JPH11258191A - 炭酸濃度測定方法及び装置 - Google Patents

炭酸濃度測定方法及び装置

Info

Publication number
JPH11258191A
JPH11258191A JP7493198A JP7493198A JPH11258191A JP H11258191 A JPH11258191 A JP H11258191A JP 7493198 A JP7493198 A JP 7493198A JP 7493198 A JP7493198 A JP 7493198A JP H11258191 A JPH11258191 A JP H11258191A
Authority
JP
Japan
Prior art keywords
water
carbonic acid
concentration
conductivity
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7493198A
Other languages
English (en)
Inventor
Madoka Tanabe
円 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP7493198A priority Critical patent/JPH11258191A/ja
Publication of JPH11258191A publication Critical patent/JPH11258191A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

(57)【要約】 【課題】 半導体デバイス製造工程で使用される洗浄用
純水の製造工程中、炭酸濃度が比較的高く、且つ炭酸以
外の塩類が少ない水中の該炭酸濃度を、簡便な操作で、
且つ迅速に測定する方法及び装置を提供すること。 【解決手段】 水素イオン形強酸性陽イオン交換樹脂塔
3及び試料水流量検出部4を備えた試料水導入配管21
と、これに合流する希釈水流量検出部6を備えた希釈水
注入配管22と、希釈された試料水の導電率を測定する
導電率検出部5と、該二つの流量検出部4、6と該導電
率検出部5の信号から試料水中の炭酸濃度を算出する演
算部7と、算出した炭酸濃度を表示する表示部8と、を
有する炭酸濃度測定装置10。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、例えば、半導体デ
バイス製造工程で使用される洗浄用純水の製造工程中、
炭酸濃度が比較的高く、且つ炭酸以外の塩類が少ない水
中の該炭酸濃度を、簡便な操作で、且つ迅速に測定する
方法及び装置に関するものである。
【0002】
【従来の技術】純水製造装置には種々の形式のものがあ
る。その中で、井水、工業用水などの原水を直接又は除
濁などの前処理をした後、逆浸透膜装置で処理するもの
がある。これは前段逆浸透膜装置方式と呼ばれ、この方
式は後段に更に配置されるイオン交換樹脂装置や電気式
脱イオン水製造装置などの脱塩装置の負荷を低減すると
共に、原水に含まれる有機物や微粒子を除去するもので
ある。また、超純水製造装置の二次純水系では、紫外線
酸化装置、精製カラムを設置し、被処理水をこの順序で
通水することがある。すなわち、被処理水中の有機物を
紫外線酸化により有機酸と炭酸に分解し、該有機酸を精
製カラムで除去するものである。
【0003】しかし、逆浸透膜装置では被処理水中に溶
存する炭酸を除去することができない。また、紫外線酸
化装置では処理水中に炭酸を排出する。したがって、こ
れらの透過水又は処理水中には、炭酸が溶存することと
なる。これらの炭酸は、イオン状のみならず中性分子状
の炭酸ガスも溶存しており、後段の脱塩装置にはこれら
中性分子状の炭酸ガスを含めてすべてがイオン負荷とな
る。このため、後段の脱塩装置の仕様や運転方法を適切
なものとするためには、逆浸透膜装置の透過水や紫外線
酸化装置の処理水中の炭酸濃度を正確に把握することが
重要である。
【0004】これら水中の炭酸は、炭酸イオン、炭酸水
素イオン、中性分子である炭酸ガスなどの形態で存在し
ている。このため、これらを測定する際には、外気と接
触を避けるため、試料水を測定設備に直接導入するイン
ライン測定とする必要がある。従来、炭酸濃度をインラ
インで測定可能な測定装置としては、イオンクロマト
法、有機炭素と無機炭素を個別に測定可能なTOC計を
用いて無機炭素濃度のみを測定する方法及び炭酸濃度に
応じて電気抵抗値が変化することを利用した導電率計を
用いる方法などが知られている。
【0005】
【発明が解決しようとする課題】しかしながら、イオン
クロマト法や、TOC計を用いる方法はいずれも高価な
測定装置を必要とし、また、その装置を運転するために
は校正作業や必要な試薬の調製作業などの煩雑な作業が
必要であった。特に、純水製造装置の動作に異常が生じ
た場合には工場の生産などへの影響を最小限に押さえて
早期回復を図るために、装置内各所における水質分析を
迅速に行う必要があるが、これら従来の方法では準備作
業が煩雑であり、迅速な対応は困難であった。また、導
電率計を用いる方法は、簡便な方法ではあるものの、炭
酸と共存する他の塩類の影響があること、さらに炭酸の
量が多い非希薄系では誤差が大きく実用的ではないなど
の問題があった。
【0006】したがって、本発明の目的は、例えば、半
導体デバイス製造工程で使用される洗浄用純水の製造工
程中、炭酸濃度が比較的高く、且つ炭酸以外の塩類が少
ない水中の該炭酸濃度を、簡便な操作で、且つ迅速に測
定する方法及び装置を提供することにある。
【0007】
【課題を解決するための手段】かかる実情において、本
発明者は鋭意検討を行った結果、純水製造工程中、逆浸
透膜装置の透過水及び紫外線照射装置の処理水は、炭酸
濃度が高く、且つ炭酸と共存する他の塩類が少ないこ
と、該透過水及び処理水中の炭酸濃度を希釈して特定の
濃度範囲とすれば、炭酸濃度を導電率計で精度よく測定
できることを見出し、本発明を完成するに至った。すな
わち、本発明は、逆浸透膜装置の透過水中の炭酸濃度を
測定する方法において、該透過水を、水素イオン形強酸
性陽イオン交換樹脂に接触させた後、該接触水を高純度
水で希釈し、その希釈液の導電率の値から炭酸イオンを
算出する炭酸濃度測定方法を提供するものである。な
お、導電率の逆数が抵抗率であり、例えば、導電率0.
1μS/cmが抵抗率10M Ω・cmに相当する。比較的高純
度の水は数字を大きく表現できる抵抗率で表示すること
があるが、本発明においては導電率と抵抗率は同義語と
して扱う。本発明によれば、逆浸透膜装置の透過水中、
後段の脱塩装置の負荷イオンとなる炭酸ガス、炭酸イオ
ン及び炭酸水素ナトリウムなどのうち、炭酸水素ナトリ
ウムは、水素イオン形強酸性陽イオン交換樹脂により炭
酸に変化するため、導電率計5での測定値をより正確に
炭酸濃度へ変換できる。このため、後段の脱塩装置の負
荷量を決定する精度が向上する。また、試料水中、炭酸
以外の陰イオン成分は炭酸濃度と比較して無視できる濃
度であるが、高純度水の希釈によって該陰イオン成分は
更に低濃度となるため、導電率計での測定精度がより高
められる。
【0008】また、本発明は、紫外線酸化装置の処理水
中の炭酸濃度を測定する方法において、該処理水を高純
度水で希釈し、その希釈液の導電率の値から炭酸イオン
を算出する炭酸濃度測定方法を提供するものである。本
発明によれば、紫外線酸化装置の処理水中の炭酸濃度を
簡便な操作で、且つ迅速に測定できる。したがって、後
段の脱塩装置の負荷量を決定する精度が向上する。
【0009】
【発明の実施の形態】次に、本発明の第1の実施の形態
における炭酸濃度測定方法について、図面を参照して説
明する。図1は、本発明の第1の実施の形態における炭
酸濃度測定装置10を組み込んだ一部の純水製造装置9
を示すブロック図である。純水製造装置9は、逆浸透膜
装置1と、脱塩装置2とから構成される。被処理水は逆
浸透膜装置1に供給され、有機物や微粒子が除去され
る。次いで、透過水はイオン交換樹脂や電気式脱イオン
水製造装置などの脱塩装置2に供給され処理されて純水
となる。
【0010】次に、逆浸透膜装置1の透過水の炭酸濃度
を測定する。すなわち、逆浸透膜装置1の透過水の一部
は、試料水として炭酸濃度測定装置10に導かれる。逆
浸透膜装置1の透過水の水質としては、典型的には炭酸
約10ppm 、Na2ppm 以下、Ca0.5ppm 以下、M
g0.5ppm 以下、鉱酸2ppm 以下である。炭酸濃度測
定装置10は、水素イオン形強酸性陽イオン交換樹脂塔
3及び試料水流量検出部4を備えた試料水導入配管21
と、これに合流する希釈水流量検出部6を備えた希釈水
注入配管22と、希釈された試料水の導電率を測定する
導電率計5と、該二つの流量検出部4、6と該導電率計
5の信号から試料中の炭酸濃度を算出する演算部7と、
算出した炭酸濃度を表示する表示部8と、から構成され
ている。まず、試料水は試料水導入配管21を通して水
素イオン形強酸性陽イオン交換樹脂塔3に供給される。
ここで、炭酸水素ナトリウムはナトリウムイオンがイオ
ン交換されることにより、炭酸となる。水素イオン形強
酸性陽イオン交換樹脂塔3の出口水は希釈水注入配管2
2を通して供給される希釈水と合流され、導電率検出部
5で希釈された試料水の導電率が測定される。希釈水と
しては、高純度水を用いればよく、例えば抵抗率10M
Ω・cm以上、特に17.5MΩ・cm以上の純水が好まし
い。また、水素イオン形強酸性陽イオン交換樹脂塔3の
設置位置としては、上記の他、試料水と希釈水の合流点
から導電率計5までの間としてもよい。
【0011】希釈倍率及び導電率の算出方法を次に示
す。図2a、図2b、図2cは炭酸濃度と、水の導電率
あるいは抵抗率との関係を示した図である。この関係図
は一般に知られており、純水に炭酸のみが溶解している
場合における水のイオン積、炭酸の解離平衡などから作
成されたものである。本第1の実施の形態における逆浸
透膜装置1の透過水の導電率は図2a中、A点で示され
る。すなわち、A点付近は炭酸濃度と導電率との関係が
飽和状態(傾斜のない平坦な曲線)にあり、わずかな導
電率の変動で炭酸濃度が大きく変わる誤差の大きい領域
にある。本発明においては、該試料水を高純度水で希釈
することにより、炭酸濃度の変化に対して、導電率の変
化が大きい、換言すれば、炭酸による導電率の寄与が大
きい濃度領域で導電率の測定を行うことができること、
更に、このような希釈により、低導電率の水にすること
で、導電率検出部に、より測定精度の高い抵抗率計を使
用することができることにより、炭酸濃度の定量精度の
向上が図られると共に、共存する他の陰イオンが導電率
(抵抗率)に影響しない濃度まで希釈されるので、共存
イオンによる妨害の少ない測定が可能である。希釈の程
度としては、例えば、図2a中、合流水の導電率が1.
25μS/cm以下(炭酸濃度が1ppm 以下)の領域に入る
ように希釈すればよく、好ましくは、図2b中、炭酸濃
度0.250ppm以下となるように希釈するとよく、より好ま
しくは、図2c中、合流水の抵抗率7.00〜17.00 MΩ・
cmの範囲(炭酸濃度0.0025〜0.0250ppm の範囲)となる
ように希釈すればよい。具体的には、逆浸透膜装置の透
過水を抵抗率18MΩ・cmの純水で希釈する場合、希釈
倍率は5〜4000倍程度である。
【0012】導電率計5により求められた合流水の炭酸
濃度値は、演算部7に入力され試料水の炭酸濃度が算出
される。すなわち、試料水の炭酸濃度は合流水の導電率
から算出された炭酸濃度に、該試料水の希釈倍率である
(V1 +V2)/ V1 の値を乗じて算出される。V1(L/h)
は試料水の流量検出部4で求められる流量を示し、V
2(L/h)は希釈水の流量検出部6で求められる流量を示
す。また、該炭酸濃度値などは表示部8に表示される。
【0013】本第1の実施の形態における炭酸濃度測定
方法によれば、逆浸透膜装置1の透過水中、後段の脱塩
装置2の負荷イオンとなる炭酸ガス、炭酸イオン及び炭
酸水素ナトリウムなどのうち、炭酸水素ナトリウムは、
水素イオン形強酸性陽イオン交換樹脂3により炭酸に変
化するため、導電率計5での測定値をより正確に炭酸濃
度へ変換できる。このため、後段の脱塩装置2の負荷量
を決定する精度が向上する。また、試料水中、炭酸以外
の陰イオン成分は炭酸濃度と比較して無視できる濃度で
あるが、高純度水の希釈によって該陰イオン成分は更に
低濃度となるため、導電率計5での測定精度がより高め
られる。
【0014】本発明の第2の実施の形態における炭酸濃
度測定方法について、図3を参照して説明する。図3
は、本発明の第2の実施の形態における炭酸濃度測定装
置20を組み込んだ一部の精製水製造装置19を示すブ
ロック図である。図1と同一の構成要素には同一の符号
を付してその説明を省略し、異なる点について主に述べ
る。すなわち、図3において図1と異なる点は、精製水
製造工程19が二次純水系の特定の工程である点及び炭
酸濃度測定装置20に水素イオン形強酸性陽イオン交換
樹脂塔を用いない点にある。精製水製造工程19は、例
えば半導体製造工程で使用される洗浄用超純水製造装置
の二次純水系の一部に使用されるもので、紫外線酸化装
置11と、精製カラム(カートリッジ式混床ポリッシャ
ー)12とから構成される。有機物を含有する被処理水
は185nm付近の波長を照射可能な紫外線酸化装置11
により、有機酸と炭酸に分解される。紫外線酸化装置1
1の処理水の一部は、試料水として炭酸濃度測定装置装
置20に導かれる。
【0015】次に、紫外線酸化装置11の処理水中の炭
酸濃度を測定する。紫外線酸化装置11の処理水の水質
としては、典型的には炭酸約0.05ppm 、その他の塩
類は0.005ppm 以下である。炭酸濃度装置測定装置
20は、試料水流量検出部4を備えた試料水導入配管2
1と、これに合流する希釈水流量検出部6を備えた希釈
水注入配管22と、希釈された試料水の導電率を測定す
る導電率計5と、該二つの流量検出部4、6と該導電率
計5の信号から試料中の炭酸濃度を算出する演算部7
と、算出した炭酸濃度を表示する表示部8と、から構成
されている。試料水導入配管21を通して供給される試
料水は、希釈水注入配管22を通して供給される希釈水
と合流され、導電率検出部5で合流水の導電率が測定さ
れる。以後の炭酸濃度測定方法は第1の実施の形態と同
様である。なお、紫外線酸化装置11の処理水を抵抗率
18MΩ・cmの純水で希釈する場合、希釈倍率は2〜2
0倍程度である。
【0016】本第2の実施の形態における炭酸濃度測定
方法によれば、紫外線酸化装置11の処理水中の炭酸濃
度を簡易な操作方法で、且つ迅速に求めることができ
る。このため、後段の精製カラム12の負荷量を決定す
る精度が向上する。
【0017】本発明の炭酸濃度測定装置は、純水製造工
程の所望の場所に組み込まれて利用される。その利用例
について図4を参照して説明する。図4は本発明の炭酸
濃度測定装置10を組み込んだ純水製造装置29のブロ
ック図である。被処理水は、前段逆浸透膜装置13、後
段逆浸透膜装置1、脱塩装置2の順序で通水される。ま
た、前段逆浸透膜装置13と後段逆浸透膜装置1との接
合管23にアルカリを添加するアルカリ添加手段14を
設け、被処理水中の炭酸を中和する。また、後段逆浸透
膜装置1の出口水の一部を試料水として炭酸濃度測定装
置10に導入し、その測定結果を調節器15にフィード
バックして添加するアルカリ量を調整する。炭酸濃度測
定装置10は前記第1の実施の形態で用いたものと同様
のものが使用できる。また、アルカリ添加手段14とし
ては、図では省略するが、例えばアルカリ溶液貯槽と注
入ポンプで構成されるものであればよい。アルカリとし
ては、アルカリ金属、アミン類など水に溶解した時にア
ルカリ性を示す物質を任意に選択でき、例えば水酸化ナ
トリウム、水酸化カリウムが好ましい。
【0018】本利用例によれば、前段逆浸透膜装置13
の透過水にアルカリを添加して、高pHとすることによ
り、後段逆浸透膜装置1で炭酸を効率よく除去すること
ができる。そして、原水変動などにより炭酸の量が増減
しても、炭酸濃度測定装置の測定値をフィードバックし
てアルカリ添加手段を制御するため、理想的なアルカリ
添加をすることができ、薬品類の無駄な消費がなくなる
と共に、後段逆浸透膜装置1の透過水のイオン量を最も
少ない値とすることができる。
【0019】本利用例において、逆浸透膜装置は上記2
段の他、3段以上の多段としてもよい。この場合、炭酸
濃度測定装置10に導入する試料水の採取場所として
は、第2段目以降の逆浸透膜装置の処理水であればよ
い。
【0020】
【実施例】次に、実施例を挙げて、本発明を更に具体的
に説明する。 実施例1 下記仕様の装置、機器類並びに希釈水を用い、図1に示
す炭酸濃度測定装置を構成した。なお、試料水は逆浸透
膜装置の透過水の典型的な組成を再現するため、大気中
の炭酸が飽和濃度で溶解し、炭酸濃度が0.5ppm で抵
抗率が1.2MΩ・cmの純水に、重炭酸ナトリウムを1
9.1ppm 、硝酸ナトリウムを1.37ppm 添加して、
予め炭酸濃度が約10ppm となるように調製したものを
使用した。試料水の流量は0.1L/h 、希釈水の流量は
300L/h (希釈倍率3001倍)とした。測定の結
果、合流水の抵抗率は15.5MΩ・cmであり、試料水
から算出される炭酸濃度は10.5ppm であり、実際の
値とよく近似していた。
【0021】(炭酸濃度測定装置) ・水素イオン形陽イオン交換樹脂塔;アンバーライトES
G-K 、通水流速SV100 ・導電率計;AQ−11(電気化学計器社製) ・流量測定部;微量流量センサー(日本フローセル社
製) ・希釈水;18.2MΩ・cmの純水 ・演算部及び表示部;パーソナルコンピュータ
【0022】比較例1 水素イオン形陽イオン交換樹脂塔を省略した以外は、実
施例1と同様の方法により行った。測定の結果、合流水
の抵抗率は17.2MΩ・cmであり、本抵抗率から算出
される試料水の炭酸濃度は3.96ppm であり、実施例
1と比較して、誤差が大であった。
【0023】実施例2 超純水製造装置の二次純水系における紫外線酸化装置の
処理水の典型的な組成を再現するため、試料水として、
TOCが1.00ppb で抵抗率が18.2MΩ・cmの超
純水に、メタノールを添加して、TOC濃度を19.2
4ppb とし、紫外線酸化装置(TDFL-4;千代田工販社
製)に照射量0.48kW・h/m3で通水して、TOC濃度
1.54ppb 、抵抗率4.12MΩ・cmの処理水を試料
水としたこと、水素イオン形強酸性陽イオン交換樹脂塔
を省略したこと、及び希釈水流量を減少させ、希釈倍率
を5倍としたこと以外は、実施例1と同様の方法で行っ
た。上記紫外線酸化装置前後のTOCの減少分がすべて
炭酸に分解されたとすると、0.0649ppm の炭酸が
処理水に含まれる計算となる。測定の結果、合流水の抵
抗率は10.2MΩ・cmであり、炭酸濃度は0.063
4ppm であり、よく近似していた。
【0024】
【発明の効果】本発明によれば、例えば、半導体デバイ
ス製造工程で使用される洗浄用純水の製造工程中、炭酸
濃度が比較的高く、且つ炭酸以外の塩類が少ない逆浸透
膜装置の透過水又は紫外線酸化装置の処理水中の該炭酸
濃度を、簡便な操作で、且つ迅速に測定することができ
る。このため、後段の脱塩装置の負荷量を決定する精度
が向上し、該脱塩装置の設計や交換時期など運転の指針
に有用な情報を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態における炭酸濃度測
定装置を組み込んだ純水製造装置のブロック図を示す。
【図2】炭酸濃度と導電率又は抵抗率との関係を示す図
であり、図2aは横軸の炭酸濃度を0 〜10ppm とした
図、図2bは同様に横軸を0 〜1.0ppmとした図、図2c
は横軸を0 〜0.1ppmとした図である。
【図3】本発明の第2の実施の形態における炭酸濃度測
定装置を組み込んだ精製水製造装置のブロック図を示
す。
【図4】本発明の第1の実施の形態における炭酸濃度測
定装置を利用した純水製造装置のブロック図を示す。
【符号の説明】
1、13 逆浸透膜装置 2 脱塩装置 3 水素イオン形陽イオン交換樹脂 4、6 流量検出部 5 導電率計 7 演算部 8 表示部 9 純水製造装置 10、20 炭酸濃度測定装置 11 紫外線酸化装置 12 精製カラム 14 アルカリ添加手段 15 調節器 21 試料水導入配管 22 希釈水注入配管

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 逆浸透膜装置の透過水中の炭酸濃度を測
    定する方法において、該透過水を、水素イオン形強酸性
    陽イオン交換樹脂に接触させた後、該接触水を高純度水
    で希釈し、その希釈液の導電率の値から炭酸イオンを算
    出することを特徴とする炭酸濃度測定方法。
  2. 【請求項2】 紫外線酸化装置の処理水中の炭酸濃度を
    測定する方法において、該処理水を高純度水で希釈し、
    その希釈液の導電率の値から炭酸イオンを算出すること
    を特徴とする炭酸濃度測定方法。
  3. 【請求項3】 紫外線酸化装置の処理水は、超純水製造
    装置の二次純水系の紫外線酸化装置の処理水である請求
    項2記載の炭酸濃度測定方法。
  4. 【請求項4】 試料水流量検出部を備えた試料水導入配
    管と、これに合流する希釈水流量検出部を備えた希釈水
    注入配管と、希釈された試料水の導電率を測定する導電
    率検出部と、該二つの流量検出部と該導電率検出部の信
    号から試料水中の炭酸濃度を算出する演算部と、算出し
    た炭酸濃度を表示する表示部と、を有することを特徴と
    する炭酸濃度測定装置。
  5. 【請求項5】 更に、前記試料水導入配管中、前記導電
    率検出部までのいずれかの位置に水素イオン形強酸性陽
    イオン交換樹脂塔を設置することを特徴とする請求項4
    記載の炭酸濃度測定装置。
JP7493198A 1998-03-09 1998-03-09 炭酸濃度測定方法及び装置 Pending JPH11258191A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7493198A JPH11258191A (ja) 1998-03-09 1998-03-09 炭酸濃度測定方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7493198A JPH11258191A (ja) 1998-03-09 1998-03-09 炭酸濃度測定方法及び装置

Publications (1)

Publication Number Publication Date
JPH11258191A true JPH11258191A (ja) 1999-09-24

Family

ID=13561605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7493198A Pending JPH11258191A (ja) 1998-03-09 1998-03-09 炭酸濃度測定方法及び装置

Country Status (1)

Country Link
JP (1) JPH11258191A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201476A (ja) * 2000-01-20 2001-07-27 Sumitomo Metal Ind Ltd 酸濃度計および酸濃度測定法
JP2012026912A (ja) * 2010-07-26 2012-02-09 Atago:Kk 塩分濃度測定装置及び塩分濃度測定方法
CN105999764A (zh) * 2016-06-02 2016-10-12 中国科学院青海盐湖研究所 离子富集方法和离子富集装置
CN115902004A (zh) * 2022-11-08 2023-04-04 中科特肯(山东)智能科技有限公司 一种脱气氢电导率的测量装置及测量方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201476A (ja) * 2000-01-20 2001-07-27 Sumitomo Metal Ind Ltd 酸濃度計および酸濃度測定法
JP2012026912A (ja) * 2010-07-26 2012-02-09 Atago:Kk 塩分濃度測定装置及び塩分濃度測定方法
CN102495024A (zh) * 2010-07-26 2012-06-13 株式会社爱宕 盐分浓度测定装置以及盐分浓度测定方法
CN102495024B (zh) * 2010-07-26 2015-03-11 株式会社爱宕 盐分浓度测定装置以及盐分浓度测定方法
CN105999764A (zh) * 2016-06-02 2016-10-12 中国科学院青海盐湖研究所 离子富集方法和离子富集装置
CN115902004A (zh) * 2022-11-08 2023-04-04 中科特肯(山东)智能科技有限公司 一种脱气氢电导率的测量装置及测量方法
CN115902004B (zh) * 2022-11-08 2023-08-18 中科特肯(山东)智能科技有限公司 一种脱气氢电导率的测量装置及测量方法

Similar Documents

Publication Publication Date Title
JP2510368B2 (ja) 水に溶解した炭素を決定する方法及び装置
EP0871877A4 (en) PROCESS AND EQUIPMENT FOR DETERMINING DISSOLVED CARBON
Gentle et al. A compact portable flow analysis system for the rapid determination of total phosphorus in estuarine and marine waters
US20080220533A1 (en) Measuring Method for Total Organic Carbon, Measuring Method for Total Nitrogen and Measuring Apparatus for the Methods
US20210181167A1 (en) Systems and Methods for Measuring Composition of Water
CN110487851B (zh) 一种脱气氢电导率的测量***及方法
Grunwell et al. A detailed comprison of analytical methods for residual ozone measurement
JPH11258191A (ja) 炭酸濃度測定方法及び装置
CA2228337A1 (en) Method and apparatus for the measurement of dissolved carbon
JP2003302389A (ja) ホウ酸分析方法及び分析装置と超純水製造方法及び製造装置
US6472223B1 (en) Method and system for continuously monitoring and controlling a process stream
JP2018025454A (ja) 過酸化水素分析装置及び過酸化水素分析方法
KR100518267B1 (ko) 검출감도를 향상시킬 수 있는 수중 유기물 측정 방법 및 이 방법을 수행하기 위한 장치
JPH08117744A (ja) イオン交換装置のブレーク検知方法
Choi et al. On-line Measurement of Sub-ppb Level Hydrogen Peroxide in Ultrapure Water Production Process
Gordon et al. Limitations of the iodometric determination of ozone
JP2010194479A (ja) 純水製造装置
JP7243039B2 (ja) 尿素監視装置及び純水製造装置
EP0466303B1 (en) Method and system for continuously monitoring and controlling a process stream for dechlorination residual
US3457145A (en) Liquid and gas analysis
TWI841582B (zh) 用於量測水組成之系統及方法
JP3998534B2 (ja) ガス中酸素濃度測定方法およびガス中酸素濃度測定装置
JP2007240366A (ja) 全炭酸濃度測定装置及び測定方法
JP3974732B2 (ja) 海水漏洩検出装置
JPH0643156A (ja) 分解能を有する有機化合物を含有する水の試験法