JPH11260993A - Copper alloy lead material for semiconductor device with excellent solder heat-resistant peeling property - Google Patents

Copper alloy lead material for semiconductor device with excellent solder heat-resistant peeling property

Info

Publication number
JPH11260993A
JPH11260993A JP10061126A JP6112698A JPH11260993A JP H11260993 A JPH11260993 A JP H11260993A JP 10061126 A JP10061126 A JP 10061126A JP 6112698 A JP6112698 A JP 6112698A JP H11260993 A JPH11260993 A JP H11260993A
Authority
JP
Japan
Prior art keywords
copper alloy
layer
solder
alloy lead
lead material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10061126A
Other languages
Japanese (ja)
Inventor
Gakuo Uno
岳夫 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP10061126A priority Critical patent/JPH11260993A/en
Publication of JPH11260993A publication Critical patent/JPH11260993A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a Cu-Be-based copper alloy lead material which is excellent in a solder heat-resistant peeling property. SOLUTION: A Zn layer or a copper alloy layer which contains 10% or higher of Zn is formed, in a thickness of 0.2 to 5 μm, in a part, to which at least the solder 9 is bonded, of a copper alloy lead substrate which contains 0.2 to 3 wt.% (abbreviated as % in the following) of Be and whose remainder is composed of Cu and of inevitable impurities. thereby, the Zn layer or the copper alloy layer (a Zn enriched layer) which contains 10% or high of Zn restrains the mutual diffusion of Cu and Sn from being generated in the solder junction of the copper alloy lead material, and it restrains a Cu-Sn intermetallic compound layer from being grown. As a result, voids which are generated in the solder function are reduced, and the solder heat-resistance peeling property of the copper alloy lead material or the like is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半田耐熱剥離性に
優れる半導体装置用Cu−Be系銅合金リード材に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Cu-Be-based copper alloy lead material for a semiconductor device having excellent resistance to soldering heat peeling.

【0002】[0002]

【従来の技術】半導体装置は、例えば、図1に示すよう
な、リードフレーム1のダイパッド2に搭載した半導体
素子3とインナーリード4とがボンディングワイヤ5で
接続され、半導体素子3部分が樹脂6で封止されたもの
で、樹脂6から露出したアウターリード7の先端部分が
プリント配線基板8などに半田9により接合される。し
かし、この半田接合部には、半田接合時の加熱または使
用時の発熱により、アウターリードと半田との間にCu
とSnの相互拡散反応が起きてCu−Sn金属間化合物
層が形成され、これが成長するにつれて前記金属間化合
物層とアウターリードとの界面にカーケンダル効果によ
る空孔が発生し、その結果、半田接合強度が低下し、更
には界面剥離が起きるという問題がある。
2. Description of the Related Art In a semiconductor device, for example, as shown in FIG. 1, a semiconductor element 3 mounted on a die pad 2 of a lead frame 1 and an inner lead 4 are connected by a bonding wire 5, and a portion of the semiconductor element 3 is formed of a resin 6 The tip of the outer lead 7 exposed from the resin 6 is joined to the printed wiring board 8 or the like by solder 9. However, due to heating during soldering or heat during use, a Cu
And Sn interdiffusion reaction occurs to form a Cu-Sn intermetallic compound layer, and as this grows, vacancies are generated at the interface between the intermetallic compound layer and the outer lead, resulting in solder bonding. There is a problem that the strength is reduced, and further, interfacial peeling occurs.

【0003】ところで、近年の電子機器の小型化・高機
能化に伴って半導体装置には小型化、薄型化、耐熱性が
要求され、そのため前記半導体装置を構成するリードフ
レームなどの銅合金リード材には強度と耐熱性の向上が
求められるようになった。そして、前記諸特性を満足す
る材料として、ばね性に優れ端子材などに使用されてい
るCu−Be系銅合金(C17200合金など)が挙げ
られる。
In recent years, as electronic devices have become smaller and more sophisticated, semiconductor devices have been required to be smaller, thinner, and more heat-resistant. Therefore, copper alloy lead materials such as lead frames constituting the semiconductor devices have been required. Have been required to have improved strength and heat resistance. As a material satisfying the above-mentioned various characteristics, a Cu-Be-based copper alloy (e.g., C17200 alloy) which has excellent spring properties and is used for a terminal material or the like is given.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記Cu−B
e系銅合金は、前述のカーケンダル効果による空孔の発
生が特に多く、このため半田接合強度や半田耐熱剥離性
に著しく劣り、半導体装置用リード材に使用するには接
続信頼性の点で不適当とされている。そこで、本発明者
等は、Cu−Be系銅合金リード材の半田接合強度およ
び半田耐熱剥離性の改善について研究し、Cu−Be系
銅合金リード基材の表面にZn層を形成することにより
半田耐熱剥離性などが改善されることを知見し、さらに
研究を進めて本発明を完成させるに至った。本発明は、
半田耐熱剥離性などに優れるCu−Be系銅合金リード
材の提供を目的とする。
However, the aforementioned Cu-B
The e-based copper alloy has particularly large voids due to the Kirkendall effect described above, and therefore has remarkably poor solder joint strength and solder heat-peelability, and is inferior in connection reliability when used as a lead material for semiconductor devices. Appropriate. Therefore, the present inventors have studied the improvement of the solder bonding strength and the soldering heat-peelability of the Cu-Be-based copper alloy lead material, and by forming a Zn layer on the surface of the Cu-Be-based copper alloy lead substrate. The inventors have found that the soldering heat-peelability and the like are improved, and have further studied to complete the present invention. The present invention
It is an object of the present invention to provide a Cu-Be-based copper alloy lead material excellent in solder heat resistance and the like.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明は、
Beを0.2〜3.0重量%(以下、%と略記)含有
し、残部がCuと不可避不純物からなる銅合金リード基
材の少なくとも半田接合される部分にZn層またはZn
を10%以上含む銅合金層が0.2〜5μmの厚さに形
成されていることを特徴とする半田耐熱剥離性に優れる
半導体装置用銅合金リード材である。
According to the first aspect of the present invention,
Be containing 0.2 to 3.0% by weight of Be (hereinafter abbreviated as%), and a Zn layer or Zn on at least a portion of the copper alloy lead base material to be soldered, the remainder being made of Cu and inevitable impurities.
Is formed in a thickness of 0.2 to 5 [mu] m, which is excellent in soldering heat-peeling resistance.

【0006】請求項2記載の発明は、Beを0.2〜
3.0重量%(以下、%と略記)含有し、さらに副成分
としてNi、Co、Fe、Si、Pb、Al、Zr、M
g、Ag、Teのうちの1種または2種以上を合計で
0.001〜5.0%含有し、残部がCuと不可避不純
物からなる銅合金リード基材の少なくとも半田接合され
る部分にZn層またはZnを10%以上含む銅合金層が
0.2〜5μmの厚さに形成されていることを特徴とす
る半田耐熱剥離性に優れる半導体装置用銅合金リード材
である。
According to a second aspect of the present invention, Be is set to 0.2 to 0.2.
3.0% by weight (hereinafter abbreviated as%), and further contain Ni, Co, Fe, Si, Pb, Al, Zr, and M as subcomponents.
g, Ag, and / or Te in a total of 0.001 to 5.0%, and a balance of at least a portion of the copper alloy lead base material including Cu and unavoidable impurities to be solder-bonded. A copper alloy lead material for a semiconductor device excellent in soldering heat-peeling resistance, characterized in that a layer or a copper alloy layer containing 10% or more of Zn is formed in a thickness of 0.2 to 5 μm.

【0007】[0007]

【発明の実施の形態】請求項1記載の発明の銅合金リー
ド材は、強度、ばね性、耐熱性などに優れるCu−Be
合金を基材とし、その表面にZn層またはZnを10%
以上含む銅合金層(以下、前記2層をZn富化層と総称
する)を形成することにより、半田耐熱剥離性などを改
善したものである。前記Cu−Be合金基材のBeの含
有量を0.2〜3.0%に規定する理由は0.2%未満
では、前記強度、ばね性、耐熱性などの特性が十分に得
られず、3.0%を超えると加工性が悪化するためであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The copper alloy lead material according to the first aspect of the present invention is Cu-Be having excellent strength, spring property, heat resistance and the like.
Alloy base material, Zn layer or Zn on surface 10%
By forming a copper alloy layer containing the above (hereinafter, the two layers are collectively referred to as a Zn-enriched layer), the solder heat resistance peeling property and the like are improved. The reason for specifying the content of Be in the Cu-Be alloy base material in the range of 0.2 to 3.0% is that if the content is less than 0.2%, the properties such as the strength, spring property, and heat resistance cannot be sufficiently obtained. If the content exceeds 3.0%, the workability deteriorates.

【0008】請求項2記載の発明の銅合金リード材は、
前記Cu−Be合金に副成分として、Ni、Co、F
e、Si、Pb、Al、Zr、Mg、Ag、Teのうち
の1種または2種以上を含有させた合金を基材とするも
ので、前記副成分は強度と耐熱性の向上に寄与する。中
でもNiとCoはBeと化合して析出し前記強度と耐熱
性向上に著しく寄与する。前記副成分の合計含有量を
0.001〜5.0%に規定する理由は、0.001%
未満ではその効果が十分に得られず、5.0%を超える
と導電率と加工性が低下するためである。
[0008] The copper alloy lead material of the invention according to claim 2 is:
Ni, Co, F as sub-components in the Cu-Be alloy
The base material is an alloy containing one or more of e, Si, Pb, Al, Zr, Mg, Ag, and Te, and the subcomponent contributes to improvement in strength and heat resistance. . Among them, Ni and Co are combined with Be and precipitated to significantly contribute to the improvement of the strength and heat resistance. The reason for defining the total content of the subcomponents as 0.001 to 5.0% is 0.001%
If the amount is less than 50%, the effect cannot be sufficiently obtained.

【0009】本発明において、銅合金リード材の半田耐
熱剥離性などが前記Zn富化層により改善される理由
は、前記Zn富化層は、銅合金リード材の半田接合部に
起きるCuとSnの相互拡散を抑えてCu−Sn金属間
化合物層の成長を抑制し、半田接合部に発生する空孔を
低減させるためである。
In the present invention, the reason why the Zn-enriched layer improves the solder heat-peeling resistance of the copper alloy lead material is that the Zn-enriched layer is formed of Cu and Sn generated at the solder joint of the copper alloy lead material. This is for suppressing the interdiffusion of Cu and suppressing the growth of the Cu-Sn intermetallic compound layer and reducing the vacancies generated in the solder joint.

【0010】本発明において、Zn富化層におけるZn
含有率を10%以上に規定する理由は、10%未満では
前記CuとSnの相互拡散防止効果が十分に得られない
ためである。Zn富化層におけるZnの含有率は20%
以上が特に望ましい。また前記Zn富化層の厚さを0.
2〜5μmに規定する理由は、0.2μm未満ではその
CuとSnの相互拡散防止効果が十分に得られず、5μ
mを超えると前記効果が飽和し不経済なためである。Z
n富化層の厚さは0.3〜3μmが特に望ましい。
In the present invention, Zn in the Zn-enriched layer
The reason for setting the content to 10% or more is that if it is less than 10%, the effect of preventing the mutual diffusion of Cu and Sn cannot be sufficiently obtained. Zn content in the Zn-enriched layer is 20%
The above is particularly desirable. Further, the thickness of the Zn-enriched layer is set to 0.1.
The reason for defining the thickness to be 2 to 5 μm is that if the thickness is less than 0.2 μm, the effect of preventing mutual diffusion of Cu and Sn cannot be sufficiently obtained.
If m exceeds m, the effect is saturated and uneconomical. Z
The thickness of the n-enriched layer is particularly preferably from 0.3 to 3 μm.

【0011】本発明において、Zn富化層はCu−Be
系銅合金リード材の全面に形成しても良いが、プリント
配線基板などと半田接合される部分にのみ形成すると極
めて経済的である。前記銅合金リード材にZn層を形成
する方法はめっきまたは蒸着により行う。Cu−Zn合
金層の形成はCu−Zn合金をめっきするか、またはZ
nをめっきまたは蒸着させたのち加熱してZnを基材に
拡散させて行う。本発明で対象とする半田は、Pb−S
n系合金、Pb−Sn−Sb系合金などSnを含有する
半田である。
[0011] In the present invention, the Zn-enriched layer is made of Cu-Be.
Although it may be formed on the entire surface of the copper alloy lead material, it is extremely economical to form it only on a portion to be soldered to a printed wiring board or the like. The method of forming the Zn layer on the copper alloy lead material is performed by plating or vapor deposition. The Cu—Zn alloy layer is formed by plating a Cu—Zn alloy or
n is plated or vapor-deposited and then heated to diffuse Zn into the substrate. The solder targeted in the present invention is Pb-S
It is a solder containing Sn such as an n-based alloy or a Pb-Sn-Sb-based alloy.

【0012】[0012]

〔めっき浴組成〕(Plating bath composition)

ZnSO4 ・7H2 O:250g/リットル、Na2
4 :100g/リットル。 〔めっき条件〕 浴温度:50℃、電流密度:8A/dm2 、pH:1.
2。
ZnSO 4 · 7H 2 O: 250g / l, Na 2 S
O 4 : 100 g / liter. [Plating conditions] Bath temperature: 50 ° C, current density: 8 A / dm 2 , pH: 1.
2.

【0013】(実施例2)実施例1のZnめっき後の合
金板に下記条件で加熱拡散処理を施して銅合金リード材
を製造した。 〔加熱拡散処理条件〕 雰囲気:Arガス、加熱温度:450℃、加熱時間:1
0分。
Example 2 A copper alloy lead material was manufactured by subjecting the alloy plate of Example 1 to a Zn-plated alloy plate under heat diffusion treatment under the following conditions. [Heating diffusion treatment conditions] Atmosphere: Ar gas, Heating temperature: 450 ° C, Heating time: 1
0 minutes.

【0014】(実施例3)厚さ0.2mmのCu−1.9%
Be−0.5%Ni合金板の表面に、Znを25〜75%含
むCu−Zn合金を、下表に示す組成のめっき浴を用
い、下記めっき条件でめっきして銅合金リード材を製造
した。 〔めっき条件〕 浴温度:35℃、電流密度:0.8A/dm2 、pH:
11.5。
(Example 3) Cu-1.9% 0.2 mm thick
A Cu-Zn alloy containing 25 to 75% of Zn was plated on the surface of a Be-0.5% Ni alloy plate using a plating bath having a composition shown in the following table under the following plating conditions to produce a copper alloy lead material. [Plating conditions] Bath temperature: 35 ° C, current density: 0.8 A / dm 2 , pH:
11.5.

【0015】(比較例1)Znのめっき厚さを0.1μ
mとした他は、実施例1と同じ方法により銅合金リード
材を製造した。
(Comparative Example 1) The plating thickness of Zn was 0.1 μm.
A copper alloy lead material was manufactured in the same manner as in Example 1 except that m was used.

【0016】(比較例2)厚さ0.2mmのCu−1.9%
Be−0.5%Ni合金板の表面に、Cu−5%Zn合金を
下表に示す組成のめっき浴を用い、下記めっき条件でめ
っきして銅合金リード材を製造した。〔めっき浴組成〕 〔めっき条件〕 浴温度:35℃、電流密度:0.8A/dm2 、pH:
11.5。
Comparative Example 2 Cu-1.9% 0.2 mm thick
A copper alloy lead material was manufactured by plating a Cu-5% Zn alloy on the surface of a Be-0.5% Ni alloy plate using a plating bath having a composition shown in the following table under the following plating conditions. (Plating bath composition) [Plating conditions] Bath temperature: 35 ° C, current density: 0.8 A / dm 2 , pH:
11.5.

【0017】実施例1〜3、比較例1、2で得られた各
々の銅合金リード材からサンプル板を切出し、このサン
プル板の表面に、図2に示すように、銅線10を共晶半田
(Pb−63%Sn合金)9で接合して試験片11を作製
し、これを大気中150℃で1000時間保持(劣化処
理)したのち、この試験片11のサンプル板12と銅線10を
把持して引張って半田接合部13の接合強度を測定した。
半田接合部13は直径6mmの円形とした。Zn富化層を
形成しない厚さ0.2mmのCu−1.9%Be−0.5%Ni
合金板(従来材)についても同様にして半田接合強度を
測定した。結果を表1に示す。半田接合強度は、劣化処
理後の強度nと劣化処理前の強度mの比(n/m)の百
分率(半田接合強度残存率)で表した。
A sample plate was cut out from each of the copper alloy lead materials obtained in Examples 1 to 3 and Comparative Examples 1 and 2, and a copper wire 10 was eutectically formed on the surface of the sample plate as shown in FIG. A test piece 11 was prepared by bonding with a solder (Pb-63% Sn alloy) 9 and held in the air at 150 ° C. for 1000 hours (deterioration treatment), and then a sample plate 12 of the test piece 11 and a copper wire 10 were prepared. Was gripped and pulled to measure the joint strength of the solder joint 13.
The solder joint 13 was a circle having a diameter of 6 mm. 0.2 mm thick Cu-1.9% Be-0.5% Ni without forming Zn-enriched layer
The solder joint strength of the alloy plate (conventional material) was measured in the same manner. Table 1 shows the results. The solder joint strength was expressed as a percentage (residual solder joint strength) of the ratio (n / m) of the strength n after the deterioration treatment and the strength m before the deterioration treatment.

【0018】[0018]

【表1】 (注)Zn富化層の厚さ※はZn濃度10%以上の厚さである。[Table 1] (Note) The thickness * of the Zn-enriched layer is a thickness with a Zn concentration of 10% or more.

【0019】表1より明らかなように、本発明例のNo.1
〜7 は、いずれも、半田接合強度残存率が27%以上で
従来材に較べて格段に優れており、半導体装置用リード
材として十分使用できるものである。他方、比較例のN
o.8はZn富化層の厚さが薄いため、No.9はZn富化層
のZn含有率が小さいため、いずれも半田接合強度残存
率が低かった。なお、本発明例のリード材については劣
化処理を更に長期間行ったが、半田接合部で剥離が起き
るようなことはなく、半田耐熱剥離性にも優れることが
確認された。
As is clear from Table 1, No. 1 of the present invention example
In each of Examples No. to No. 7, the residual ratio of solder joint strength is 27% or more, which is far superior to conventional materials, and can be sufficiently used as lead materials for semiconductor devices. On the other hand, N of the comparative example
No. 8 had a small thickness of the Zn-enriched layer, and No. 9 had a low residual ratio of solder joint strength because of a small Zn content of the Zn-enriched layer. The lead material of the example of the present invention was subjected to a deterioration treatment for a longer period of time. However, it was confirmed that peeling did not occur at the solder joint portion, and that the solder material was excellent in heat resistance peeling resistance.

【0020】(実施例4)基板に、厚さ0.2mmのC
u−0.2 〜3.0%Be合金板を用いた他は、実施例1と同
じ方法により銅合金リード材を製造した。得られた銅合
金リード材について、実施例1と同じ方法により半田接
合強度を測定した。結果を表2に示す。
(Embodiment 4) A 0.2 mm thick C
A copper alloy lead material was manufactured in the same manner as in Example 1 except that a u-0.2 to 3.0% Be alloy plate was used. The solder joint strength of the obtained copper alloy lead material was measured by the same method as in Example 1. Table 2 shows the results.

【0021】[0021]

【表2】 [Table 2]

【0022】表2より明らかなように、本発明例の No.
11〜14は、いずれも、半田接合強度残存率が33%以上
で従来材 (表1のNo.10)に較べて格段に優れており、半
導体装置用リード材として十分使用できるものである。
As is evident from Table 2, No. 1
All of Nos. 11 to 14 have a residual ratio of solder joint strength of 33% or more, which is far superior to conventional materials (No. 10 in Table 1), and can be sufficiently used as lead materials for semiconductor devices.

【0023】[0023]

【発明の効果】以上に述べたように、本発明の銅合金リ
ード材は、強度、ばね性、耐熱性などに優れるCu−B
e系銅合金を基材とし、その表面にZn富化層を形成し
たもので、前記Zn富化層は、銅合金リード材の半田接
合部に起きるCuとSnの相互拡散を抑えてCu−Sn
金属間化合物層の成長を抑制するので、半田接合部に発
生する空孔が低減して半田耐熱剥離性などが改善され
る。依って工業上顕著な効果を奏する。
As described above, the copper alloy lead material according to the present invention is excellent in strength, spring property, heat resistance and the like.
An e-based copper alloy is used as a base material, and a Zn-enriched layer is formed on the surface thereof. The Zn-enriched layer suppresses the interdiffusion of Cu and Sn occurring at the solder joint of the copper alloy lead material, thereby reducing Cu- Sn
Since the growth of the intermetallic compound layer is suppressed, vacancies generated in the solder joints are reduced, and the solder heat resistance and the like are improved. Therefore, there is an industrially significant effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】半導体装置の説明図である。FIG. 1 is an explanatory diagram of a semiconductor device.

【図2】半田接合部の接合強度を測定する方法の説明図
である。
FIG. 2 is an explanatory diagram of a method for measuring a bonding strength of a solder bonding portion.

【符号の説明】[Explanation of symbols]

1 リードフレーム 2 ダイパッド 3 半導体素子 4 インナーリード 5 ボンディングワイヤ 6 樹脂 7 アウターリード 8 プリント配線基板 9 半田 10 銅線 11 試験片 12 サンプル板 13 半田接合部 DESCRIPTION OF SYMBOLS 1 Lead frame 2 Die pad 3 Semiconductor element 4 Inner lead 5 Bonding wire 6 Resin 7 Outer lead 8 Printed wiring board 9 Solder 10 Copper wire 11 Test piece 12 Sample plate 13 Solder joint

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Beを0.2〜3.0重量%(以下、%
と略記)含有し、残部がCuと不可避不純物からなる銅
合金リード基材の少なくとも半田接合される部分にZn
層またはZnを10%以上含む銅合金層が0.2〜5μ
mの厚さに形成されていることを特徴とする半田耐熱剥
離性に優れる半導体装置用銅合金リード材。
1. An amount of Be of 0.2 to 3.0% by weight (hereinafter referred to as%
Abbreviated as above), and Zn is added to at least a portion of the copper alloy lead base material to be solder-bonded, the balance being Cu and unavoidable impurities.
Layer or copper alloy layer containing 10% or more of Zn is 0.2 to 5 μm
A copper alloy lead material for a semiconductor device, which is formed with a thickness of m, and has excellent solder heat-peeling resistance.
【請求項2】 Beを0.2〜3.0重量%(以下、%
と略記)含有し、さらに副成分としてNi、Co、F
e、Si、Pb、Al、Zr、Mg、Ag、Teのうち
の1種または2種以上を合計で0.001〜5.0%含
有し、残部がCuと不可避不純物からなる銅合金リード
基材の少なくとも半田接合される部分にZn層またはZ
nを10%以上含む銅合金層が0.2〜5μmの厚さに
形成されていることを特徴とする半田耐熱剥離性に優れ
る半導体装置用銅合金リード材。
2. Be is 0.2 to 3.0% by weight (hereinafter referred to as%).
Abbreviated as Ni), Co, and F as accessory components.
e, Si, Pb, Al, Zr, Mg, Ag, and a copper alloy lead base containing 0.001 to 5.0% in total of one or more of them, and the balance being Cu and unavoidable impurities. Zn layer or Z
A copper alloy lead material for a semiconductor device excellent in soldering heat-peeling resistance, wherein a copper alloy layer containing 10% or more of n is formed in a thickness of 0.2 to 5 μm.
JP10061126A 1998-03-12 1998-03-12 Copper alloy lead material for semiconductor device with excellent solder heat-resistant peeling property Pending JPH11260993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10061126A JPH11260993A (en) 1998-03-12 1998-03-12 Copper alloy lead material for semiconductor device with excellent solder heat-resistant peeling property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10061126A JPH11260993A (en) 1998-03-12 1998-03-12 Copper alloy lead material for semiconductor device with excellent solder heat-resistant peeling property

Publications (1)

Publication Number Publication Date
JPH11260993A true JPH11260993A (en) 1999-09-24

Family

ID=13162091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10061126A Pending JPH11260993A (en) 1998-03-12 1998-03-12 Copper alloy lead material for semiconductor device with excellent solder heat-resistant peeling property

Country Status (1)

Country Link
JP (1) JPH11260993A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519180A (en) * 2008-04-29 2011-06-30 イルジン カッパー ホイル カンパニー リミテッド Metal frame for electronic parts
WO2018161380A1 (en) * 2017-03-09 2018-09-13 苏州金江铜业有限公司 Tellurium-beryllium-copper alloy and preparation method thereof
CN111057886A (en) * 2019-10-29 2020-04-24 宁夏中色新材料有限公司 Preparation method of beryllium copper casting roll sleeve and beryllium copper casting roll sleeve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519180A (en) * 2008-04-29 2011-06-30 イルジン カッパー ホイル カンパニー リミテッド Metal frame for electronic parts
WO2018161380A1 (en) * 2017-03-09 2018-09-13 苏州金江铜业有限公司 Tellurium-beryllium-copper alloy and preparation method thereof
CN111057886A (en) * 2019-10-29 2020-04-24 宁夏中色新材料有限公司 Preparation method of beryllium copper casting roll sleeve and beryllium copper casting roll sleeve

Similar Documents

Publication Publication Date Title
JPS59145553A (en) Composite structure and method of forming same
KR102002675B1 (en) Lead-free solder alloy
JPH11350188A (en) Material for electric and electronic parts, its production, and electric and electronic parts lising the same
TW201940275A (en) Solder alloy, solder paste, solder ball, resin-flux cored solder, and solder joint
JP2801793B2 (en) Tin-plated copper alloy material and method for producing the same
JP4959539B2 (en) Laminated solder material, soldering method and solder joint using the same
JP2001246493A (en) Soldering material, device or apparatus using same and its producing method
JP2005052869A (en) Brazing material for high temperature soldering and semiconductor device using it
JP2008080392A (en) Joining body and joining method
JPS60218440A (en) Copper alloy for lead frame
JP3303594B2 (en) Heat-resistant silver-coated composite and method for producing the same
JPH11260993A (en) Copper alloy lead material for semiconductor device with excellent solder heat-resistant peeling property
JPH1093004A (en) Electronic component and manufacture thereof
JP2000077593A (en) Lead frame for semiconductor
JPH11350190A (en) Material for electric and electronic parts, its production, and electric and electronic parts using the same
JP6477517B2 (en) Manufacturing method of semiconductor device
JP2797846B2 (en) Cu alloy lead frame material for resin-encapsulated semiconductor devices
JPS6242037B2 (en)
JP3466498B2 (en) Wiring board and method of manufacturing the same
JPH10163404A (en) Input/output terminal for ball grid array(bga)
JP4335404B2 (en) Electrode structure of electronic parts
WO2001076335A1 (en) Mounting structure of electronic device and method of mounting electronic device
JPH09266373A (en) Electronic component its bonding method and circuit board
JP3280686B2 (en) Consumer device and manufacturing method thereof
JPH06264284A (en) Method for forming wiring board