JPH11260560A - El element - Google Patents

El element

Info

Publication number
JPH11260560A
JPH11260560A JP10055317A JP5531798A JPH11260560A JP H11260560 A JPH11260560 A JP H11260560A JP 10055317 A JP10055317 A JP 10055317A JP 5531798 A JP5531798 A JP 5531798A JP H11260560 A JPH11260560 A JP H11260560A
Authority
JP
Japan
Prior art keywords
electrode
insulating layer
light emitting
thickness
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10055317A
Other languages
Japanese (ja)
Inventor
Hajime Ishihara
元 石原
Masahiko Osada
雅彦 長田
Tamotsu Hattori
有 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP10055317A priority Critical patent/JPH11260560A/en
Publication of JPH11260560A publication Critical patent/JPH11260560A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent uneveness of brightness in a dotted matrix type EL (electroluminescent) element. SOLUTION: This EL element 100 is produced by successively laminating a first electrode 2 which is a scanning electrode, a first insulating layer 3, an luminescent layer 4, a second insulating layer 5, a second electrode 6, which is a signal electrode, on a glass substrate 1. The thickness of the first insulating layer 3 becomes gradually thinner from the electrode leading out side in the longitudinal direction of the first electrode 2. Further, the region where the scanning electrode and the signal electrode cross each other at right angles is formed as an luminescent pixel (a display pixel) and the thickness of both insulating layer 3, 5 in one luminescent pixel is made same. Moreover, at least either one of the first electrode 2 and the second electrode 6 in the scanning electrode side is a transparent electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ドットマトリクス
方式のEL(エレクトロルミネッセンス)素子に関す
る。
[0001] 1. Field of the Invention [0002] The present invention relates to a dot matrix type EL (electroluminescence) element.

【0002】[0002]

【従来の技術】一般に、ドットマトリクス方式のEL素
子は、絶縁性基板上に、第1電極、第1絶縁層、発光
層、第2絶縁層、第2電極が順次積層されており、一方
の電極を走査電極、他方の電極を信号電極として表示を
行っている。EL素子の発光輝度が駆動周波数に比例し
て大きくなることは、一般的に知られていることである
が、ドットマトリクス方式のEL素子においては、駆動
周波数は走査電極の本数によって決まってくる。そこ
で、高輝度のEL素子を得るためには、通常、図3、図
4のように、見かけ上走査電極の本数を極力少なくする
構造がとられている。
2. Description of the Related Art In general, a dot matrix type EL device has a first electrode, a first insulating layer, a light emitting layer, a second insulating layer, and a second electrode sequentially laminated on an insulating substrate. The display is performed using the electrodes as scanning electrodes and the other electrode as signal electrodes. It is generally known that the emission luminance of an EL element increases in proportion to the driving frequency. However, in a dot matrix type EL element, the driving frequency is determined by the number of scanning electrodes. Therefore, in order to obtain a high-luminance EL element, a structure is usually adopted in which the number of scanning electrodes is apparently reduced as much as possible, as shown in FIGS.

【0003】図3のEL素子200では、基板203上
において走査電極201と信号電極202とが発光層
(図示せず)を挟んで直交するドットマトリクスを形成
している。そして、走査電極201を2分割し、走査電
極の配線抵抗を低くし、高い発光輝度を得ようとするも
のである。一方、図4のEL素子300では、基板30
3上でドットマトリクスを形成する走査電極301と信
号電極302のうち走査電極301において、一本毎に
反対方向から電極取出しを行っており、駆動回路304
を複雑化することなく、高い発光輝度を得ようとするも
のである。
In the EL element 200 shown in FIG. 3, a scanning electrode 201 and a signal electrode 202 form a dot matrix orthogonal to each other with a light emitting layer (not shown) interposed on a substrate 203. Then, the scanning electrode 201 is divided into two parts to reduce the wiring resistance of the scanning electrode and obtain a high light emission luminance. On the other hand, in the EL element 300 of FIG.
In the scanning electrode 301 and the signal electrode 302 which form a dot matrix on the scan electrode 3, the electrode is taken out from the opposite direction for each scanning electrode 301, and the driving circuit 304
Is intended to obtain a high light emission luminance without complicating.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記両
EL素子200、300においては、走査電極の取り出
し側に最も近い発光画素(ドット)A1及びB1と、最
も遠い発光画素(ドット)A2及びB2とには、配線抵
抗による配線遅延が生じ、走査電極201、301の取
出し側から遠くなればなるほど発光輝度が低くなるた
め、輝度むらが生じる。
However, in the two EL elements 200 and 300, the light-emitting pixels (dots) A1 and B1 closest to the scanning electrode extraction side and the light-emitting pixels (dots) A2 and B2 farthest from the scanning electrode take-out side. In this case, a wiring delay occurs due to wiring resistance, and as the distance from the side from which the scanning electrodes 201 and 301 are taken out decreases, the emission luminance decreases, and thus luminance unevenness occurs.

【0005】なお、図3のEL素子200においては、
走査電極201を2分割して走査電極の配線抵抗を低く
しようとしているが、やはり配線遅延は避けられない。
特に、EL素子を大面積にすればするほど、走査電極は
長くなるため、走査電極の配線抵抗は高くなり、上記輝
度むらは顕著となってくる。また、図3のEL素子20
0では、走査電極201を2分割しているため、駆動回
路204の構成が複雑となり、効率的ではない。
[0005] In the EL device 200 shown in FIG.
Although the scanning electrode 201 is divided into two to reduce the wiring resistance of the scanning electrode, a wiring delay is still unavoidable.
In particular, the larger the EL element is, the longer the scanning electrode becomes, so that the wiring resistance of the scanning electrode becomes higher, and the above-mentioned luminance unevenness becomes remarkable. Also, the EL element 20 shown in FIG.
In the case of 0, since the scanning electrode 201 is divided into two, the configuration of the driving circuit 204 is complicated and inefficient.

【0006】本発明は上記問題点に鑑みて、ドットマト
リクス方式のEL素子において、輝度むらの発生を防止
することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to prevent the occurrence of luminance unevenness in a dot matrix type EL element.

【0007】[0007]

【課題を解決するための手段】上記輝度むらは、配線遅
延によって走査電極の取り出し側から遠い方の発光画素
にかけて、見かけ上、発光開始電圧が上昇するために発
生することに着目し、走査電極の取り出し側の発光画素
よりも遠い方の発光画素における発光開始電圧を下げる
ような素子構成とすることで、上記問題の解決を図っ
た。
In view of the above-mentioned uneven brightness, attention is paid to the fact that the emission start voltage apparently rises due to a wiring delay to a light emitting pixel farther from the side from which the scanning electrode is taken out, and the scanning electrode is generated. The above problem was solved by adopting an element configuration in which the light emission starting voltage in the light emitting pixel farther than the light emitting pixel on the light extraction side was reduced.

【0008】ここで、EL素子の発光開始電圧Vthは、
下記の数式1にて示される。
Here, the light emission starting voltage Vth of the EL element is
It is shown by the following equation 1.

【0009】[0009]

【数1】Vth=Ea×(ta+ti(εa/εi)) ここで、Ea:発光層のクランプ電界強度 ta:発光層の膜厚 εa:発光層の比誘電率 ti:絶縁層の膜厚 εi:絶縁層の比誘電率 従って、発光開始電圧は、発光層の膜厚、絶縁層の膜厚
によって変化させることができる。請求項1ないし請求
項3の発明は、発光開始電圧を変化させるために絶縁層
の膜厚を工夫したものである。
Vth = Ea × (ta + ti (εa / εi)) where Ea: clamping electric field strength of the light emitting layer ta: film thickness of the light emitting layer εa: relative permittivity of the light emitting layer ti: film thickness of the insulating layer εi : Relative dielectric constant of insulating layer Accordingly, the light emission starting voltage can be changed by the thickness of the light emitting layer and the thickness of the insulating layer. In the inventions of claims 1 to 3, the thickness of the insulating layer is devised to change the light emission starting voltage.

【0010】なお、発光開始電圧を変化させる方法とし
て発光層の膜厚を変化させることも考えられるが、本発
明では、発光層の膜厚を一定としている。この理由は、
発光層の膜厚は発光輝度に大きな影響を及ぼす(発光輝
度∝発光層膜厚)ため、発光層の膜厚を変化させると、
ますます輝度むらがひどくなってしまうからである。す
なわち、請求項1記載の発明では、絶縁性基板(1)上
に、第1電極(2)、第1絶縁層(3)、発光層
(4)、第2絶縁層(5)、第2電極(6)を順次積層
し、上記両電極のうち一方を走査電極(2)、他方を信
号電極(6)として構成するドットマトリクス方式のE
L素子において、上記両絶縁層のうち少なくとも一方の
絶縁層(3)の膜厚を、走査電極(2)の長手方向に、
電極取り出し側から順に薄くしたことを特徴としてい
る。
As a method of changing the light emission starting voltage, it is conceivable to change the thickness of the light emitting layer. However, in the present invention, the thickness of the light emitting layer is fixed. The reason for this is
Since the thickness of the light emitting layer has a large effect on the light emission luminance (light emission luminance / light emitting layer thickness), when the film thickness of the light emitting layer is changed,
This is because the brightness unevenness becomes more and more severe. That is, according to the first aspect of the present invention, on the insulating substrate (1), the first electrode (2), the first insulating layer (3), the light emitting layer (4), the second insulating layer (5), The electrodes (6) are sequentially laminated, and one of the two electrodes is configured as a scanning electrode (2) and the other is configured as a signal electrode (6).
In the L element, the film thickness of at least one of the two insulating layers (3) is set in the longitudinal direction of the scan electrode (2).
It is characterized in that it is made thinner in order from the electrode extraction side.

【0011】本発明では、走査電極(2)取り出し側か
ら遠い発光画素ほど絶縁層(3)の膜厚が薄いため、走
査電極(2)取り出し側から遠い発光画素の発光開始電
圧は、走査電極(2)取り出し側から近い発光画素の発
光開始電圧より低くなる。従って、配線遅延による見か
け上の発光開始電圧の上昇分を補うことができ、輝度む
らの発生を防止することができる。
In the present invention, since the insulating layer (3) is thinner as the light emitting pixel is farther from the scanning electrode (2) take-out side, the light emission starting voltage of the light emitting pixel farther from the scan electrode (2) take-out side is (2) It becomes lower than the light emission start voltage of the light emitting pixel near the take-out side. Therefore, it is possible to compensate for an apparent increase in the light emission start voltage due to the wiring delay, and it is possible to prevent the occurrence of uneven brightness.

【0012】なお、走査電極(2)の長手方向に電極取
り出し側から順に薄くなっているとは、連続的であって
も、段階的であってもよく、上記数式1等を考慮して設
計することができる。また、ドットマトリクス方式のE
L素子においては、走査電極と信号電極とが直交する領
域が発光画素(表示画素)として形成される。請求項2
記載の発明では、1つの発光画素内における上記両絶縁
層(3、5)の膜厚を同一としているから、発光画素内
の輝度むらもなくすことができる。特に、1つの発光画
素のサイズが大きくなった場合に有効である。
The term "thin in order from the electrode extraction side in the longitudinal direction of the scanning electrode (2)" means that the scanning electrode (2) may be continuous or stepwise, and may be designed in consideration of the above equation (1). can do. In addition, dot matrix type E
In the L element, a region where the scanning electrode and the signal electrode are orthogonal to each other is formed as a light emitting pixel (display pixel). Claim 2
In the described invention, since the thicknesses of the two insulating layers (3, 5) in one light emitting pixel are the same, it is possible to eliminate uneven brightness in the light emitting pixel. In particular, this is effective when the size of one luminescent pixel is increased.

【0013】請求項3では、第1電極と第2電極(2、
6)のうち、少なくとも走査電極(2)側が透明電極で
あることを特徴としており、金属電極に比べて抵抗の高
い透明電極でも輝度むらの生じることのない透明EL素
子を得ることができる。
According to claim 3, the first electrode and the second electrode (2,
Of the above 6), at least the scanning electrode (2) side is characterized by being a transparent electrode, and a transparent EL element free from uneven brightness can be obtained even with a transparent electrode having a higher resistance than a metal electrode.

【0014】[0014]

【発明の実施の形態】以下、本発明を図に示す実施形態
について説明する。 (第1実施形態)図1は、本発明の第1実施形態に係る
EL素子100の縦断面を示した模式図である。本例で
は、EL素子100は対角サイズが10インチのものと
している。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a first embodiment of the present invention. (First Embodiment) FIG. 1 is a schematic diagram showing a longitudinal section of an EL element 100 according to a first embodiment of the present invention. In this example, the EL element 100 has a diagonal size of 10 inches.

【0015】EL素子100は、絶縁性基板である透明
なガラス基板1上に、順次、以下の薄膜が積層形成され
ている。ここで、例えばEL素子100の光取出しは、
薄膜積層面と反対のガラス基板1の面の方向(図中の白
抜き矢印方向)に行われる。ガラス基板1上には、例え
ばITO(インジウムチンオキサイド)からなる厚さ
(膜厚)650nmの透明なストライプ状の第1電極
(走査電極)2が形成されている。そして、電極取出し
側の取り出し側部位2aにて外部駆動回路7に電気的に
接続されている。
In the EL element 100, the following thin films are sequentially formed on a transparent glass substrate 1, which is an insulating substrate. Here, for example, the light extraction of the EL element 100 is as follows.
The process is performed in the direction of the surface of the glass substrate 1 opposite to the thin film lamination surface (the direction of the white arrow in the figure). On the glass substrate 1, a transparent stripe-shaped first electrode (scanning electrode) 2 made of, for example, ITO (indium tin oxide) and having a thickness (film thickness) of 650 nm is formed. Then, it is electrically connected to the external drive circuit 7 at the extraction side portion 2a on the electrode extraction side.

【0016】第1電極2の形成されたガラス基板1上に
おいて、第1電極2の上には例えば透明な酸化タンタル
(Ta2 5 )を主成分とする第1絶縁層3が形成され
ている。そして、その厚さ(膜厚)は、第1電極2の取
り出し側部位2aから、第1電極2の長手方向すなわち
反対側の部位2bに向かって、順に連続的に薄くなるよ
うに第1絶縁層3が形成されている。
On the glass substrate 1 on which the first electrode 2 is formed, a first insulating layer 3 mainly composed of, for example, transparent tantalum oxide (Ta 2 O 5 ) is formed on the first electrode 2. I have. The thickness (film thickness) of the first insulating layer is set so as to be continuously reduced from the extraction side portion 2a of the first electrode 2 to the longitudinal direction of the first electrode 2, that is, the opposite side portion 2b. Layer 3 is formed.

【0017】具体的には、例えば、上記取り出し側部位
2aの厚さが500nmであり、上記反対側の部位2b
の厚さが上記取り出し側部位2aの厚さよりも数10n
m〜100nm薄くなるように形成されている。第1絶
縁層3の上には、発光層4が形成されている。発光層4
は、例えばマンガン(Mn)の添加された硫化亜鉛(Z
nS)で厚さ950nm形成されている。発光層4の上
には、一様に第2絶縁層5が形成されている。第2絶縁
層5は、例えば光学的に透明な酸窒化珪素(SiOxN
y)から成り、厚さ120nmで形成されている。そし
て、第2絶縁層5の上には、例えばITOからなる厚さ
650nmのストライプ状の第2電極(信号電極)6が
形成されている。
Specifically, for example, the thickness of the take-out side part 2a is 500 nm, and the thickness of the opposite side part 2b is 500 nm.
Is several tens of n thicker than the thickness of the extraction side portion 2a.
It is formed so as to be thin by m to 100 nm. The light emitting layer 4 is formed on the first insulating layer 3. Light emitting layer 4
Is, for example, zinc sulfide (Z) to which manganese (Mn) is added.
nS) and a thickness of 950 nm. On the light emitting layer 4, the second insulating layer 5 is formed uniformly. The second insulating layer 5 is made of, for example, optically transparent silicon oxynitride (SiOxN
y) and is formed with a thickness of 120 nm. A second electrode (signal electrode) 6 made of, for example, ITO and having a thickness of 650 nm is formed on the second insulating layer 5 in a stripe shape.

【0018】ここで、第1電極2と第2電極6とは、従
来技術にて述べたようなストライプ電極が直交して構成
されるドットマトリクス電極を構成している。そして、
両電極2、6の直交する領域が表示画素としての発光画
素(発光ドット)として構成され、外部駆動回路7から
電圧印加されることで、発光画素にて発光する。なお、
各電極2、6はストライプの1本毎に外部駆動回路7
に、図示されてはいないが電気的に接続されている次
に、上述のEL素子100製造方法を以下に述べる。
Here, the first electrode 2 and the second electrode 6 constitute a dot matrix electrode in which stripe electrodes are formed orthogonally as described in the prior art. And
A region orthogonal to the two electrodes 2 and 6 is configured as a light emitting pixel (light emitting dot) as a display pixel, and the light emitting pixel emits light when a voltage is applied from the external drive circuit 7. In addition,
Each of the electrodes 2 and 6 has an external drive circuit 7 for each stripe.
Next, a method of manufacturing the above-described EL element 100 will be described below.

【0019】ガラス基板1上にITOを一様にDC(直
流電圧)スパッタリングした後、ストライプ形状にエッ
チングして第1電極2を形成する。次に、Ta2 5
主成分とする第1絶縁層3をスパッタにより形成する。
本例では、アルゴン(Ar)と酸素(O2 )をスパッタ
ガスとしてガス圧0.6Paに保持し、Ta2 5 を主
成分とする焼結ターゲットを用いて、高周波電力を2k
Wから4kWまで徐々に変化させて成膜した。
After the ITO is uniformly DC (direct voltage) sputtered on the glass substrate 1, the first electrode 2 is formed by etching in a stripe shape. Next, the first insulating layer 3 mainly composed of Ta 2 O 5 is formed by sputtering.
In this example, argon (Ar) and oxygen (O 2 ) are maintained at a gas pressure of 0.6 Pa as a sputtering gas, and a high-frequency power of 2 k is applied by using a sintered target containing Ta 2 O 5 as a main component.
The film was formed while gradually changing from W to 4 kW.

【0020】具体的には、基板搬送式のスパッタ装置を
用いて、基板を搬送させる際に、ガラス基板1の向きを
第1絶縁層3を薄くさせたい部分を、基板の進行方向に
対して先頭になるように設置し、基板搬送とともに高周
波電力を徐々に大きくして成膜した。第1絶縁層3の成
膜レートは高周波電力に比例して大きくなるため、高周
波電力の小さいときに成膜される部分の第1絶縁層3の
膜厚は薄くなり、高周波電力を大きいときに成膜される
部分の第1絶縁層3の膜厚は厚くなる。こうして、上記
連続的に薄くなった構造を有する第1絶縁層3を形成し
た。
Specifically, when the substrate is transported by using a substrate transport type sputtering apparatus, the direction of the glass substrate 1 is set such that the portion of the first insulating layer 3 where the first insulating layer 3 is to be thinned is shifted with respect to the traveling direction of the substrate. The film was placed at the top, and the high-frequency power was gradually increased with the transfer of the substrate to form a film. Since the film formation rate of the first insulating layer 3 increases in proportion to the high-frequency power, the film thickness of the first insulating layer 3 at a portion where the high-frequency power is low becomes small, and when the high-frequency power is high. The film thickness of the first insulating layer 3 in the portion where the film is formed becomes large. Thus, the first insulating layer 3 having the above-mentioned continuously thinned structure was formed.

【0021】続いて、第1絶縁層3上に、硫化亜鉛(Z
nS)を母体材料とし、発光中心としてマンガン(M
n)を添加したZnS:Mnから成る発光層4を一様に
形成する。具体的には、ガラス基板1の温度を一定に保
持し、蒸着装置内を5×10-4Pa以下に維持し、堆積
速度0.1〜0.3nm/secの条件で電子ビーム蒸
着を行った。
Subsequently, on the first insulating layer 3, zinc sulfide (Z
nS) as a base material, and manganese (M
The light emitting layer 4 made of ZnS: Mn to which n) is added is uniformly formed. Specifically, the temperature of the glass substrate 1 is kept constant, the inside of the vapor deposition device is maintained at 5 × 10 −4 Pa or less, and electron beam vapor deposition is performed at a deposition rate of 0.1 to 0.3 nm / sec. Was.

【0022】この後、真空中400〜600℃で発光層
4の熱処理を行った。次に、発光層4の上に、SiOx
Nyから成る第2絶縁層5をスパッタにより形成する。
具体的には、ガラス基板1の温度を300℃に保持し、
スパッタ装置内にアルゴン(Ar)と窒素(N2 )と少
量の酸素(O2 )の混合ガスを導入し、ガス圧を0.5
Paに保持し、3kWの高周波電力でシリコンをターゲ
ットとしてSiOxNy膜を成膜した。
Thereafter, the light-emitting layer 4 was subjected to a heat treatment at 400 to 600 ° C. in a vacuum. Next, on the light emitting layer 4, SiOx
A second insulating layer 5 made of Ny is formed by sputtering.
Specifically, the temperature of the glass substrate 1 is maintained at 300 ° C.
A mixed gas of argon (Ar), nitrogen (N 2 ) and a small amount of oxygen (O 2 ) was introduced into the sputtering apparatus, and the gas pressure was reduced to 0.5.
The pressure was kept at Pa, and a SiOxNy film was formed using silicon as a target at a high frequency power of 3 kW.

【0023】次に、第2絶縁層上にITOを一様にDC
スパッタリングした後、ストライプ形状にエッチングし
て第2電極6を形成した。ところで、本実施形態によれ
ば、第1電極(走査電極)2の取り出し側部位2aから
遠い発光画素ほど第1絶縁層3の膜厚が薄いため、上記
取り出し側部位2aから遠い発光画素の発光開始電圧
は、上記取り出し側部位2aから近い発光画素の発光開
始電圧より低くなる。従って、配線遅延による見かけ上
の発光開始電圧の上昇分を補うことができる。
Next, ITO is uniformly applied on the second insulating layer by DC.
After the sputtering, the second electrode 6 was formed by etching in a stripe shape. By the way, according to the present embodiment, since the thickness of the first insulating layer 3 is smaller as the light emitting pixel is farther from the extraction side portion 2a of the first electrode (scanning electrode) 2, the light emission of the light emitting pixel is farther from the extraction side portion 2a. The start voltage is lower than the light emission start voltage of the light emitting pixel near the take-out side portion 2a. Therefore, it is possible to compensate for the apparent increase in the light emission start voltage due to the wiring delay.

【0024】また、本実施形態では、外部駆動回路7と
の接続も、通常のドットマトリクス方式のEL素子と同
様の構成が適用できるので、複雑な回路構成は不要であ
る。従って、本実施形態のEL素子100によれば、効
率よく輝度むらの発生を防止することができる。さら
に、本実施形態では、第1電極と第2電極2、6を、金
属電極に比べて抵抗の高いITOを用いた透明電極とし
ているが、第1絶縁層3の配線遅延防止効果によって、
輝度むらの発生を防止した透明EL素子を得ることがで
きる。
Further, in this embodiment, the connection to the external drive circuit 7 can be applied to the same configuration as that of a normal dot matrix type EL element, so that a complicated circuit configuration is unnecessary. Therefore, according to the EL element 100 of the present embodiment, it is possible to efficiently prevent the occurrence of uneven brightness. Furthermore, in the present embodiment, the first electrode and the second electrodes 2 and 6 are transparent electrodes using ITO having higher resistance than the metal electrode. However, the first insulating layer 3 has a wiring delay preventing effect.
It is possible to obtain a transparent EL element in which the occurrence of uneven brightness is prevented.

【0025】(第2実施形態)図2は、本発明の第2実
施形態に係るEL素子100の縦断面を示した模式図で
ある。第1実施形態と異なる点は、第1絶縁層3が、第
1電極2の長手方向に、電極取り出し側部位2aから反
対側の部位2bに向かって順に連続的に薄くなっている
のではなく、1つの発光画素内では第1絶縁層3の膜厚
が同一(均一)で、段階的に薄くなっている点である。
(Second Embodiment) FIG. 2 is a schematic view showing a longitudinal section of an EL device 100 according to a second embodiment of the present invention. The difference from the first embodiment is that the first insulating layer 3 is not continuously thinned in the longitudinal direction of the first electrode 2 in order from the electrode extraction side portion 2a to the opposite portion 2b. The first point is that the thickness of the first insulating layer 3 is the same (uniform) in one luminescent pixel, and is gradually reduced.

【0026】本実施形態によれば、1つの発光画素内に
おける両絶縁層3、5の膜厚を同一としているから、発
光画素内の輝度むらもなくすことができる。特に、1つ
の発光画素のサイズが大きくなった場合に有効である。 (他の実施形態)なお、上記各実施形態では、第1電極
2を走査電極とし、第1電極2の長手方向に第1絶縁層
3の膜厚を変化させたが、第2電極6を走査電極とし、
第2電極6の長手方向に第1絶縁層3の膜厚を変化させ
たものとしてもよい。
According to the present embodiment, since the thicknesses of the insulating layers 3 and 5 in one luminescent pixel are the same, it is possible to eliminate uneven brightness in the luminescent pixel. In particular, this is effective when the size of one luminescent pixel is increased. (Other Embodiments) In each of the above embodiments, the first electrode 2 is used as a scanning electrode and the film thickness of the first insulating layer 3 is changed in the longitudinal direction of the first electrode 2. As a scanning electrode,
The thickness of the first insulating layer 3 may be changed in the longitudinal direction of the second electrode 6.

【0027】また、上記各実施形態では、第1絶縁層3
の膜厚を変化させたが、光の取り出し側に応じて、第2
絶縁層5の膜厚、または、両絶縁層3、5の膜厚を変化
させたものとしてもよい。また、発光層4としてZn
S:Mnを用いたが、本発明は発光層の種類によって限
定されることはなく、ZnS:Tb、SrS:Ce等他
の材料を用いてもよい。
In each of the above embodiments, the first insulating layer 3
Was changed, but depending on the light extraction side, the second
The thickness of the insulating layer 5 or the thickness of both insulating layers 3 and 5 may be changed. Further, Zn as the light emitting layer 4
Although S: Mn was used, the present invention is not limited by the type of the light emitting layer, and other materials such as ZnS: Tb and SrS: Ce may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係るEL素子の縦断面
を示した模式図である。
FIG. 1 is a schematic view showing a longitudinal section of an EL element according to a first embodiment of the present invention.

【図2】本発明の第2実施形態に係るEL素子の縦断面
を示した模式図である。
FIG. 2 is a schematic diagram showing a vertical cross section of an EL element according to a second embodiment of the present invention.

【図3】従来のEL素子の一例を示す模式図である。FIG. 3 is a schematic view showing an example of a conventional EL element.

【図4】従来のEL素子の他の例を示す模式図である。FIG. 4 is a schematic view showing another example of a conventional EL element.

【符号の説明】[Explanation of symbols]

1…ガラス基板、2…第1電極、3…第1絶縁層、4…
発光層、5…第2絶縁層、6…第2電極。
DESCRIPTION OF SYMBOLS 1 ... Glass substrate, 2 ... 1st electrode, 3 ... 1st insulating layer, 4 ...
Light-emitting layer, 5 ... second insulating layer, 6 ... second electrode.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性基板(1)上に、第1電極
(2)、第1絶縁層(3)、発光層(4)、第2絶縁層
(5)、第2電極(6)が順次積層され、前記第1及び
第2電極(2、6)のうち一方が走査電極(2)、他方
が信号電極(6)として構成されるドットマトリクス方
式のEL素子において、 前記第1及び第2絶縁層(3、5)のうち少なくとも一
方の絶縁層(3)の膜厚が、前記走査電極(2)の長手
方向に、電極取り出し側から順に薄くなっていることを
特徴とするEL素子。
1. A first electrode (2), a first insulating layer (3), a light emitting layer (4), a second insulating layer (5), and a second electrode (6) are provided on an insulating substrate (1). A dot matrix type EL element which is sequentially laminated and one of the first and second electrodes (2, 6) is configured as a scanning electrode (2) and the other is configured as a signal electrode (6). An EL element characterized in that the thickness of at least one of the two insulating layers (3, 5) is gradually reduced in the longitudinal direction of the scanning electrode (2) from the electrode extraction side. .
【請求項2】 前記第1及び第2絶縁層(3、5)の膜
厚は、前記走査電極(2)と前記信号電極(6)とが直
交することにより形成される発光画素のうち1つの前記
発光画素内では同一であることを特徴とする請求項1に
記載のEL素子。
2. The film thickness of the first and second insulating layers (3, 5) is one of luminescent pixels formed by the scanning electrode (2) and the signal electrode (6) being orthogonal to each other. 2. The EL device according to claim 1, wherein the light emitting pixels are the same in one of the light emitting pixels.
【請求項3】 前記第1及び第2電極(2、6)のう
ち、少なくとも前記走査電極(2)側が透明電極である
ことを特徴とする請求項1または2に記載のEL素子。
3. The EL device according to claim 1, wherein at least the scanning electrode (2) side of the first and second electrodes (2, 6) is a transparent electrode.
JP10055317A 1998-03-06 1998-03-06 El element Pending JPH11260560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10055317A JPH11260560A (en) 1998-03-06 1998-03-06 El element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10055317A JPH11260560A (en) 1998-03-06 1998-03-06 El element

Publications (1)

Publication Number Publication Date
JPH11260560A true JPH11260560A (en) 1999-09-24

Family

ID=12995186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10055317A Pending JPH11260560A (en) 1998-03-06 1998-03-06 El element

Country Status (1)

Country Link
JP (1) JPH11260560A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034586A1 (en) * 2003-10-02 2005-04-14 Kabushiki Kaisha Toyota Jidoshokki Electric field light emitting element
JP2007294441A (en) * 2006-03-31 2007-11-08 Fujifilm Corp Functional element
WO2008072520A1 (en) * 2006-12-15 2008-06-19 Panasonic Corporation Linear light-emitting device
JP2008166343A (en) * 2006-12-27 2008-07-17 Matsushita Electric Ind Co Ltd Linear light-emitting device
JP2009048808A (en) * 2007-08-15 2009-03-05 Panasonic Electric Works Co Ltd Light-emitting device
AT13715U1 (en) * 2012-04-17 2014-07-15 Tridonic Uk Ltd Organic light emitting diode array and method of making an organic light emitting diode array
EP2893773A4 (en) * 2012-09-04 2016-05-11 Lg Electronics Inc Display device using semiconductor light emitting device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034586A1 (en) * 2003-10-02 2005-04-14 Kabushiki Kaisha Toyota Jidoshokki Electric field light emitting element
JPWO2005034586A1 (en) * 2003-10-02 2007-10-04 株式会社豊田自動織機 Electroluminescent device
US7855506B2 (en) 2003-10-02 2010-12-21 Kabushiki Kaisha Toyota Jidoshokki Electric field light emitting element
JP2007294441A (en) * 2006-03-31 2007-11-08 Fujifilm Corp Functional element
WO2008072520A1 (en) * 2006-12-15 2008-06-19 Panasonic Corporation Linear light-emitting device
JPWO2008072520A1 (en) * 2006-12-15 2010-03-25 パナソニック株式会社 Linear light emitting device
JP2008166343A (en) * 2006-12-27 2008-07-17 Matsushita Electric Ind Co Ltd Linear light-emitting device
JP2009048808A (en) * 2007-08-15 2009-03-05 Panasonic Electric Works Co Ltd Light-emitting device
AT13715U1 (en) * 2012-04-17 2014-07-15 Tridonic Uk Ltd Organic light emitting diode array and method of making an organic light emitting diode array
EP2893773A4 (en) * 2012-09-04 2016-05-11 Lg Electronics Inc Display device using semiconductor light emitting device
US9711692B2 (en) 2012-09-04 2017-07-18 Lg Electronics Inc. Display device using semiconductor light emitting devices having different structures
EP3789992A1 (en) * 2012-09-04 2021-03-10 LG Electronics Inc. Display device using semiconductor light emitting devices

Similar Documents

Publication Publication Date Title
JPH0963771A (en) Organic thin film luminescent element
JP2004282066A (en) Thin film transistor and flat display element equipped with it
JP2002260843A (en) Organic light emitting device
JP4038485B2 (en) Flat panel display device with thin film transistor
JP2833282B2 (en) Electroluminescent display device and method of manufacturing the same
JPH11260560A (en) El element
JP2000173768A (en) Thin-film electroluminescent device and its manufacture
JP2837007B2 (en) EL display element
JPS5829880A (en) Electric field luminescent element
JP2502560B2 (en) Method for forming dielectric film
JPH0740515B2 (en) Thin film light emitting device
JP2004014176A (en) Thermal transferring donor substrate and its manufacturing method, and organic el element using same, and display panel
JPS61121290A (en) Manufacture of thin film el element
JP3349221B2 (en) Electroluminescent device and method for manufacturing the same
JPH04190588A (en) Thin film el element
KR0170449B1 (en) Field emission display
JPS6147096A (en) Method of producing thin film el element
JPH02306591A (en) Manufacture of thin film electroluminescence element
JPH01112691A (en) Manufacture of thin film el element
JPH03236195A (en) Double-insulated thin film electroluminescence device
JP2000306682A (en) Organic el element and its manufacture
JPS62145695A (en) Thin film electroluminescence device
JPS62269986A (en) Film formation for thin film display panel
JPH01194289A (en) Membranous electroluminescence element and its manufacture
JPH11102785A (en) El element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116