JPH11137656A - Deodorant catalyst element and its production - Google Patents

Deodorant catalyst element and its production

Info

Publication number
JPH11137656A
JPH11137656A JP9309121A JP30912197A JPH11137656A JP H11137656 A JPH11137656 A JP H11137656A JP 9309121 A JP9309121 A JP 9309121A JP 30912197 A JP30912197 A JP 30912197A JP H11137656 A JPH11137656 A JP H11137656A
Authority
JP
Japan
Prior art keywords
photocatalyst
catalyst
deodorizing
metal oxide
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9309121A
Other languages
Japanese (ja)
Inventor
Kazuo Nishikawa
和男 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP9309121A priority Critical patent/JPH11137656A/en
Publication of JPH11137656A publication Critical patent/JPH11137656A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To absorb and oxidation decompose hazardous materials, such as carbon monoxide and nitrogen oxides, and to improve the ability to remove the hazardous materials as compared to the case only the photocatalyst is deposited by depositing the photocatalyst and an ordinary catalyst of a metal oxide system. SOLUTION: The deodorant catalyst element is constituted by depositing the photocatalyst particles 1 and the ordinary temp. catalyst particles 2 of the metal oxide system on a base material 4 by an inorg. binder 3. This method for prepn. consists in first putting the ordinary temp. catalyst composed of the photocatalyst and the metal oxide system into a solvent, pulverizing the flocculating photocatalyst and the ordinary temp. catalyst of the metal oxide system to primary particles with a ball mill, attriter, etc., by spending time and mixing and dispersing the primary particles into the solvent. Further, a binder is added to the soln. and the soln. prepd. by mixing the soln. While shortening the time so as not to pulverize the binder component is used a coating liquid. The film formed by applying the coating liquid and baking the coating has an increased surface area as the particles of the photocatalysts and the ordinary temp. catalyst of the metal oxide system are small. The adsorption performance and catalyst decomposition performance are improved and since the binder component is not pulverized, the film strength is improved as well.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、室内の空気の浄化
を有する脱臭触媒素子に関し、さらに、脱臭触媒素子を
有する空気調和機又は空気清浄機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deodorizing catalytic element having a function of purifying indoor air, and more particularly to an air conditioner or an air purifier having a deodorizing catalytic element.

【0002】[0002]

【従来の技術】従来、特許番号第2574840号で
は、臭気成分を吸着する吸着材の表面に光触媒を付加し
たあるいは吸着材に光触媒を練り込んだ部材及び光触媒
を励起させる励起源とを設けた脱臭装置が登録されてい
る。
2. Description of the Related Art Conventionally, Japanese Patent No. 2574840 discloses a deodorizing apparatus in which a photocatalyst is added to a surface of an adsorbent for adsorbing odor components or a member in which a photocatalyst is kneaded into the adsorbent and an excitation source for exciting the photocatalyst are provided. The device is registered.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来の吸着材に光触媒を付加させた脱臭装置では、吸
着材と光触媒の接触面積が小さくなり、吸着材に吸着さ
れた臭気成分を効率よく光触媒の光活性により分解され
ず、吸着性能が低い成分である一酸化炭素、窒素酸化物
等は除去できない問題がある。また、ハニカム活性炭等
の吸着材を用いると焼成温度が1000℃と高温になる
問題がある。
However, in the above-mentioned conventional deodorizing apparatus in which a photocatalyst is added to the adsorbent, the contact area between the adsorbent and the photocatalyst is reduced, and the odor component adsorbed by the adsorbent is efficiently removed by the photocatalyst. However, there is a problem that components which are not decomposed due to photoactivity and have low adsorption performance, such as carbon monoxide and nitrogen oxide, cannot be removed. Further, when an adsorbent such as honeycomb activated carbon is used, there is a problem that the firing temperature is as high as 1000 ° C.

【0004】本発明の目的は上記問題を解決し、光触
媒、金属酸化物系の常温触媒及び吸着剤を高分散させ担
持した、吸着作用と分解作用をもつ脱臭触媒素子と、該
脱臭触媒素子を脱臭フィルターとして配設した空気調和
機又は空気清浄機を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a deodorizing catalyst element having an adsorbing action and a decomposing action in which a photocatalyst, a metal oxide-based room temperature catalyst and an adsorbent are highly dispersed and supported. An object is to provide an air conditioner or an air purifier provided as a deodorizing filter.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明の第1の構成では、光触媒と金属酸化物系の常
温触媒を担持した脱臭触媒素子である。このような構成
では、光触媒に紫外線を照射すると、吸着した有機性物
質は光触媒の光活性作用により、水分子や二酸化炭素等
に酸化分解される。一酸化炭素等は金属酸化物系の常温
触媒により吸着され、二酸化炭素に酸化される。
According to a first aspect of the present invention, there is provided a deodorizing catalyst element supporting a photocatalyst and a metal oxide-based room temperature catalyst. In such a configuration, when the photocatalyst is irradiated with ultraviolet light, the adsorbed organic substance is oxidized and decomposed into water molecules, carbon dioxide, and the like by the photoactive action of the photocatalyst. Carbon monoxide and the like are adsorbed by a metal oxide-based room temperature catalyst and oxidized to carbon dioxide.

【0006】また、本発明の第2の構成では、光触媒、
金属酸化物系の常温触媒及び吸着剤を担持した脱臭触媒
素子である。このような構成では、吸着剤により多種多
様の臭い成分が多量に吸着され、吸着剤で吸着された臭
い成分は光触媒の光活性作用により、水分子や二酸化炭
素等に酸化分解される。吸着性能の低い一酸化炭素は金
属酸化物系の常温触媒により吸着され、二酸化炭素に酸
化される。
[0006] In a second configuration of the present invention, a photocatalyst,
This is a deodorizing catalyst element supporting a metal oxide-based room temperature catalyst and an adsorbent. In such a configuration, a large amount of various odor components are adsorbed by the adsorbent, and the odor components adsorbed by the adsorbent are oxidized and decomposed into water molecules, carbon dioxide, and the like by the photoactive action of the photocatalyst. Carbon monoxide having low adsorption performance is adsorbed by a metal oxide-based room temperature catalyst and oxidized to carbon dioxide.

【0007】また、本発明の第3の構成では、光触媒と
金属酸化物系常温触媒との配合割合を光触媒と金属酸化
物系の常温触媒合計重量に対して、金属酸化物系の常温
触媒の重量割合が22%以下であるように担持した脱臭
触媒素子である。このような構成では、金属酸化物系の
常温触媒による光触媒の光活性性能の劣化を抑えられ
る。
In the third configuration of the present invention, the mixing ratio of the photocatalyst and the metal oxide-based room temperature catalyst is determined based on the total weight of the photocatalyst and the metal oxide-based room temperature catalyst. This is a deodorizing catalyst element supported so that the weight ratio is 22% or less. With such a configuration, deterioration of the photoactivity performance of the photocatalyst due to the metal oxide-based room temperature catalyst can be suppressed.

【0008】また、本発明の第4の構成では、第1又は
2の構成での下層の上に光触媒のみの下層を設け、多層
構造とした脱臭触媒素子である。このような構成では、
光触媒のみの層を上層に設けることにより、紫外線が効
率よく光触媒に当たり、光活性性能が向上する。
Further, a fourth structure of the present invention is a deodorizing catalyst device having a multilayer structure in which a lower layer of only a photocatalyst is provided on the lower layer in the first or second structure. In such a configuration,
By providing the layer containing only the photocatalyst in the upper layer, the ultraviolet rays efficiently hit the photocatalyst, and the photoactivity performance is improved.

【0009】また、本発明の第5の構成では、光触媒は
酸化チタン、酸化タングステン、酸化亜鉛などの金属酸
化物、及び、ルテニウム錯体なとの金属錯体の単体、又
はその複合体から成る脱臭触媒素子である。このような
構成でも、本発明の第1の構成で示した同様の光活性作
用が得られる。
In a fifth aspect of the present invention, the photocatalyst is a deodorizing catalyst comprising a metal oxide such as titanium oxide, tungsten oxide or zinc oxide, a simple metal complex such as a ruthenium complex, or a complex thereof. Element. Even with such a configuration, the same photoactive action as shown in the first configuration of the present invention can be obtained.

【0010】また、本発明の第6の構成では、金属酸化
物系の常温触媒は酸化マンガン、酸化銅、酸化鉄なとの
金属酸化物の単体又はその複合体から成る脱臭触媒素子
である。このような構成でも、本発明の第1の構成で示
した同様の吸着酸化作用が得られる。
In a sixth aspect of the present invention, the metal oxide-based room temperature catalyst is a deodorizing catalyst element composed of a single metal oxide such as manganese oxide, copper oxide, iron oxide or a composite thereof. Even with such a configuration, the same adsorptive oxidation action as shown in the first configuration of the present invention can be obtained.

【0011】また、本発明の第7の構成では、上記脱臭
触媒素子を脱臭フィルターとして用い、担持されている
光触媒を励起させる励起源とを配設した空気浄化空気調
和機又は空気清浄機である。
A seventh aspect of the present invention is an air purifying air conditioner or an air purifier using the deodorizing catalyst element as a deodorizing filter, and including an excitation source for exciting a photocatalyst carried. .

【0012】このような構成では、脱臭フィルターに臭
い成分を含んだ空気を通過させると、脱臭フィルターに
より空気中の臭い成分及び有害物質の一酸化炭素、窒素
酸化物等が吸着される。また、脱臭フィルターに紫外線
を照射することにより、光触媒の光活性性能で吸着した
有機性物質及び窒素酸化物は酸化分解される。また、金
属酸化物系の常温触媒により一酸化炭素は吸着酸化され
る。このように脱臭フィルターに吸着された物質は水分
子や二酸化炭素等に分解され脱離するため、脱臭性能の
劣化を抑えることができる。
In such a configuration, when air containing an odor component is passed through the deodorizing filter, the odor component and harmful substances such as carbon monoxide and nitrogen oxide in the air are adsorbed by the deodorizing filter. Further, by irradiating the deodorizing filter with ultraviolet rays, the organic substances and nitrogen oxides adsorbed by the photoactive performance of the photocatalyst are oxidatively decomposed. Further, carbon monoxide is adsorbed and oxidized by a metal oxide-based room temperature catalyst. The substance adsorbed on the deodorizing filter as described above is decomposed into water molecules, carbon dioxide and the like and desorbed, so that deterioration of the deodorizing performance can be suppressed.

【0013】また、本発明の第8の構成では、光触媒粒
子、光触媒粒子及び金属酸化物系の常温触媒粒子又は光
触媒粒子、金属酸化物系の常温触媒粒子及び吸着剤粒子
を溶剤に混合分散させ、該溶液にバインダーを加え焼成
担持した脱臭触媒素子の製造方法である。このような構
成では、各粒子を混合分散させることにより表面積が増
し、吸着性能、光活性性能及び分解性能が向上する。
According to an eighth aspect of the present invention, a photocatalyst particle, a photocatalyst particle, a metal oxide-based room temperature catalyst particle or a photocatalyst particle, a metal oxide-based room temperature catalyst particle and an adsorbent particle are mixed and dispersed in a solvent. And a method for producing a deodorizing catalyst element in which a binder is added to the solution and the mixture is calcined and supported. In such a configuration, by mixing and dispersing the respective particles, the surface area is increased, and the adsorption performance, photoactivity performance, and decomposition performance are improved.

【0014】また、本発明の第9の構成では、光触媒又
は光触媒及び金属酸化物系の常温触媒又は光触媒、金属
酸化物系の常温触媒及び吸着剤を溶剤に混合分散させ、
該溶液を不織布、多孔質体等に含浸焼成した脱臭触媒素
子の製造方法である。このような構成では、本発明の第
8の構成で示した同様の作用が得られる。
In a ninth aspect of the present invention, a photocatalyst or a photocatalyst and a metal oxide-based room temperature catalyst or photocatalyst, a metal oxide-based room temperature catalyst and an adsorbent are mixed and dispersed in a solvent.
This is a method for producing a deodorizing catalyst element in which the solution is impregnated and fired in a nonwoven fabric, a porous body or the like. With such a configuration, the same operation as that described in the eighth configuration of the present invention can be obtained.

【0015】また、本発明の第10の構成では、バイン
ダーをシリカ、アルミナ等の水系無機バインダーとし、
焼成温度を150℃以下とした脱臭触媒素子の製造方法
である。このような構成では、水系無機バインダーを用
いることにより、有機系に比べ、有機物を蒸発させる必
要がなく、これにより焼成温度を低温にすることが可能
になり、基材の制限が緩和され、合成樹脂等も基材に用
いることができる。
In a tenth aspect of the present invention, the binder is a water-based inorganic binder such as silica or alumina.
This is a method for producing a deodorizing catalyst element in which the firing temperature is set to 150 ° C. or lower. In such a configuration, by using the water-based inorganic binder, it is not necessary to evaporate the organic matter as compared with the organic-based binder, thereby making it possible to lower the sintering temperature, the restriction of the base material is eased, and the synthesis is performed. Resins and the like can also be used for the base material.

【0016】[0016]

【発明の実施の形態】以下、本発明の各実施の形態を図
面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】<実施の形態1>本発明の実施の形態1
を、図1乃至図4及び図14に示す。図1では光触媒粒
子1と金属酸化物系の常温触媒粒子2を無機系バインダ
ー3で担持した拡大断面図である。図14では光触媒、
金属酸化物系の常温触媒及びバインダー調製方法のフロ
ーチャート図である。
<Embodiment 1> Embodiment 1 of the present invention
Are shown in FIGS. 1 to 4 and FIG. FIG. 1 is an enlarged cross-sectional view in which photocatalyst particles 1 and metal oxide-based room temperature catalyst particles 2 are supported by an inorganic binder 3. In FIG. 14, a photocatalyst,
FIG. 2 is a flowchart of a method for preparing a metal oxide-based room temperature catalyst and a binder.

【0018】先ず、光触媒と金属酸化物系の常温触媒を
溶剤に入れ、ボールミル、アトライター等で時間をかけ
凝集している光触媒と金属酸化物系の常温触媒を一次粒
子まで粉砕し、溶剤中に混合分散させる。このとき必要
ならば分散剤等を添加する場合もある。
First, the photocatalyst and the metal oxide-based room temperature catalyst are put into a solvent, and the coagulated photocatalyst and the metal oxide-based room temperature catalyst are pulverized to primary particles with a ball mill, an attritor, or the like over time, and the solvent is added to the solvent. Mixed and dispersed. At this time, if necessary, a dispersant or the like may be added.

【0019】さらに、該溶液にバインダーを加え、ボー
ルミル、アトライター等でバインダー成分を粉砕しない
ように時間を短くし、混合させたものを塗液とする。こ
の塗液を塗布、焼成してできた膜では光触媒と金属酸化
物系の常温触媒の粒子が小さいため表面積が増え、吸着
性能及び触媒分解性能が向上し、バインダー成分は粉砕
されていないため、膜強度も向上する。
Further, a binder is added to the solution, the time is shortened so that the binder component is not crushed by a ball mill, an attritor or the like, and the mixture is used as a coating solution. In the film formed by applying and baking this coating solution, the surface area increases due to small particles of the photocatalyst and the metal oxide-based room temperature catalyst, the adsorption performance and the catalyst decomposition performance are improved, and the binder component is not pulverized. The film strength is also improved.

【0020】光触媒として石原産業株式会社製の酸化チ
タン粉体STS−01(商品名)、金属酸化物系の常温
触媒として日産化学株式会社製の酸化銅と酸化マンガン
からなるガス精製用触媒N−140(商品名)、溶剤と
してイオン交換水、そしてバインダーとしてテルニック
工業株式会社製の水系シリカ無機バインダーベタック9
70(商品名)を用いた。
A titanium oxide powder STS-01 (trade name) manufactured by Ishihara Sangyo Co., Ltd. as a photocatalyst, and a gas purification catalyst N- manufactured by Nissan Chemical Co., Ltd. comprising copper oxide and manganese oxide as a metal oxide-based room temperature catalyst. 140 (trade name), ion-exchanged water as a solvent, and water-based silica inorganic binder BETAC 9 manufactured by Telnic Industries, Ltd. as a binder
70 (trade name) was used.

【0021】サンプルの作製方法は、光触媒と金属酸化
物系の常温触媒との合計重量に対して、金属酸化物系の
常温触媒の重量割合が0%、12%、22%、50%と
なるように、上記の調製方法に従い調製した4種類の塗
液を60×150mmのアルミシートに刷毛で酸化チタ
ン重量が0.2gになるように塗布し、150℃で1時
間焼成したサンプルをそれぞれの塗液に対し2枚ずつ作
製した。
In the method of preparing the sample, the weight ratio of the metal oxide-based room temperature catalyst to the total weight of the photocatalyst and the metal oxide-based room temperature catalyst is 0%, 12%, 22%, and 50%. Thus, the four types of coating liquids prepared according to the above preparation method were applied to a 60 × 150 mm aluminum sheet with a brush so that the weight of titanium oxide was 0.2 g, and baked at 150 ° C. for 1 hour. Two sheets were prepared for each coating solution.

【0022】これらの同種サンプル2枚と日本電気株式
会社製の6Wブラックライト(型番FL6BL)を27
Lのボックス内に設置し、クリーンエアをパージ、マイ
クロシリンダーによりアセトアルデヒド25μL注入、
ヒーターでアセトアルデヒドを蒸発させ、攪拌ファンで
ボックス内に攪拌した後、ブラックライトで紫外線をサ
ンプルに照射しながら、吸引ファンで空気を循環させ、
光明理化学工業株式会社製の検知管によりアセトアルデ
ヒドの濃度を測定した。
Two samples of the same kind and a 6W black light (model number FL6BL) manufactured by NEC Corporation were
L inside the box, purge with clean air, inject 25 μL of acetaldehyde by micro cylinder,
After evaporating acetaldehyde with a heater and stirring the inside of the box with a stirring fan, irradiating the sample with ultraviolet light with black light, circulating air with a suction fan,
The concentration of acetaldehyde was measured with a detector tube manufactured by Komei Rika Kogyo Co., Ltd.

【0023】図3では金属酸化物系の常温触媒の重量割
合の違いでの光触媒の光活性分解によるアセトアルデヒ
ドの濃度変化図、図4では光触媒の光活性でアセトアル
デヒド90ppmが分解するまでの時間と金属酸化物系
の常温触媒の重量割合の関係図である。
FIG. 3 is a graph showing the change in the concentration of acetaldehyde due to photoactive decomposition of the photocatalyst depending on the weight ratio of the metal oxide-based room-temperature catalyst. FIG. It is a relation diagram of the weight ratio of an oxide system normal temperature catalyst.

【0024】このように光触媒の担持量を固定して、金
属酸化物系の常温触媒の重量割合を変えた場合、金属酸
化物系の常温触媒の重量割合が大きくなると光触媒の光
活性性能が低下することがわかる。特に金属酸化物系の
常温触媒の重量割合が22%より大きくなると、光触媒
の光活性が急激に低下するため、光触媒の光活性性能を
確保するためには、金属酸化物系の常温触媒の重量割合
を22%以下にする必要がある。
When the weight ratio of the metal oxide-based room temperature catalyst is changed while the amount of the photocatalyst carried is fixed as described above, if the weight ratio of the metal oxide-based room temperature catalyst increases, the photoactivity performance of the photocatalyst decreases. You can see that In particular, when the weight ratio of the metal oxide-based room temperature catalyst is larger than 22%, the photoactivity of the photocatalyst sharply decreases. The proportion needs to be 22% or less.

【0025】なお、光触媒として用いる金属酸化物は、
酸化チタンだけでなく、酸化タングステン、酸化亜鉛の
何れか一つ、若しくは、これらの複合体からなるものを
用いることができる。また、光触媒としてルテニウム錯
体等の金属錯体を用いることもできる。
The metal oxide used as the photocatalyst is
In addition to titanium oxide, any one of tungsten oxide and zinc oxide, or a composite of these can be used. Further, a metal complex such as a ruthenium complex can be used as the photocatalyst.

【0026】さらに、金属酸化物系の常温触媒として
は、酸化マンガン、酸化銅、酸化鉄の何れか一つ、若し
くは、これらの複合体からなるものを用いることができ
る。
Further, as the metal oxide-based normal temperature catalyst, any one of manganese oxide, copper oxide, and iron oxide, or a composite of these can be used.

【0027】<実施の形態2>本発明の実施の形態2を
図2、図5乃至図10、図15に示す。図2では光触媒
1、金属酸化物系の常温触媒2と吸着剤5を無機系バイ
ンダー3で担持した拡大断面図である。図15では光触
媒、金属酸化物系の常温触媒2、吸着剤5、バインダー
3の調製方法のフローチャート図である。
<Second Embodiment> A second embodiment of the present invention is shown in FIGS. 2, 5 to 10, and 15. FIG. FIG. 2 is an enlarged cross-sectional view in which a photocatalyst 1, a metal oxide-based room temperature catalyst 2, and an adsorbent 5 are supported by an inorganic binder 3. FIG. 15 is a flowchart of a method for preparing the photocatalyst, the metal oxide-based room temperature catalyst 2, the adsorbent 5, and the binder 3.

【0028】先ず、光触媒と金属酸化物系の常温触媒を
溶剤に入れ、ボールミル、アトライター等で時間をかけ
て、凝集している光触媒と金属酸化物系の常温触媒とを
一次粒子まで粉砕し、溶剤中に混合分散させる。このと
き必要ならば分散剤等を添加する。該溶液に吸着剤を加
え、ボールミル、アトライター等で吸着剤を混合・分散
させる。
First, the photocatalyst and the metal oxide-based room temperature catalyst are put into a solvent, and the coagulated photocatalyst and the metal oxide-based room temperature catalyst are pulverized to primary particles with a ball mill, an attritor, or the like over time. Mixed and dispersed in a solvent. At this time, if necessary, a dispersant or the like is added. An adsorbent is added to the solution, and the adsorbent is mixed and dispersed using a ball mill, an attritor, or the like.

【0029】その後、該溶液にバインダーを加え、ボー
ルミル、アトライター等でバインダー成分を粉砕しない
ように時間を短くし、混合させたものを塗液とする。こ
の塗液を塗布、焼成してできた膜では光触媒と金属酸化
物系の常温触媒との粒子が小さいため表面積が増え、吸
着性能及び触媒分解性能が向上する。さらに、吸着剤も
分散しているため光触媒と吸着剤との接触面積が増し、
吸着剤で吸着した臭い成分を光触媒の光活性で分解する
効率が上がる。また、バインダー成分は粉砕されていな
いため、膜強度も向上する。
Thereafter, a binder is added to the solution, the time is shortened so that the binder component is not crushed by a ball mill, an attritor, or the like, and the mixture is used as a coating solution. In a film formed by applying and baking this coating solution, the surface area increases due to small particles of the photocatalyst and the metal oxide-based room temperature catalyst, and the adsorption performance and the catalyst decomposition performance are improved. Furthermore, since the adsorbent is also dispersed, the contact area between the photocatalyst and the adsorbent increases,
The efficiency of decomposing odor components adsorbed by the adsorbent by the photoactivity of the photocatalyst increases. Further, since the binder component is not pulverized, the film strength is also improved.

【0030】光触媒として石原産業株式会社製の酸化チ
タン粉体STS−01(商品名)、金属酸化物系の常温
触媒として日産化学株式会社製の酸化銅と酸化マンガン
からなるガス精製用触媒N−140(商品名)、溶剤と
してイオン交換水、吸着剤として日産ガードラー株式会
社製の銅をイオン交換したゼオライト銅交換ペンタジル
(商品名)そしてバインダーとしてテルニック工業株式
会社製の水系シリカ無機バインダーベタック970(商
品名)を用いた。
A titanium oxide powder STS-01 (trade name) manufactured by Ishihara Sangyo Co., Ltd. as a photocatalyst, and a gas purification catalyst N- manufactured by Nissan Chemical Co., Ltd. comprising copper oxide and manganese oxide as a metal oxide-based normal temperature catalyst. 140 (trade name), ion-exchanged water as a solvent, zeolite copper-exchanged pentazil (trade name) obtained by ion-exchange of copper manufactured by Nissan Gardler Co., Ltd. as an adsorbent, and a water-based silica inorganic binder Vetac 970 manufactured by Telnic Industry Co., Ltd. as a binder (Trade name) was used.

【0031】サンプルの作製方法は、光触媒と、金属酸
化物系の常温触媒と、吸着剤との合計重量に対して、金
属酸化物系の常温触媒と吸着剤との重量割合の組み合せ
が、それぞれ(0%、50%)、(22%、28%)、
(50%、0%)となるように、上記の調製方法に従い
調製した3種類の塗液を、275×90×t20mmで
200セル/in.2のアルミコルゲートハニカムに、浸
積法で酸化チタン重量が35gになるように塗布、15
0℃で1時間焼成し、サンプルを作製した。
The method of preparing the sample is such that the combination of the weight ratio of the metal oxide-based room temperature catalyst and the adsorbent to the total weight of the photocatalyst, the metal oxide-based room temperature catalyst, and the adsorbent is as follows. (0%, 50%), (22%, 28%),
(50%, 0%) so that the coating liquid of the three prepared according to the above method of preparation, the 200 cells / in. 2 Aluminum corrugated honeycomb at 275 × 90 × t20mm, titanium oxide dipping method Apply so that the weight becomes 35 g, 15
The sample was baked at 0 ° C. for 1 hour to prepare a sample.

【0032】これらのサンプルを図13に示す空気清浄
機の脱臭フィルター6として配設したものを1000L
のボックス内に設置し、クリーンエアをパージ、タバコ
5本燃焼させた後、サンプルに紫外線を照射しながら空
気清浄機を運転させ、運転時間が0min.、30min.、9
0min.、240min.後、ガス検知管を用いアンモニア、
アセトアルデヒド、酢酸、スチレン、一酸化炭素、窒素
酸化物の濃度を測定し、各成分の残存率を求めた。
These samples were provided as a deodorizing filter 6 of an air purifier shown in FIG.
After purging clean air and burning five cigarettes, the air cleaner was operated while irradiating the sample with ultraviolet rays, and the operation time was 0 min., 30 min., 9 min.
After 0 min. And 240 min., Use a gas detector tube for ammonia,
The concentrations of acetaldehyde, acetic acid, styrene, carbon monoxide, and nitrogen oxide were measured to determine the residual ratio of each component.

【0033】臭い成分に関しては、吸着剤の重量割合を
減らすと中性の臭い成分であるアセトアルデヒド(図
6)、スチレン(図8)の吸着性能が低下するが、アル
カリ性の臭い成分であるアンモニア(図5)と酸性の臭
い成分である酢酸(図7)の吸着性能はほとんど低下が
見られなかった。
With respect to the odor components, when the weight ratio of the adsorbent is reduced, the adsorption performance of the neutral odor components acetaldehyde (FIG. 6) and styrene (FIG. 8) is reduced, but the alkaline odor component ammonia ( The adsorption performance of FIG. 5) and acetic acid (FIG. 7), which is an acidic odor component, hardly decreased.

【0034】また、金属酸化物系の常温触媒と吸着剤の
重量割合の組み合せが(22%、28%)ではアセトア
ルデヒドの吸着性能が運転時間30分で残存率3%程度
になり、スチレンに関しても運転時間90分後では残存
率5%程度になった。
Further, when the combination of the weight ratio of the metal oxide-based ordinary temperature catalyst and the adsorbent is (22%, 28%), the acetaldehyde adsorption performance becomes about 3% in 30 minutes of operation time, and styrene is also used. After 90 minutes of operation time, the residual ratio was about 5%.

【0035】有害物質に関しては、一酸化炭素(図
9)、窒素酸化物(図10)とも金属酸化物系の常温触
媒の重量割合を増やすと吸着性能、分解性能とも向上し
た。これは金属酸化物系の常温触媒が一酸化炭素及び窒
素酸化物に対して吸着性能があり、同時に分解性能があ
るため、光触媒の光活性による分解性能と相乗効果を起
こし吸着及び分解性能が向上したと考えられる。
Regarding the harmful substances, both the carbon monoxide (FIG. 9) and the nitrogen oxides (FIG. 10) improved the adsorption performance and the decomposition performance by increasing the weight ratio of the metal oxide-based room temperature catalyst. This is because a metal oxide-based room-temperature catalyst has an adsorption performance for carbon monoxide and nitrogen oxides, and at the same time has a decomposition performance. It is thought that it was done.

【0036】<実施の形態3>本発明の実施の形態3を
図11及び図12に示す。図11では光触媒粒子1、金
属酸化物系の常温触媒粒子2と吸着剤5を無機系バイン
ダー3で担持した下層の上に光触媒のみを担持した上層
を設けた拡大断面図である。
Third Embodiment FIGS. 11 and 12 show a third embodiment of the present invention. FIG. 11 is an enlarged cross-sectional view in which an upper layer carrying only a photocatalyst is provided on a lower layer carrying a photocatalyst particle 1, a metal oxide-based room temperature catalyst particle 2 and an adsorbent 5 with an inorganic binder 3.

【0037】光触媒として石原産業株式会社製の酸化チ
タン粉体STS−01(商品名)、金属酸化物系の常温
触媒として日産化学株式会社製の酸化銅と酸化マンガン
からなるガス精製用触媒N−140(商品名)、溶剤と
してイオン交換水、吸着剤として日産ガードラー株式会
社製の銅をイオン交換したゼオライト銅交換ペンタジル
(商品名)そしてバインダーとしてテルニック工業株式
会社製の水系シリカ無機バインダーベタック970(商
品名)を用いた。
A titanium oxide powder STS-01 (trade name) manufactured by Ishihara Sangyo Co., Ltd. as a photocatalyst, and a gas purification catalyst N- manufactured by Nissan Chemical Co., Ltd. comprising copper oxide and manganese oxide as a metal oxide-based room temperature catalyst. 140 (trade name), ion-exchanged water as a solvent, zeolite copper-exchanged pentazil (trade name) obtained by ion-exchange of copper manufactured by Nissan Gardler Co., Ltd. as an adsorbent, and a water-based silica inorganic binder Vetac 970 manufactured by Telnic Industry Co., Ltd. as a binder (Trade name) was used.

【0038】サンプルの作製方法は、光触媒、金属酸化
物系の常温触媒、吸着剤の合計重量に対して、金属酸化
物系の常温触媒と吸着剤との重量割合の組み合せが、
(0%、0%)、(22%、28%)、となるように、
図15の調製方法に従い調製した塗液を、275×90
×t20mmで200セル/in.2のアルミコルゲート
ハニカムに浸積法で、下層は重量割合の組み合せが(2
2%、28%)の塗液を、酸化チタン重量が35gにな
るように塗布、150℃で1時間焼成し下層を形成し、
該下層の上に酸化チタンのみの重量割合の組み合せが
(0%、0%)の塗液を酸化チタン重量が12.5gに
なるように塗布、150℃で1時間焼成して上層を形成
して、サンプルを作製した。
The method of preparing the sample is such that the combination of the weight ratio of the metal oxide-based room temperature catalyst and the adsorbent to the total weight of the photocatalyst, the metal oxide-based room temperature catalyst, and the adsorbent is as follows.
(0%, 0%), (22%, 28%),
The coating liquid prepared according to the preparation method of FIG.
× In immersion method 200 cells / in. 2 Aluminum corrugated honeycombs T20mm, lower the combination of weight percentage (2
2%, 28%) to form a lower layer by applying the coating solution such that the weight of titanium oxide becomes 35 g and baking at 150 ° C. for 1 hour.
On the lower layer, a coating liquid in which the combination of the weight ratios of titanium oxide alone (0%, 0%) was applied so that the weight of titanium oxide was 12.5 g, and baked at 150 ° C. for 1 hour to form an upper layer Thus, a sample was prepared.

【0039】これらのサンプルを図13に示す空気清浄
機の脱臭フィルター6として配設したものを1000L
のボックス内に設置し、クリーンエアをパージし、タバ
コを5本燃焼させた後、サンプルに紫外線を照射しなが
ら空気清浄機を30分間運転させ、ガス検知管を用いア
ンモニア、アセトアルデヒド、酢酸の濃度を測定し、各
成分の除去率を加重平均して臭い成分除去率を求めた。
上記のようにタバコ5本を、脱臭フィルター毎に配設さ
れた紫外線ランプで、サンプルに紫外線を15時間照射
した場合としない場合で、タバコ本数50本まで繰り返
し臭い成分の除去率を測定した。
These samples were provided as a deodorizing filter 6 of an air purifier shown in FIG.
After purging clean air and burning 5 cigarettes, the air cleaner was operated for 30 minutes while irradiating the sample with ultraviolet rays, and the concentrations of ammonia, acetaldehyde and acetic acid were measured using a gas detector tube. Was measured, and the removal rate of each component was weighted to obtain the odor component removal rate.
Five cigarettes were irradiated with ultraviolet rays for 15 hours using an ultraviolet lamp provided for each deodorizing filter as described above, with and without irradiating the sample with ultraviolet rays, and the removal rate of the odor component was repeatedly measured up to 50 cigarettes.

【0040】図12では、サンプルに紫外線照射あり、
なしでタバコの臭い成分除去率の変化を示す。紫外線照
射ありの場合では臭い成分除去率の低下が少なく、除去
率92%程度で安定する傾向がみられるが、紫外線照射
なしの場合は除去率が急激に低下している。このように
吸着された臭い成分は光触媒の光活性性能により水分子
又は二酸化炭素等に分解され、脱離するため、90%以
上の除去率が維持される。
In FIG. 12, the sample is irradiated with ultraviolet light,
No change in the odor component removal rate of tobacco is shown. In the case of irradiation with ultraviolet rays, the reduction of the odor component removal rate is small, and the removal rate tends to be stable at about 92%. However, in the case of no irradiation with ultraviolet rays, the removal rate sharply decreases. The odor component thus adsorbed is decomposed into water molecules or carbon dioxide by the photoactivity performance of the photocatalyst and desorbed, so that a removal rate of 90% or more is maintained.

【0041】[0041]

【発明の効果】請求項1によれば、光触媒と金属酸化物
系の常温触媒を担持することにより、一酸化炭素、窒素
酸化物等の有害物質が吸着、酸化分解される。これによ
り光触媒のみが担持されている場合に比べて、有害物質
の除去能力が向上する。
According to the first aspect, by carrying a photocatalyst and a metal oxide-based room temperature catalyst, harmful substances such as carbon monoxide and nitrogen oxides are adsorbed and oxidatively decomposed. This improves the ability to remove harmful substances as compared to the case where only the photocatalyst is supported.

【0042】請求項2によれば、光触媒、金属酸化物系
の常温触媒及び吸着剤を担持することにより、臭い成分
及び一酸化炭素、窒素酸化物等の有害物質が吸着、酸化
分解される。これにより光触媒のみが担持されている場
合に比べて、短時間で有害物質が吸着されると共に、臭
い成分および有害物質の除去能力が向上する。
According to the second aspect, by supporting the photocatalyst, the metal oxide-based room temperature catalyst and the adsorbent, odorous substances and harmful substances such as carbon monoxide and nitrogen oxides are adsorbed and oxidatively decomposed. Thereby, as compared with the case where only the photocatalyst is supported, the harmful substance is adsorbed in a short time, and the ability to remove odor components and harmful substances is improved.

【0043】請求項3によれば、光触媒と常温触媒との
配合割合を光触媒と常温触媒との合計重量に対して、常
温触媒の重量割合が22%以下であるように担持するこ
とにより、光触媒の光活性性能の劣化が抑えられる。
According to the third aspect, the photocatalyst is supported such that the weight ratio of the normal temperature catalyst is 22% or less based on the total weight of the photocatalyst and the normal temperature catalyst. Degradation of the photoactive performance of the photoreceptor is suppressed.

【0044】請求項4によれば、光触媒と常温触媒とか
らなる下層の上に光触媒からなる上層を設けることによ
り、光触媒への紫外線の照射効率が上がり、光活性性能
が向上する。
According to the fourth aspect, by providing an upper layer made of a photocatalyst on a lower layer made of a photocatalyst and a normal temperature catalyst, the efficiency of irradiating the photocatalyst with ultraviolet rays is increased, and the photoactivity performance is improved.

【0045】請求項5乃至7によれば、光触媒は、酸化
チタン,酸化タングステン,酸化亜鉛などの金属酸化
物、若しくは、ルテニウム錯体などの金属錯体の単体又
はその複合体にすることにより、紫外線を光触媒に照射
することにより、吸着した有機性物質及び有害物質を酸
化分解することができる。
According to the fifth to seventh aspects, the photocatalyst converts ultraviolet light by forming a metal oxide such as titanium oxide, tungsten oxide and zinc oxide, a metal complex such as ruthenium complex or a complex thereof. By irradiating the photocatalyst, the adsorbed organic substance and harmful substance can be oxidatively decomposed.

【0046】請求項8によれば、常温触媒は、酸化マン
ガン,酸化銅,酸化鉄などの金属酸化物の単体又はその
複合体にすることにより、有害物質を常温で吸着酸化す
る。
According to the eighth aspect, the room-temperature catalyst adsorbs and oxidizes harmful substances at room temperature by using a metal oxide such as manganese oxide, copper oxide, and iron oxide alone or as a composite thereof.

【0047】請求項9又は10によれば、空気浄化空気
調和機又は空気清浄機に脱臭触媒素子を脱臭フィルター
として用い、担持されている光触媒を励起させる励起光
源を搭載することにより、脱臭フィルターを通る空気中
に含まれた臭い成分、有害物質を除去し、金属酸化物系
の常温触媒と光触媒とに紫外線を照射することにより、
付着した臭い成分と有害物質は酸化分解される。これに
より脱臭フィルターの性能劣化が抑えられる。
According to the ninth or tenth aspect, the deodorizing filter is provided by using an air purifying air conditioner or an air purifier with a deodorizing catalyst element as a deodorizing filter and mounting an excitation light source for exciting a photocatalyst carried. By removing odor components and harmful substances contained in the passing air, and irradiating the metal oxide-based room temperature catalyst and photocatalyst with ultraviolet rays,
The attached odor components and harmful substances are oxidatively decomposed. Thereby, the performance deterioration of the deodorizing filter is suppressed.

【0048】請求項11によれば、光触媒、又は、光触
媒及び常温触媒、又は、光触媒及び常温触媒及び吸着剤
を、溶剤に混合分散させ、バインダーを加えて焼成担持
すると粒子が小さく高分散されているため表面積が増
し、これにより吸着性能、分解性能が向上する。
According to the eleventh aspect, when the photocatalyst, or the photocatalyst and the room temperature catalyst, or the photocatalyst, the room temperature catalyst and the adsorbent are mixed and dispersed in a solvent, and the binder is added thereto, and the mixture is calcined and supported, the particles are small and highly dispersed. As a result, the surface area increases, thereby improving the adsorption performance and the decomposition performance.

【0049】請求項12によれば、光触媒、又は、光触
媒及び常温触媒、又は、光触媒及び常温触媒及び吸着剤
を、溶剤に混合分散させ、不織布、多孔質体等に含浸焼
成すると粒子が小さく分散されているため表面積が増
え、これにより吸着性能、分解性能が向上する。
According to the twelfth aspect, the photocatalyst, or the photocatalyst and the room temperature catalyst, or the photocatalyst and the room temperature catalyst and the adsorbent are mixed and dispersed in a solvent, and impregnated and fired in a nonwoven fabric, a porous body or the like, whereby the particles are dispersed to a small extent. As a result, the surface area increases, thereby improving the adsorption performance and the decomposition performance.

【0050】請求項13によれば、バインダーをシリ
カ、又は、アルミナからなる水系無機バインダーとし、
焼成湿度を150℃以下とすることにより、有機系に比
べ、有機物を蒸発させる必要がなく、焼成温度が低温に
なり基材の制限が緩和され、耐熱温度が低い合成樹脂等
を基材として用いることができる。
According to the thirteenth aspect, the binder is a water-based inorganic binder made of silica or alumina;
By reducing the sintering humidity to 150 ° C. or lower, there is no need to evaporate organic substances as compared to organic systems, the sintering temperature is reduced, the restriction on the base material is relaxed, and a synthetic resin or the like having a low heat-resistant temperature is used as the base material. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1の脱臭触媒素子を示す拡
大断面図である。
FIG. 1 is an enlarged sectional view showing a deodorizing catalyst element according to Embodiment 1 of the present invention.

【図2】本発明の実施の形態2の脱臭触媒素子を示す拡
大断面図である。
FIG. 2 is an enlarged sectional view showing a deodorizing catalyst element according to Embodiment 2 of the present invention.

【図3】常温触媒の配合割合の違いによるアセトアルデ
ヒドの分解性能図である。
FIG. 3 is a graph showing the decomposition performance of acetaldehyde depending on the mixing ratio of a normal temperature catalyst.

【図4】常温触媒の配合割合の違いによるアセトアルデ
ヒド90ppmの分解時間図である。
FIG. 4 is a decomposition time diagram of 90 ppm of acetaldehyde depending on the mixing ratio of a normal temperature catalyst.

【図5】常温触媒と吸着剤の配合割合の違いによるアン
モニア残存率を示す図である。
FIG. 5 is a graph showing the residual ammonia ratio depending on the difference in the mixing ratio between the normal temperature catalyst and the adsorbent.

【図6】常温触媒と吸着剤の配合割合の違いによるアセ
トアルデヒド残存率を示す図である。
FIG. 6 is a graph showing the residual ratio of acetaldehyde depending on the mixing ratio of a normal temperature catalyst and an adsorbent.

【図7】常温触媒と吸着剤の配合割合の違いによる酢酸
残存率を示す図である。
FIG. 7 is a diagram showing the residual ratio of acetic acid depending on the difference in the mixing ratio between the normal temperature catalyst and the adsorbent.

【図8】常温触媒と吸着剤の配合割合の違いによるスチ
レン残存率を示す図である。
FIG. 8 is a diagram showing the residual ratio of styrene depending on the difference in the mixing ratio between the normal temperature catalyst and the adsorbent.

【図9】常温触媒と吸着剤の配合割合の違いによる一酸
化炭素残存率を示す図である。
FIG. 9 is a graph showing the residual ratio of carbon monoxide depending on the mixing ratio of a normal temperature catalyst and an adsorbent.

【図10】常温触媒と吸着剤の配合割合の違いによる窒
素酸化物残存率を示す図である。
FIG. 10 is a view showing a nitrogen oxide residual ratio depending on a difference in a mixing ratio between a room temperature catalyst and an adsorbent.

【図11】本発明の実施の形態4の脱臭触媒素子を示す
拡大断面図である。
FIG. 11 is an enlarged sectional view showing a deodorizing catalyst element according to Embodiment 4 of the present invention.

【図12】実施の形態4の脱臭フィルターによるタバコ
臭い成分の脱臭性能を示す図である。
FIG. 12 is a view showing the deodorizing performance of a tobacco odor component by the deodorizing filter of the fourth embodiment.

【図13】本発明の脱臭触媒素子を備えた空気調和機の
側断面図を示す図である。
FIG. 13 is a side sectional view showing an air conditioner provided with the deodorizing catalyst element of the present invention.

【図14】光触媒、常温触媒及びバインダーの塗液調製
方法のフローチャートである。
FIG. 14 is a flowchart of a method for preparing a coating solution of a photocatalyst, a room temperature catalyst, and a binder.

【図15】光触媒、常温触媒、吸着剤、バインダーの塗
液調製方法を示すフローチャートである。
FIG. 15 is a flowchart showing a method for preparing a coating solution of a photocatalyst, a room temperature catalyst, an adsorbent, and a binder.

【符号の説明】[Explanation of symbols]

1 光触媒 2 常温触媒 3 無機系バインダー 4 基材 5 吸着剤 6 脱臭フィルター 7 風入口 8 ファン 9 除塵フィルター 10 送風口 11 紫外線ランプ DESCRIPTION OF SYMBOLS 1 Photocatalyst 2 Room temperature catalyst 3 Inorganic binder 4 Substrate 5 Adsorbent 6 Deodorizing filter 7 Air inlet 8 Fan 9 Dust removal filter 10 Vent port 11 Ultraviolet lamp

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 35/02 B01D 53/36 ZABH ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 35/02 B01D 53/36 ZABH

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 光触媒と金属酸化物系の常温触媒とを基
材に担持することを特徴とする脱臭触媒素子。
1. A deodorizing catalyst element comprising a photocatalyst and a metal oxide-based room temperature catalyst supported on a substrate.
【請求項2】 光触媒と、金属酸化物系の常温触媒と、
吸着剤とを基材に担持することを特徴とする脱臭触媒素
子。
2. A photocatalyst, a metal oxide-based room temperature catalyst,
A deodorizing catalyst element comprising a substrate and an adsorbent.
【請求項3】 上記光触媒と上記常温触媒との配合割合
は、該光触媒と該常温触媒との合計重量に対して、該常
温触媒の重量割合を22%以下とすることを特徴とする
請求項1又は2に記載の脱臭触媒素子。
3. The compounding ratio of the photocatalyst and the room temperature catalyst is such that the weight ratio of the room temperature catalyst is 22% or less with respect to the total weight of the photocatalyst and the room temperature catalyst. 3. The deodorizing catalyst element according to 1 or 2.
【請求項4】 請求項1又は2に記載の脱臭触媒素子に
おいて、上記光触媒と上記常温触媒とからなる下層と、
該下層の表面に光触媒からなる上層とを設けて多層構造
とすることを特徴とする脱臭触媒素子。
4. The deodorizing catalyst element according to claim 1, wherein the photocatalyst and the room temperature catalyst comprise a lower layer.
A deodorizing catalyst element comprising a multilayer structure in which an upper layer made of a photocatalyst is provided on the surface of the lower layer.
【請求項5】 上記光触媒は、金属酸化物、又は、金属
錯体、又は、該金属酸化物と該金属錯体との複合体から
なることを特徴とする請求項1乃至4の何れか一つに記
載の脱臭触媒素子。
5. The photocatalyst according to claim 1, wherein the photocatalyst comprises a metal oxide, a metal complex, or a complex of the metal oxide and the metal complex. The deodorizing catalyst element according to the above.
【請求項6】 上記金属酸化物は、酸化チタン、酸化タ
ングステン、酸化亜鉛の何れか一つ、若しくは、これら
の複合体からなることを特徴とする請求項5記載の脱臭
触媒素子。
6. The deodorizing catalyst element according to claim 5, wherein the metal oxide is made of any one of titanium oxide, tungsten oxide, and zinc oxide, or a composite thereof.
【請求項7】 上記金属錯体は、ルテニウム錯体からな
ることを特徴とする請求項5記載の脱臭触媒素子。
7. The deodorizing catalyst element according to claim 5, wherein the metal complex is composed of a ruthenium complex.
【請求項8】 上記常温触媒は、酸化マンガン、酸化
銅、酸化鉄の何れか一つ、若しくは、これらの複合体か
らなることを特徴とする請求項1乃至7の何れか一つに
記載の脱臭触媒素子。
8. The method according to claim 1, wherein the room-temperature catalyst comprises one of manganese oxide, copper oxide, and iron oxide, or a complex thereof. Deodorizing catalyst element.
【請求項9】 請求項1乃至4の何れか一つに記載の脱
臭触媒素子からなる脱臭フィルターと、該脱臭フィルタ
ーに担持される光触媒を励起させる励起光源とを備える
ことを特徴とする空気浄化空気調和機。
9. An air purifier comprising: a deodorizing filter comprising the deodorizing catalyst element according to claim 1; and an excitation light source for exciting a photocatalyst carried by the deodorizing filter. Air conditioner.
【請求項10】 請求項1乃至4の何れか一つに記載の
脱臭触媒素子からなる脱臭フィルターと、該脱臭フィル
ターに担持される光触媒を励起させる励起光源とを備え
ることを特徴とする空気清浄機。
10. An air purifier comprising: a deodorizing filter comprising the deodorizing catalyst element according to claim 1; and an excitation light source for exciting a photocatalyst carried on the deodorizing filter. Machine.
【請求項11】 光触媒、又は、光触媒及び常温触媒、
又は、光触媒及び常温触媒及び吸着剤を溶剤に混合分散
させ、該溶液にバインダーを加えて焼成して基材に担持
することを特徴とする脱臭触媒素子の製造方法。
11. A photocatalyst, or a photocatalyst and a normal temperature catalyst,
Alternatively, a method for producing a deodorizing catalyst element, comprising mixing and dispersing a photocatalyst, a normal-temperature catalyst, and an adsorbent in a solvent, adding a binder to the solution, firing, and supporting the catalyst on a substrate.
【請求項12】 上記基材として不織布又は多孔質体を
用い、上記溶液を該不織布又は該多孔質体に含浸して焼
成することを特徴とする請求項11記載の脱臭触媒素子
の製造方法。
12. The method for producing a deodorizing catalyst element according to claim 11, wherein a nonwoven fabric or a porous body is used as the substrate, and the nonwoven fabric or the porous body is impregnated with the solution and fired.
【請求項13】 上記バインダーを、シリカ、又は、ア
ルミナからなる水系無機バインダーとし、焼成温度を1
50℃以下とすることを特徴とする請求項11又は12
記載の脱臭触媒素子の製造方法。
13. The binder according to claim 1, wherein the binder is a water-based inorganic binder made of silica or alumina, and the sintering temperature is 1
13. The temperature is set to 50 ° C. or lower.
A method for producing the deodorizing catalyst element according to the above.
JP9309121A 1997-11-12 1997-11-12 Deodorant catalyst element and its production Pending JPH11137656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9309121A JPH11137656A (en) 1997-11-12 1997-11-12 Deodorant catalyst element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9309121A JPH11137656A (en) 1997-11-12 1997-11-12 Deodorant catalyst element and its production

Publications (1)

Publication Number Publication Date
JPH11137656A true JPH11137656A (en) 1999-05-25

Family

ID=17989150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9309121A Pending JPH11137656A (en) 1997-11-12 1997-11-12 Deodorant catalyst element and its production

Country Status (1)

Country Link
JP (1) JPH11137656A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009015A (en) * 1999-06-28 2001-01-16 Matsushita Refrig Co Ltd Deodorizing element using photocatalyst
JP2003065556A (en) * 2001-08-24 2003-03-05 Toshiba Kyaria Kk Air conditioning device
JP2009202151A (en) * 2008-01-28 2009-09-10 Toshiba Corp Visible light response-type photocatalyst powder, visible light response-type photocatalyst material using the same, photocatalyst coating material, and photocatalyst product
JP2009202152A (en) * 2008-01-28 2009-09-10 Toshiba Corp Visible light response-type photocatalyst powder, visible light response-type photocatalyst material using the same, photocatalyst coating materials, and photocatalyst product
JP2009233655A (en) * 2008-01-28 2009-10-15 Toshiba Corp Visible-light response photocatalyst powder and visible-light response photocatalyst material, photocatalytic coating material, and photocatalytic article each using the same
JP2015025430A (en) * 2013-07-29 2015-02-05 シャープ株式会社 Air blower
EP4001785A1 (en) 2020-11-17 2022-05-25 Calistair SAS Insert device for an air conditioning installation and air conditioning installation with insert device
EP4331721A1 (en) * 2022-08-31 2024-03-06 Calistair SAS Catalytic system with photocatalyst and gas depollution apparatus containing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009015A (en) * 1999-06-28 2001-01-16 Matsushita Refrig Co Ltd Deodorizing element using photocatalyst
JP2003065556A (en) * 2001-08-24 2003-03-05 Toshiba Kyaria Kk Air conditioning device
JP4499318B2 (en) * 2001-08-24 2010-07-07 東芝キヤリア株式会社 Air conditioner
JP2009202151A (en) * 2008-01-28 2009-09-10 Toshiba Corp Visible light response-type photocatalyst powder, visible light response-type photocatalyst material using the same, photocatalyst coating material, and photocatalyst product
JP2009202152A (en) * 2008-01-28 2009-09-10 Toshiba Corp Visible light response-type photocatalyst powder, visible light response-type photocatalyst material using the same, photocatalyst coating materials, and photocatalyst product
JP2009233655A (en) * 2008-01-28 2009-10-15 Toshiba Corp Visible-light response photocatalyst powder and visible-light response photocatalyst material, photocatalytic coating material, and photocatalytic article each using the same
JP2015025430A (en) * 2013-07-29 2015-02-05 シャープ株式会社 Air blower
EP4001785A1 (en) 2020-11-17 2022-05-25 Calistair SAS Insert device for an air conditioning installation and air conditioning installation with insert device
WO2022106442A1 (en) 2020-11-17 2022-05-27 Calistair Sas Insert device for an air conditioning installation and air conditioning installation with insert device
EP4331721A1 (en) * 2022-08-31 2024-03-06 Calistair SAS Catalytic system with photocatalyst and gas depollution apparatus containing the same

Similar Documents

Publication Publication Date Title
US6007781A (en) Pollutant removal from air in closed spaces
US8357627B2 (en) Deodorizing catalyst, deodorizing method using the same, and method for regenerating the catalyst
US20040258581A1 (en) Bifunctional manganese oxide/titanium dioxide photocatalyst/thermocatalyst for improving indoor air quality
JP2006528056A (en) Air purification system containing gold / titanium dioxide photocatalyst
JP3710323B2 (en) Deodorizing device
CN115279487A (en) Method for manufacturing a photocatalytic device, photocatalytic composition and gas decontamination apparatus
JPH11137656A (en) Deodorant catalyst element and its production
JP2000254449A (en) Base material for decomposing harmful or odor gas and device therefor
JP3227373B2 (en) Air purification paint using photocatalyst
JP4904695B2 (en) Deodorizing body, method for producing deodorizing body, and deodorizing apparatus using the same
JP2002172157A (en) Air cleaner
JP3689754B2 (en) Photocatalyst material and air purification film
JP2000210372A (en) Air cleaning film and deodorant filter
JP4780490B2 (en) Activated carbon filter
RU2465046C1 (en) Composite adsorption-catalytic material for photocatalytic oxidation
JP3521748B2 (en) Air purification filter and air purifier
JP3546766B2 (en) Deodorizing catalyst
JPH11290693A (en) Air cleaning catalyst, its manufacture, catalytic structure using the same and air-conditioner equipped with the catalytic structure
JP2007037670A (en) Deodorizer and deodorizing device
KR100502838B1 (en) Air treatment apparatus using photocatalytic filter and adsorption photocatalytic filter and use thereof
JP2003126234A (en) Deodorizer for indoor space
CN111841498B (en) Guanidine salt modified activated carbon for removing aldehyde, preparation method thereof, composite filter screen comprising guanidine salt modified activated carbon and air purification device
JP2001259003A (en) Air cleaning filter and method of manufacturing the same
JP2000237538A (en) Photocatalytic air purifier
JPH11253755A (en) Environment purifying agent, environment purification material and manufacture thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302