JPH1125979A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JPH1125979A
JPH1125979A JP9182117A JP18211797A JPH1125979A JP H1125979 A JPH1125979 A JP H1125979A JP 9182117 A JP9182117 A JP 9182117A JP 18211797 A JP18211797 A JP 18211797A JP H1125979 A JPH1125979 A JP H1125979A
Authority
JP
Japan
Prior art keywords
secondary battery
graphite
ion secondary
lithium ion
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9182117A
Other languages
Japanese (ja)
Inventor
Hideji Sato
秀治 佐藤
Shoji Yamaguchi
祥司 山口
Nariaki Sato
成昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP9182117A priority Critical patent/JPH1125979A/en
Priority to EP98901105A priority patent/EP0917223A4/en
Priority to PCT/JP1998/000442 priority patent/WO1998034291A1/en
Publication of JPH1125979A publication Critical patent/JPH1125979A/en
Priority to US09/557,482 priority patent/US20030134201A1/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode to realize a capacity close to a theoretical capacity of graphite, imparting Li/Li<+> lithium doping and dedoping potential <=0.5 V, and excellent in a rate resistance characteristic at high speed charge and discharge. SOLUTION: The negative electrode of this battery contains at least one kind graphite martial with 4 to 40 μm of an average particle size, the ratio of the peak intensity (1B) of 1350 to 1370 cm<-1> to the peak intensity (1A) of 1570 to 1620 cm<-1> in Raman spectrum analysis of 0.001 to 0.07, and the peak half width Δv of 1570 to 1620 cm<-1> of 14 to 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池に関する。更に詳しくは、高容量で、急速放電特
性が優れ、且つ充放電電位特性も優れたリチウム二次電
池に関するものである。
The present invention relates to a lithium ion secondary battery. More specifically, the present invention relates to a lithium secondary battery having high capacity, excellent rapid discharge characteristics, and excellent charge / discharge potential characteristics.

【0002】[0002]

【従来の技術】近年、電子機器の小型化に伴い高容量の
二次電池の高容量化が望まれている。そのためニッケル
・カドミウム、ニッケル・水素電池に比べ、よりエネル
ギー密度の高いリチウムイオン二次電池が注目されてい
る。その負極材料としては、最初にリチウム金属を用い
ることが試みられたが、充放電を繰り返すうちにデンド
ライト状のリチウムが析出してセパレータを貫通して、
正極にまで達し、短絡して発火事故を起こす可能性があ
ることが判明した。そのため、現在では、充放電過程に
おける非水溶媒の出入りを層間で行ない、リチウム金属
の析出を防止できる炭素材料を負極材料として使用する
ことが注目されている。
2. Description of the Related Art In recent years, high-capacity secondary batteries have been desired to have higher capacities as electronic devices have become smaller. Therefore, lithium-ion secondary batteries having higher energy density than nickel-cadmium and nickel-metal hydride batteries have been attracting attention. As the negative electrode material, it was first attempted to use lithium metal, but while repeating charge and discharge, dendritic lithium was deposited and penetrated the separator,
It was found that the battery could reach the positive electrode and cause a short circuit and cause a fire accident. Therefore, at present, attention has been paid to use of a carbon material capable of preventing the deposition of lithium metal by allowing a non-aqueous solvent to enter and exit during a charge / discharge process between layers, as a negative electrode material.

【0003】この炭素材料としては、特開昭57−20
8079に、黒鉛材料を使用することが提案されてい
る。特に、結晶性のよい黒鉛をリチウム二次電池用の炭
素負極材料として用いると、黒鉛のリチウム吸蔵の理論
容量である372mAh/gに近い容量が得られ、材料
として好ましいことは知られていた。しかしながら、黒
鉛の結晶性を測定するための主たる手段として、これま
で多く用いられてきたのはX線回折法であり、この方法
は、たとえば焼成温度などの違いに基づく炭素材料の物
性の違いを観察するには適しているが、黒鉛材料内の違
い、特に高結晶性の黒鉛材料を分類するには不適であっ
た。たとえば、ここから求められる炭素層面間距離のパ
ラメーターd002は、高結晶性の黒鉛材料間では3.
357〜3.360Åとほとんど有為な差がなく、同じ
くX線回折法から求められる炭素ベーサル方向の結晶子
の大きさを表すLa、炭素積層方向の結晶子の大きさを
表すLcは、高結晶性黒鉛をサンプルとした場合には、
数値測定の限界を超えることから、材料の正確な比較が
できなかった。
As this carbon material, Japanese Patent Application Laid-Open No. 57-20
8079 proposes the use of a graphite material. In particular, it has been known that when graphite having good crystallinity is used as a carbon negative electrode material for a lithium secondary battery, a capacity close to 372 mAh / g, which is the theoretical capacity of lithium storage of graphite, is obtained, which is preferable as a material. However, an X-ray diffraction method that has been often used as a main means for measuring the crystallinity of graphite is a method that uses a difference in the physical properties of a carbon material based on a difference in, for example, a firing temperature. Although suitable for observation, it was not suitable for classifying the differences among graphite materials, especially for highly crystalline graphite materials. For example, the parameter d002 of the distance between carbon layer planes determined from this is 3.2 between highly crystalline graphite materials.
There is almost no significant difference from 357 to 3.360 °, and La representing the crystallite size in the carbon basal direction and Lc representing the crystallite size in the carbon stacking direction also obtained by X-ray diffraction are high. When using crystalline graphite as a sample,
Exceeding the limits of the numerical measurements did not allow an accurate comparison of the materials.

【0004】一方、黒鉛の理論容量より大きな低温焼成
アモルファス炭素の容量は、カットオフ電位の設定によ
っては500mAh/g程度と大きくすることも可能だ
が、この場合、リチウムイオン脱ドープ時の時の電位が
黒鉛のそれに比べて著しく高く、しかも充電時と放電時
の電位特性に大きなヒステリシスを有しているため、正
極との電位差がとりにくく、結果として大容量、大電力
の電池が得られないという問題があった。また、初回充
放電時に大きな容量損失を招くことも問題であった。更
に、急速充電時に著しい容量の低下を引き起こすことも
判明した。
On the other hand, the capacity of low-temperature calcined amorphous carbon larger than the theoretical capacity of graphite can be increased to about 500 mAh / g depending on the setting of the cut-off potential. In this case, the potential at the time of lithium ion undoping is used. Is significantly higher than that of graphite, and has a large hysteresis in the potential characteristics during charging and discharging, making it difficult to obtain a potential difference from the positive electrode. As a result, a large capacity, high power battery cannot be obtained. There was a problem. There is also a problem that a large capacity loss is caused at the time of initial charge / discharge. Further, it has been found that a rapid decrease in capacity causes a remarkable decrease in capacity.

【0005】また、今後これまで正極活物質として広く
用いられてきたLiCoO2 に代わり、LiNiO2
容量、価格更に原料物質の埋蔵量の面でリチウム二次電
池用正極材として新たに期待されてきているが、この物
質はLiCoO2 よりもLi/Li+ に対する電位が低
く、負極との電位差が取りにくくなる。そこでLiNi
2 の利点を生かすためには、Li/Li+ に対しより
0Vに近い電位で高容量を発現できる負極材料が必要に
なってきた。さらに、リチウム二次電池の用途によって
は、例えば、電気自動車積載用などの用途として急速の
再充電を必要とされる場合も十分に考えられ、これには
耐レート特性に優れた電極材料を用いる必要が生じてき
た。
In addition, LiNiO 2 is expected to be newly used as a positive electrode material for a lithium secondary battery in terms of capacity, price and reserves of raw materials, instead of LiCoO 2 which has been widely used as a positive electrode active material in the future. However, this substance has a lower potential with respect to Li / Li + than LiCoO 2, making it difficult to obtain a potential difference with the negative electrode. So LiNi
In order to take advantage of O 2, a negative electrode material that can exhibit high capacity at a potential closer to 0 V than Li / Li + has been required. Further, depending on the use of the lithium secondary battery, for example, it may be sufficiently considered that rapid recharging is required as an application for loading on an electric vehicle or the like, and for this, an electrode material having excellent rate resistance characteristics is used. The need has arisen.

【0006】[0006]

【発明が解決しようとしている課題】本発明の目的は、
アモルファス炭素を用いた場合に比較して、リチウムド
ープ、脱ドープ時の電位の変化がLi/Li+ の電位に
近く、且つ充放電による電位ヒステリシスを持たないた
め、正極電位との差を取りやすい黒鉛系材料をリチウム
二次電池用の負極材料として用いるリチウムイオン二次
電池を提供することである。
SUMMARY OF THE INVENTION The object of the present invention is to
Compared to the case where amorphous carbon is used, the change in potential during lithium doping and undoping is close to the potential of Li / Li + and has no potential hysteresis due to charge and discharge, so that a difference from the positive electrode potential is easily obtained. An object of the present invention is to provide a lithium ion secondary battery using a graphite-based material as a negative electrode material for a lithium secondary battery.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記課題
解決のため鋭意検討した結果、数ある黒鉛材料を実際に
リチウム二次電池用負極として電池に組み、容量評価な
どの電気化学的諸物性を測定する前に、あらかじめ負極
として用いる黒鉛粉体の粒径測定、及びラマン分光分析
を行い、それらの測定で得られた数値から、負極容量や
高速の充放電に対する耐レート特性が予測できることを
発見した。更に、数多くの黒鉛粉体材料の内、負極容量
や高速の充放電に対する耐レート特性に優れるものは、
前記測定法に於いて特定数値をとるものに限定され、そ
れらの具体例としては、(1)高結晶性の天然黒鉛や人
造黒鉛、キッシュ黒鉛、(2)天然黒鉛、人造黒鉛、或
いは膨張黒鉛の2000℃以上での再熱処理品、に多く
見られることを見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, assembling a large number of graphite materials into a battery as a negative electrode for a lithium secondary battery, and performing electrochemical evaluation such as capacity evaluation. Before measuring various physical properties, the particle size of the graphite powder used as the negative electrode was measured in advance and Raman spectroscopy was performed, and the values obtained from those measurements were used to predict the negative electrode capacity and the high-speed charge-discharge resistance characteristics. I discovered what I could do. Furthermore, among many graphite powder materials, those having excellent negative electrode capacity and high rate resistance characteristics against high-speed charge and discharge,
The measurement method is limited to those taking specific numerical values, and specific examples thereof include (1) highly crystalline natural graphite, artificial graphite, quiche graphite, (2) natural graphite, artificial graphite, and expanded graphite. Of the reheated product at 2000 ° C. or higher, and completed the present invention.

【0008】即ち、本発明は、特定粒径範囲、ラマン分
光測定で特定のR値を持つ黒鉛材料を負極として用いた
ことを特徴とするリチウムイオン二次電池に関するもの
であり、正極と、非水電解液と、セパレーター、及びリ
チウムを充放電可能な炭素材料を用いた負極を備えたリ
チウムイオン二次電池において、上記負極が、平均粒径
が4〜40μmで、且つ波長5145Åのアルゴンイオ
ンレーザー光を用いたラマンスペクトル分析において、
1570〜1620cm-1の範囲に存在するピークの強
度をIA、1350〜1370cm-1の範囲に存在する
ピークの強度をIBとしたとき、その比であるR値(=
IB/IA)が、0.001以上0.07以下であり、
かつ、1570〜1620cm-1に存在するピークの半
値幅である△v値の大きさが、14〜22である黒鉛材
料を一種以上含有することを特徴とするリチウムイオン
二次電池を要旨とする。
That is, the present invention relates to a lithium ion secondary battery characterized in that a graphite material having a specific particle size range and a specific R value measured by Raman spectroscopy is used as a negative electrode. In a lithium ion secondary battery including a water electrolyte, a separator, and a negative electrode using a carbon material capable of charging and discharging lithium, the negative electrode has an average particle diameter of 4 to 40 μm and an argon ion laser having a wavelength of 5145 °. In Raman spectrum analysis using light,
When the intensity of a peak existing in the range of 1570~1620cm -1 IA, the intensity of a peak existing in the range of 1350 -1 was IB, R value is the ratio (=
IB / IA) is 0.001 or more and 0.07 or less,
In addition, a gist of a lithium ion secondary battery is characterized in that the magnitude of the Δv value, which is the half width of the peak existing at 1570 to 1620 cm −1 , contains one or more graphite materials of 14 to 22. .

【0009】[0009]

【発明の実施の形態】以下、発明の詳細を述べる。 「黒鉛材料」黒鉛粉体の種類としては、それらの黒鉛の
性状が分かっている場合は、高結晶性の天然黒鉛、高結
晶性の人造黒鉛、又は天然黒鉛や人造黒鉛の再熱処理
品、キッシュ黒鉛、膨張黒鉛の再熱処理品、或いはこれ
らの黒鉛の高純度精製品が好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below. "Graphite material" As for the type of graphite powder, if the properties of the graphite are known, high-crystalline natural graphite, high-crystalline artificial graphite, or reheated natural graphite or artificial graphite, quiche A reheated product of graphite or expanded graphite, or a high-purity purified product of such graphite is preferred.

【0010】黒鉛材料粉体の種類としては、(1)高結
晶性の天然黒鉛や人造黒鉛、キッシュ黒鉛、(2)天然
黒鉛、人造黒鉛、或いは膨張黒鉛の2000℃以上での
再熱処理品、更に、上記具体例(1)、(2)と同等の
性能を持つ黒鉛を黒鉛化可能な有機物原料から黒鉛化を
行うことで得る場合は、(3)軟ピッチから硬ピッチま
でのコールタールピッチ、或いは乾留液化油などの石炭
系重質油、常圧残油、減圧残油の直流系重質油、原油、
ナフサなどの熱分解時に副生するエチレンタール等分解
系重質油の石油系重質油、さらにアセナフチレン、デカ
シクレン、アントラセンなどの芳香族炭化水素、フェナ
ジンやアクリジンなどの窒素含有環状化合物、チオフェ
ンなどの硫黄含有環状化合物、ビフェニルやテルフェニ
ルなどのポリフェニレン、ポリ塩化ビニル、ポリビニル
アルコール、主鎖に窒素原子を有するポリアクリロニト
リルなどの高分子、セルロースや糖類などの天然高分
子、ポリフェニレンサイルファイド、ポリフェニレンオ
キシド等の熱可塑性樹脂、フルフリルアルコール樹脂、
フェノール−ホルムアルデヒド樹脂、イミド樹脂等の熱
硬化性樹脂などから選ばれる1種以上の有機物を250
0℃以上3200℃以下の焼成温度で黒鉛化したもの、
(4)上記(3)の黒鉛化可能な有機物をリチウム、ベ
リリウム、ホウ素、マグネシウム、アルミニウム、珪
素、カリウム、カルシウム、チタン、バナジウム、クロ
ム、マンガン、銅、亜鉛、ニッケル、白金、パラジウ
ム、コバルト、ルテニウム、錫、鉛、鉄、ゲルマニウ
ム、ジルコニウム、モリブデン、銀、バリウム、タンタ
ル、タングステン、レニウム、金から選ばれる少なくと
も一種以上の粉体或いは薄膜などの触媒存在下で、40
0℃以上2000℃以下で焼成することで黒鉛化したも
のが選択可能である。加えて、(5)黒鉛粉体の粒径測
定、及びラマン分光分析を行い、その数値結果が高い負
極容量や高速の充放電に対する耐レート特性を期待でき
るような、ある一定の範囲内の数値をとる黒鉛材料でな
くても、それらの材料を改めて2000℃以上3200
℃以下の温度で再焼成処理することで、焼成後の材料の
持つ粒径とラマン分光から得られる数値を一定範囲に納
めることができれば、その様な材料も選択可能である
[0010] The types of graphite material powders include (1) highly crystalline natural graphite, artificial graphite, quiche graphite, (2) natural graphite, artificial graphite, or expanded graphite reheated at 2000 ° C or higher; Further, when graphite having performance equivalent to those of the specific examples (1) and (2) is obtained by graphitization from a graphitizable organic material, (3) coal tar pitch from soft pitch to hard pitch Or coal-based heavy oil such as dry-distilled liquefied oil, normal pressure residual oil, DC heavy oil of reduced pressure residual oil, crude oil,
Petroleum heavy oil such as ethylene tar by-produced during thermal decomposition of naphtha etc., and aromatic hydrocarbons such as acenaphthylene, decacyclene, anthracene, nitrogen-containing cyclic compounds such as phenazine and acridine, and thiophene Sulfur-containing cyclic compounds, polyphenylenes such as biphenyl and terphenyl, polyvinyl chloride, polyvinyl alcohol, polymers such as polyacrylonitrile having a nitrogen atom in the main chain, natural polymers such as cellulose and saccharides, polyphenylene sulfide, polyphenylene oxide, etc. Thermoplastic resin, furfuryl alcohol resin,
250 or more kinds of organic substances selected from thermosetting resins such as phenol-formaldehyde resin and imide resin.
Graphitized at a firing temperature of 0 ° C. or more and 3200 ° C. or less,
(4) The graphitizable organic substance of (3) is lithium, beryllium, boron, magnesium, aluminum, silicon, potassium, calcium, titanium, vanadium, chromium, manganese, copper, zinc, nickel, platinum, palladium, cobalt, In the presence of a catalyst such as at least one powder or thin film selected from ruthenium, tin, lead, iron, germanium, zirconium, molybdenum, silver, barium, tantalum, tungsten, rhenium, and gold, 40
Graphite obtained by firing at 0 ° C. or more and 2000 ° C. or less can be selected. In addition, (5) the particle size of the graphite powder is measured and Raman spectroscopy is performed, and the numerical result is a numerical value within a certain range that can be expected to have a high negative electrode capacity and a high withstand rate characteristic with respect to high-speed charge and discharge. Even if it is not a graphite material to take the
By recalcining at a temperature of ℃ or less, if the particle size of the fired material and the value obtained from Raman spectroscopy can be kept within a certain range, such a material can be selected.

【0011】「黒鉛材料の測定方法」黒鉛材料の粒径の
測定には、レーザー回折法、電気抵抗式法、CCD高感
度カメラの写真イメージの処理による粒径直接評価法な
どが利用できるが、該黒鉛粉体の粒子の大きさとして
は、その平均粒径が4〜40μm、より好ましくは7〜
30μmであるものが好ましい。
"Measurement method of graphite material" The particle size of graphite material can be measured by a laser diffraction method, an electric resistance method, a direct particle size evaluation method by processing a photographic image of a CCD high-sensitivity camera, etc. As the size of the particles of the graphite powder, the average particle size is 4 to 40 μm, more preferably 7 to 40 μm.
Those having a thickness of 30 μm are preferred.

【0012】本発明で使用できる黒鉛材料は、波長51
45Åのアルゴンイオンレーザー光を用いたラマンスペ
クトル分析を行い、1570〜1620cm-1の範囲に
存在するピークの強度をIA、1350〜1370cm
-1の範囲に存在するピークの強度をIBとしたとき、そ
の比であるR値(=IB/IA)が、0.07以下であ
り、且つ、1570〜1620cm-1に存在するピーク
の半値幅である△v 値の大きさが、14以上22以下で
あるものをリチウム二次電池用の負極黒鉛材料として用
いる。R値が0.06以下であり、且つ△v値が21.
0以下であるものは更に好ましい。最も好ましくはR値
が0.05以下で△v値が20.3以下である。
The graphite material usable in the present invention has a wavelength of 51.
A Raman spectrum analysis using a 45 ° argon ion laser beam was performed, and the intensity of the peak existing in the range of 1570 to 1620 cm −1 was determined by IA, 1350 to 1370 cm
Assuming that the intensity of the peak existing in the range of -1 is IB, the R value (= IB / IA), which is the ratio, is 0.07 or less and is half of the peak existing in 1570 to 1620 cm -1. A material having a Δv value of 14 to 22 is used as a negative graphite material for a lithium secondary battery. R value is 0.06 or less, and Δv value is 21.
What is 0 or less is more preferable. Most preferably, the R value is 0.05 or less and the Δv value is 20.3 or less.

【0013】本発明における黒鉛材料では、これ以外の
物性値は必ずしも必要ではないが、他の黒鉛材料の性状
を規定する他の物性値を併記するとすれば、X線回折に
よる(002)面の面間隔d002が3.37Å以下で
あり、BET法を用いて測定した比表面積が13m2
g以下、より好ましくは25m2 /g以下である粒子が
好ましい。
In the graphite material of the present invention, other physical property values are not necessarily required. However, if other physical property values defining the properties of the other graphite material are also described, the (002) plane of the X-ray diffraction can be described. The plane spacing d002 is 3.37 ° or less, and the specific surface area measured by the BET method is 13 m 2 /
g or less, and more preferably 25 m 2 / g or less.

【0014】次に本発明の負極の製造方法について説明
する。本発明の電極の製造方法は上記の黒鉛材料を負極
として使用する限り、限定無く、従来公知の方法が採用
可能である。例えば、負極材としての該黒鉛材料粉体及
び正極材に、結着剤、溶媒等を加えて、スラリー状と
し、銅箔等の金属製の集電体の基板にスラリーを塗布・
乾燥することで電極とする。また、該電極材料をそのま
まロール成形、圧縮成形等の方法で電極の形状に成形す
ることもできる。
Next, a method for manufacturing the negative electrode of the present invention will be described. The method for producing the electrode of the present invention is not limited, and any conventionally known method can be adopted as long as the above graphite material is used as the negative electrode. For example, a binder, a solvent, and the like are added to the graphite material powder and the cathode material as the anode material to form a slurry, and the slurry is applied to a metal current collector substrate such as a copper foil.
The electrode is obtained by drying. Further, the electrode material can be directly formed into an electrode shape by a method such as roll molding or compression molding.

【0015】上記の目的で使用できる結着剤としては、
溶媒に対して安定な、ポリエチレン、ポリプロピレン、
ポリエチレンテレフタレート、芳香族ポリアミド、セル
ロース等の樹脂系高分子、スチレン・ブタジエンゴム、
イソプレンゴム、ブタジエンゴム、エチレン・プロピレ
ンゴム等のゴム状高分子、スチレン・ブタジエン・スチ
レンブロック共重合体、その水素添加物、スチレン・エ
チレン・ブタジエン・スチレン共重合体、スチレン・イ
ソプレン・スチレンブロック共重合体、その水素添加物
等の熱可塑性エラストマー状高分子、シンジオタクチッ
ク1,2−ポリブタジエン、エチレン・酢酸ビニル共重
合体、プロピレン・α−オレフィン(炭素数2〜12)
共重合体等の軟質樹脂状高分子、ポリフッ化ビニリデ
ン、ポリテトラフルオロエチレン、ポリテトラフルオロ
エチレン・エチレン共重合体等のフッ素系高分子、アル
カリ金属イオン、特にリチウムイオンのイオン伝導性を
有する高分子組成物が挙げられる。
[0015] As the binder that can be used for the above purpose,
Solvent-stable, polyethylene, polypropylene,
Polyethylene terephthalate, aromatic polyamide, resin-based polymers such as cellulose, styrene-butadiene rubber,
Rubber-like polymers such as isoprene rubber, butadiene rubber, and ethylene / propylene rubber, styrene / butadiene / styrene block copolymers, hydrogenated products thereof, styrene / ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers Polymers, thermoplastic elastomeric polymers such as hydrogenated products thereof, syndiotactic 1,2-polybutadiene, ethylene / vinyl acetate copolymer, propylene / α-olefin (2 to 12 carbon atoms)
Soft resinous polymers such as copolymers, fluorine-based polymers such as polyvinylidene fluoride, polytetrafluoroethylene, polytetrafluoroethylene / ethylene copolymers, and alkali metal ions, particularly lithium ions Molecular compositions.

【0016】上記のイオン伝導性を有する高分子として
は、ポリエチレンオキシド、ポリプロピレンオキシド等
のポリエーテル系高分子化合物、ポリエーテル化合物の
架橋体高分子、ポリエピクロルヒドリン、ポリフォスフ
ァゼン、ポリシロキサン、ポリビニルピロリドン、ポリ
ビニリデンカーボネート、ポリアクリロニトリル等の高
分子化合物に、リチウム塩、またはリチウムを主体とす
るアルカリ金属塩を複合させた系、あるいはこれにプロ
ピレンカーボネート、エチレンカーボネート、γ−ブチ
ロラクトン等の高い誘電率を有する有機化合物を配合し
た系を用いることができる。この様な、イオン伝導性高
分子組成物の室温におけるイオン導電率は、好ましくは
10-5S/cm以上、より好ましくは10-3S/cm以
上である。
Examples of the polymer having ion conductivity include polyether polymer compounds such as polyethylene oxide and polypropylene oxide, crosslinked polymers of polyether compounds, polyepichlorohydrin, polyphosphazene, polysiloxane, polyvinylpyrrolidone, and the like. Polyvinylidene carbonate, a polymer compound such as polyacrylonitrile, a lithium salt, or a system in which an alkali metal salt mainly composed of lithium is combined, or propylene carbonate, ethylene carbonate, having a high dielectric constant such as γ-butyrolactone A system containing an organic compound can be used. The ionic conductivity of such an ion-conductive polymer composition at room temperature is preferably 10 -5 S / cm or more, more preferably 10 -3 S / cm or more.

【0017】本発明に用いる黒鉛粉体と上記の結着剤と
の混合形式としては、各種の形態をとることができる。
即ち、両者の粒子が混合した形態、繊維状の結着剤が炭
素質物の粒子に絡み合う形で混合した形態、または結着
剤の層が炭素質物の粒子表面に付着した形態などが挙げ
られる。炭素質物と上記結着剤との混合割合は、炭素質
物に対し、好ましくは0.1〜30重量%、より好まし
くは、0.5〜10重量%である。これ以上の量の結着
剤を添加すると、電極の内部抵抗が大きくなり、好まし
くなく、これ以下の量では集電体と炭素質粉体の結着性
に劣る。
The graphite powder used in the present invention and the above-mentioned binder can be mixed in various forms.
That is, a form in which both particles are mixed, a form in which a fibrous binder is entangled with the carbonaceous material particles, or a form in which a binder layer is attached to the surface of the carbonaceous material particles are exemplified. The mixing ratio of the carbonaceous material and the binder is preferably 0.1 to 30% by weight, more preferably 0.5 to 10% by weight, based on the carbonaceous material. If the binder is added in an amount larger than this, the internal resistance of the electrode increases, which is not preferable. If the amount is smaller than this, the binding property between the current collector and the carbonaceous powder is poor.

【0018】こうして作製した負極板と以下に説明する
電解液、正極板を、その他の電池構成要素であるセパレ
ータ、ガスケット、集電体、封口板、セルケース等と組
み合わせて二次電池を構成する。作成可能な電池は筒
型、角型、コイン型等特に限定されるものではないが、
基本的にはセル床板上に集電体と負極材料を乗せ、その
上に電解液とセパレータを、更に負極と対向するように
正極を乗せ、ガスケット、封口板と共にかしめて二次電
池とする。
The secondary battery is constructed by combining the negative electrode plate thus produced, the electrolyte solution described below, and the positive electrode plate with other battery components such as a separator, a gasket, a current collector, a sealing plate, and a cell case. . The batteries that can be created are not particularly limited, such as cylindrical, square, coin type,
Basically, a current collector and a negative electrode material are placed on a cell floor plate, an electrolytic solution and a separator are further placed thereon, and a positive electrode is placed on the cell floor plate so as to face the negative electrode.

【0019】電解液用に使用できる非水溶媒としては、
プロピレンカーボネート、エチレンカーボネート、ジエ
チルカーボネート、ジメチルカーボネート、エチルメチ
ルカーボネート、1,2−ジメトキシエタン、γ−ブチ
ロラクトン、テトラヒドロフラン、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、スルホラン、1,
3−ジオキソラン等の有機溶媒の単独、または二種類以
上を混合したものを用いることができる。
Non-aqueous solvents that can be used for the electrolyte include:
Propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, 1,
A single organic solvent such as 3-dioxolane or a mixture of two or more organic solvents can be used.

【0020】これらの溶媒に0.5〜2.0M程度のL
iClO4 、LiPF6 、LiBF 4 、LiCF3 SO
3 、LiAsF6 、LiCl、LiBr等の電解質を溶
解して電解液とする。また、リチウムイオン等のアルカ
リ金属カチオンの導電体である高分子固体電解質を、用
いることもできる。
In these solvents, L of about 0.5 to 2.0 M is added.
iCLOFour , LiPF6 , LiBF Four , LiCFThree SO
Three , LiAsF6 Dissolve electrolytes such as LiCl, LiBr, etc.
Disassemble and use as electrolyte. Alkaline such as lithium ion
Uses solid polymer electrolytes that are conductors of metal cations.
Can also be.

【0021】正極体の材料は、特に限定されないが、リ
チウムイオンなどのアルカリ金属カチオンを充放電時に
吸蔵、放出できる金属カルコゲン化合物からなることが
好ましい。その様な金属カルコゲン化合物としては、バ
ナジウムの酸化物、バナジウムの硫化物、モリブデンの
酸化物、モリブデンの硫化物、マンガンの酸化物、クロ
ムの酸化物、チタンの酸化物、チタンの硫化物及びこれ
らの複合酸化物、複合硫化物等が挙げられる。好ましく
は、Cr38 、V25 、V513、VO2、Cr2
5 、MnO2 、TiO2 、MoV28 、TiS2
25 MoS2、MoS3 VS2 、Cr0.250.75
2 、Cr0.50.52 等である。また、LiMY2
(Mは、Co、Ni等の遷移金属YはO、S等のカルコ
ゲン化合物)、LiM24 (MはMn、YはO)、W
3 等の酸化物、CuS、Fe0.25 0.752 、Na
0.1 CrS2 等の硫化物、NiPS3 、FePS3 等の
リン、硫黄化合物、VSe2 、NbSe3 等のセレン化
合物等を用いることもできる。これらを負極材と同様、
結着剤と混合して集電体の上に塗布して正極板とする。
電解液を保持するセパレーターは、一般的に保液性に優
れた材料であり、例えば、ポリオレフィン系樹脂の不織
布や多孔性フィルムなどを使用して、上記電解液を含浸
させる。
Although the material of the positive electrode body is not particularly limited,
When charging and discharging alkali metal cations such as
It can be made of metal chalcogen compounds that can be inserted and released
preferable. Such metal chalcogen compounds include
Nadium oxide, vanadium sulfide, molybdenum
Oxide, molybdenum sulfide, manganese oxide, black
Oxide, titanium oxide, titanium sulfide and the like
These complex oxides, complex sulfides and the like can be mentioned. Preferably
Is CrThree O8 , VTwo OFive , VFive O13, VOTwo, CrTwo 
OFive , MnOTwo , TiOTwo , MoVTwo O8 , TiSTwo V
Two SFive MoSTwo, MoSThree VSTwo , Cr0.25V0.75S
Two , Cr0.5 V0.5 STwo And so on. Also, LiMYTwo 
(M is a transition metal such as Co, Ni, etc. Y is O, S, etc.
Gen compound), LiMTwo YFour (M is Mn, Y is O), W
OThree Oxides such as CuS, Fe0.25V 0.75STwo , Na
0.1 CrSTwo Such as sulfide, NiPSThree , FePSThree Etc.
Phosphorus, sulfur compound, VSeTwo , NbSeThree And other selenization
Compounds and the like can also be used. These, like the negative electrode material,
A positive electrode plate is formed by mixing with a binder and applying the mixture on a current collector.
The separator that holds the electrolyte generally has excellent liquid retention properties.
Material, for example, non-woven polyolefin resin
Impregnate the above electrolyte with cloth or porous film
Let it.

【0022】[0022]

【実施例】次に実施例により本発明を更に詳細に説明す
るが、本発明はこれらの例によってなんら限定されるも
のではない。 「電極材料の評価方法」黒鉛材料の粒径測定はレーザー
回折式粒径評価装置により行い、自動的に算出される平
均粒径を評価基準に用いた。ラマンスペクトル測定は、
日本分光NR−1800により行い、波長5145Åの
アルゴンイオンレーザー光を、30mWの強度で照射し
た。ここでは1570〜1620cm-1の範囲に存在す
るピークの強度および1350〜1370cm-1の範囲
に存在するピークの強度を測定し、これらから得られる
R値、及び1570〜1620cm-1に存在するピーク
の半値幅である△v値を求めた。
Next, the present invention will be described in more detail by way of examples, which should not be construed as limiting the present invention. "Evaluation method of electrode material" The particle size of the graphite material was measured by a laser diffraction type particle size evaluation device, and the automatically calculated average particle size was used as an evaluation standard. Raman spectrum measurement
The measurement was performed by JASCO Corporation NR-1800, and an argon ion laser beam having a wavelength of 5145 ° was irradiated at an intensity of 30 mW. This measures the intensity of the peaks present in the intensity and extent of 1350 -1 peaks present in the range of 1570~1620Cm -1, there R values obtained from these, and 1570~1620Cm -1 peak The Δv value, which is the half-value width, was determined.

【0023】負極充放電容量、高速充放電による耐レー
ト特性、及び電位−容量曲線測定等の電気化学的測定は
以下の様に行った。結着剤を用いペレット状に成形した
上記の負極材料を、セパレーター、電解液と共に、対極
をリチウム金属とした半電池とし、2016コインセル
中に組み立て、充放電試験機で評価した。
Electrochemical measurements such as negative electrode charge / discharge capacity, rate resistance characteristics by high-speed charge / discharge, and potential-capacity curve measurement were performed as follows. The above-described negative electrode material formed into a pellet using a binder was assembled together with a separator and an electrolytic solution into a half-cell having a counter electrode of lithium metal, assembled in a 2016 coin cell, and evaluated by a charge / discharge tester.

【0024】(実施例1)まず、マダガスカル産天然黒
鉛(サンプルa)、中国産天然黒鉛(サンプルb)、イ
ンド産天然黒鉛(サンプルc)、Lonza社製人造黒
鉛(サンプルd)、同社の人造黒鉛を2000℃で再熱
処理した品(サンプルe)、中国産天然黒鉛粗精製品
(サンプルf)、中国産天然黒鉛高純度精製品(サンプ
ルg)、中国産天然黒鉛高純度精製品の2000℃再熱
処理品(サンプルh)、鋳鉄炉産出黒鉛(キッシュ黒
鉛)(サンプルi)、または日本黒鉛社製天然黒鉛(サ
ンプルj)等の黒鉛粉体の内、粒径測定において平均粒
径が7〜30μmのものを選別した。
(Example 1) First, natural graphite from Madagascar (sample a), natural graphite from China (sample b), natural graphite from India (sample c), artificial graphite from Lonza (sample d), artificial graphite from the company Reheat-treated graphite at 2000 ° C (sample e), crude natural graphite from China (sample f), high purity natural graphite from China (sample g), high purity natural graphite from China at 2000 ° C Among graphite powders such as reheated product (sample h), graphite produced from cast iron furnace (quiche graphite) (sample i), and natural graphite (sample j) manufactured by Nippon Graphite Co., Ltd., the average particle size is 7 to Those having a size of 30 μm were selected.

【0025】次に、波長5145Åのアルゴンイオンレ
ーザー光を用いたラマンスペクトル分析において、15
70〜1620cm-1の範囲に存在するピークの強度を
IA、1350〜1370cm-1の範囲に存在するピー
クの強度をIBとしたとき、その比であるR値(=IB
/IA)が、0.001以上0.07以下であり、か
つ、1570〜1620cm-1に存在するピークの半値
幅である△v値の大きさが、14以上22以下である黒
鉛材料に限定し、サンプル粉体とした。
Next, in Raman spectrum analysis using an argon ion laser beam having a wavelength of 5145 °, 15
When the intensity of a peak existing in the range of 70~1620cm -1 IA, the intensity of a peak existing in the range of 1350 -1 was IB, R value is the ratio (= IB
/ IA) is 0.001 or more and 0.07 or less, and the magnitude of the Δv value which is the half width of the peak existing at 1570 to 1620 cm -1 is 14 or more and 22 or less. Then, a sample powder was obtained.

【0026】上記の選別操作により、使用可能な黒鉛サ
ンプルはサンプルe、h、iに絞られた。これらの電極
材料サンプル5gに、ポリフッ化ビニリデン(PVd
F)のジメチルアセトアミド溶液を固形分換算で10重
量%加えたものを攪拌し、スラリーを得た。このスラリ
ーを銅箔上に塗布し、80℃で予備乾燥を行った。さら
に圧着させたのち、直径20mmの円盤状に打ち抜き、
110℃で減圧乾燥をして電極とした。
By the above-described sorting operation, usable graphite samples were narrowed down to samples e, h, and i. To 5 g of these electrode material samples, polyvinylidene fluoride (PVd
A solution obtained by adding 10% by weight of a dimethylacetamide solution of F) in terms of solid content was stirred to obtain a slurry. This slurry was applied on a copper foil and pre-dried at 80 ° C. After further crimping, punching into a disk shape with a diameter of 20 mm,
The electrode was dried at 110 ° C. under reduced pressure.

【0027】得られた電極に対し、電解液を含浸させた
ポリプロピレン製セパレーターをはさみ、リチウム金属
電極に対向させたコイン型セルを作製し、充放電試験を
行った。電解液には、エチレンカーボネートとジエチル
カーボネートを容量比1:1の比率で混合した溶媒に過
塩素酸リチウムを1.0mol/Lの割合で溶解させた
ものを用いた。
With respect to the obtained electrode, a separator made of polypropylene impregnated with an electrolytic solution was sandwiched, and a coin-shaped cell facing the lithium metal electrode was prepared, and a charge / discharge test was performed. As the electrolytic solution, a solution in which lithium perchlorate was dissolved at a ratio of 1.0 mol / L in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was used.

【0028】基準充放電試験は、電流密度0.16mA
/cm2 で極間電位差が0Vになるまでドープを行い、
電流密度0.33mA/cm2 で極間電位差が1.5V
になるまで脱ドープを行った。高速充放電に対する耐レ
ート試験は、電流密度0.16mA/cm2 で極間電位
差が0Vになるまでドープを行い、それぞれ電流密度
2.8mA/cm2 、及び電流密度5.6mA/cm2
で極間電位差が1.5Vになるまで脱ドープを行った。
In the standard charge / discharge test, the current density was 0.16 mA.
/ Cm 2 until the potential difference between the electrodes becomes 0 V,
A current density of 0.33 mA / cm 2 and a potential difference between the electrodes of 1.5 V
Dedoping was performed until. Resistance rate test for high-speed charging and discharging, the current density interelectrode potential difference 0.16 mA / cm 2 performs the dope until to 0V, and each current density 2.8 mA / cm 2, and a current density of 5.6 mA / cm 2
Undoped until the potential difference between the electrodes became 1.5 V.

【0029】容量値は、コイン型セル3個について各々
充放電試験を行い、その第4回サイクルのドープ容量、
脱ドープ容量、及び2.8mA/cm2 、5.6mA/
cm 2 でのそれぞれの脱ドープ容量を平均して評価し
た。その第4回サイクルのドープ容量、脱ドープ容量、
及び2.8mA/cm2 、5.6mA/cm2 でのそれ
ぞれの脱ドープ容量を、平均粒径、ラマンスペクトルか
ら得られたR値、及び△v値とともに表1に示す。
The capacitance values for each of the three coin cells were
A charge / discharge test was performed, and the doping capacity of the fourth cycle was determined.
Dedoping capacity, and 2.8 mA / cmTwo , 5.6 mA /
cm Two Average and evaluate the undoping capacity of each
Was. The doping capacity and undoping capacity of the fourth cycle,
And 2.8 mA / cmTwo 5.6 mA / cmTwo In it
Each undoping capacity is determined by the average particle size and Raman spectrum.
Table 1 shows the obtained R value and Δv value together.

【0030】(比較例1)実施例1と同様に測定した黒
鉛粉末の平均粒径が、上記実施例1 の範囲に無い黒鉛粉
末を電極材料として用いた他は、実施例1と同様の操作
を行った(サンプルk)。その初回サイクル及び第4回
サイクルのドープ容量、脱ドープ容量、及び初回充放電
効率を表1に示すその第4回サイクルのドープ容量、脱
ドープ容量、及び2.8mA/cm2 、5.6mA/c
2 でのそれぞれの脱ドープ容量を、平均粒径、ラマン
スペクトルから得られたR値、及び△v値とともに表1
に示す。
(Comparative Example 1) The same operation as in Example 1 was carried out except that graphite powder whose average particle diameter measured in the same manner as in Example 1 was not in the range of Example 1 above was used as an electrode material. (Sample k). The doping capacity, undoping capacity, and initial charge / discharge efficiency of the first cycle and the fourth cycle are shown in Table 1, and the doping capacity, undoping capacity, and 2.8 mA / cm 2 , 5.6 mA of the fourth cycle are shown in Table 1. / C
Table 1 shows the respective undoping capacities at m 2 along with the average particle size, the R value obtained from the Raman spectrum, and the Δv value.
Shown in

【0031】(比較例2)実施例1と同様に測定した黒
鉛粉末の平均粒径は、上記実施例1 の範囲内にあるもの
の、実施例1と同様に測定したラマンスペクトルから算
出されるR値、及び△v 値は、上記実施例1 の範囲に無
い黒鉛粉末を電極材料として用いた他は、実施例1と同
様の操作を行った(サンプルl )。その第4回サイクル
のドープ容量、脱ドープ容量、及び2.8mA/cm
2 、5.6mA/cm2 でのそれぞれの脱ドープ容量
を、平均粒径、ラマンスペクトルから得られたR値、及
び△v値とともに表1に示す。
Comparative Example 2 Although the average particle size of the graphite powder measured in the same manner as in Example 1 is within the range of the above-described Example 1, R is calculated from the Raman spectrum measured in the same manner as in Example 1. The values and Δv values were the same as in Example 1 except that graphite powder not in the range of Example 1 was used as an electrode material (sample l). Its fourth cycle doping capacity, undoping capacity, and 2.8 mA / cm
2 and 5.6 mA / cm 2 are shown in Table 1 along with the average particle diameter, the R value obtained from the Raman spectrum, and the Δv value.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】本発明に係わる負極材料は、以下の優れ
た点を有することが明らかになった。 (1)黒鉛のリチウムイオン吸蔵の理論容量(372m
Ah/g)に近い負極容量を発現できる。 (2)Li/Li+ に対し+0.5V以下で平坦な電位
特性を示す。 (3)高速の充放電における耐レート特性に優れる。 即ち、本発明のリチウムイオン二次電池用負極は、黒鉛
の理論容量に近い容量を発現しながら、その電位は、L
i/Li+ に対し0.5V以下のリチウムドープ、脱ド
ープ電位を与え高速充放電時の耐レート特性に優れるも
のである。
It has been found that the negative electrode material according to the present invention has the following excellent points. (1) The theoretical capacity of graphite to store lithium ions (372 m
Ah / g). (2) Flat potential characteristics at +0.5 V or less with respect to Li / Li + . (3) It has excellent rate resistance characteristics in high-speed charge and discharge. That is, while the negative electrode for a lithium ion secondary battery of the present invention develops a capacity close to the theoretical capacity of graphite, its potential becomes L
A lithium doping and undoping potential of 0.5 V or less is applied to i / Li + to provide excellent withstand rate characteristics during high-speed charging and discharging.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極と、非水電解液と、セパレーター、
及びリチウムを充放電可能な炭素材料を用いた負極を備
えたリチウムイオン二次電池において、 上記負極が、平均粒径が4〜40μmで、且つ波長51
45Åのアルゴンイオンレーザー光を用いたラマンスペ
クトル分析において、 1570〜1620cm-1の範囲に存在するピークの強
度をIA、1350〜1370cm-1の範囲に存在する
ピークの強度をIBとしたとき、その比であるR値(=
IB/IA)が、0.001以上0.07以下であり、
かつ、1570〜1620cm-1に存在するピークの半
値幅である△v値の大きさが、14〜22である黒鉛材
料を一種以上含有することを特徴とするリチウムイオン
二次電池。
1. A positive electrode, a non-aqueous electrolyte, a separator,
And a lithium ion secondary battery including a negative electrode using a carbon material capable of charging and discharging lithium, wherein the negative electrode has an average particle diameter of 4 to 40 μm, and a wavelength of 51 to 50 μm.
In Raman spectrum analysis using an argon ion laser beam of 45 Å, when the intensity of the peaks present in the range of 1570~1620cm -1 IA, the intensity of a peak existing in the range of 1350 -1 was IB, its R value (= ratio)
IB / IA) is 0.001 or more and 0.07 or less,
A lithium ion secondary battery comprising at least one graphite material having a Δv value, which is a half width of a peak existing at 1570 to 1620 cm −1 , of 14 to 22.
【請求項2】 黒鉛材料が、コールタールピッチ、石炭
系重質油、石油系重質油、芳香族炭化水素、窒素含有環
状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ
塩化ビニル、ポリビニルアルコール、ポリアクリロニト
リル、天然高分子、ポリフェニレンサイルファイド、ポ
リフェニレンオキシド、フルフリルアルコール樹脂、フ
ェノール−ホルムアルデヒド樹脂、イミド樹脂から選ば
れる1種以上の有機物を2500℃以上3200℃以下
の焼成温度で黒鉛化したものであることを特徴とする請
求項1記載のリチウムイオン二次電池。
2. The graphite material is coal tar pitch, coal-based heavy oil, petroleum-based heavy oil, aromatic hydrocarbon, nitrogen-containing cyclic compound, sulfur-containing cyclic compound, polyphenylene, polyvinyl chloride, polyvinyl alcohol, poly (vinyl alcohol), One or more organic substances selected from acrylonitrile, natural polymer, polyphenylene sulfide, polyphenylene oxide, furfuryl alcohol resin, phenol-formaldehyde resin, and imide resin are graphitized at a firing temperature of 2500 ° C to 3200 ° C. The lithium ion secondary battery according to claim 1, wherein:
【請求項3】 黒鉛材料が、コールタールピッチ、石炭
系重質油、石油系重質油、芳香族炭化水素、窒素含有環
状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ
塩化ビニル、ポリビニルアルコール、ポリアクリロニト
リル、天然高分子、ポリフェニレンサイルファイド、ポ
リフェニレンオキシド、フルフリルアルコール樹脂、フ
ェノール−ホルムアルデヒド樹脂、イミド樹脂から選ば
れる1種以上の有機物を触媒の存在下に、400℃以上
2000℃以下の焼成温度で黒鉛化したものであること
を特徴とする請求項1記載のリチウムイオン二次電池。
3. The graphite material is coal tar pitch, coal-based heavy oil, petroleum-based heavy oil, aromatic hydrocarbon, nitrogen-containing cyclic compound, sulfur-containing cyclic compound, polyphenylene, polyvinyl chloride, polyvinyl alcohol, or poly (vinyl alcohol). Acrylonitrile, natural polymer, polyphenylene sulfide, polyphenylene oxide, furfuryl alcohol resin, phenol-formaldehyde resin, one or more organic substances selected from imide resins, in the presence of a catalyst, at a firing temperature of 400 ° C or more and 2000 ° C or less. The lithium ion secondary battery according to claim 1, wherein the lithium ion secondary battery is graphitized.
【請求項4】 触媒が、リチウム、ベリリウム、ホウ
素、マグネシウム、アルミニウム、珪素、カリウム、カ
ルシウム、チタン、バナジウム、クロム、マンガン、
銅、亜鉛、ニッケル、白金、パラジウム、コバルト、ル
テニウム、錫、鉛、鉄、ゲルマニウム、ジルコニウム、
モリブデン、銀、バリウム、タンタル、タングステン、
レニウム、金から選ばれる少なくとも一種以上の粉体或
いは薄膜であることを特徴とする請求項3記載のリチウ
ムイオン二次電池。
4. A catalyst comprising lithium, beryllium, boron, magnesium, aluminum, silicon, potassium, calcium, titanium, vanadium, chromium, manganese,
Copper, zinc, nickel, platinum, palladium, cobalt, ruthenium, tin, lead, iron, germanium, zirconium,
Molybdenum, silver, barium, tantalum, tungsten,
The lithium ion secondary battery according to claim 3, wherein the lithium ion secondary battery is at least one kind of powder or thin film selected from rhenium and gold.
【請求項5】 黒鉛材料が、平均粒径が4〜40μm
で、且つ波長5145Åのアルゴンイオンレーザー光を
用いたラマンスペクトル分析において、1570〜16
20cm-1の範囲に存在するピークの強度をIA、13
50〜1370cm-1の範囲に存在するピークの強度を
IBとしたとき、その比であるR値(=IB/IA)
が、0.07より大きいか、或いは1570〜1620
cm-1に存在するピークの半値幅である△v値の大きさ
が22より大きい原料黒鉛材料を、2000℃以上32
00℃以下の温度で焼成したものであることを特徴とす
る請求項1記載のリチウムイオン二次電池。
5. The graphite material has an average particle size of 4 to 40 μm.
And in Raman spectrum analysis using argon ion laser light having a wavelength of 5145 °, 1570 to 16
The intensity of the peak existing in the range of 20 cm -1 was determined as IA, 13
When the intensity of a peak existing in the range of 50 to 1370 cm -1 is defined as IB, an R value (= IB / IA) which is a ratio thereof
Is greater than 0.07 or 1570-1620
A raw graphite material having a Δv value, which is a half-width of a peak existing at cm −1 , greater than 22 is 2,000 ° C.
The lithium-ion secondary battery according to claim 1, wherein the battery is fired at a temperature of 00 ° C or less.
JP9182117A 1997-02-04 1997-07-08 Lithium ion secondary battery Pending JPH1125979A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9182117A JPH1125979A (en) 1997-07-08 1997-07-08 Lithium ion secondary battery
EP98901105A EP0917223A4 (en) 1997-02-04 1998-02-03 Lithium ion secondary battery
PCT/JP1998/000442 WO1998034291A1 (en) 1997-02-04 1998-02-03 Lithium ion secondary battery
US09/557,482 US20030134201A1 (en) 1997-02-04 2000-04-24 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9182117A JPH1125979A (en) 1997-07-08 1997-07-08 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH1125979A true JPH1125979A (en) 1999-01-29

Family

ID=16112638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9182117A Pending JPH1125979A (en) 1997-02-04 1997-07-08 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH1125979A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329142A (en) * 1991-08-08 1994-07-12 Kabushiki Kaisha Toshiba Self turn-off insulated-gate power semiconductor device with injection-enhanced transistor structure
JP2002050356A (en) * 2000-05-26 2002-02-15 Ube Ind Ltd Secondary battery electrode material and its manufacturing method
JP2012089531A (en) * 2012-01-30 2012-05-10 Sony Corp Nonaqueous electrolyte secondary battery and carbon material for nonaqueous electrolyte secondary battery
JP2013227189A (en) * 2012-03-30 2013-11-07 Jfe Chemical Corp Method for manufacturing graphite material and lithium ion secondary battery thereof
US8637187B2 (en) 2004-06-30 2014-01-28 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
US9707317B2 (en) 2004-07-19 2017-07-18 Smith & Nephew, Inc. Pulsed current sintering for surfaces of medical implants
CN110085863A (en) * 2019-04-26 2019-08-02 桑顿新能源科技有限公司 Graphite cathode material and preparation method thereof, battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329142A (en) * 1991-08-08 1994-07-12 Kabushiki Kaisha Toshiba Self turn-off insulated-gate power semiconductor device with injection-enhanced transistor structure
JP2002050356A (en) * 2000-05-26 2002-02-15 Ube Ind Ltd Secondary battery electrode material and its manufacturing method
US8637187B2 (en) 2004-06-30 2014-01-28 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
US9707317B2 (en) 2004-07-19 2017-07-18 Smith & Nephew, Inc. Pulsed current sintering for surfaces of medical implants
JP2012089531A (en) * 2012-01-30 2012-05-10 Sony Corp Nonaqueous electrolyte secondary battery and carbon material for nonaqueous electrolyte secondary battery
JP2013227189A (en) * 2012-03-30 2013-11-07 Jfe Chemical Corp Method for manufacturing graphite material and lithium ion secondary battery thereof
CN110085863A (en) * 2019-04-26 2019-08-02 桑顿新能源科技有限公司 Graphite cathode material and preparation method thereof, battery
CN110085863B (en) * 2019-04-26 2024-03-12 桑顿新能源科技有限公司 Graphite negative electrode material, preparation method thereof and battery

Similar Documents

Publication Publication Date Title
EP0871233B1 (en) Non-aqueous electrolyte secondary battery
KR101395403B1 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JP3633257B2 (en) Lithium ion secondary battery
US6146790A (en) Non-aqueous electrolyte secondary cell
KR20190049585A (en) An active material for an anode, an anode comprising the same and an electrochemical device comprising the same
KR20170007140A (en) Anode active material comprising mixed graphite, negative electrode comprising thereof and lithium secondary battery using the negative electrode
JP5402974B2 (en) Non-aqueous electrolyte for secondary battery and secondary battery using the same
KR20140135697A (en) Negative-electrode active material for non-aqueous secondary battery, and negative electrode and non-aqueous secondary battery using said active material
JP4595931B2 (en) Negative electrode material for lithium secondary battery and negative electrode sheet produced therefrom
KR20170030518A (en) Cathode for lithium batteries
JP3969164B2 (en) Negative electrode material for lithium secondary battery and negative electrode body produced therefrom
US20030134201A1 (en) Lithium ion secondary battery
KR20190076706A (en) Composite negative electrode active material for lithium secondary battery, an anode comprising the same, and the lithium secondary battery comprising the anode
JPWO2006082708A1 (en) Positive electrode for secondary battery, method for producing the same, and secondary battery
JP2007165292A (en) Nonaqueous electrolyte for secondary battery, and secondary battery using it
KR102028936B1 (en) Negative electrode and lithium ion secondary battery for lithium ion secondary battery
CN114068924A (en) Negative electrode active material and lithium secondary battery comprising same
JPH1125979A (en) Lithium ion secondary battery
KR20180127092A (en) lithium secondary battery
JP2004363076A (en) Battery
JPH10284081A (en) Lithium ion secondary battery
JP2003272621A (en) Negative electrode material for lithium secondary battery and negative electrode sheet manufactured from it
JP2002237302A (en) Lithium ion secondary battery wherein natural product- originated carbon is used as negative electrode
JP2002198038A (en) Manufacturing method of metal doped carbonaceous thin- film negative electrode for nonaqueous electrolyte secondary cell, metal doped carbonaceous thin-film negative electrode for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell using above
JPH10270080A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002