectifier 6 connected thereto. Pure water 18 is supplied as a raw material, and gas is generated by the current from the rectifier 6. The generated ozone and hydrogen gas pass through the anode line 4 and the cathode line 5, respectively, and are separated by the anode gas separation tower 7 and the cathode gas separation tower 8, respectively. It is led to the gas dissolving section 15. The ozone gas dissolving section 12 contains ultrapure water 1 as a solution.
1 flows in and dissolves ozone to become ozone-added ultrapure water 13 and exits from the outlet. On the other hand, ultrapure water 14 flows into the hydrogen gas dissolving section 15 as a solution, dissolves hydrogen and becomes hydrogenated ultrapure water 16 from the outlet.

【0017】図2は、従来の電解オゾン水水素水発生装
置のフロー図である。オゾン水素ガスの発生部17には
中心に固体電解質1、その両側に陽極2と陰極3が対向
し各々整流器6が接続され電流が流れることによってガ
スが発生する。発生したオゾンガスは、原料水を兼ねた
超純水11で溶解され、オゾン添加超純水13となって
出口より出てくる。一方、水素ガスには、溶液として超
純水14が流入し、水素を溶解して水素添加超純水16
となって出口より出てくる。
FIG. 2 is a flowchart of a conventional electrolytic ozone water hydrogen water generator. In the ozone hydrogen gas generating section 17, the solid electrolyte 1 is provided at the center, and the anode 2 and the cathode 3 are opposed to both sides thereof. The generated ozone gas is dissolved in the ultrapure water 11 also serving as the raw water, and becomes the ozone-added ultrapure water 13 from the outlet. On the other hand, ultrapure water 14 flows into the hydrogen gas as a solution, dissolves hydrogen, and
And come out of the exit.

【0018】次に、本発明に係わるオゾン水水素水発生
装置の実施例を記載するが、該実施例は本発明を限定す
るものではない。
Next, an embodiment of an ozone water / hydrogen water generator according to the present invention will be described, but the embodiment does not limit the present invention.

【0019】実施例1として、パーフルオロカーボンス
ルフォン酸系の陽イオン交換膜を固体電解質として用
い、オゾン発生用の陽極と陰極を密着配置した水電解装
置を使用して電流を100A流し、溶液の金属不純物を
確認した。溶液には超純水を用い、陽極、陰極共一度ガ
ス分離を行った後再度溶液である超純水に溶解した。超
純水流量を各々5L/minとしたところ生成したオゾ
ン添加超純水、水素添加超純水中共、金属不純物は10
ppt以下であり十分半導体の溶液として使用可能であ
った。
In Example 1, a perfluorocarbon sulfonic acid-based cation exchange membrane was used as a solid electrolyte, and a current of 100 A was passed using a water electrolysis apparatus in which an anode and a cathode for generating ozone were arranged in close contact with each other. Impurities were identified. Ultrapure water was used as the solution, and the anode and cathode were once gas-separated and then dissolved in ultrapure water again. When the flow rate of the ultrapure water was set to 5 L / min, both the ozone-added ultrapure water and the hydrogenated ultrapure water generated had a metal impurity of 10
It was ppt or less, and was sufficiently usable as a semiconductor solution.

【0020】比較例1として、実施例1と同じ水電解装
置を使用して、溶液には超純水を用いて電解糟に供給
し、直接オゾン添加超純水、及び水素添加超純水を生成
した。電流、水量の条件は同一としたところ、金属不純
物は各々1000ppt、600pptあり半導体では
使用不可能であった。
As Comparative Example 1, using the same water electrolysis apparatus as in Example 1, ultrapure water was used as a solution and supplied to the electrolysis tank, and ozone-added ultrapure water and hydrogenated ultrapure water were directly added. Generated. Under the same current and water conditions, the metal impurities were 1000 ppt and 600 ppt, respectively, and could not be used in semiconductors.

【0021】実施例2として実施例1と同じ条件でオゾ
ンガス濃度を確認した。溶液の超純水温度は20度であ
った。実験当初20%であったオゾンガス濃度は、実験
を3時間続けた後再度測定しても同じ値であった。
In Example 2, the ozone gas concentration was confirmed under the same conditions as in Example 1. The ultrapure water temperature of the solution was 20 degrees. The ozone gas concentration, which was 20% at the beginning of the experiment, was the same value when the experiment was continued for 3 hours and measured again.

【0022】比較例2として、溶液である超純水を直接
電解糟に供給したことを除いて実施例2と全く同一条件
で実験した。実験当初20%であったオゾン濃度は、実
験3時間後の測定では11%に減少していた。
As Comparative Example 2, an experiment was performed under exactly the same conditions as in Example 2 except that ultrapure water as a solution was directly supplied to the electrolytic cell. The ozone concentration, which was 20% at the beginning of the experiment, was reduced to 11% by measurement 3 hours after the experiment.

【0023】[0023]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記載されるような効果を奏する。
The present invention is embodied in the form described above and has the following effects.

【0024】本発明では、電解により生成したガスを溶
解した溶液は非常に高純度であり、又、ノンパーツィク
ルなので半導体の洗浄溶液として使用することが出来
る。
In the present invention, the solution in which the gas generated by the electrolysis is dissolved has a very high purity, and since it is a non-particle, it can be used as a semiconductor cleaning solution.

【0025】又、一度ガス分離をすることにより、溶液
の圧力変動が直接電解に影響する事が無くなり、ガスが
安定発生するようになり、又、ガス圧力も安定するので
ガス溶解純水中のガス濃度も安定となる。
Further, once the gas is separated, the fluctuation in the pressure of the solution does not directly affect the electrolysis, and the gas is generated stably. In addition, since the gas pressure is also stabilized, the gas dissolved pure water can be used. The gas concentration also becomes stable.

【0026】更に、オゾンガス発生では安定なオゾンガ
ス濃度が維持でき、必然的に安定なオゾン水濃度のオゾ
ン添加超純水を得ることが出来る。
Furthermore, in the generation of ozone gas, a stable concentration of ozone gas can be maintained, so that ozone-added ultrapure water having a stable concentration of ozone water can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる電解オゾン水水素水発生装置の
フロー図である。
FIG. 1 is a flowchart of an electrolytic ozone water hydrogen water generator according to the present invention.

【図2】従来の電解オゾン水水素水発生装置のフロー図
である。
FIG. 2 is a flowchart of a conventional electrolytic ozone water / hydrogen water generator.

【符号の説明】[Explanation of symbols]

1 固体電解質 2 陽極 3 陰極 4 陽極管路 5 陰極管路 6 整流器 7 陽極ガス分離塔 8 陰極ガス分離塔 9 ガス導管 10 ガス導管 11 超純水 12 オゾンガス溶解部 13 オゾン添加超純水 14 超純水 15 水素ガス溶解部 16 水素添加超純水 17 オゾン水素ガスの発生部 18 純水 DESCRIPTION OF SYMBOLS 1 Solid electrolyte 2 Anode 3 Cathode 4 Anode line 5 Cathode line 6 Rectifier 7 Anode gas separation tower 8 Cathode gas separation tower 9 Gas conduit 10 Gas conduit 11 Ultrapure water 12 Ozone gas dissolving part 13 Ozone added ultrapure water 14 Ultrapure Water 15 Hydrogen gas dissolving section 16 Hydrogenated ultrapure water 17 Ozone hydrogen gas generating section 18 Pure water

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】その両側にそれぞれ多孔質の陽極物質、及
び、陰極物質を密着配置させたパーフルオロカーボン系
陽イオン交換膜を固体電解質とし、陽極側に純水を供給
して電解する事により陽極側よりオゾンガス及び/又は
酸素ガスを、又、陰極側より水素ガスを生成する電解オ
ゾン水素ガス発生装置において、該オゾンガス及び/又
は該酸素ガスを陽極液から分離し、分離したオゾンガス
及び/又は酸素ガスを溶液と接触させ、該溶液にオゾン
ガス及び/又は酸素ガスを溶解させることを特徴とする
オゾン水水素水発生方法。
1. A solid electrolyte comprising a perfluorocarbon-based cation exchange membrane having a porous anode material and a cathode material closely attached to both sides thereof, and supplying pure water to the anode side for electrolysis. Gas and / or oxygen gas from the cathode side and hydrogen gas from the cathode side in an electrolytic ozone hydrogen gas generator, the ozone gas and / or oxygen gas is separated from the anolyte, and the separated ozone gas and / or oxygen A method for generating ozone water and hydrogen water, comprising bringing a gas into contact with a solution, and dissolving the ozone gas and / or oxygen gas in the solution.
【請求項2】その両側にそれぞれ多孔質の陽極物質、及
び、陰極物質を密着配置させたパーフルオロカーボン系
陽イオン交換膜を固体電解質とし、陽極側に純水を供給
して電解する事により陽極側よりオゾンガス及び/又は
酸素ガスを、又、陰極側より水素ガスを生成する電解オ
ゾン水素ガス発生装置において、該水素ガスを陰極液か
ら分離し、分離した水素ガスを溶液と接触させ、該溶液
に水素ガスを溶解させることを特徴とするオゾン水水素
水発生方法。
2. A solid electrolyte comprising a perfluorocarbon cation exchange membrane having a porous anode material and a cathode material closely attached to both sides thereof, and supplying pure water to the anode side for electrolysis. Gas and / or oxygen gas from the cathode side, and hydrogen gas from the cathode side in an electrolytic ozone hydrogen gas generator, the hydrogen gas is separated from the catholyte solution, and the separated hydrogen gas is brought into contact with a solution. Ozone water hydrogen water generation method characterized by dissolving hydrogen gas in water.
【請求項3】その両側にそれぞれ多孔質の陽極物質、及
び、陰極物質を密着配置させたパーフルオロカーボン系
陽イオン交換膜を固体電解質とし、陽極側に純水を供給
して電解する事により陽極側よりオゾンガス及び/又は
酸素ガスを、又、陰極側より水素ガスを生成する電解オ
ゾン水素ガス発生装置において、該オゾンガス及び/又
は該酸素ガスを陽極液から分離し、分離したオゾンガス
及び/又は酸素ガスを溶液と接触させ、該溶液にオゾン
ガス及び/又は酸素ガスを溶解させることを特徴とする
オゾン水水素水発生装置。
3. A solid electrolyte comprising a perfluorocarbon cation exchange membrane having a porous anode material and a cathode material closely attached to both sides thereof, and supplying pure water to the anode side for electrolysis. Gas and / or oxygen gas from the cathode side and hydrogen gas from the cathode side in an electrolytic ozone hydrogen gas generator, the ozone gas and / or oxygen gas is separated from the anolyte, and the separated ozone gas and / or oxygen An ozone water / hydrogen water generator, wherein a gas is brought into contact with a solution to dissolve ozone gas and / or oxygen gas in the solution.
【請求項4】その両側にそれぞれ多孔質の陽極物質、及
び、陰極物質を密着配置させたパーフルオロカーボン系
陽イオン交換膜を固体電解質とし、陽極側に純水を供給
して電解する事により陽極側よりオゾンガス及び/又は
酸素ガスを、又、陰極側より水素ガスを生成する電解オ
ゾン水素ガス発生装置において、該水素ガスを陰極液か
ら分離し、分離した水素ガスを溶液と接触させ、該溶液
に水素ガスを溶解させることを特徴とするオゾン水水素
水発生装置。
4. A solid electrolyte comprising a perfluorocarbon cation exchange membrane having a porous anode material and a cathode material closely attached to both sides thereof, and supplying pure water to the anode side for electrolysis. Gas and / or oxygen gas from the cathode side, and hydrogen gas from the cathode side in an electrolytic ozone hydrogen gas generator, the hydrogen gas is separated from the catholyte solution, and the separated hydrogen gas is brought into contact with a solution. Ozone water hydrogen water generator characterized by dissolving hydrogen gas in water.
【請求項5】溶液が、純水又は超純水、又は、純水又は
超純水に、ガス及び/又は薬液を1000mg/L以下
添加した溶液であることを特徴とする請求項1及び2に
記載の方法、及び請求項3及び4に記載の装置。
5. The solution according to claim 1, wherein the solution is pure water or ultrapure water, or a solution in which a gas and / or a chemical solution is added in an amount of 1000 mg / L or less to pure water or ultrapure water. 5. The method according to claim 3, and the apparatus according to claims 3 and 4.
JP10114070A 1998-03-21 1998-03-21 Method of generating ozone water and hydrogen water, and device therefor Pending JPH11267652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10114070A JPH11267652A (en) 1998-03-21 1998-03-21 Method of generating ozone water and hydrogen water, and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10114070A JPH11267652A (en) 1998-03-21 1998-03-21 Method of generating ozone water and hydrogen water, and device therefor

Publications (1)

Publication Number Publication Date
JPH11267652A true JPH11267652A (en) 1999-10-05

Family

ID=14628296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10114070A Pending JPH11267652A (en) 1998-03-21 1998-03-21 Method of generating ozone water and hydrogen water, and device therefor

Country Status (1)

Country Link
JP (1) JPH11267652A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427645C (en) * 2005-09-21 2008-10-22 石坚 Two sides isotonic gas and water mixing method and apparatus therefor
JP2009061379A (en) * 2007-09-05 2009-03-26 Nikuni:Kk Functional liquid manufacturing apparatus
WO2013039291A1 (en) * 2011-09-16 2013-03-21 주식회사 선도 Apparatus for producing hydrogen water and ozone water having functionality
WO2014073938A1 (en) * 2012-11-12 2014-05-15 주식회사 파이노 Apparatus for preparing hydrogen water
WO2017077993A1 (en) * 2015-11-05 2017-05-11 株式会社日本トリム Electrolyzed water generation device, and hydrogen water server and device for producing water for dialysis solution preparation, both equipped with electrolyzed water generation device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427645C (en) * 2005-09-21 2008-10-22 石坚 Two sides isotonic gas and water mixing method and apparatus therefor
JP2009061379A (en) * 2007-09-05 2009-03-26 Nikuni:Kk Functional liquid manufacturing apparatus
WO2013039291A1 (en) * 2011-09-16 2013-03-21 주식회사 선도 Apparatus for producing hydrogen water and ozone water having functionality
KR101261875B1 (en) 2011-09-16 2013-05-08 주식회사 선도 Manufacturing Device of Hydrogen Water And Ozone Water With Functional
WO2014073938A1 (en) * 2012-11-12 2014-05-15 주식회사 파이노 Apparatus for preparing hydrogen water
KR101448577B1 (en) * 2012-11-12 2014-10-13 주식회사 파이노 Manufacturing apparatus of Hydrogen water
CN104968608A (en) * 2012-11-12 2015-10-07 株式会社Paino Apparatus for preparing hydrogen water
CN104968608B (en) * 2012-11-12 2017-03-08 株式会社Paino A kind of hydrogen water preparation apparatus
WO2017077993A1 (en) * 2015-11-05 2017-05-11 株式会社日本トリム Electrolyzed water generation device, and hydrogen water server and device for producing water for dialysis solution preparation, both equipped with electrolyzed water generation device
JP2017087110A (en) * 2015-11-05 2017-05-25 株式会社日本トリム Electrolytic water generator, hydrogen water server provided therewith and method for producing water for dialysis liquid preparation

Similar Documents

Publication Publication Date Title
Stucki et al. Performance of a pressurized electrochemical ozone generator
EP0493331B1 (en) Method for electrolytic ozone generation and apparatus thereof
US6143163A (en) Method of water electrolysis
JP2906986B2 (en) Wet treatment apparatus, electrolytic activated water generation method, and wet treatment method
US5290406A (en) Method for producing ozone
EP0826794B1 (en) Apparatus for producing hypochlorite
JPH0290995A (en) Water treatment process and device using electrolytic ozone
JP3818619B2 (en) Hypochlorite production apparatus and method
JPH11267652A (en) Method of generating ozone water and hydrogen water, and device therefor
CA1315236C (en) Ozone-generating electrolytic cell provided with a solid electrolyte for treating water
US7491302B2 (en) Electrolytic gas generation method and electrolytic gas generation device
JP3561130B2 (en) Electrolyzer for hydrogen peroxide production
JP5352246B2 (en) Persulfuric acid production apparatus and persulfuric acid production method
JP3432136B2 (en) Ozone and hydrogen generation method and generator
JPH022825A (en) Electrolytic ozonizer having waste gas decomposing function and method for decomposing waste gas with the same ozonizer
JP3748765B2 (en) Electrolytic gas generation method and electrolytic gas generator
JP4228144B2 (en) Solid polymer water electrolysis hydrogen production system
JP4677614B2 (en) Sulfuric acid electrolysis hydrogen production method and apparatus
JP2002166279A (en) Method and device for generating gas by electrolysis
JPH04311585A (en) System for producing ozone-containing gas
JPH10280180A (en) Apparatus for production of hydrogen peroxide water and method therefor
JP2000107760A (en) Washing electrolytic water making apparatus and method therefor
JP4251432B2 (en) Method for electrochemical production of chlorine from aqueous hydrogen chloride solution
JP4251432B6 (en) Method for electrochemical production of chlorine from aqueous hydrogen chloride solution
JPH03137992A (en) Water purifying apparatus