JPH11264038A - Copper alloy foil - Google Patents

Copper alloy foil

Info

Publication number
JPH11264038A
JPH11264038A JP8822298A JP8822298A JPH11264038A JP H11264038 A JPH11264038 A JP H11264038A JP 8822298 A JP8822298 A JP 8822298A JP 8822298 A JP8822298 A JP 8822298A JP H11264038 A JPH11264038 A JP H11264038A
Authority
JP
Japan
Prior art keywords
inclusions
width
less
foil
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8822298A
Other languages
Japanese (ja)
Inventor
Tetsuo Maki
哲生 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP8822298A priority Critical patent/JPH11264038A/en
Publication of JPH11264038A publication Critical patent/JPH11264038A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide Cu-Sn-P series copper alloy foil having sufficient strength and electrical conductivity and moreover excellent in productivity. SOLUTION: This foil is the one having a compsn. contg., by weight, 0.2 to 3% Sn and 0.01 to 0.4% P, contg., at need, one or two kinds of 0.05 to 1.5% Ni and 0.01 to 3% Zn, furthermore contg., at need, one or more kinds among Ti, Zr, Cr, Mg, Mn, Fe, Co, Al, Be, Si and B by 0.01 to 1% in total, and the balance Cu with inevitable impurities, in which the width of inclusions is regulated to <=10 μm, and also, the number of the inclusions with 1 to 10 μm width is regulated to <100 pieces/mm<2> in the cross-section parallel to rolling. It is suitable as a copper foil material high in reliability in use for printed circuit boards and in a semiconductor packaging field such as IC tape carriers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フレキシブルプリ
ント配線基板用およびICテープキャリア等半導体実装
の用途に好適な、強度および電気伝導性に優れた銅合金
箔に関するものであり、特には介在物の幅および介在物
の個数を規制したCu−Sn−P系合金箔に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy foil having excellent strength and electrical conductivity suitable for use in semiconductor mounting such as a flexible printed wiring board and an IC tape carrier. The present invention relates to a Cu—Sn—P alloy foil in which the width and the number of inclusions are regulated.

【0002】[0002]

【従来の技術】有機物を基材としたプリント配線基板
は、ガラスエポキシ、紙フェノール基板を構成材料とす
る硬質銅張積層板(リジット)と、ポリイミド、ポリエ
ステル基板を構成材料とする可撓性銅張積層基板(フレ
キシブル)とに大別され、プリント配線基板の導電材と
しては主として銅箔が使用されている。銅箔はその製造
方法の違いにより電解銅箔と圧延銅箔に分類される。
2. Description of the Related Art Printed wiring boards based on organic substances include rigid copper-clad laminates (rigid) made of glass epoxy and paper phenol boards, and flexible copper boards made of polyimide and polyester boards. Copper foil is mainly used as a conductive material of a printed wiring board. Copper foils are classified into electrolytic copper foils and rolled copper foils depending on the manufacturing method.

【0003】上記プリント配線基板のうち、プリント配
線板のより高密度回路化による多層板化および高可撓性
が要求されるフレキシブルプリント回路基板は、樹脂基
板に銅箔をラミネートし、接着剤あるいは加熱加圧によ
り一体化して形成される。使用される銅箔としては、タ
フピッチ銅または無酸素銅の圧延銅箔が多く用いられて
おり、近年では高密度実装の有効な手段として、ビルド
アップ基板と呼ばれる多層配線基板が多く用いられてい
る。
[0003] Among the above printed wiring boards, a flexible printed circuit board which requires a multi-layered board and higher flexibility by increasing the density of the printed wiring board is required. It is formed integrally by heating and pressing. As the copper foil to be used, a rolled copper foil of tough pitch copper or oxygen-free copper is often used, and in recent years, a multilayer wiring board called a build-up board is often used as an effective means of high-density mounting. .

【0004】さらに、プリント配線基板の一部は、テー
プキャリア、TAB(テープ・オートメイティド・ボン
ディング)リードとして半導体チップの実装に使用され
ている。半導体チップの実装の分野においては、近年そ
の実装密度の向上のためBGA(ボール・グリッド・ア
レイ)化、CSP(チップ・サイズ・パッケージ)化が
進められている。これにより、面積当たりの端子数は増
加するが、同時に端子は狭ピッチとなるため、実装する
基板にも、高密度の配線基板が必要となる。高密度化実
現のための有効な手段として、半導体実装分野において
も多層基板が用いられている。
Further, a part of the printed wiring board is used as a tape carrier and TAB (tape automated bonding) lead for mounting a semiconductor chip. In the field of semiconductor chip mounting, in recent years, BGA (ball grid array) and CSP (chip size package) have been promoted to improve the mounting density. As a result, the number of terminals per area increases, but at the same time, the terminals have a narrow pitch, so that a high-density wiring board is also required as a mounting board. As an effective means for realizing high density, a multilayer substrate is also used in the field of semiconductor mounting.

【0005】一方、製造工程においては、箔の厚さが薄
くなると、歩留よく圧延することが困難となってくる。
特に、介在物等の内部欠陥は、圧延時に破断を生じ、ピ
ンホールの発生する原因となるため、生産性を低下さ
せ、ひいては製造コストの増大を招く。従って、素材に
は介在物の少ないことが望まれる。
On the other hand, in the manufacturing process, when the thickness of the foil becomes thin, it becomes difficult to perform rolling at a high yield.
In particular, internal defects such as inclusions cause breakage at the time of rolling and cause pinholes, thereby lowering productivity and consequently increasing manufacturing costs. Therefore, it is desired that the material has few inclusions.

【0006】[0006]

【発明が解決しようとする課題】前述のプリント基板
は、(1)組み立て時に曲げた状態で固定されて使用さ
れるもの、(2)駆動系統(例えばプリンターのヘッド
部分、ハードディスク内の駆動用回路基板等)に使用さ
れ、1万回以上の屈曲が繰り返されるもの、等に用いら
れる。近年の電子機器の小型化と高密度化に伴いプリン
ト基板自体も小型化が要求され、純銅箔では強度が不足
するため、部品の加工および組み立て時に切断あるいは
変形といった問題が生じる。また純銅は耐熱性が著しく
低いため、銅箔を樹脂基板にラミネートする際の加熱に
よって変形、断線という問題が発生し、信頼性が低下す
るという欠点があった。
The above-mentioned printed circuit board is (1) used while being fixed in a bent state at the time of assembling, and (2) a driving system (for example, a head portion of a printer, a driving circuit in a hard disk). Substrate and the like, which is repeatedly bent 10,000 times or more. In recent years, as electronic devices have become smaller and denser, the printed circuit boards themselves have also been required to be smaller, and pure copper foils have insufficient strength, which causes problems such as cutting or deformation when processing and assembling parts. In addition, since pure copper has a remarkably low heat resistance, there is a problem that a problem of deformation and disconnection occurs due to heating when laminating a copper foil on a resin substrate, and reliability is reduced.

【0007】半導体チップの実装の分野においては、搭
載されるチップの回路ルールの微細化が進展しており、
「0.1〜0.2μmルール」が開発されている。0.
1〜0.2μmルールの場合、チップ裏面につける金あ
るいはアルミバンプのピッチは40μm程度になり、4
0μmピッチのバンプを接合するには、基板の配線ピッ
チを15μm以下にする必要がある。配線のピッチを1
5μm以下にするためには、基板に使用される銅箔の板
厚を14μm以下にする必要がある。これは、銅箔の板
厚をピッチ以下にしないと、エッチング、組み立て加工
ができないためである。しかし、従来の圧延銅箔では板
厚が14μm以下になると強度の不足から、IRB(イ
ンナーリード・ボンディング)時に切断あるいは変形と
いった問題が生じる。従って上記要請に対処しうる十分
な強度とさらに十分な電気伝導性を持った材料が求めら
れている。
[0007] In the field of semiconductor chip mounting, the circuit rules of mounted chips have been miniaturized.
The “0.1-0.2 μm rule” has been developed. 0.
In the case of the 1 to 0.2 μm rule, the pitch of the gold or aluminum bumps to be attached to the back of the chip is about 40 μm,
In order to bond bumps having a pitch of 0 μm, the wiring pitch of the substrate needs to be 15 μm or less. Wiring pitch is 1
In order to reduce the thickness to 5 μm or less, it is necessary to reduce the thickness of the copper foil used for the substrate to 14 μm or less. This is because etching and assembling cannot be performed unless the thickness of the copper foil is equal to or less than the pitch. However, in the case of a conventional rolled copper foil having a thickness of 14 μm or less, a problem such as cutting or deformation occurs at the time of IRB (inner lead bonding) due to insufficient strength. Therefore, there is a demand for a material having sufficient strength and further sufficient electric conductivity to meet the above demand.

【0008】上記要求に対し、ある種の添加元素を加え
た銅合金を用いることは有効な手段の一つではあるが、
銅合金を用いるということだけでは必ずしも十分な強度
は得られず、加えて元素の添加により基板の他の必要特
性である電気伝導度の低下といった問題が生じる。こう
した背景において、Cu−Sn−P系合金が候補の一つ
として考慮されうる。Cu−Sn−P系合金を銅合金箔
材料として実用化するに当たって、マトリックス中に酸
化物、硫化物、珪化物等の比較的大きな介在物が分散し
た組織である場合、これらの粗大な介在物の存在は、圧
延時に破断、ピンホールの生じる原因となるため、生産
性を低下させ、ひいてはコストの増大を招く。本発明は
上述した問題解決のためになされたもので、十分な強度
および電気伝導度を有し、さらには生産性にも優れたC
u−Sn−P系銅合金箔を提供することを目的としてい
る。
[0008] In response to the above requirements, the use of a copper alloy to which a certain additive element is added is one of effective means.
The use of a copper alloy alone does not always provide sufficient strength, and the addition of an element causes a problem such as a decrease in electrical conductivity, which is another required characteristic of the substrate. In such a background, a Cu-Sn-P-based alloy can be considered as one of the candidates. In putting a Cu-Sn-P-based alloy into practical use as a copper alloy foil material, when a relatively large inclusion such as an oxide, a sulfide, or a silicide is dispersed in a matrix, these coarse inclusions may be used. Presence causes breakage and pinholes at the time of rolling, thereby lowering productivity and consequently increasing costs. The present invention has been made to solve the above-mentioned problems, and has a sufficient strength and electric conductivity, and furthermore, has excellent productivity.
An object is to provide a u-Sn-P-based copper alloy foil.

【0009】[0009]

【課題を解決するための手段】そこで、本発明者らは、
金属箔として適する銅合金箔の研究を重ねたところ、C
u−Sn−P系合金の成分調整を行った上で、必要に応
じてNiおよび/またはZn、さらに必要に応じてT
i、Zr、Cr、Mg、Mn、Fe、Co、Al、B
e、Siおよび/またはBを含有させると共に、製造条
件を制御・選定してマトリックス中の酸化物、硫化物、
珪化物等の介在物の分布の制御することにより、合金箔
として好適な素材を提供できることを見出した。本発明
は、上記知見を基にして完成されたものであり、銅合金
において、Snを0.2〜3%およびPを0.01〜
0.4%含有し、必要に応じて0.05〜1.5%のN
iおよび0.01〜3%のZnのうち1種または2種を
含有し、さらに必要に応じてTi、Zr、Cr、Mg、
Mn、Fe、Co、Al、Be、SiおよびBのうち1
種以上を総量で0.01〜1%を含有し、残部がCuお
よびその不可避的不純物からなり、介在物の幅が10μ
m以下であり、かつ圧延平行断面における1〜10μm
の幅の介在物個数が100個/mm2 未満であることを
特徴とする、プリント配線基板用やICテープキャリア
用として十分な強度と電気伝導性を兼備せしめ、さらに
は生産性も良好な銅合金箔を提供する。
Means for Solving the Problems Accordingly, the present inventors have:
After repeated research on copper alloy foil suitable as metal foil, C
After adjusting the components of the u-Sn-P-based alloy, Ni and / or Zn if necessary, and T
i, Zr, Cr, Mg, Mn, Fe, Co, Al, B
e, Si and / or B, and control / select production conditions to control oxides, sulfides,
It has been found that by controlling the distribution of inclusions such as silicide, a material suitable as an alloy foil can be provided. The present invention has been completed on the basis of the above findings, and in a copper alloy, Sn has a content of 0.2 to 3% and P has a content of 0.01 to 0.01%.
0.4%, optionally 0.05-1.5% N
i and 0.01 to 3% of one or two of Zn, and optionally Ti, Zr, Cr, Mg,
One of Mn, Fe, Co, Al, Be, Si and B
Containing at least 0.01% of seeds, the balance consisting of Cu and its unavoidable impurities, and the width of inclusions is 10 μm.
m or less, and 1 to 10 μm in a rolling parallel section
Characterized in that the number of inclusions having a width of less than 100 / mm 2 is sufficient copper having both sufficient strength and electric conductivity for printed wiring boards and IC tape carriers, and also having good productivity. Provide alloy foil.

【0010】本発明において用語「介在物」とは、溶解
時に生成する、例えば溶湯内での反応により生じる不純
物である酸化物、硫化物、珪化物など、本合金の顕微鏡
観察によりマトリックス中に観察されるものとして使用
する。「介在物の幅」は、介在物を顕微鏡観察下でその
介在物の板厚方向の最大幅をいう。「介在物の個数」と
は、材料の圧延平行断面を顕微鏡観察により多数箇所に
おいて実際に数えた単位平方mm当たりの介在物個数で
ある。
In the present invention, the term "inclusions" refers to oxides, sulfides, silicides, etc., which are formed during melting, such as impurities generated by a reaction in a molten metal, and are observed in a matrix by microscopic observation of the alloy. To be used. The “width of the inclusion” refers to the maximum width of the inclusion in the thickness direction of the inclusion under microscopic observation. The “number of inclusions” is the number of inclusions per unit square mm actually counted at a number of locations by rolling observation of a parallel section of the material under a microscope.

【0011】[0011]

【発明の実施の形態】次に本発明において銅合金の成分
組成を前記の如くに限定した理由をその作用とともに説
明する。
Next, the reason why the composition of the copper alloy in the present invention is limited as described above will be described together with its operation.

【0012】(Sn)Snには、合金の強度を確保する
作用があるが、その含有量が0.2%未満であると、他
の成分の複合添加を伴っても所望とする強度が得られ
ず、一方3%を超える割合でSnを含有させると導電率
が著しく低下することから、Snの含有量を0.2%以
上3%以下と定めた。好ましくはSnの含有量は0.5
〜2.0%である。
(Sn) Sn has the effect of ensuring the strength of the alloy, but if its content is less than 0.2%, the desired strength can be obtained even with the complex addition of other components. On the other hand, when Sn is contained in a proportion exceeding 3%, the conductivity is remarkably reduced. Therefore, the content of Sn is set to 0.2% or more and 3% or less. Preferably, the Sn content is 0.5
~ 2.0%.

【0013】(P)Pには合金の強度並びに耐熱性を確
保する作用があるが、その含有量が0.01%未満では
P含有における所望の強度、耐熱性向上効果は得られ
ず、一方P含有量が0.4%以上になるとSnの含有量
の如何に関わらず導電率の低下が著しくなることから、
P含有量は0.01%以上0.4%以下と定めた。好ま
しいP含有量は0.02〜0.2%である。
(P) Although P has an effect of securing the strength and heat resistance of the alloy, if its content is less than 0.01%, the desired effect of improving the strength and heat resistance in the P content cannot be obtained. When the P content is 0.4% or more, the conductivity significantly decreases regardless of the Sn content.
The P content was determined to be 0.01% or more and 0.4% or less. The preferred P content is 0.02 to 0.2%.

【0014】(Ni)NiにはSn−P系銅合金の強度
を確保するとともに、半田接合部の耐熱剥離性を改善す
る効果があるが、0.05%未満ではNi含有による所
望の強度が得られず、一方Ni含有量が1.5%を超え
るとSnの含有量の如何に関わらず導電率の低下が著し
くなることから、Ni含有量は0.05%以上1.5%
以下と定めた。好ましいNi含有量は0.1〜1.2%
である。
(Ni) Ni has the effect of securing the strength of the Sn-P-based copper alloy and improving the heat-peeling resistance of the solder joints. On the other hand, when the Ni content exceeds 1.5%, the conductivity significantly decreases regardless of the Sn content. Therefore, the Ni content is 0.05% or more and 1.5% or less.
It is determined as follows. Preferred Ni content is 0.1 to 1.2%
It is.

【0015】(Zn)Znには、Niと同様に、Sn−
P系銅合金の強度を確保し、半田接合部の耐熱剥離性を
改善する作用があるが、その含有量が0.01%未満で
はZn含有による所望の効果が得られず、一方Zn含有
量が3%を超えると導電率の低下が著しくなることか
ら、Zn含有量は0.01%以上3%以下と定めた。好
ましいZn含有量は0.05〜1.0%である。
(Zn) As in the case of Ni, Sn-
It has the effect of ensuring the strength of the P-based copper alloy and improving the heat-peeling resistance of the solder joint. However, if the content is less than 0.01%, the desired effect due to the Zn content cannot be obtained. Exceeds 3%, the electrical conductivity significantly decreases, so the Zn content is determined to be 0.01% or more and 3% or less. The preferred Zn content is 0.05 to 1.0%.

【0016】(Ti、Zr、Cr、Mg、Mn、Fe、
Co、Al、Be、SiまたはB)Ti、Zr、Cr、
Mg、Mn、Fe、Co、Al、Be、SiまたはBに
はSn−P系銅合金の強度を改善する等の作用があるの
で、必要により1種または2種以上の添加がなされる。
しかし、Mg、Zn、Sn、Fe、Ti、Zr、Cr、
Al、Mn、AgまたはBeの含有量が総量で0.01
%未満であると上記の効果は得られず、一方総含有量が
1%を超えると電気伝導性が著しく低下し、さらには、
活性元素を過剰に添加した場合には、酸化物、硫化物、
珪化物等粗大な介在物が母相中に生成しやすくなる。こ
の結果、圧延時の破断、ピンホールの発生等により生産
性の低下を招くことになる。そこで、これらの含有量を
総量で0.01〜1%以下と定める。
(Ti, Zr, Cr, Mg, Mn, Fe,
Co, Al, Be, Si or B) Ti, Zr, Cr,
Since Mg, Mn, Fe, Co, Al, Be, Si or B has an effect of improving the strength of the Sn—P-based copper alloy, one or more of them are added as necessary.
However, Mg, Zn, Sn, Fe, Ti, Zr, Cr,
The content of Al, Mn, Ag or Be is 0.01 in total.
%, The above effect cannot be obtained. On the other hand, when the total content exceeds 1%, the electric conductivity is remarkably reduced.
If the active element is added in excess, oxides, sulfides,
Coarse inclusions such as silicides are easily generated in the matrix. As a result, the productivity is lowered due to breakage during rolling, generation of pinholes, and the like. Therefore, their contents are determined to be 0.01 to 1% or less in total.

【0017】(介在物)この合金系ではマトリックス中
に介在物の粒子が存在することがあるが、その幅が10
μmを超えると圧延工程において破断やピンホールの原
因となり、生産性を著しく低下させる。このような不具
合を起こさないためには、この粗大な介在物の幅の上限
を10μmとし、圧延平行断面における1〜10μm以
下の幅の介在物個数を100個/mm2 未満とすればよ
い。
(Inclusions) In this alloy system, inclusion particles may be present in the matrix, but the
If it exceeds μm, breakage or pinholes will be caused in the rolling step, and the productivity will be significantly reduced. In order not to cause such a problem, the upper limit of the width of the coarse inclusion may be set to 10 μm, and the number of inclusions having a width of 1 to 10 μm or less in the parallel rolling section may be set to less than 100 / mm 2 .

【0018】次に、この合金を得るための製造工程につ
いて説明する。溶解工程では、粗大な酸化物、硫化物、
珪化物等の介在物の生成を防ぐことが重要である。従っ
て溶解原料の溶落後は、溶湯表面を木炭等で被覆するこ
とにより、酸素濃度を低減する必要がある。また冷間圧
延により所望の板厚に仕上げるわけであるが、冷間圧延
後の箔の厚さは、100μm(0.1mm)以下とする
ことが望ましく、通常の使用形態を想定した圧延銅合金
箔の好ましい厚さは、例えば0.035mm、0.07
mm、0.018mmまたは0.010mmである。
Next, a manufacturing process for obtaining this alloy will be described. In the melting process, coarse oxides, sulfides,
It is important to prevent the formation of inclusions such as silicides. Therefore, after the molten raw material is dropped, it is necessary to reduce the oxygen concentration by coating the surface of the molten metal with charcoal or the like. The desired thickness is obtained by cold rolling, and the thickness of the foil after the cold rolling is desirably 100 μm (0.1 mm) or less. The preferred thickness of the foil is, for example, 0.035 mm, 0.07
mm, 0.018 mm or 0.010 mm.

【0019】[0019]

【実施例】以下、実施例及び比較例により本発明をさら
に詳しく説明する。高周波溶解炉にて表1に示す各種成
分組成の銅合金を溶製し、厚さ20mmのインゴットに
鋳造した。次に、このインゴットを700〜800℃の
温度で厚さ8mmまで熱間圧延を行い、表面のスケール
除去のため面削を施した後、冷間圧延により厚さ2mm
の板とした。その後、450〜650℃の温度で1時間
の再結晶焼鈍後、0.5mmまで冷間圧延した。そして
さらに、350〜600℃の温度で1時間の再結晶焼鈍
を行った後、冷間圧延で厚さ0.018mmの箔とし
た。
The present invention will be described below in more detail with reference to Examples and Comparative Examples. Copper alloys having various component compositions shown in Table 1 were melted in a high-frequency melting furnace and cast into ingots having a thickness of 20 mm. Next, this ingot is hot-rolled to a thickness of 8 mm at a temperature of 700 to 800 ° C., and is subjected to facing to remove scale from the surface, and then cold-rolled to a thickness of 2 mm.
Plate. Then, after recrystallization annealing for 1 hour at a temperature of 450 to 650 ° C., cold rolling was performed to 0.5 mm. Further, after recrystallization annealing for 1 hour at a temperature of 350 to 600 ° C., a foil having a thickness of 0.018 mm was obtained by cold rolling.

【0020】このようにして得られた各合金箔につき諸
特性の評価を行った。なお表中には従来合金としてタフ
ピッチ銅を併記した。「強度」については引張試験機に
おいて引張強さを測定した。「電気伝導性」は導電率
(%IACS)によって示した。「耐熱性」の評価は、
種々の温度で30分間加熱し、引張強さが加熱前の強度
と十分軟化した時の強度の中間になる温度を軟化温度と
して求めた。介在物個数は、材料の圧延方向断面を顕微
鏡で観察し、多数箇所において実際に数えた単位平方m
m当たりの幅1〜10μmの介在物個数である。また、
厚さ0.018mm、幅450mm、長さ5000mの
箔を作製し、生産性の評価も行った。「生産性」は、圧
延工程中の破断発生状況および製品段階でのピンホール
発生状況で評価した。「破断」については、破断が発生
しなかった場合を○、破断した場合を×とした。「ピン
ホール」については1000m当たりの直径0.5mm
以上のピンホールの発生個数を計測した。
The properties of each of the alloy foils thus obtained were evaluated. In the table, tough pitch copper is also described as a conventional alloy. As for “strength”, the tensile strength was measured by a tensile tester. "Electrical conductivity" was indicated by conductivity (% IACS). The evaluation of "heat resistance"
Heating was performed at various temperatures for 30 minutes, and the temperature at which the tensile strength was halfway between the strength before heating and the strength when sufficiently softened was determined as the softening temperature. The number of inclusions was obtained by observing the cross section of the material in the rolling direction with a microscope and measuring the unit square m
The number of inclusions having a width of 1 to 10 μm per m. Also,
A foil having a thickness of 0.018 mm, a width of 450 mm, and a length of 5000 m was produced, and productivity was also evaluated. "Productivity" was evaluated based on the occurrence of breaks during the rolling process and the occurrence of pinholes at the product stage. Regarding “break”, ○ indicates that no break occurred, and x indicates that break occurred. 0.5mm diameter per 1000m for "pinhole"
The number of generated pinholes was measured.

【0021】[0021]

【表1】 [Table 1]

【0022】表1からわかるように、本発明合金箔は優
れた強度、導電率および耐熱性を有している。ピンホー
ル発生個数も少ない。一方、比較合金の No.1〜 No.4
は、本発明合金と一部の組成が異なるものであるが、本
発明合金と比較すると、比較合金 No.1は、Snが低い
ため強度が劣る。比較合金 No.2は、Znが高いため導
電率が劣る。比較合金 No.3は、Pが高いために導電性
が劣る。比較合金 No.4は、本発明の濃度範囲を超えて
副成分を含有するため導電率が劣る。また比較例 No.
2、4は、介在物個数が多いために、製造工程中で破断
が発生し、ピンホールの個数が増加した例である。
As can be seen from Table 1, the alloy foil of the present invention has excellent strength, electrical conductivity and heat resistance. The number of pinholes generated is also small. On the other hand, the comparative alloys No.1 to No.4
Although the composition of the alloy of the present invention is partially different from that of the alloy of the present invention, the comparative alloy No. 1 is inferior in strength due to low Sn as compared with the alloy of the present invention. Comparative Alloy No. 2 is inferior in conductivity due to high Zn. Comparative alloy No. 3 has poor conductivity due to high P. Comparative alloy No. 4 is inferior in electric conductivity because it contains subcomponents exceeding the concentration range of the present invention. Comparative Example No.
Nos. 2 and 4 are examples in which breakage occurred during the manufacturing process due to a large number of inclusions, and the number of pinholes increased.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
優れた強度と電気伝導性、さらには優れた耐熱性をも有
した銅合金箔が得られ、本銅合金箔は、プリント配線基
板用およびICテープキャリア等半導体実装分野の用途
において信頼性の高い銅合金箔材料として好適である。
As described above, according to the present invention,
A copper alloy foil having excellent strength and electrical conductivity, and also excellent heat resistance can be obtained.This copper alloy foil has high reliability in applications in the semiconductor mounting field such as printed wiring boards and IC tape carriers. It is suitable as a copper alloy foil material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 630 C22F 1/00 630A 650 650A 661 661A 685 685Z 686 686Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C22F 1/00 630 C22F 1/00 630A 650 650A 661 661A 685 685Z 686 686Z

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量割合で、0.2〜3%のSnおよび
0.01〜0.4%のPを含有し、残部がCuおよびそ
の不可避的不純物からなり、そして介在物の幅が10μ
m以下であり、かつ1〜10μmの幅の介在物個数が圧
延平行断面で100個/mm2 未満であることを特徴と
する銅合金箔。
1. The composition contains, by weight, 0.2 to 3% of Sn and 0.01 to 0.4% of P, the balance consisting of Cu and its unavoidable impurities, and a width of inclusions of 10 μm.
m, and the number of inclusions having a width of 1 to 10 μm is less than 100 / mm 2 in a parallel rolled section.
【請求項2】 重量割合で、0.2〜3%のSnおよび
0.01〜0.4%のPを含有し、さらに0.05〜
1.5%のNiおよび0.01〜3%のZnのうち1種
または2種を含有し、残部がCuおよびその不可避的不
純物からなり、そして介在物の幅が10μm以下であ
り、かつ1〜10μmの幅の介在物個数が圧延平行断面
で100個/mm2 未満であることを特徴とする銅合金
箔。
2. It contains 0.2 to 3% of Sn and 0.01 to 0.4% of P by weight, and further contains 0.05 to
One or two of 1.5% Ni and 0.01 to 3% Zn, the balance consisting of Cu and its unavoidable impurities, and the width of inclusions is 10 μm or less; A copper alloy foil characterized in that the number of inclusions having a width of 10 to 10 µm is less than 100 / mm 2 in a rolled parallel section.
【請求項3】 重量割合で、0.2〜3%のSnおよび
0.01〜0.4%のPを含有し、さらにTi、Zr、
Cr、Mg、Mn、Fe、Co、Al、Be、Siおよ
びBのうち1種以上を総量で0.01〜1%含有し、残
部がCuおよびその不可避的不純物からなり、そして介
在物の幅が10μm以下であり、かつ1〜10μmの幅
の介在物個数が圧延平行断面で100個/mm2 未満で
あることを特徴とする銅合金箔。
3. The composition according to claim 1, comprising 0.2 to 3% of Sn and 0.01 to 0.4% of P by weight, further comprising Ti, Zr,
One or more of Cr, Mg, Mn, Fe, Co, Al, Be, Si and B are contained in a total amount of 0.01 to 1%, the balance being Cu and its unavoidable impurities, and the width of inclusions. Copper alloy foil, wherein the number of inclusions having a width of 10 μm or less and a width of 1 to 10 μm is less than 100 / mm 2 in a rolled parallel section.
【請求項4】 重量割合で、0.2〜3%のSnおよび
0.01〜0.4%のPを含有し、さらに0.05〜
1.5%のNiおよび0.01〜3%のZnのうち1種
または2種を含有するとともに、Ti、Zr、Cr、M
g、Mn、Fe、Co、Al、Be、SiおよびBのう
ち1種以上を総量で0.01〜1%含有し、残部がCu
およびその不可避的不純物からなり、そして介在物の幅
が10μm以下であり、かつ1〜10μmの幅の介在物
個数が圧延平行断面で100個/mm2 未満であること
を特徴とする銅合金箔。
4. The composition according to claim 1, comprising 0.2 to 3% of Sn and 0.01 to 0.4% of P by weight.
One or two of 1.5% Ni and 0.01 to 3% Zn, and Ti, Zr, Cr, M
g, Mn, Fe, Co, Al, Be, Si and B, in a total amount of 0.01 to 1%, and the balance Cu
Copper alloy foil comprising an unavoidable impurity and having a width of inclusions of 10 μm or less and a number of inclusions having a width of 1 to 10 μm in a rolled parallel section of less than 100 / mm 2. .
JP8822298A 1998-03-18 1998-03-18 Copper alloy foil Pending JPH11264038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8822298A JPH11264038A (en) 1998-03-18 1998-03-18 Copper alloy foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8822298A JPH11264038A (en) 1998-03-18 1998-03-18 Copper alloy foil

Publications (1)

Publication Number Publication Date
JPH11264038A true JPH11264038A (en) 1999-09-28

Family

ID=13936859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8822298A Pending JPH11264038A (en) 1998-03-18 1998-03-18 Copper alloy foil

Country Status (1)

Country Link
JP (1) JPH11264038A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270314A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk Copper alloy having excellent hot workability and its production method
JP2016135927A (en) * 2015-01-09 2016-07-28 Jx金属株式会社 Metal base material with plating material
JP2016138337A (en) * 2015-01-09 2016-08-04 Jx金属株式会社 Metal base with plating
DE102011013399B4 (en) * 2010-03-10 2017-09-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength copper alloy material with high heat resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270314A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk Copper alloy having excellent hot workability and its production method
DE102011013399B4 (en) * 2010-03-10 2017-09-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength copper alloy material with high heat resistance
JP2016135927A (en) * 2015-01-09 2016-07-28 Jx金属株式会社 Metal base material with plating material
JP2016138337A (en) * 2015-01-09 2016-08-04 Jx金属株式会社 Metal base with plating

Similar Documents

Publication Publication Date Title
EP2339039B1 (en) Copper alloy sheet for electric and electronic part
KR101158113B1 (en) Copper alloy plate for electrical and electronic components
JP2898627B2 (en) Copper alloy foil
KR910001420B1 (en) Film carrier and method of manufacturing same
JP2670670B2 (en) High strength and high conductivity copper alloy
JP4770733B2 (en) Solder and mounted products using it
JP4168077B2 (en) Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion
KR950004935B1 (en) Copper alloy for electronic instruments
JP4197718B2 (en) High strength copper alloy sheet with excellent oxide film adhesion
JP2505481B2 (en) Copper alloy foil for flexible circuit boards
JP2002294364A (en) Copper alloy sheet or bar for electronic and electrical parts and production method therefor
JP3418301B2 (en) Copper alloy for electrical and electronic equipment with excellent punching workability
JPH11264040A (en) Copper alloy foil
JPH11264037A (en) Copper alloy foil
JPH11264038A (en) Copper alloy foil
JPH09157775A (en) Copper alloy for electronic equipment
JP3296709B2 (en) Thin copper alloy for electronic equipment and method for producing the same
JP2732355B2 (en) Manufacturing method of high strength and high conductivity copper alloy material for electronic equipment
JP2003089832A (en) Copper alloy foil having excellent thermal peeling resistance of plating
JPH1197609A (en) Copper alloy for lead frame superior in oxide film adhesion and manufacture thereof
JP2007100136A (en) Copper alloy for lead frame excellent in uniform plating property
KR0175968B1 (en) Copper alloy suited for electrical components and high strength electric conductivity
JPH10183274A (en) Copper alloy for electronic equipment
JPH05311364A (en) Manufacture of high strength and high conductivity copper alloy
JP4186201B2 (en) Copper alloy and copper alloy thin plate with excellent die wear resistance and resin adhesion

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050318

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20060511

Free format text: JAPANESE INTERMEDIATE CODE: A712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060920

A131 Notification of reasons for refusal

Effective date: 20061207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070329