JPH11253818A - Photocatalyst and photocatalytic device - Google Patents

Photocatalyst and photocatalytic device

Info

Publication number
JPH11253818A
JPH11253818A JP10063581A JP6358198A JPH11253818A JP H11253818 A JPH11253818 A JP H11253818A JP 10063581 A JP10063581 A JP 10063581A JP 6358198 A JP6358198 A JP 6358198A JP H11253818 A JPH11253818 A JP H11253818A
Authority
JP
Japan
Prior art keywords
photocatalyst
alloy
particles
semiconductor
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10063581A
Other languages
Japanese (ja)
Inventor
Mamoru Ishikiriyama
守 石切山
Keiji Miyake
慶治 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10063581A priority Critical patent/JPH11253818A/en
Publication of JPH11253818A publication Critical patent/JPH11253818A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a high catalytic ability by depositing fine particles of gold on platinum (to obtain an alloy photocatalyst) and further depositing the alloy photocatalyst on a semiconductor photocatalyst (to obtain an alloy-semiconductor composite photocatalyst). SOLUTION: The catalytic effect of the alloy photocatalyst obtd. by depositing fine particles of gold on platinum is developed by irradiating with UV rays. Generally, platinum is preferably in a fine particle state having a large surface area as the catalyst, and for example, particles having <=10 nm particle size are used. The fine particles of gold are further finer particles than the platinum particles so that the gold particles are deposited on the surfaces of platinum particles. Typically, the gold particles have several nm particle size or smaller. The producing method is not limited. Moreover, by depositing the alloy photocatalyst on a semiconductor photocatalyst (titanium oxide) to prepare an alloy-semiconductor composite photocatalyst, the obtd. catalyst develops a higher catalytic effect than the semiconductor photocatalyst being the carrier base.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光触媒および光触
媒装置に関する。
[0001] The present invention relates to a photocatalyst and a photocatalyst device.

【0002】[0002]

【従来の技術】光触媒は、高温を必要とせず常温で光励
起により触媒作用を発現するので、吸着材と組み合わせ
て脱臭フィルターその他の空気浄化フィルター等として
利用されている。従来知られている実用的な光触媒とし
ては、酸化チタン(TiO2)、硫化カドミウム(Cd
S)、チタン酸ストロンチウム(SrTiO3)、チタン
酸カリウム(K2 Ti6 13)、酸化タンタル(Ta2
5 )等がある。これらはいずれも半導体であり、少な
くとも実用分野において他の材質の光触媒はこれまでに
知られていない。
2. Description of the Related Art A photocatalyst exhibits a catalytic action by photoexcitation at room temperature without requiring a high temperature, and is used in combination with an adsorbent as a deodorizing filter or another air purification filter. Conventionally known practical photocatalysts include titanium oxide (TiO 2 ), cadmium sulfide (Cd
S), strontium titanate (SrTiO 3 ), potassium titanate (K 2 Ti 6 O 13 ), tantalum oxide (Ta 2
O 5 ). These are all semiconductors, and photocatalysts of other materials have not been known at least in the practical field.

【0003】また、半導体光触媒として代表的な酸化チ
タンは特開平1−189322号公報に開示されてい
る。酸化チタン光触媒を用いた脱臭フィルター等の空気
浄化器では、吸着性能を向上させるために活性炭との併
用を行っており(特開平8−332378号公報)、酸
化チタンの触媒能力を向上させるためにその電荷分離を
行うためにPd等の金属を担持させる方法が考えられて
いる(特開平1−218635号公報)。
A typical titanium oxide as a semiconductor photocatalyst is disclosed in JP-A-1-189322. An air purifier such as a deodorizing filter using a titanium oxide photocatalyst is used in combination with activated carbon in order to improve the adsorption performance (Japanese Patent Laid-Open No. 8-332378). In order to perform the charge separation, a method of supporting a metal such as Pd has been considered (Japanese Patent Application Laid-Open No. 1-218635).

【0004】このような従来の種々の要請および改良に
対して、従来の半導体光触媒に比べて更に高い触媒能力
を有する光触媒が開発されれば実用上極めて有用であ
る。
[0004] In response to such various conventional demands and improvements, it is practically useful if a photocatalyst having a higher catalytic ability than conventional semiconductor photocatalysts is developed.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、従来
の半導体光触媒以外の材質の光触媒およびこの光触媒を
利用し従来の半導体光触媒よりも高い触媒能力を有する
光触媒を提供すると共に、これらの光触媒を利用した光
触媒装置を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a photocatalyst made of a material other than the conventional semiconductor photocatalyst, a photocatalyst utilizing the photocatalyst, and having a higher catalytic ability than the conventional semiconductor photocatalyst. It is an object of the present invention to provide a photocatalyst device utilizing the same.

【0006】[0006]

【課題を解決するための手段】本発明の第一の観点によ
れば、半導体光触媒以外の材質の新規な光触媒として、
白金上に金の微粒子を担持したことを特徴とする光触媒
が提供される。また、本発明の第二の観点によれば、従
来の半導体光触媒よりも高い触媒能力を有する光触媒と
して、白金上に金の微粒子を担持し、該白金を更に半導
体光触媒上に担持したことを特徴とする光触媒が提供さ
れる。この半導体光触媒は、典型的には酸化チタン(T
iO2)、硫化カドミウム(CdS)、チタン酸ストロン
チウム(SrTiO3)、チタン酸カリウム(K2 Ti6
13)、酸化タンタル(Ta2 5 )から成る群から選
択される。ただし、上記以外の半導体光触媒を用いるこ
ともできる。
According to a first aspect of the present invention, a novel photocatalyst of a material other than a semiconductor photocatalyst is provided.
There is provided a photocatalyst characterized by carrying fine particles of gold on platinum. According to a second aspect of the present invention, as a photocatalyst having a higher catalytic ability than a conventional semiconductor photocatalyst, gold fine particles are supported on platinum, and the platinum is further supported on the semiconductor photocatalyst. Is provided. This semiconductor photocatalyst is typically titanium oxide (T
iO 2 ), cadmium sulfide (CdS), strontium titanate (SrTiO 3 ), potassium titanate (K 2 Ti 6
O 13 ) and tantalum oxide (Ta 2 O 5 ). However, a semiconductor photocatalyst other than the above can also be used.

【0007】更に、本発明の第三の観点によれば、上記
第一または第二の観点による光触媒のいずれかと、該光
触媒への光照射手段とを備えたことを特徴とする光触媒
装置が提供される。
Further, according to a third aspect of the present invention, there is provided a photocatalyst device comprising: one of the photocatalysts according to the first or second aspect; and means for irradiating the photocatalyst with light. Is done.

【0008】[0008]

【発明の実施の形態】本発明の第一観点による光触媒
は、白金に金の微粒子を担持したもの(以下、本明細書
中ではこれを「合金」と呼称する)に紫外線を照射する
と触媒作用を発現するという新規な知見に基づく合金光
触媒である。ここで一般に、白金の形態は表面積の大き
い微細な粒子状であることが触媒として望ましく、例え
ば粒径が10nmあるいはそれ以下のものが従来公知の
製法により得られる。
BEST MODE FOR CARRYING OUT THE INVENTION A photocatalyst according to the first aspect of the present invention has a catalytic action when ultraviolet light is irradiated on a platinum-supported gold fine particle (hereinafter referred to as “alloy” in the present specification). It is an alloy photocatalyst based on a novel finding that the compound expresses. Here, in general, it is desirable that the form of platinum is a fine particle having a large surface area as a catalyst.

【0009】金の微粒子は、上記白金粒子の表面に担持
されるために、白金粒子よりも更に微細な粒子であり、
典型的には粒径が数nmあるいはそれ以下であることが
望ましい。製法は特に限定する必要はなく、従来公知の
製法でよい。白金上に金の微粒子を担持させた合金が光
触媒作用を発現するメカニズムは、現時点では必ずしも
完全に解明されてはいないが、以下のように推察され
る。
The fine gold particles are finer particles than the platinum particles because they are carried on the surface of the platinum particles.
Typically, it is desirable that the particle size is several nm or less. The production method need not be particularly limited, and may be a conventionally known production method. The mechanism by which an alloy of gold particles supported on platinum exhibits a photocatalytic action has not been completely elucidated at the present time, but is presumed as follows.

【0010】白金上に金の微粒子を均一に少量分散担持
することにより、触媒上が疎水状態となり臭気物質が担
持しない場合と比較してより吸着する。次に、金が微粒
子で均一に白金上に担持されたことにより、紫外線等の
エネルギーにより、金が活性化し、金から白金への電荷
の移動が起こり、白金の触媒活性が生じ、白金を高温
(200℃)にしたと同様の効果が生じた若しくは、白
金と金の複合化した成分が紫外線により触媒効果を生じ
たと考えられる。
[0010] By uniformly dispersing and supporting a small amount of fine gold particles on platinum, the catalyst becomes hydrophobic and adsorbs more than when no odorant is supported. Next, the gold is uniformly supported on the platinum in fine particles, so that the gold and the like are activated by the energy of ultraviolet rays and the like, and the electric charge is transferred from the gold to the platinum. (200 ° C.), it is considered that the same effect was produced, or the composite component of platinum and gold produced a catalytic effect by ultraviolet rays.

【0011】更に、本発明の第二観点による光触媒は、
上記第一観点による合金光触媒を従来の半導体光触媒上
に担持させることにより、担持基材である半導体光触媒
よりも格段に高い触媒能力を発現するという新規な知見
に基づく合金・半導体複合光触媒である。合金光触媒を
半導体光触媒上に担持させた合金・半導体複合光触媒が
担持基材である半導体光触媒に比べて格段に高い光触媒
能力を発揮するメカニズムは、現時点では必ずしも完全
に解明されてはいないが、以下のように推察される。
Further, the photocatalyst according to the second aspect of the present invention comprises:
An alloy / semiconductor composite photocatalyst based on a novel finding that, by supporting the alloy photocatalyst according to the first aspect on a conventional semiconductor photocatalyst, a significantly higher catalytic ability is exhibited than the semiconductor photocatalyst as a supporting base material. The mechanism by which an alloy / semiconductor composite photocatalyst in which an alloy photocatalyst is supported on a semiconductor photocatalyst exhibits a much higher photocatalytic ability than the semiconductor photocatalyst which is a supporting base material is not necessarily completely elucidated at the present time, but is described below. It is inferred as follows.

【0012】すなわち、メカニズムとしては上記の理由
の他に以下の点が考えられる。 ・白金上に金が担持されたことにより酸化チタンより白
金に電荷が移動する電荷分離の割合が向上し触媒特性が
向上した。 ・金により白金の被害が防止され、白金上で生じる還元
作用の効率が向上することにより、酸化チタン上で生じ
る酸化作用による浄化の向上が得られたと考えられる。
That is, the following points can be considered as a mechanism in addition to the above reasons. -Since gold was carried on platinum, the ratio of charge separation in which charges were transferred from titanium oxide to platinum was improved, and the catalytic properties were improved. -It is considered that the damage of platinum was prevented by gold, and the efficiency of the reduction action generated on platinum was improved, thereby improving the purification by the oxidation action generated on titanium oxide.

【0013】上記第一観点による合金光触媒または第二
観点による合金・半導体複合光触媒と、この光触媒に光
を照射する手段とを組み合わせることにより、例えば脱
臭フィルターのような空気浄化フィルター等に適した光
触媒装置が提供される。以下、実施例により本発明を更
に具体的に説明する。
By combining the alloy photocatalyst according to the first aspect or the alloy / semiconductor composite photocatalyst according to the second aspect with means for irradiating the photocatalyst with light, a photocatalyst suitable for an air purifying filter such as a deodorizing filter, for example. An apparatus is provided. Hereinafter, the present invention will be described more specifically with reference to examples.

【0014】[0014]

【実施例】〔実施例1〕本発明の第一観点によるPt−
Au合金光触媒を以下の手順で製造した。 Pt/Al2 3 複合粉末の作成 Pt(NO2)2(NH3)2 を2.39wt%含有する水溶液
に、触媒担持基材としてのγ−Al2 3 粉末(平均粒
径10μm)を添加して3時間攪拌した。
[Embodiment 1] Pt- according to the first aspect of the present invention.
An Au alloy photocatalyst was produced by the following procedure. Preparation of Pt / Al 2 O 3 composite powder γ-Al 2 O 3 powder (average particle size: 10 μm) as a catalyst supporting base material in an aqueous solution containing 2.39 wt% of Pt (NO 2 ) 2 (NH 3 ) 2 Was added and stirred for 3 hours.

【0015】濾過により固形分を採取し、大気中で12
0℃×24時間の乾燥処理を行った後、大気中で300
℃×2時間の熱処理を施した。これにより、Al2 3
粒子の表面にPt粒子が担持されたPt/Al2 3
合粉末が得られた。この複合粉末のPt含有量は1.9
0wt%であった。またAl2 3 粒子上に担持されてい
るPt粒子は粒径2〜3nmであった。
The solid content is collected by filtration,
After performing a drying treatment at 0 ° C. for 24 hours, the drying treatment was performed in the air for 300 hours.
Heat treatment was performed at 2 ° C. × 2 hours. Thereby, Al 2 O 3
A Pt / Al 2 O 3 composite powder having Pt particles supported on the surface of the particles was obtained. The Pt content of this composite powder was 1.9.
It was 0 wt%. The Pt particles carried on the Al 2 O 3 particles had a particle size of 2 to 3 nm.

【0016】 〔Pt−Au〕/Al2 3 複合粉末
の作成 上記Pt/Al2 3 複合粉末を9.01wt%含有する
60℃のイオン交換水に、下記成分を順次添加した。
( )内は添加量であり、全てを添加後の混合液全体の
重量を基準として表示した。 HAuCl4 ・4H2 O(1.98×10-2wt%) Na2 2 3 ・5H2 O(8.98×10-2wt%) Na2 SO4 ・(2.30×10-1wt%) C6 7 NaO6 ・H2 O(9.03×10-1wt%) 得られた混合液をpH7.59に調整し、24時間攪拌
して、Pt上にAuを還元析出させた。
Preparation of [Pt-Au] / Al 2 O 3 Composite Powder The following components were sequentially added to ion exchange water at 60 ° C. containing 9.01 wt% of the above Pt / Al 2 O 3 composite powder.
The amount in parentheses is the amount of addition, which is shown based on the weight of the whole mixed solution after the addition. HAuCl 4 · 4H 2 O (1.98 × 10 -2 wt%) Na 2 S 2 O 3 · 5H 2 O (8.98 × 10 -2 wt%) Na 2 SO 4 · (2.30 × 10 - 1 wt%) C 6 H 7 NaO 6 .H 2 O (9.03 × 10 -1 wt%) The obtained mixture was adjusted to pH 7.59, stirred for 24 hours, and reduced Au on Pt. Was deposited.

【0017】濾過により固形分を採取し、60℃のイオ
ン交換水で洗浄してから、大気中で120℃×2時間の
乾燥処理を行った後、大気中で500℃×2時間の熱処
理を施した。これにより、Al2 3 粒子に担持された
Pt粒子上に更にAu粒子が担持された〔Pt−Au〕
/Al2 3 複合粉末が得られた。この複合粉末は、P
t−Au合金光触媒がAl2 3 基材上に担持されたも
のであり、模式的には図1に示したような構造である。
Pt−Au合金中のPtとAuとの重量比はPt:Au
=19:1であり、複合粉末全体のPtとAuの合計含
有量は2wt%であった。またAl2 3 粒子上に担持さ
れているPt−Au合金粒子は粒径2〜3nmであっ
た。
The solid content is collected by filtration, washed with ion-exchanged water at 60 ° C., dried in air at 120 ° C. for 2 hours, and then heat-treated in air at 500 ° C. for 2 hours. gave. As a result, Au particles were further supported on the Pt particles supported on the Al 2 O 3 particles [Pt-Au].
/ Al 2 O 3 composite powder was obtained. This composite powder is
The t-Au alloy photocatalyst is supported on an Al 2 O 3 substrate, and has a structure as schematically shown in FIG.
The weight ratio of Pt to Au in the Pt-Au alloy is Pt: Au.
= 19: 1, and the total content of Pt and Au in the entire composite powder was 2% by weight. The Pt-Au alloy particles supported on the Al2O3 particles had a particle size of 2 to 3 nm.

【0018】なお、上記のPt粒径およびPt−Au粒
径の測定は透過電子顕微鏡(TEM)により、また組成
分析は蛍光X線分析により行った。得られたPt−Au
合金光触媒の光触媒効果を評価するために、下記条件に
てアセトアルデヒド除去試験を行った。 〔試験条件〕 Pt−Au担持量:1g 担持体:アルミニウム 浄化対象:10リットルガスパック アセトアルデヒド
100ppm 紫外線照射量:0.7mW/cm2 比較のために、紫外線照射なし(暗吸着)の場合とPt
単独で紫外線照射ありの場合についても同様の試験を行
った。
The measurement of the Pt particle size and the Pt-Au particle size was performed by a transmission electron microscope (TEM), and the composition analysis was performed by X-ray fluorescence analysis. Pt-Au obtained
An acetaldehyde removal test was performed under the following conditions to evaluate the photocatalytic effect of the alloy photocatalyst. [Test conditions] Pt-Au carrying amount: 1 g Carrier: Aluminum Purification target: 10 liter gas pack Acetaldehyde 100 ppm UV irradiation amount: 0.7 mW / cm 2 For comparison, the case without UV irradiation (dark adsorption) and the case with Pt were used.
The same test was carried out for the case where there was ultraviolet irradiation alone.

【0019】その結果、図2に示すように、いずれの場
合も試験時間の増加に伴って除去率は増加しているが、
本発明によるPt−Au合金光触媒は他の2つの場合に
比べて格段に高い除去率が得られており、光触媒作用の
発現が明確に認められる。 〔実施例2〕本発明の第二観点による〔Pt−Au〕T
iO2 合金・半導体複合光触媒を以下の手順で製造し
た。
As a result, as shown in FIG. 2, in each case, the removal rate increases with an increase in the test time.
The Pt-Au alloy photocatalyst according to the present invention has a remarkably high removal rate as compared with the other two cases, and the manifestation of the photocatalytic action is clearly recognized. [Example 2] [Pt-Au] T according to the second aspect of the present invention
An iO 2 alloy / semiconductor composite photocatalyst was produced by the following procedure.

【0020】 Pt/TiO2 複合粉末の作成 Pt(NO2)2(NH3)2 を2.39wt%含有する水溶液
に、半導体光触媒としてのTiO2 粉末(平均粒径5μ
m)を添加して3時間攪拌した。濾過により固形分を採
取し、大気中で120℃×24時間の乾燥処理を行った
後、大気中で300℃×2時間の熱処理を施した。
Preparation of Pt / TiO 2 Composite Powder In an aqueous solution containing 2.39 wt% of Pt (NO 2 ) 2 (NH 3 ) 2 , TiO 2 powder (average particle size 5 μm) as a semiconductor photocatalyst was added.
m) was added and stirred for 3 hours. A solid content was collected by filtration, dried at 120 ° C. for 24 hours in the air, and then heat-treated at 300 ° C. for 2 hours in the air.

【0021】これにより、TiO2 粒子の表面にPt粒
子が担持されたPt/TiO2 複合粉末が得られた。こ
の複合粉末のPt含有量は1.90wt%であった。また
TiO2 粒子上に担持されているPt粒子は粒径2〜3
nmであった。 〔Pt−Au〕/TiO2 複合粉末の作成 上記Pt/TiO2 複合粉末を9.01wt%含有する6
0℃のイオン交換水に、下記成分を順次添加した。
( )内は添加量であり、全てを添加後の混合液全体の
重量を基準として表示した。
As a result, a Pt / TiO 2 composite powder having Pt particles supported on the surface of TiO 2 particles was obtained. The Pt content of this composite powder was 1.90 wt%. The Pt particles supported on the TiO 2 particles have a particle size of 2-3.
nm. Preparation of [Pt-Au] / TiO 2 composite powder 6 containing 9.01 wt% of the above Pt / TiO 2 composite powder
The following components were sequentially added to ion-exchanged water at 0 ° C.
The amount in parentheses is the amount of addition, which is shown based on the weight of the whole mixed solution after the addition.

【0022】 HAuCl4 ・4H2 O(1.98×10-2wt%) Na2 2 3 ・5H2 O(8.98×10-2wt%) Na2 SO4 ・(2.30×10-1wt%) C6 7 NaO6 ・H2 O(9.03×10-1wt%) 得られた混合液をpH7.59に調整し、24時間攪拌
して、Pt上にAuを還元析出させた。
[0022] HAuCl 4 · 4H 2 O (1.98 × 10 -2 wt%) Na 2 S 2 O 3 · 5H 2 O (8.98 × 10 -2 wt%) Na 2 SO 4 · (2.30 (× 10 -1 wt%) C 6 H 7 NaO 6 .H 2 O (9.03 × 10 -1 wt%) The obtained mixture was adjusted to pH 7.59, stirred for 24 hours, and placed on Pt. Au was precipitated by reduction.

【0023】濾過により固形分を採取し、60℃のイオ
ン交換水で洗浄してから、大気中で120℃×2時間の
乾燥処理を行った後、大気中で500℃×2時間の熱処
理を施した。これにより、TiO2 粒子に担持されたP
t粒子上に更にAu粒子が担持された〔Pt−Au〕/
TiO2 複合粉末が得られた。この複合粉末は、Pt−
Au合金光触媒がTiO2 半導体光触媒上に担持された
ものであり、模式的には図3に示したような構造であ
る。Pt−Au合金中のPtとAuとの重量比はPt:
Au=19:1であり、複合粉末全体のPtとAuの合
計含有量は2wt%であった。またTiO2 粒子上に担持
されているPt−Au合金粒子は粒径2〜3nmであっ
た。
A solid content is collected by filtration, washed with ion-exchanged water at 60 ° C., dried in air at 120 ° C. for 2 hours, and then heat-treated at 500 ° C. in air for 2 hours. gave. Thereby, the P supported on the TiO 2 particles
Au particles further supported on the t particles [Pt-Au] /
A TiO 2 composite powder was obtained. This composite powder is Pt-
An Au alloy photocatalyst is supported on a TiO 2 semiconductor photocatalyst, and has a structure as schematically shown in FIG. The weight ratio of Pt to Au in the Pt-Au alloy is Pt:
Au = 19: 1, and the total content of Pt and Au in the entire composite powder was 2% by weight. The Pt—Au alloy particles supported on the TiO 2 particles had a particle size of 2 to 3 nm.

【0024】なお、上記のPt粒径およびPt−Au粒
径の測定は透過電子顕微鏡(TEM)により、また組成
分析は蛍光X線分析により行った。得られた〔Pt−A
u〕TiO2 合金・半導体複合光触媒の光触媒効果を評
価するために、下記条件にてアンモニア除去試験を行っ
た。 〔試験条件〕 Pt−Au担持量:0.1g 担持体:アルミニウム 浄化対象:10リットルガスパック アンモニア100
ppm 紫外線照射量:0.7mW/cm2 比較のために、TiO2 単独の場合についても同様の試
験を行った。
The Pt particle size and the Pt-Au particle size were measured by a transmission electron microscope (TEM), and the composition analysis was performed by X-ray fluorescence analysis. The obtained [Pt-A
u] In order to evaluate the photocatalytic effect of the TiO 2 alloy / semiconductor composite photocatalyst, an ammonia removal test was performed under the following conditions. [Test conditions] Pt-Au carrying amount: 0.1 g Carrier: aluminum Purification target: 10 liter gas pack ammonia 100
ppm Ultraviolet irradiation amount: 0.7 mW / cm 2 For comparison, the same test was performed for TiO 2 alone.

【0025】その結果、図4に示すように、いずれの場
合も試験時間の増加に伴って除去率は増加しているが、
本発明による〔Pt−Au〕/TiO2 合金・半導体複
合光触媒はTiO2 半導体光触媒に比べて飛躍的に高い
除去率が得られている。典型的には、本発明の〔Pt−
Au〕/TiO2 合金・半導体複合光触媒では試験時間
100分でアンモニア除去率はほぼ100%に達してい
る。
As a result, as shown in FIG. 4, in each case, the removal rate increases as the test time increases.
The [Pt-Au] / TiO 2 alloy / semiconductor composite photocatalyst according to the present invention has a remarkably higher removal rate than the TiO 2 semiconductor photocatalyst. Typically, the [Pt-
In the case of the Au] / TiO 2 alloy / semiconductor composite photocatalyst, the ammonia removal rate reached almost 100% in 100 minutes of the test time.

【0026】これに対して、その時点での従来のTiO
2 半導体光触媒の除去率は20%程度であり、しかも増
加がほぼ飽和した状態になっていて、それ以上試験時間
をかけても除去率の増加は殆ど期待できない。以上の実
施例1および実施例2にて得られた合金光触媒および合
金・半導体複合光触媒の浄化能力を、従来のTiO2
触媒および活性炭吸着材+TiO2 光触媒とを比較評価
するために、実施例2と同様の条件でアンモニア除去試
験を行った。
On the other hand, the conventional TiO
(2) The removal rate of the semiconductor photocatalyst is about 20%, and the increase is almost saturated, and the increase in the removal rate can hardly be expected even if the test time is further extended. Example 2 was used to compare and evaluate the purifying ability of the alloy photocatalyst and the alloy / semiconductor composite photocatalyst obtained in the above Examples 1 and 2 with the conventional TiO 2 photocatalyst and activated carbon adsorbent + TiO 2 photocatalyst. An ammonia removal test was performed under the same conditions as described above.

【0027】その結果、図5に示すように、本発明第一
観点によるPt−Au合金光触媒は明瞭に光触媒作用を
発現し、また本発明第二観点による〔Pt−Au〕/T
iO 2 合金・半導体複合光触媒は試験時間100分以降
の定常状態で従来のTiO2光触媒の約4倍、従来の活
性炭吸着材+TiO2 光触媒の約3倍の浄化能力を発揮
した。
As a result, as shown in FIG.
Pt-Au alloy photocatalyst from the viewpoint clearly has photocatalytic action
[Pt-Au] / T according to the second aspect of the present invention
iO TwoFor alloy / semiconductor composite photocatalyst after 100 minutes test time
In the steady state of conventional TiOTwoAbout 4 times the photocatalyst,
Charcoal adsorbent + TiOTwoDemonstrate about three times the purification capacity of photocatalyst
did.

【0028】〔実施例3〕本発明の第三観点により、P
t−Au合金光触媒を用いた光触媒装置を以下の手順で
作製した。実施例1で製造したPt−Au合金光触媒粉
末をアルミナゾルと混合した後、アルミニウムハニカム
にディッピングにより塗布し、250〜500℃の温度
で焼き付けて光触媒フィルターを作製した。
Embodiment 3 According to a third aspect of the present invention, P
A photocatalyst device using a t-Au alloy photocatalyst was manufactured in the following procedure. After mixing the Pt-Au alloy photocatalyst powder produced in Example 1 with alumina sol, it was applied to an aluminum honeycomb by dipping and baked at a temperature of 250 to 500 ° C. to produce a photocatalytic filter.

【0029】次に、この光触媒フィルターと紫外線ラン
プとを搭載した空気浄化器を作製した。 〔実施例4〕本発明の第三観点により、〔Pt−Au〕
TiO2 合金・半導体複合光触媒を用いた光触媒装置を
以下の手順で作製した。
Next, an air purifier equipped with the photocatalyst filter and the ultraviolet lamp was manufactured. Example 4 According to the third aspect of the present invention, [Pt-Au]
A photocatalyst device using a TiO 2 alloy / semiconductor composite photocatalyst was manufactured in the following procedure.

【0030】実施例2で製造した〔Pt−Au〕TiO
2 合金・半導体複合光触媒粉末をアルミニウムハニカム
にディッピングにより塗布し、250〜500℃の温度
で焼き付けて光触媒フィルターを作製した。次に、この
光触媒フィルターと紫外線ランプとを搭載した空気浄化
器を作製した。
[Pt-Au] TiO manufactured in Example 2
The two- alloy / semiconductor composite photocatalyst powder was applied to an aluminum honeycomb by dipping and baked at a temperature of 250 to 500 ° C. to produce a photocatalytic filter. Next, an air purifier equipped with the photocatalyst filter and the ultraviolet lamp was manufactured.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
従来の半導体光触媒に対して全く新規な材質であるPt
−Au合金光触媒およびこの合金光触媒を利用し従来の
半導体光触媒よりも飛躍的に高い触媒能力を有する合金
・半導体複合光触媒が提供されると共に、これらの光触
媒を利用した光触媒装置も提供される。
As described above, according to the present invention,
Pt, a completely new material for conventional semiconductor photocatalysts
An Au-alloy photocatalyst and an alloy / semiconductor composite photocatalyst utilizing the alloy photocatalyst and having a remarkably higher catalytic ability than a conventional semiconductor photocatalyst are provided, and a photocatalyst device using these photocatalysts is also provided.

【0032】本発明の光触媒および光触媒装置は、特に
自動車などの車室用空気浄化器等に適用した場合、通常
の脱臭作用を発揮するばかりでなく、外部から進入する
NO x 、SOx に対してもPtの触媒作用により除去作
用を発揮するという副次的な効果も得られる。
The photocatalyst and photocatalyst device of the present invention are
When applied to air purifiers for cabin of automobiles, etc.
Not only deodorizes but also enters from outside
NO x, SOxIs removed by the catalytic action of Pt
There is also a secondary effect of exerting an effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明第一観点によるPt−Au合金
光触媒と担持体アルミナ粒子とから成る構造を示す概念
図である。
FIG. 1 is a conceptual diagram showing a structure including a Pt—Au alloy photocatalyst and alumina particles on a carrier according to a first aspect of the present invention.

【図2】図2は、本発明第一観点によるPt−Au合金
光触媒の光触媒触媒作用の発現を示すグラフである。
FIG. 2 is a graph showing the photocatalytic activity of a Pt—Au alloy photocatalyst according to the first aspect of the present invention.

【図3】図3は、本発明第二観点による〔Pt−Au〕
/TiO2 合金・半導体複合光触媒の構造を示す概念図
である。
FIG. 3 shows [Pt-Au] according to the second aspect of the present invention.
/ Is a conceptual diagram showing the structure of TiO 2 alloy, composite semiconductor photocatalyst.

【図4】図4は、本発明第二観点による〔Pt−Au〕
/TiO2 合金・半導体複合光触媒の浄化能力を従来の
TiO2 半導体光触媒と比較して示すグラフである。
FIG. 4 shows [Pt-Au] according to the second aspect of the present invention.
/ Purification capacity of the TiO 2 alloy, composite semiconductor photocatalyst is a graph comparing the conventional TiO 2 semiconductor photocatalyst.

【図5】図5は、本発明第一および第二観点の各光触媒
の浄化能力を従来の光触媒と比較して示すグラフであ
る。
FIG. 5 is a graph showing the purifying ability of each photocatalyst according to the first and second aspects of the present invention in comparison with a conventional photocatalyst.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 白金上に金の微粒子を担持したことを特
徴とする光触媒。
1. A photocatalyst comprising gold particles supported on platinum.
【請求項2】 白金上に金の微粒子を担持し、該白金を
更に半導体光触媒上に担持したことを特徴とする光触
媒。
2. A photocatalyst comprising gold fine particles supported on platinum, and the platinum further supported on a semiconductor photocatalyst.
【請求項3】 請求項2に記載の光触媒において、前記
半導体光触媒が酸化チタン(TiO2)、硫化カドミウム
(CdS)、チタン酸ストロンチウム(SrTiO3)、
チタン酸カリウム(K2 Ti6 13)、酸化タンタル
(Ta2 5 )から成る群から選択されることを特徴と
する光触媒。
3. The photocatalyst according to claim 2, wherein said semiconductor photocatalyst is titanium oxide (TiO 2 ), cadmium sulfide (CdS), strontium titanate (SrTiO 3 ),
A photocatalyst selected from the group consisting of potassium titanate (K 2 Ti 6 O 13 ) and tantalum oxide (Ta 2 O 5 ).
【請求項4】 請求項1から3までのいずれか1項に記
載の光触媒と、該光触媒への光照射手段とを備えたこと
を特徴とする光触媒装置。
4. A photocatalyst device comprising: the photocatalyst according to claim 1; and means for irradiating the photocatalyst with light.
JP10063581A 1998-03-13 1998-03-13 Photocatalyst and photocatalytic device Withdrawn JPH11253818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10063581A JPH11253818A (en) 1998-03-13 1998-03-13 Photocatalyst and photocatalytic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10063581A JPH11253818A (en) 1998-03-13 1998-03-13 Photocatalyst and photocatalytic device

Publications (1)

Publication Number Publication Date
JPH11253818A true JPH11253818A (en) 1999-09-21

Family

ID=13233385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10063581A Withdrawn JPH11253818A (en) 1998-03-13 1998-03-13 Photocatalyst and photocatalytic device

Country Status (1)

Country Link
JP (1) JPH11253818A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269541A (en) * 2000-03-24 2001-10-02 Ngk Insulators Ltd Photocatalytic treatment device
WO2004112958A1 (en) * 2003-06-19 2004-12-29 Carrier Corporation Air purification system comprising gold/titanium dioxide photocatalyst
JP2008104996A (en) * 2006-10-27 2008-05-08 Central Japan Railway Co Photocatalyst, coating liquid for forming photocatalyst and method for manufacturing photocatalyst
JP2010005568A (en) * 2008-06-27 2010-01-14 Nbc Meshtec Inc Composite catalyst carrier and its manufacturing method
US10618002B2 (en) 2018-12-20 2020-04-14 Tenneco Automotive Operating Company Inc. System and method for treating ambient air

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269541A (en) * 2000-03-24 2001-10-02 Ngk Insulators Ltd Photocatalytic treatment device
WO2004112958A1 (en) * 2003-06-19 2004-12-29 Carrier Corporation Air purification system comprising gold/titanium dioxide photocatalyst
JP2008104996A (en) * 2006-10-27 2008-05-08 Central Japan Railway Co Photocatalyst, coating liquid for forming photocatalyst and method for manufacturing photocatalyst
JP2010005568A (en) * 2008-06-27 2010-01-14 Nbc Meshtec Inc Composite catalyst carrier and its manufacturing method
US10618002B2 (en) 2018-12-20 2020-04-14 Tenneco Automotive Operating Company Inc. System and method for treating ambient air

Similar Documents

Publication Publication Date Title
KR100808340B1 (en) Method and apparatus for purifying air using a photocatalyst
US6174835B1 (en) Exhaust gas purifying device and method for purifying exhaust gas
US9073009B2 (en) Air purification system
US5468699A (en) Molecular sieve - photoactive semiconductor membranes and reactions employing the membranes
JP4319222B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP5628225B2 (en) Metal-containing colloidal particle-supported carrier and method for producing the same
CN109126859B (en) Cluster-supported catalyst and method for producing same
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
US5840649A (en) NOx adsorbents
CN110494216B (en) Cluster-supported porous carrier and method for producing same
CN109395774B (en) Cluster-supported catalyst and method for producing same
JP2001187343A (en) Cleaning catalyst at normal temperature and utilization thereof
JP2000254449A (en) Base material for decomposing harmful or odor gas and device therefor
JPH05200312A (en) Manufacturing of catalyst
JPH11253818A (en) Photocatalyst and photocatalytic device
EP3466879B1 (en) Chabazite zeolite with high hydrothermal resistance and method for producing same
JP4730947B2 (en) Method for regenerating exhaust gas purification catalyst
JP3689754B2 (en) Photocatalyst material and air purification film
JP4780490B2 (en) Activated carbon filter
JP2003299965A (en) Photocatalyst material and production method of the same
JP3521748B2 (en) Air purification filter and air purifier
JPH11262672A (en) High efficiency metal supported photocatalyst and highly functional porous glass material
JPH11137656A (en) Deodorant catalyst element and its production
JPH05337363A (en) Adsorbing material for carbon monoxide in inert gas
JP2009285620A (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040122