JPH11254542A - Monitoring system for stereo lithographic apparatus - Google Patents

Monitoring system for stereo lithographic apparatus

Info

Publication number
JPH11254542A
JPH11254542A JP10059537A JP5953798A JPH11254542A JP H11254542 A JPH11254542 A JP H11254542A JP 10059537 A JP10059537 A JP 10059537A JP 5953798 A JP5953798 A JP 5953798A JP H11254542 A JPH11254542 A JP H11254542A
Authority
JP
Japan
Prior art keywords
resin
measuring
liquid level
output
monitoring system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10059537A
Other languages
Japanese (ja)
Inventor
Naoya Ishikawa
猶也 石川
Hajime Shiba
肇 柴
Yukitaka Kuwabara
亨貴 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10059537A priority Critical patent/JPH11254542A/en
Publication of JPH11254542A publication Critical patent/JPH11254542A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent deterioration of an operating state and of a stereo lithography by providing a measuring system exhibiting the operating state at an apparatus body, supplying its measured data to an information processor, and recording it as time series operation monitoring data of each laminate of resin. SOLUTION: A measuring system for measuring various data representing an operating state is provided in an apparatus body 10. Its measured data is supplied to an information processor 6, and recorded as time series operation monitoring data at each laminate of photo-setting resin. As the measuring system, primary and secondary side flowmeters 7, 71 are respectively provided at primary and secondary side water supply tubes 13, 15 of a cooler 11, and thermometers 72, 73, 74, 75 are respectively provided at a primary side water supply tube 13, a primary side drain tube 14, a secondary side water supply tube 5 and a secondary side drain tube 16. Meanwhile, a moisture and thermometer 79 for measuring a moisture and temperature in a room is provided. A thermometer 76 for measuring a temperature of the photo-setting resin, a level gage 77 for measuring a liquid level of the photo-setting resin, and an output meter 78 for measuring an output of the resin liquid level of a laser beam are provided in a resin tank 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ光の照射に
よって硬化する光硬化性樹脂を資材として、立体造形物
を成形する光造形装置に関し、特に装置の運転状態を監
視するためのモニタリングシステムに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical molding apparatus for molding a three-dimensional object using a photocurable resin which is cured by irradiation with a laser beam, and more particularly to a monitoring system for monitoring an operation state of the apparatus. Things.

【0002】[0002]

【従来の技術】電気機器等の各種商品の開発過程におい
ては、商品の立体モデルを作製して、デザインや動作に
ついてのチェックが行なわれるが、近年の商品のライフ
サイクルの短縮化に伴って、より短期間内に立体モデル
を作製する必要が生じている。そこで、樹脂槽内の光硬
化性樹脂の表面にレーザ光を照射して、光硬化性樹脂を
硬化させることによって立体造形物を成形する光造形装
置が開発されている(米国特許第4,575,300号、特公平5-
18704号)。
2. Description of the Related Art In the development process of various products such as electric appliances, a three-dimensional model of the product is created, and the design and operation are checked. However, with the recent shortening of the product life cycle, There is a need to create a three-dimensional model within a shorter period of time. Therefore, a laser molding device that irradiates the surface of the photocurable resin in the resin tank with a laser beam and cures the photocurable resin to form a three-dimensional molded object has been developed (U.S. Pat.No. 4,575,300, Tokuhei 5-
18704).

【0003】光造形装置においては、図8に示す様に、
樹脂槽(2)内の光硬化性樹脂(90)中に、駆動機構(3)に
よって昇降駆動される昇降テーブル(21)が水平に配置さ
れる。レーザ源には、例えばアルゴンガスレーザ等の定
常レーザ発振装置(41)が用いられ、レーザ発振装置(41)
から出射される一定光強度のレーザ光は、光学系や走査
系を内蔵したプロジェクター(4)を経て、光硬化性樹脂
(90)の表面に照射される。駆動機構(3)及びプロジェク
ター(4)には制御装置(5)が接続されている。制御装置
(5)は、CADシステム(図示省略)により設計された立
体造形物の形状データに基づき、該立体形状を高さ方向
に等間隔にスライスした等高線データを作成し、該等高
線データに基づいて、駆動機構(3)及びプロジェクター
(4)に対する制御信号を作成する。
In an optical shaping apparatus, as shown in FIG.
An elevating table (21), which is driven up and down by a driving mechanism (3), is horizontally arranged in the photocurable resin (90) in the resin tank (2). For the laser source, for example, a steady laser oscillation device (41) such as an argon gas laser is used, and the laser oscillation device (41)
Laser light of a constant light intensity emitted from the light-curing resin passes through a projector (4) with a built-in optical system and scanning system.
The surface of (90) is irradiated. A control device (5) is connected to the drive mechanism (3) and the projector (4). Control device
(5) creates contour data obtained by slicing the three-dimensional shape at equal intervals in the height direction based on shape data of a three-dimensional structure designed by a CAD system (not shown), and based on the contour data, Drive mechanism (3) and projector
Create a control signal for (4).

【0004】上記光造形装置においては、昇降テーブル
(21)が一定ピッチ(0.05〜0.3mm程度)で樹脂槽(2)
内を鉛直方向(Z方向)に降下すると共に、プロジェクタ
ー(4)から出射されるレーザ光が、昇降テーブル(21)上
に光硬化性樹脂(90)を前記等高線データに応じてX−Y
方向に走査する。これによって、昇降テーブル(21)上の
樹脂層は、前記等高線データに応じた形状に硬化し、該
硬化樹脂の積層により、最終的に所定形状の立体造形物
(9)が得られることになる。
In the above-mentioned optical shaping apparatus, the lifting table
(21) is a resin tank (2) at a constant pitch (about 0.05 to 0.3 mm)
The laser beam emitted from the projector (4) descends in the vertical direction (Z direction), and the photo-curable resin (90) is moved on the elevating table (21) on the XY table in accordance with the contour data.
Scan in the direction. As a result, the resin layer on the elevating table (21) is cured into a shape according to the contour data, and finally the three-dimensional object having a predetermined shape is formed by laminating the cured resin.
(9) is obtained.

【0005】[0005]

【発明が解決しようとする課題】ところで、光造形装置
においては、造形物(9)内の光硬化性樹脂(90)の液面位
が変動したり、光硬化性樹脂(90)に照射されるレーザ光
の出力が低下したりすると、正確な形状の造形物(9)が
得られなくなる等、造形物(9)の精度や品質が低下する
ことになる。そこで、従来の光造形装置においては、造
形物(9)内の光硬化性樹脂(90)の液面位を測定するため
の液面計や、レーザ光の液面位における出力を測定する
ための出力計が配備され、運転状態の監視が行なわれて
いる。
By the way, in the optical molding apparatus, the liquid level of the photocurable resin (90) in the molded article (9) fluctuates or the photocurable resin (90) is irradiated with the light. If the output of the laser beam is reduced, the accuracy and quality of the modeled object (9) will be reduced, for example, the modeled object (9) having an accurate shape cannot be obtained. Therefore, in the conventional optical shaping apparatus, a liquid level meter for measuring the liquid level of the photocurable resin (90) in the molded object (9) and a liquid level meter for measuring the output of the laser light at the liquid level. Power meters are deployed to monitor operating conditions.

【0006】ところが、従来の光造形装置においては、
その時点における液面位や出力を知ることは出来るが、
これらのデータの瞬時値だけでは、造形物(9)の精度や
品質に悪影響を及ぼす因子を分析することは困難であ
り、光造形装置(1)の運転状態の的確な把握や造形不良
の予知、更には保守点検を行なうべき時期の予測は不可
能であった。
However, in the conventional stereolithography apparatus,
You can know the liquid level and output at that time,
It is difficult to analyze factors that have an adverse effect on the accuracy and quality of the modeled object (9) using only the instantaneous values of these data, and it is necessary to accurately grasp the operation state of the optical molding device (1) and predict a molding defect. It was not possible to predict when maintenance and inspection should be performed.

【0007】そこで本発明の目的は、造形物の精度や品
質に悪影響を及ぼす因子の分析が可能となる、光造形装
置のモニタリングシステムを提供することである。更に
本発明の目的は、運転状態が悪化したときに、その事態
をオペレータに的確に報知することが出来る、光造形装
置のモニタリングシステムを提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a monitoring system for an optical shaping apparatus that enables analysis of factors that adversely affect the accuracy and quality of a formed object. It is a further object of the present invention to provide a monitoring system for an optical shaping apparatus capable of accurately notifying an operator of an operating condition when the operating condition has deteriorated.

【0008】[0008]

【課題を解決する為の手段】本発明に係る光造形装置の
モニタリングシステムにおいては、装置本体(10)に、運
転状態を表わす各種のデータを測定するため測定系が配
備され、該測定系から得られる測定データは、情報処理
装置に供給して、必要な処理を施した上、樹脂(90)の積
層毎の時系列運転監視データとして記録される。
In the monitoring system for an optical shaping apparatus according to the present invention, a measuring system for measuring various data representing an operation state is provided in the apparatus main body (10). The obtained measurement data is supplied to an information processing device, subjected to necessary processing, and recorded as time-series operation monitoring data for each layer of the resin (90).

【0009】本発明に係る光造形装置のモニタリングシ
ステムによれば、装置の運転状態が時系列運転監視デー
タとして記録されるので、データの瞬時値のみならず、
その変化の傾向に基づいて、造形物(9)の精度や品質に
悪影響を及ぼす因子を分析することが可能であり、それ
によって、装置の運転状態の的確な把握、造形不良の予
知、更には保守点検を行なうべき時期の予測が可能とな
る。
According to the monitoring system for an optical shaping apparatus according to the present invention, the operating state of the apparatus is recorded as time-series operation monitoring data.
Based on the tendency of the change, it is possible to analyze factors that adversely affect the accuracy and quality of the modeled object (9), thereby accurately grasping the operation state of the device, predicting a molding defect, and furthermore, It is possible to predict when maintenance should be performed.

【0010】具体的には、情報処理装置は、測定データ
に基づいて運転状態の悪化を判断する判断手段と、判断
手段によって運転状態の悪化が検知されたとき、警報を
発するための出力装置とを具えている。これによって、
オペレータは、装置の運転状態が悪化したとき、その事
態を的確に知ることが出来、迅速な対処が可能である。
[0010] Specifically, the information processing apparatus includes a judging means for judging the deterioration of the driving condition based on the measurement data, and an output device for issuing an alarm when the deterioration of the driving condition is detected by the judging device. It has. by this,
When the operating state of the apparatus is deteriorated, the operator can know the situation accurately and can take quick action.

【0011】更に具体的構成において、測定系には、レ
ーザ光の出射部における出力と光硬化性樹脂(90)の液面
位における出力を測定するための出力計と、光硬化性樹
脂(90)の液面位の変動を測定するための液面計と、装置
本体(10)を冷却するための冷却水の出口温度を測定する
ための温度計とが含まれている。そして、情報処理装置
の判断手段は、レーザ光の出射部における出力に対する
樹脂液面位における出力の比率が所定の閾値を下回った
かどうかを判断する第1判断部と、光硬化性樹脂(90)の
液面位の変動量が所定の閾値を上回ったかどうかを判断
する第2判断部と、冷却水の出口温度が所定の閾値を上
回ったかどうかを判断する第3判断部と、樹脂液面位に
おけるレーザ光の出力が所定の閾値を下回ったかどうか
を判断する第4判断部とを有し、何れかの判断部によっ
て異常が判断されたとき、出力装置によって警報が発せ
られる。
In a more specific configuration, the measuring system includes an output meter for measuring the output at the laser beam emitting portion and the output at the liquid level of the photocurable resin (90), and a photocurable resin (90). ), And a thermometer for measuring the outlet temperature of the cooling water for cooling the apparatus body (10). And a first determination unit configured to determine whether a ratio of an output at the resin liquid level to an output at the emission unit of the laser light is lower than a predetermined threshold value, and a photocurable resin (90). A second judging unit for judging whether the fluctuation amount of the liquid level of the cooling water exceeds a predetermined threshold value, a third judging unit for judging whether the outlet temperature of the cooling water has exceeded a predetermined threshold value, And a fourth determination unit that determines whether the output of the laser light at the time is below a predetermined threshold value. When any of the determination units determines an abnormality, the output device issues an alarm.

【0012】上記具体的構成によれば、装置の運転状態
の悪化や造形不良の発生をより的確に予知することが出
来、この様な場合には早い時期に保守点検を行なう等、
適切な対処が可能となる。
According to the above-described specific configuration, it is possible to more accurately predict the deterioration of the operation state of the apparatus and the occurrence of molding defects. In such a case, maintenance and inspection are performed at an early stage.
Appropriate measures can be taken.

【0013】[0013]

【発明の効果】本発明に係る光造形装置のモニタリング
システムによれば、造形物の精度や品質に悪影響を及ぼ
す因子の分析が可能であり、運転状態の悪化や造形不良
の発生を的確に知ることが出来る。
According to the monitoring system for an optical shaping apparatus according to the present invention, it is possible to analyze factors that adversely affect the accuracy and quality of a formed object, and to accurately know the deterioration of an operation state and the occurrence of a shaping defect. I can do it.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につ
き、図面に沿って具体的に説明する。図1に示す如く本
発明に係る光造形装置(1)は、従来と同じ構成の装置本
体(10)に、後述のモニタリングシステムを装備したもの
である。尚、装置本体(10)には冷却装置(11)が連結され
ている。該冷却装置(11)は熱交換器(12)を内蔵し、該熱
交換器(12)には、水道水が流れる一次側給水管(13)と一
次側排水管(14)が接続されると共に、装置本体(10)を冷
却するための蒸留水が循環する二次側給水管(15)及び二
次側排水管(16)が接続されている。これによって、装置
本体(10)が冷却される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings. As shown in FIG. 1, an optical shaping apparatus (1) according to the present invention is provided with an apparatus main body (10) having the same configuration as that of the related art and equipped with a monitoring system described later. Note that a cooling device (11) is connected to the device main body (10). The cooling device (11) incorporates a heat exchanger (12), and the heat exchanger (12) is connected to a primary water supply pipe (13) through which tap water flows and a primary water discharge pipe (14). In addition, a secondary water supply pipe (15) and a secondary drain pipe (16) through which distilled water for cooling the apparatus body (10) circulates are connected. Thereby, the device main body (10) is cooled.

【0015】樹脂槽(2)内には、図7(a)(b)に示す様
に、前記駆動機構(3)によって駆動される昇降テーブル
(21)、ナイフ(22)、及びディッパー(23)が配置されてい
る。ディッパー(23)は、先ず図7(a)の如く光硬化性樹
脂(90)の液中から上昇することによって光硬化性樹脂(9
0)を汲み上げ、その後、同図(b)の如く水平移動して、
硬化した樹脂層の表面に未硬化の樹脂を塗布するための
ものである。ナイフ(22)は、ディッパー(23)の後方を水
平方向に駆動されて、光硬化性樹脂(90)の液面を平滑化
するものである。尚、昇降テーブル(21)の降下に伴っ
て、図示省略する液面位調整ブロックが光硬化性樹脂(9
0)の液中から徐々に引き上げられ、光硬化性樹脂(90)の
液面位が一定に保たれる様になっている。
As shown in FIGS. 7A and 7B, a lifting table driven by the driving mechanism (3) is provided in the resin tank (2).
(21), knife (22) and dipper (23) are arranged. The dipper (23) first rises from the liquid of the photocurable resin (90) as shown in FIG.
0), and then move horizontally as shown in FIG.
This is for applying uncured resin to the surface of the cured resin layer. The knife (22) is driven in the horizontal direction behind the dipper (23) to smooth the liquid surface of the photocurable resin (90). The liquid level adjusting block (not shown) is moved along with the lowering of the lifting table (21).
The liquid level of the photocurable resin (90) is kept constant by being gradually pulled up from the liquid of (0).

【0016】上記光造形装置(1)の運転状態や造形状態
を監視するためのモニタリングシステムとして、図1に
示す如くマイクロコンピュータ等から構成される情報処
理装置(6)が配備される。該情報処理装置(6)は、デー
タ出力装置としてディスプレイ(61)を具えている。該情
報処理装置(6)の動作については後述する。
As a monitoring system for monitoring the operation state and the molding state of the optical molding apparatus (1), an information processing apparatus (6) including a microcomputer and the like as shown in FIG. 1 is provided. The information processing device (6) includes a display (61) as a data output device. The operation of the information processing device (6) will be described later.

【0017】測定系として、冷却装置(11)の一次側給水
管(13)及び二次側給水管(15)には夫々、一次側流量計
(7)及び二次側流量計(71)が取り付けられる。又、一次
側給水管(13)、一次側排水管(14)、二次側給水管(15)及
び二次側排水管(16)には夫々、温度計(72)(73)(74)(75)
が取り付けられている。これらの流量計(7)(71)及び温
度計(72)(73)(74)(75)から得られる一次側冷却水流量Q
1、二次側冷却水流量Q2、一次側冷却水入口温度Tc
1、一次側冷却水出口温度Tc2、二次側冷却水入口温度
Tc3、及び二次側冷却水出口温度Tc4は、情報処理装置
(6)へ供給される。
As a measurement system, a primary flow meter (13) and a secondary flow pipe (15) of the cooling device (11) are respectively provided.
(7) and the secondary flow meter (71) are attached. In addition, the thermometers (72), (73), and (74) are provided for the primary side water supply pipe (13), the primary side drainage pipe (14), the secondary side water supply pipe (15), and the secondary side drainage pipe (16), respectively. (75)
Is attached. Primary-side cooling water flow rate Q obtained from these flowmeters (7) (71) and thermometers (72) (73) (74) (75)
1. Secondary side cooling water flow rate Q2, Primary side cooling water inlet temperature Tc
1. The primary cooling water outlet temperature Tc2, the secondary cooling water inlet temperature Tc3, and the secondary cooling water outlet temperature Tc4 are information processing devices.
Is supplied to (6).

【0018】一方、装置本体(10)には、室内の湿度Ha
及び温度Taを測定するための湿温度計(79)が取り付け
られており、これらの測定データは情報処理装置(6)へ
供給される。樹脂槽(2)には、光硬化性樹脂の温度Tr
を測定するための温度計(76)、光硬化性樹脂の液面位
(造形開始時の液面位を基準とする液面位の変動)Lrを
測定するための液面計(77)、及びレーザ光の樹脂液面位
における出力(レーザ液面出力)Wsを測定するための出
力計(78)が配備されており、これらの測定データは情報
処理装置(6)へ供給される。又、前述のディッパーの動
作を表わす信号Sが情報処理装置(6)へ供給される。
又、レーザ発振装置(41)から得られるレーザ光の出力W
t(レーザ内部出力)と、レーザを発振させるための駆動
電流At(レーザ内部電流)が情報処理装置(6)へ供給さ
れる。更に、造形開始からの経過時間が、制御装置(5)
から情報処理装置(6)へ供給される。
On the other hand, the apparatus main body (10) has room humidity Ha.
And a humidity thermometer (79) for measuring the temperature Ta, and these measurement data are supplied to the information processing device (6). In the resin tank (2), the temperature Tr of the photocurable resin is set.
Thermometer (76) for measuring the liquid level of the photocurable resin
(Fluctuation of liquid level with reference to liquid level at the start of modeling) Liquid level gauge (77) for measuring Lr, and measurement of laser light output (laser liquid level output) Ws at resin liquid level An output meter (78) for performing the measurement is provided, and these measurement data are supplied to the information processing device (6). Further, a signal S representing the operation of the dipper is supplied to the information processing device (6).
Also, the output W of the laser light obtained from the laser oscillation device (41)
t (laser internal output) and a drive current At (laser internal current) for oscillating the laser are supplied to the information processing device (6). In addition, the elapsed time from the start of modeling is controlled by the control device (5).
To the information processing device (6).

【0019】図2は、情報処理装置(6)が実行する情報
処理を表わしている。造形が開始されると、先ずステッ
プS1にて、上述の測定系からデータをサンプリング
し、ステップS2にてサンプリングデータにA/D変換
を施す。次にステップS3では、造形開始から所定時間
(例えば1時間)が経過したかどうかによって、造形が終
了したかどうかが判断され、イエスの場合は手続きを終
了する。造形が未だ終了していないときは、ステップS
4に移行して、デジタル化された測定データを所定単位
(l/s、℃、mW等)のデータに換算する。
FIG. 2 shows information processing executed by the information processing apparatus (6). When modeling is started, first, in step S1, data is sampled from the above-described measurement system, and in step S2, A / D conversion is performed on the sampled data. Next, in step S3, a predetermined time from the start of modeling
It is determined whether or not the modeling is completed based on whether (for example, one hour) has elapsed, and if yes, the procedure is terminated. If modeling has not been completed yet, step S
Move to 4 and convert the digitized measurement data to the specified unit
(l / s, ° C, mW, etc.).

【0020】その後、ステップS5では、換算された測
定データに含まれるノイズを除去するべく、測定データ
に移動平均処理を施し、更に、これによって得られたデ
ータに必要な演算処理を施して、運転監視データを作成
する。例えば、レーザ内部出力Wtとレーザ液面出力Ws
から、下記数1に従ってレーザ効率Efを算出する。
Thereafter, in step S5, a moving average process is performed on the measured data in order to remove noise included in the converted measured data, and further, a necessary arithmetic process is performed on the data obtained thereby, and the operation is performed. Create monitoring data. For example, the laser internal output Wt and the laser liquid level output Ws
Then, the laser efficiency Ef is calculated according to the following equation (1).

【0021】[0021]

【数1】Ef=Ws/Wt## EQU1 ## Ef = Ws / Wt

【0022】続いて、ステップS6にて、運転監視デー
タが危険な値を示しているかどうかを判断し、イエスの
ときはディスプレイにその旨の警告を表示する。例えば
図3に示す如く、先ずステップS11にてレーザ効率E
fが0.4よりも小さいかどうかを判断する。ここで、イ
エスのときは、プロジェクターを構成するレンズに塵埃
が付着していることが考えられるので、ステップS12
にてレンズの清掃、交換を要請する。次にステップS1
3では、光硬化性樹脂の液面位Lrの絶対値が0.1mmを
越えたかどうかを判断する。ここで、イエスのときは、
例えば光硬化性樹脂の硬化時に樹脂中に空気が混入した
り、硬化した樹脂のエッジが盛り上がる現象(中海)が発
生して、造形が失敗する虞れがあるので、ステップS1
4にてその旨を指摘する。
Subsequently, in step S6, it is determined whether or not the operation monitoring data indicates a dangerous value. If the result is YES, a warning to that effect is displayed on the display. For example, as shown in FIG.
It is determined whether f is smaller than 0.4. Here, when the answer is YES, it is considered that dust is attached to the lens constituting the projector.
Request lens cleaning and replacement at. Next, step S1
At 3, it is determined whether or not the absolute value of the liquid level Lr of the photocurable resin has exceeded 0.1 mm. Here, in the case of Jesus,
For example, there is a possibility that air may enter the resin during curing of the photocurable resin, or a phenomenon that the edge of the cured resin bulges (Nakaumi) may occur, and modeling may fail.
This is pointed out in 4.

【0023】続いてステップS15では、二次側冷却水
出口温度Tc4が60℃を越えているかどうかを判断す
る。ここで、イエスのときは、例えば一次側冷却水(水
道水)の汚れや冷却水フィルターの目詰り等によって、
装置本体(10)の冷却が不十分となっているので、ステッ
プS16にてその旨の警告を表示する。更にステップS
17では、レーザ液面出力Wsが120mWを下回った
かどうかを判断する。ここで、イエスのときは、造形物
の精度や品質に問題が生じるので、ステップS18にて
レーザ出力を増大させる様に要請する。
Subsequently, in step S15, it is determined whether or not the secondary cooling water outlet temperature Tc4 exceeds 60 ° C. Here, if yes, for example, due to contamination of the primary side cooling water (tap water) or clogging of the cooling water filter, etc.
Since the cooling of the apparatus main body (10) is insufficient, a warning to that effect is displayed in step S16. Step S
At 17, it is determined whether the laser liquid level output Ws has fallen below 120 mW. Here, if the answer is yes, there is a problem in the accuracy and quality of the modeled object. Therefore, it is requested in step S18 to increase the laser output.

【0024】その後、図2のステップS7に移行し、前
記ディッパー動作信号Sに基づいて、ディッパーが上昇
したかどうかを判断することによって、1層分の造形が
終了したかどうかを判断し、ノーのときは、ステップS
1に戻って同様の処理を繰り返す。ステップS7にてイ
エスと判断されたときは、ステップS8に移行して、運
転監視データをファイルに出力し、更にステップS9で
は、運転監視データをディスプレイに表示する。
Thereafter, the flow shifts to step S7 in FIG. 2 to determine whether or not the dipper has risen based on the dipper operation signal S, thereby determining whether or not the modeling of one layer has been completed. If, step S
Returning to step 1, the same processing is repeated. When the determination is YES in step S7, the process proceeds to step S8, where the operation monitoring data is output to a file, and in step S9, the operation monitoring data is displayed on a display.

【0025】この結果、ディスプレイには、例えば図4
(a)(b)(c)に示す如く、レーザ内部電流At、レーザ
内部出力Wt、レーザ液面出力Ws、レーザ効率Ef、造
形所要時間(図示省略)等が、光硬化性樹脂の積層毎の時
系列運転監視データとして、トレンド表示される。
As a result, for example, the display shown in FIG.
(a) As shown in (b) and (c), the laser internal current At, laser internal output Wt, laser liquid level output Ws, laser efficiency Ef, modeling time (not shown), etc. Is displayed as a trend as time-series operation monitoring data.

【0026】従って、オペレータは、情報処理装置(6)
のディスプレイ(61)に表示される系列運転監視データに
基づいて、造形物の精度や品質に悪影響を及ぼす因子を
分析することが可能であり、それによって、装置の運転
状態の的確な把握、造形不良の予知、更には保守点検を
行なうべき時期の予測が可能となる。又、造形の所要時
間から、造形物の積層ピッチのバラツキを検知すること
が出来る。更に、情報処理装置(6)のディスプレイ(61)
に表示される警報によって、運転状態の悪化を的確に知
ることが出来、迅速な対処が可能である。
Therefore, the operator operates the information processing device (6).
Based on the series operation monitoring data displayed on the display (61), it is possible to analyze the factors that have an adverse effect on the accuracy and quality of the modeled object, thereby accurately grasping the operation state of the device, It is possible to predict a failure and predict a time when maintenance and inspection should be performed. In addition, it is possible to detect a variation in the lamination pitch of the modeled object from the time required for modeling. Further, the display (61) of the information processing device (6)
, The deterioration of the driving condition can be accurately known, and prompt measures can be taken.

【0027】図5は、社内(86)に設置された上述の装置
本体(10)とモニタリングシステム(8)をLAN(81)に接
続し、LAN(81)からアクセスサーバー(82)を経て、社
外(87)のパーソナルコンピュータ(84)へ運転監視データ
を送信するためのリモート監視システムを表わしてい
る。アクセスサーバー(82)及びパーソナルコンピュータ
(84)には夫々モデム(83)(85)が接続されており、両モデ
ム(83)(85)が電話回線(88)によって互いに接続される。
FIG. 5 shows that the above-mentioned apparatus body (10) installed in the company (86) and the monitoring system (8) are connected to the LAN (81), and from the LAN (81) via the access server (82). It shows a remote monitoring system for transmitting operation monitoring data to a personal computer (84) outside the company (87). Access server (82) and personal computer
Modems (83) and (85) are connected to (84), respectively, and both modems (83) and (85) are connected to each other by a telephone line (88).

【0028】上記リモート監視システムにおいて、社外
(87)のパーソナルコンピュータ(84)は、図6に示す如
く、先ずステップS21にて、アクセスサーバーとの接
続を確立し、更にステップS22では、モニタリングシ
ステムとの接続を確立する。次にステップS23にて、
運転監視データの閲覧を行なう。その後、ステップS2
4にて、モニタリングシステムとの接続を解除し、更に
ステップS25では、アクセスサーバーとの接続を解除
する。
In the above remote monitoring system, the outside
As shown in FIG. 6, the personal computer (84) of (87) first establishes a connection with the access server in step S21, and further establishes a connection with the monitoring system in step S22. Next, in step S23,
View operation monitoring data. Then, step S2
At 4, the connection to the monitoring system is released, and at step S25, the connection to the access server is released.

【0029】上記リモート監視システムによれば、光造
形装置の運転管理者等が在宅状態で、光造形装置の運転
状態を監視することが出来るので、特に長時間に亘る光
造形において有効である。
According to the remote monitoring system, since the operation manager of the optical shaping apparatus can monitor the operation state of the optical shaping apparatus at home, it is effective particularly in the optical shaping for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光造形装置のモニタリングシステ
ムの構成を表わすブロック図である。
FIG. 1 is a block diagram illustrating a configuration of a monitoring system for an optical shaping apparatus according to the present invention.

【図2】モニタリングシステムにおけるデータ処理を表
わすフローチャートである。
FIG. 2 is a flowchart showing data processing in the monitoring system.

【図3】警告表示のための処理を表わすフローチャート
である。
FIG. 3 is a flowchart illustrating a process for displaying a warning.

【図4】ディスプレイに表示されるトレンドグラフであ
る。
FIG. 4 is a trend graph displayed on a display.

【図5】本発明に係るモニタリングシステムを応用した
リモート監視システムのブロック図である。
FIG. 5 is a block diagram of a remote monitoring system to which the monitoring system according to the present invention is applied.

【図6】リモート監視システムにおけるパーソナルコン
ピュータの処理を表わすフローチャートである。
FIG. 6 is a flowchart illustrating processing of a personal computer in the remote monitoring system.

【図7】樹脂槽内の機構及びその動作を表わす断面図で
ある。
FIG. 7 is a cross-sectional view illustrating a mechanism in a resin tank and its operation.

【図8】従来の光造形装置の構成を表わす図である。FIG. 8 is a diagram illustrating a configuration of a conventional stereolithography apparatus.

【符号の説明】[Explanation of symbols]

(1) 光造形装置 (10) 装置本体 (11) 冷却装置 (2) 樹脂槽 (3) 駆動機構 (4) プロジェクター (6) 情報処理装置 (1) Stereolithography device (10) Device body (11) Cooling device (2) Resin tank (3) Drive mechanism (4) Projector (6) Information processing device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 樹脂槽(2)内の光硬化性樹脂(90)中に昇
降テーブル(21)を配置し、光硬化性樹脂(90)の液面に対
してレーザ光による走査を施すことにより、昇降テーブ
ル(21)上の樹脂層を硬化させつつ積層し、所定形状の立
体造形物(9)を成形する光造形装置において、装置本体
(10)には、運転状態を表わす各種のデータを測定するた
め測定系が配備され、該測定系から得られる測定データ
は、情報処理装置に供給して、必要な処理を施した上、
樹脂(90)の積層毎の時系列運転監視データとして記録す
ることを特徴とする光造形装置のモニタリングシステ
ム。
An elevation table (21) is arranged in a photo-curable resin (90) in a resin tank (2), and the liquid surface of the photo-curable resin (90) is scanned by a laser beam. In the stereolithography apparatus for forming a three-dimensional object (9) having a predetermined shape by curing and stacking the resin layer on the elevating table (21),
(10) is provided with a measurement system for measuring various data representing the operating state, measurement data obtained from the measurement system is supplied to the information processing device, after performing necessary processing,
A monitoring system for an optical shaping apparatus, which records as time-series operation monitoring data for each layer of the resin (90).
【請求項2】 情報処理装置は、測定データに基づいて
運転状態の悪化を判断する判断手段と、判断手段によっ
て運転状態の悪化が検知されたとき、警報を発するため
の出力装置とを具えている請求項1に記載のモニタリン
グシステム。
2. An information processing apparatus comprising: a judging means for judging a deterioration of an operating condition based on measurement data; and an output device for issuing an alarm when the judging device detects the deterioration of the driving condition. The monitoring system according to claim 1.
【請求項3】 測定系には、レーザ光の出射部における
出力と光硬化性樹脂(90)の液面位における出力を測定す
るための出力計と、光硬化性樹脂(90)の液面位の変動を
測定するための液面計と、装置本体(10)を冷却するため
の冷却水の出口温度を測定するための温度計とが含まれ
ている請求項2に記載のモニタリングシステム。
3. A measuring system comprising: a power meter for measuring an output at a laser beam emitting portion and an output at a liquid level of the photocurable resin (90); and a liquid level of the photocurable resin (90). The monitoring system according to claim 2, further comprising a liquid level gauge for measuring a change in position, and a thermometer for measuring an outlet temperature of cooling water for cooling the apparatus body (10).
【請求項4】 情報処理装置の判断手段は、レーザ光の
出射部における出力に対する樹脂液面位における出力の
比率が所定の閾値を下回ったかどうかを判断する第1判
断部と、光硬化性樹脂(90)の液面位の変動量が所定の閾
値を上回ったかどうかを判断する第2判断部と、冷却水
の出口温度が所定の閾値を上回ったかどうかを判断する
第3判断部と、樹脂液面位におけるレーザ光の出力が所
定の閾値を下回ったかどうかを判断する第4判断部とを
有し、何れかの判断部によって異常が判断されたとき、
出力装置によって警報が発せられる請求項3に記載のモ
ニタリングシステム。
4. A first judging section for judging whether or not a ratio of an output at a resin liquid level to an output at a laser beam emitting section has fallen below a predetermined threshold value; A second determining unit for determining whether the amount of change in the liquid level of (90) has exceeded a predetermined threshold, a third determining unit for determining whether the outlet temperature of the cooling water has exceeded a predetermined threshold, A fourth determining unit that determines whether the output of the laser light at the liquid level is below a predetermined threshold, and when any of the determining units determines an abnormality,
The monitoring system according to claim 3, wherein an alarm is issued by the output device.
JP10059537A 1998-03-11 1998-03-11 Monitoring system for stereo lithographic apparatus Pending JPH11254542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10059537A JPH11254542A (en) 1998-03-11 1998-03-11 Monitoring system for stereo lithographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10059537A JPH11254542A (en) 1998-03-11 1998-03-11 Monitoring system for stereo lithographic apparatus

Publications (1)

Publication Number Publication Date
JPH11254542A true JPH11254542A (en) 1999-09-21

Family

ID=13116128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10059537A Pending JPH11254542A (en) 1998-03-11 1998-03-11 Monitoring system for stereo lithographic apparatus

Country Status (1)

Country Link
JP (1) JPH11254542A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004009574A (en) * 2002-06-07 2004-01-15 Jsr Corp Apparatus and method for photosetting stereo lithography, and photosetting stereo lithographic system
JP2016117919A (en) * 2014-12-18 2016-06-30 株式会社ソディック Management system of lamination molding device
CN106671404A (en) * 2016-11-25 2017-05-17 安徽省春谷3D打印智能装备产业技术研究院有限公司 3d printing device
US9873180B2 (en) 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
JP2018158457A (en) * 2017-03-22 2018-10-11 日本電気株式会社 Layered model inspection apparatus, layer modeling apparatus, and layer modeling method
US10384330B2 (en) 2014-10-17 2019-08-20 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US10399201B2 (en) 2014-10-17 2019-09-03 Applied Materials, Inc. Advanced polishing pads having compositional gradients by use of an additive manufacturing process
CN110539492A (en) * 2019-09-10 2019-12-06 无锡市交大增智增材制造技术研究院有限公司 Automatic detection method for bad 3D printing sample
US10596763B2 (en) 2017-04-21 2020-03-24 Applied Materials, Inc. Additive manufacturing with array of energy sources
US10821573B2 (en) 2014-10-17 2020-11-03 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
US11072050B2 (en) 2017-08-04 2021-07-27 Applied Materials, Inc. Polishing pad with window and manufacturing methods thereof
CN113573872A (en) * 2019-03-18 2021-10-29 耐克森三维有限公司 Additive manufacturing method and system
US11458676B2 (en) 2018-09-07 2022-10-04 Ricoh Company, Ltd. Resin powder and method of manufacturing solid freeform fabrication object
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11524384B2 (en) 2017-08-07 2022-12-13 Applied Materials, Inc. Abrasive delivery polishing pads and manufacturing methods thereof
KR20230023213A (en) * 2021-08-10 2023-02-17 오스템임플란트 주식회사 Method for providing notifications of a 3D printer the 3D printer thereof
US11685014B2 (en) 2018-09-04 2023-06-27 Applied Materials, Inc. Formulations for advanced polishing pads
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
US11813712B2 (en) 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
US11964359B2 (en) 2015-10-30 2024-04-23 Applied Materials, Inc. Apparatus and method of forming a polishing article that has a desired zeta potential
US11980992B2 (en) 2022-09-16 2024-05-14 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04506110A (en) * 1988-04-18 1992-10-22 スリーディー、システムズ、インコーポレーテッド Stereolithography beam profiling method and device
JPH0550491A (en) * 1991-08-28 1993-03-02 Kobe Steel Ltd Method for measuring filling rate of material to be kneaded in kneading extruder
JPH0596633A (en) * 1991-10-07 1993-04-20 Kiwa Giken Kk Optical shaping apparatus
JPH08150655A (en) * 1994-11-30 1996-06-11 Furukawa Electric Co Ltd:The Extrusion amount measuring device in extruder
JPH08155669A (en) * 1994-12-02 1996-06-18 Nippon Light Metal Co Ltd Head and equipment for laser beam machining
JPH08207143A (en) * 1995-02-01 1996-08-13 Ushio Inc Optical forming method
JPH08236844A (en) * 1995-02-23 1996-09-13 Miyachi Technos Corp Laser equipment
JPH08338753A (en) * 1995-06-12 1996-12-24 C Met Kk Measuring apparatus for liquid surface height of photocuring liquid
JPH0976353A (en) * 1995-09-12 1997-03-25 Toshiba Corp Optical shaping apparatus
JPH09193188A (en) * 1996-01-22 1997-07-29 Mazda Motor Corp Method for hollow injection molding and apparatus
JPH09327849A (en) * 1996-06-10 1997-12-22 Japan Steel Works Ltd:The Displaying method on monitor in compression injection molding

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04506110A (en) * 1988-04-18 1992-10-22 スリーディー、システムズ、インコーポレーテッド Stereolithography beam profiling method and device
JPH0550491A (en) * 1991-08-28 1993-03-02 Kobe Steel Ltd Method for measuring filling rate of material to be kneaded in kneading extruder
JPH0596633A (en) * 1991-10-07 1993-04-20 Kiwa Giken Kk Optical shaping apparatus
JPH08150655A (en) * 1994-11-30 1996-06-11 Furukawa Electric Co Ltd:The Extrusion amount measuring device in extruder
JPH08155669A (en) * 1994-12-02 1996-06-18 Nippon Light Metal Co Ltd Head and equipment for laser beam machining
JPH08207143A (en) * 1995-02-01 1996-08-13 Ushio Inc Optical forming method
JPH08236844A (en) * 1995-02-23 1996-09-13 Miyachi Technos Corp Laser equipment
JPH08338753A (en) * 1995-06-12 1996-12-24 C Met Kk Measuring apparatus for liquid surface height of photocuring liquid
JPH0976353A (en) * 1995-09-12 1997-03-25 Toshiba Corp Optical shaping apparatus
JPH09193188A (en) * 1996-01-22 1997-07-29 Mazda Motor Corp Method for hollow injection molding and apparatus
JPH09327849A (en) * 1996-06-10 1997-12-22 Japan Steel Works Ltd:The Displaying method on monitor in compression injection molding

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004009574A (en) * 2002-06-07 2004-01-15 Jsr Corp Apparatus and method for photosetting stereo lithography, and photosetting stereo lithographic system
US10953515B2 (en) 2014-10-17 2021-03-23 Applied Materials, Inc. Apparatus and method of forming a polishing pads by use of an additive manufacturing process
US9873180B2 (en) 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US11958162B2 (en) 2014-10-17 2024-04-16 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US10384330B2 (en) 2014-10-17 2019-08-20 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US11724362B2 (en) 2014-10-17 2023-08-15 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10399201B2 (en) 2014-10-17 2019-09-03 Applied Materials, Inc. Advanced polishing pads having compositional gradients by use of an additive manufacturing process
US11446788B2 (en) 2014-10-17 2022-09-20 Applied Materials, Inc. Precursor formulations for polishing pads produced by an additive manufacturing process
US10537974B2 (en) 2014-10-17 2020-01-21 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
US10821573B2 (en) 2014-10-17 2020-11-03 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
JP2016117919A (en) * 2014-12-18 2016-06-30 株式会社ソディック Management system of lamination molding device
US11964359B2 (en) 2015-10-30 2024-04-23 Applied Materials, Inc. Apparatus and method of forming a polishing article that has a desired zeta potential
US11772229B2 (en) 2016-01-19 2023-10-03 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
CN106671404A (en) * 2016-11-25 2017-05-17 安徽省春谷3D打印智能装备产业技术研究院有限公司 3d printing device
JP2018158457A (en) * 2017-03-22 2018-10-11 日本電気株式会社 Layered model inspection apparatus, layer modeling apparatus, and layer modeling method
US10596763B2 (en) 2017-04-21 2020-03-24 Applied Materials, Inc. Additive manufacturing with array of energy sources
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11072050B2 (en) 2017-08-04 2021-07-27 Applied Materials, Inc. Polishing pad with window and manufacturing methods thereof
US11524384B2 (en) 2017-08-07 2022-12-13 Applied Materials, Inc. Abrasive delivery polishing pads and manufacturing methods thereof
US11685014B2 (en) 2018-09-04 2023-06-27 Applied Materials, Inc. Formulations for advanced polishing pads
US11458676B2 (en) 2018-09-07 2022-10-04 Ricoh Company, Ltd. Resin powder and method of manufacturing solid freeform fabrication object
CN113573872A (en) * 2019-03-18 2021-10-29 耐克森三维有限公司 Additive manufacturing method and system
CN110539492A (en) * 2019-09-10 2019-12-06 无锡市交大增智增材制造技术研究院有限公司 Automatic detection method for bad 3D printing sample
US11813712B2 (en) 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
KR20230023213A (en) * 2021-08-10 2023-02-17 오스템임플란트 주식회사 Method for providing notifications of a 3D printer the 3D printer thereof
US11980992B2 (en) 2022-09-16 2024-05-14 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods

Similar Documents

Publication Publication Date Title
JPH11254542A (en) Monitoring system for stereo lithographic apparatus
JP7032018B2 (en) Methods and systems for topographically inspecting and process controlling laminated build parts
CN1213280C (en) Intelligent analysts system and method for electric equipment filled with fluid
EP2527942A2 (en) System and method for estimating remaining life for a device
JP2008226037A (en) Production management system and production management method
US20050288891A1 (en) Road surface state estimating system and road surface state measuring apparatus
JP2004009574A (en) Apparatus and method for photosetting stereo lithography, and photosetting stereo lithographic system
CN105841980B (en) HXD type locomotive cooling duct monitoring of working condition and fault pre-diagnosing method and system
RU2006139031A (en) SYSTEM AND METHOD FOR DETERMINING PUMP PERFORMANCE REDUCTION
CN112857842A (en) Fault early warning method and device for cooling system
CN113885619B (en) Temperature stress control method and system for ultra-large-volume concrete
JP2012202423A (en) Control system for pressure oil device
CN117291551B (en) Environmental monitoring early warning system based on digital visualization
KR102330169B1 (en) Monitoring device, monitoring method, program
CN107340102B (en) Water leakage detection method and system for converter valve cooling system
JP2007025878A (en) Maintenance support system for plant
JP2014062876A (en) Hose degradation diagnostic method and hose degradation diagnostic device
CN104132961B (en) Exchanger heat switching performance real-time estimating method, device and heat-exchange system
CN113958495B (en) Method and system for evaluating damage degree of oil-submerged pump based on particle analysis
JPH0526784A (en) Central control method for malfunction generation in construction machine
JPH0735655A (en) Apparatus for monitoring process of plant
KR20190059606A (en) Predicting and warning system for greenhouse gas-exhausting progress of construction site and method for the same
JP2008196889A (en) Water quality measuring system
JP2007202361A (en) Power demand monitoring system
JP2020119393A (en) Monitoring device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041102