JPH11248621A - Sample observing method - Google Patents

Sample observing method

Info

Publication number
JPH11248621A
JPH11248621A JP4607398A JP4607398A JPH11248621A JP H11248621 A JPH11248621 A JP H11248621A JP 4607398 A JP4607398 A JP 4607398A JP 4607398 A JP4607398 A JP 4607398A JP H11248621 A JPH11248621 A JP H11248621A
Authority
JP
Japan
Prior art keywords
light
sample
observation
recording
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4607398A
Other languages
Japanese (ja)
Other versions
JP3397121B2 (en
Inventor
Osamu Watanabe
修 渡辺
Masaaki Tsuchimori
正昭 土森
Yoshimasa Kawada
善正 川田
Tsutomu Egami
力 江上
Okihiro Sugihara
興浩 杉原
Naomichi Okamoto
尚道 岡本
Osamu Nakamura
收 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP04607398A priority Critical patent/JP3397121B2/en
Priority to US09/257,196 priority patent/US6413680B1/en
Publication of JPH11248621A publication Critical patent/JPH11248621A/en
Priority to US10/131,191 priority patent/US20020150825A1/en
Application granted granted Critical
Publication of JP3397121B2 publication Critical patent/JP3397121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sample observing method utilizing an optical reaction by a near-filed light at a portion of the surface of a photosensitive material where a sample to be observed stands by positioning the sample on the surface, and irradiation the area with light. SOLUTION: When an area in a recording region surface including a sample to be observed is irradiated with light, an optical reaction by a near-field light at a portion on a photoreceptor material surface where the sample stands occurs stronger than the optical reaction by the irradiation light at another portion. As a result, the distribution of near-field light generating in the sample can be recorded at a different level from that of circumferential portions, as information corresponding to the optical reaction amount of the material. Accordingly, a conventional C mode or I mode probe is made unnecessary, thereby eliminating the prove scanning time, enabling recording to be completed only with one light irradiation, and generating no problem involving the probe. Since an observation target is fixed to the recording region of photoreceptor material as optical recording, there is no problem caused by unexpected movement of the target, and a characteristic regenerative observation of observation means is made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は試料観察方法に関
し、更に詳しくは、観察試料に対する光照射によって生
ずる近接場光の分布を利用した試料観察方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for observing a sample, and more particularly, to a method for observing a sample using a distribution of near-field light generated by irradiating an observation sample with light.

【0002】[0002]

【従来の技術】従来の試料観察方法、例えば光学顕微鏡
による試料観察方法のように気体等を伝搬して来る伝搬
光を利用する光学系による試料観察方法は、本質的に光
の回折限界を超える領域では利用できないと言う限界が
あった。
2. Description of the Related Art A conventional sample observation method, for example, a sample observation method using an optical system using a propagating light that propagates a gas or the like, such as a sample observation method using an optical microscope, essentially exceeds the diffraction limit of light. There was a limit that it could not be used in the area.

【0003】そこで近年、いわゆる近接場光が注目され
ている。近接場光は、物質表面の光の波長よりも小さな
領域に局在するので、これを利用した高分解能光学顕微
鏡が提案されている。
[0003] In recent years, so-called near-field light has attracted attention. Since near-field light is localized in a region smaller than the wavelength of light on the surface of a substance, a high-resolution optical microscope using this is proposed.

【0004】近接場光学顕微鏡は、走査トンネル顕微鏡
(STM)や原子間力顕微鏡(AFM)等と異なり、光
学スペクトルを測定することができる点や、多様な環境
下で使用できる点も、大きな魅力となっている。
[0004] Unlike a scanning tunneling microscope (STM) or an atomic force microscope (AFM), a near-field optical microscope has a great attraction in that it can measure an optical spectrum and can be used in various environments. It has become.

【0005】近接場光学顕微鏡の従来技術として、例え
ば、「機械の研究 第49巻第5号(1997)」に掲
載された大津元一氏の論文「近接場光学顕微鏡の開発の
現状と将来」には、下記のようなCモードと呼ばれる近
接場光学顕微鏡と、Iモードと呼ばれる近接場光学顕微
鏡が紹介されている。
[0005] As a conventional technique of the near-field optical microscope, for example, Motoichi Otsu's paper "Current status and future of the development of the near-field optical microscope" published in "Mechanical Research Vol. 49, No. 5 (1997)" Discloses a near-field optical microscope called a C-mode and a near-field optical microscope called an I-mode as described below.

【0006】Cモード:光照射によって試料表面に生じ
た近接場光を、微細なプローブを走査させてピックアッ
プすることにより、所定のデータ処理を通じて試料表面
の三次元像を得る。
C mode: A near-field light generated on the sample surface by light irradiation is picked up by scanning a fine probe to obtain a three-dimensional image of the sample surface through predetermined data processing.

【0007】Iモード:微細なプローブ自体に光を入射
して、その先端の端子に近接場光をしみ出させ、このプ
ローブを試料表面に沿って走査させることにより、近接
場光を散乱光に変換して試料表面の情報を得る。
I-mode: Light is incident on the fine probe itself, exudes near-field light to the terminal at the tip of the probe, and the probe is scanned along the surface of the sample to convert the near-field light into scattered light. Conversion to obtain information on the sample surface.

【0008】[0008]

【発明が解決しようとする課題】しかし、上記Cモー
ド,Iモードの近接場光学顕微鏡は、いずれも次の〜
のような問題点があった。 観察試料の近傍にプローブを挿入するので、試料近傍
の電場を大きく乱して検出することとなり、得られた像
の解釈が困難である。 微小開口あるいは先端径の小さな散乱型プローブを用
いるので、検出できる光強度が小さくS/N(シグナル
/ノイズ比)が高くない。 S/N向上のため積算等の処理が必要であり、走査に
時間を要するため、高速現像の観察や生物細胞の観察等
が困難である。
However, the C-mode and I-mode near-field optical microscopes described above all have the following problems.
There was such a problem. Since the probe is inserted near the sample to be observed, the electric field near the sample is greatly disturbed for detection, and it is difficult to interpret the obtained image. Since a scattering probe having a small aperture or a small tip diameter is used, the detectable light intensity is small and the S / N (signal / noise ratio) is not high. Processing such as integration is required to improve S / N, and scanning requires time, so that it is difficult to observe high-speed development and biological cells.

【0009】そこで本発明は、かかる問題点を解消する
ことを、解決すべき課題とする。本願発明者は、観察試
料を感光材料面に位置させてそのエリアを光照射する
と、感光材料面における観察試料が位置する部分での近
接場光による光反応が、他部分での照射光による光反応
よりも強く起こる、と言う新規な知見に基づいて本発明
を完成した。
Accordingly, the present invention is to solve such a problem. The present inventor places the observation sample on the photosensitive material surface and irradiates the area with light. When the observation sample is located on the photosensitive material surface, the near-field light reaction at the portion where the observation sample is located causes the light reaction due to the irradiation light at other portions. The present invention has been completed based on the novel finding that the reaction occurs more strongly than the reaction.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成は、以下の記録プロセス(A)と観察プ
ロセス(B)とを含む、試料観察方法である。 (A)保存及び検出が可能な任意の光反応を起こし得る
感光材料を用いて構成された記録領域面に観察試料を接
触状態で位置させたもとで、前記記録領域面の少なくと
も観察試料が位置するエリアに光を照射して、前記観察
試料に生じた近接場光の分布を、前記感光材料の光反応
量に対応する情報として記録する記録プロセス。 (B)前記記録した情報を、その記録形態に対応して選
択される観察手段によって観察する観察プロセス。
According to the present invention, there is provided a sample observation method including the following recording process (A) and observation process (B). (A) At least the observation sample on the recording area surface is located under the condition that the observation sample is in contact with the recording area surface made of a photosensitive material capable of causing any photoreaction that can be stored and detected. A recording process of irradiating an area with light and recording a distribution of near-field light generated in the observation sample as information corresponding to a photoreaction amount of the photosensitive material. (B) an observation process of observing the recorded information by an observation unit selected according to the recording mode.

【0011】[0011]

【発明の作用・効果】本発明の記録プロセス(A)で
は、記録領域面における観察試料を含むエリアを光照射
すると、感光材料面における観察試料が位置する部分で
の近接場光による光反応が、他部分での照射光による光
反応よりも強く起こる。その結果、観察試料に生じた近
接場光の分布が感光材料の光反応量に対応する情報とし
て、周囲の部分とは異なるレベルで記録される。
In the recording process (A) of the present invention, when light is applied to the area including the observation sample on the recording area surface, the photoreaction by the near-field light at the portion where the observation sample is located on the photosensitive material surface is caused. Occurs more strongly than the photoreaction by the irradiation light in other parts. As a result, the distribution of the near-field light generated in the observation sample is recorded as information corresponding to the photoreaction amount of the photosensitive material at a level different from that of the surrounding portion.

【0012】このような現象が発現する理由について
は、例えば、照射光の伝搬媒体(空気等)に比較しての
情報物体の光屈折率の高さが関連するかも知れないし、
近接場光には特に強い光反応を起こす性質があるのかも
知れず、多様な推定が可能であって、現在の処、確定的
に把握してはいない。
The reason why such a phenomenon appears may be related to, for example, the high refractive index of the information object as compared to the propagation medium of the irradiation light (air or the like).
The near-field light may have a property that causes a particularly strong photoreaction, and various estimations are possible.

【0013】記録プロセス(A)によれば、前記従来技
術のCモードのように情報物体の近接場光のみをピック
アップするプローブも、前記従来技術のIモードのよう
に情報物体のみに近接場光を作用させるためのプローブ
も、不要である。従って、プローブを走査させる時間が
不要で、光の1回照射のみで記録を完了する。又、プロ
ーブの使用に基づく前記のその他の不具合もない。
According to the recording process (A), the probe for picking up only the near-field light of the information object like the C mode of the prior art is also used for the near field light only for the information object like the I mode of the prior art. No probe is required to act. Therefore, the time for scanning the probe is not required, and the recording is completed with only one irradiation of light. Also, there are no other disadvantages mentioned above based on the use of probes.

【0014】記録プロセス(A)は近接場光を利用した
記録であるため、光の回折限界以下の分解能があり、か
つ、光の1回照射で露光を完了するため、観察試料が微
小物体あるいは微生物である場合の、光の放射圧又は観
察試料の自律運動による物体移動が起こっても、記録不
良を生じない。
Since the recording process (A) is a recording utilizing near-field light, it has a resolution lower than the diffraction limit of light and completes exposure by one irradiation of light, so that the observation sample is a minute object or In the case of microorganisms, recording failure does not occur even if the object moves due to the radiation pressure of light or the autonomous movement of the observation sample.

【0015】よって、光の回折限界以下の分解能で、高
速運動する観察試料の画像観察が初めて可能となった。
又、このような観察試料について、パルス光による短時
間露光を繰返すことにより、運動状態の連続画像の観察
も初めて可能となった。
Therefore, it has become possible for the first time to observe an image of an observation sample moving at high speed with a resolution lower than the diffraction limit of light.
In addition, by repeating short-time exposure of such an observation sample with pulsed light, it has become possible for the first time to observe a continuous image of a moving state.

【0016】更に、所定エリアの全体に光照射するた
め、当該エリアに配置された多種/多数の観察試料を同
時に記録することも可能となる。
Further, since the entire predetermined area is irradiated with light, it is possible to simultaneously record many / many types of observation samples arranged in the area.

【0017】記録プロセス(A)によって得られた光記
録は、直後に迅速に、あるいは保存後任意の時点でゆっ
くりと、観察プロセス(B)によって、光反応の種類
(即ち光記録の形態)に対応した任意かつ有利な観察手
段を選択して、観察又は再生に供することができる。
The optical recording obtained by the recording process (A) can be quickly or immediately after storage, or slowly at any time after storage, depending on the type of photoreaction (ie, the form of optical recording) by the observation process (B). A corresponding arbitrary and advantageous observation means can be selected for observation or reproduction.

【0018】観察プロセス(B)においては、観察対象
が光記録として感光材料の記録領域面に固定されている
ので、観察対象の不測の移動等による不具合がないし、
例えば観察手段が走査トンネル顕微鏡や走査型原子間力
顕微鏡等の使用上の制約の多い手段であっても、その制
約が回避して、これらの観察手段の特徴を活かした観察
又は再生が可能となる。
In the observation process (B), since the object to be observed is fixed to the recording area surface of the photosensitive material as optical recording, there is no problem due to unexpected movement of the object to be observed,
For example, even if the observation means is a means having many restrictions on use such as a scanning tunneling microscope or a scanning atomic force microscope, the restriction can be avoided, and observation or reproduction utilizing the characteristics of these observation means can be performed. Become.

【0019】[0019]

【発明の実施の形態】〔感光材料〕感光材料は、保存及
び検出が可能な任意の光反応を起こし得るものであれ
ば、限定なく使用することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [Photosensitive material] The photosensitive material can be used without limitation as long as it can generate any photoreaction that can be stored and detected.

【0020】例えば、感光材料の記録領域面に凹凸を形
成しようとする場合には光反応性の高分子材料等を、
又、感光材料の記録領域面に電位を発生させようとする
場合にはフォトリフラクティブ材料等を、使用すること
ができる。
For example, in the case where irregularities are to be formed on the recording area surface of a photosensitive material, a photoreactive polymer material or the like is used.
When a potential is to be generated on the recording area surface of the photosensitive material, a photorefractive material or the like can be used.

【0021】光反応性の高分子材料は光を吸収して反応
するための光反応性の部位を有するものであるが、光強
度に応じて光異性化等を起こすことにより、結果的にそ
の反応量に応じた凹凸を感光材料面に生ずるもの等を特
に好ましく使用できる。光異性化反応は高速の光応答性
を示す点でも望ましい。
The photoreactive polymer material has a photoreactive site for absorbing and reacting with light, but by causing photoisomerization or the like in accordance with the light intensity, as a result, Particularly preferred are those which produce irregularities on the surface of the photosensitive material according to the reaction amount. The photoisomerization reaction is also desirable in that it exhibits high photoresponsiveness.

【0022】これらの高分子材料は、屈折率や光吸収係
数の変化等の光学特性の変化と言う記録形態でも記録す
ることができる。又、光反応性の部位を多く導入できる
と言う理由からはポリエステル,ポリアミド,ポリウレ
ア,ポリウレタン等の縮合系高分子材料を好ましく利用
できる。
These polymer materials can also be recorded in a recording form in which changes in optical properties such as changes in the refractive index and the light absorption coefficient. Further, a condensation polymer material such as polyester, polyamide, polyurea, and polyurethane can be preferably used because many photoreactive sites can be introduced.

【0023】フォトリフラクティブ材料としては、無機
材料、有機材料のどちらであっても構わないが、無機材
料としてはニオブ酸リチウム等を、有機材料としては例
えば導電性高分子と高分子非線形光学材料とがブレンド
あるいは共重合された材料等を好ましく例示することが
できる。
The photorefractive material may be either an inorganic material or an organic material. As the inorganic material, lithium niobate or the like is used. As the organic material, for example, a conductive polymer and a polymer nonlinear optical material are used. Can be preferably exemplified as a blended or copolymerized material.

【0024】〔記録領域面〕記録領域面としては、感光
材料が膜状に形成されてなる平坦面が一般的に記録プロ
セス及び観察プロセス便宜に適い易いが、膜状でなくて
も良く、観察試料を接触状態で位置させ得る限りにおい
てその面形状も限定されない。記録領域面は記録プロセ
スにおいて、通常は大気環境下に置かれるが、必要によ
り加圧もしくは減圧下に置いたり、微生物生体を観察す
る場合等において記録領域面を水滴で覆ったり、場合に
よりシステムの要部又は全体を水等の液体中や所定の気
体中に設定することも可能である。
[Recording Area Surface] As the recording area surface, a flat surface formed of a photosensitive material in the form of a film is generally suitable for convenience of the recording process and the observation process. The surface shape is not limited as long as the sample can be positioned in a contact state. During the recording process, the surface of the recording area is usually placed in an atmospheric environment. The main part or the whole can be set in a liquid such as water or a predetermined gas.

【0025】〔観察試料〕観察試料は通常は微小な物体
や微生物であるが、照射光により近接場光を生ずるもの
である限りにおいて、その形状やサイズあるいは材質に
は本質的な限定がない。照射光が観察試料の一方向の面
(例えば記録領域面と反対側の面)のみに照射される場
合には、観察試料がある程度以上の光透過性を持つか、
あるいはかかる光照射によっても記録領域面と接する面
にも近接場光を生ずる程度の微小なサイズであることが
好ましい。
[Observation Sample] The observation sample is usually a minute object or a microorganism, but there is no essential limitation on its shape, size or material as long as it generates near-field light by irradiation light. When the irradiation light is applied only to the surface in one direction of the observation sample (for example, the surface opposite to the recording area surface), the observation sample has a certain degree of light transmittance or
Alternatively, it is preferable that the surface which is in contact with the recording area surface has such a small size that near-field light is generated even by such light irradiation.

【0026】観察試料のサイズは照射光の回折限界以下
であっても以上であっても良いが、特に回折限界以下の
サイズのものである場合に本発明の効果が一層有効に発
現される。
The size of the observation sample may be equal to or smaller than the diffraction limit of the irradiation light, but the effect of the present invention is more effectively exhibited particularly when the size of the sample is equal to or smaller than the diffraction limit.

【0027】〔照射光〕照射光の波長は限定されず、記
録領域面を構成する感光材料と観察試料とに対応して適
宜波長のものを選択使用すれば良い。照射光によって観
察試料に発生した近接場光が感光材料に吸収され、その
吸収により所定の光反応をおこすので、吸収効率の高い
波長の選択が好ましく、通常は紫外域から近赤外域の波
長が選択される。
[Irradiation Light] The wavelength of the irradiation light is not limited, and a light having an appropriate wavelength may be selected and used in accordance with the photosensitive material and the observation sample constituting the recording area surface. The near-field light generated in the observation sample by the irradiation light is absorbed by the photosensitive material, and a predetermined photoreaction is caused by the absorption. Therefore, it is preferable to select a wavelength having a high absorption efficiency. Selected.

【0028】照射光の光源も限定がなく、記録しようと
する近接場光に応じて適宜に選択できるが、記録形態と
して凹凸を形成する場合の再現性や、後の解析の容易性
等の点で、レーザー光がより好ましい。
There is no limitation on the light source of the irradiation light, and it can be appropriately selected according to the near-field light to be recorded. And a laser beam is more preferable.

【0029】照射光の強度や照射時間も限定がなく、感
光材料の光反応性等に応じて適宜選択される。短時間露
光を繰り返して観察試料の高速の動きを記録する場合に
は、尖頭出力の高いパルス光を使用することもできる。
The intensity of irradiation light and the irradiation time are not limited, and are appropriately selected according to the photoreactivity of the photosensitive material. In the case where high-speed movement of the observation sample is recorded by repeating short-time exposure, pulse light having a high peak output can be used.

【0030】〔観察試料を移動させながら記録する方
法〕観察試料を移動させながら記録する方法も可能であ
る。照射光が例えば数nm〜数十nmの微小な観察試料
に当たって反射や屈折が生ずると、フォトンの持つ運動
量が変化するために観察試料に力が働き、結果的に光の
放射圧によって観察試料が押されたり引張られたりする
ことが知られている。
[Method of Recording while Moving Observation Sample] A method of recording while moving the observation sample is also possible. When the irradiation light impinges on a minute observation sample of, for example, several nanometers to several tens of nanometers and causes reflection or refraction, a force acts on the observation sample because the momentum of the photon changes, and as a result, the observation sample is affected by the radiation pressure of light. It is known to be pushed or pulled.

【0031】従って、照射光強度を制御することによっ
て微生物細胞等の微小な観察試料を移動させ、記録領域
面の所定の別の場所で観察することが可能となる。この
ことを利用して、例えば形状や記録可能な性質が経時的
に変化する観察試料を移動させながらパルス光照射等に
より順次記録したり、2体の観察試料を同一の場所に移
動させて相互反応を起こさせ、その結果を記録したり、
この手法で微生物の運動状態や細胞***あるいは細胞の
接合をトレースすることもできる。
Therefore, by controlling the intensity of the irradiation light, it becomes possible to move a minute observation sample such as a microbial cell and observe the observation at another predetermined place on the recording area surface. By taking advantage of this, for example, while sequentially moving an observation sample whose shape and recordable properties change over time, recording is sequentially performed by irradiating pulsed light or the like, or by moving two observation samples to the same location, Trigger a reaction, record the result,
With this technique, it is also possible to trace the movement state of the microorganism, cell division or cell junction.

【0032】微小な観察試料の動きを制御するための放
射光と、記録像を残すための照射光との波長を区別する
ことにより、より高精度の観察記録が可能となる。
By distinguishing the wavelengths of the emitted light for controlling the movement of the minute observation sample and the irradiation light for leaving a recorded image, observation and recording with higher precision becomes possible.

【0033】これらの連続観察像の記録において、個々
の単位観察像は一瞬の光照射によって記録されるため、
観察試料の移動や変化による観察像の不明瞭や記録不良
は起こらない。
In recording these continuous observation images, each unit observation image is recorded by momentary light irradiation.
Obscure observation images and poor recording due to movement or change of the observation sample do not occur.

【0034】〔観察プロセス〕記録プロセスにおいて感
光材料の記録領域面に凹凸を生じさせた場合には、情報
物体の情報が物理的な固定形状として光記録されるの
で、例えば走査型原子間力顕微鏡、走査型トンネル顕微
鏡、走査型電子顕微鏡、透過型電子顕微鏡、走査型摩擦
力顕微鏡等の光学顕微鏡よりも圧倒的に高い空間分解能
を有する手段で記録情報を観察できる利点がある。
[Observation Process] When irregularities are formed on the recording area surface of the photosensitive material in the recording process, the information of the information object is optically recorded as a physically fixed shape. There is an advantage that recorded information can be observed by means having an overwhelmingly higher spatial resolution than optical microscopes such as a scanning tunneling microscope, a scanning electron microscope, a transmission electron microscope, and a scanning friction microscope.

【0035】又、例えば、屈折率あるいは吸収率変化の
分布として記録された情報は、走査型近接場光学顕微鏡
によって、更に、記録領域面の表面電位の変化として記
録された情報は、表面電位顕微鏡(走査型マクスウェル
応力顕微鏡、走査型ケルビンプローブフォース顕微鏡)
等で、それぞれ再生/観察できる。
For example, the information recorded as the distribution of the change in the refractive index or the absorptance is recorded by a scanning near-field optical microscope, and the information recorded as the change in the surface potential of the recording area surface is recorded by a surface potential microscope. (Scanning Maxwell stress microscope, Scanning Kelvin probe force microscope)
Can be reproduced / observed respectively.

【0036】[0036]

【実施例】次に、本発明の一実施例を説明する。Next, an embodiment of the present invention will be described.

【0037】〔実施例1〕 (記録領域面の準備)下記の「化1」に示す光反応性成
分を含む、下記の「化2」に示すポリウレタン系高分子
化合物を用いて、厚さ約1μmの薄膜を作製し、その膜
面を記録領域面とする膜状の記録媒体を準備した。
Example 1 ( Preparation of Recording Area Surface ) Using a polyurethane polymer compound represented by the following chemical formula 2 containing a photoreactive component represented by the following chemical formula 1, A thin film having a thickness of 1 μm was prepared, and a film-shaped recording medium having the film surface as a recording area surface was prepared.

【0038】[0038]

【化1】 Embedded image

【0039】[0039]

【化2】 これらの合成プロセスの説明は省略するが、上記「化
1」の光反応性成分の融点は169°C、上記「化2」
の高分子化合物のガラス転移温度は141°Cで、N−
メチル−2−ピロリドン中の30°Cでの固有粘度は
0.69dL/g、吸収極大波長は475nmであっ
た。
Embedded image Although the description of these synthesis processes is omitted, the melting point of the photoreactive component of the above “Chemical Formula 1” is 169 ° C., and the above “Chemical Formula 2”
Has a glass transition temperature of 141 ° C and N-
The intrinsic viscosity at 30 ° C. in methyl-2-pyrrolidone was 0.69 dL / g, and the maximum absorption wavelength was 475 nm.

【0040】上記の薄膜は、ピリジンに「化2」の高分
子化合物を溶解して6.5wt%の溶液を調製し、これ
を0.2μmのフィルターでろ過した後、回転数100
0rpmの条件でスライドガラス上にスピンコートし
て、80°Cで20時間真空乾燥させて作製したもので
ある。
The above thin film was prepared by dissolving a polymer compound of the formula 2 in pyridine to prepare a 6.5 wt% solution, which was filtered through a 0.2 μm filter.
It was prepared by spin coating on a slide glass under the condition of 0 rpm and vacuum drying at 80 ° C. for 20 hours.

【0041】(観察試料である微小球近傍の近接場光の
分布の観察)直径5mmの孔の空いた円板を、超音波洗
浄で清浄にした後に上記記録媒体上に乗せ、前記の孔の
中に直径500nmのポリスチレン製微小球を多数分散
させた水を数滴垂らした。そして自然乾燥により水が蒸
発するまで放置した後、空冷式アルゴンレーザー(出力
20mW)を用いて、波長488nm、ビーム径約3m
mのレーザー光をそのまま、記録領域面即ち記録媒体上
のポリスチレン製微小球が配置されたエリアに照射し
た。
( The near-field light near the microsphere as the observation sample
Observation of distribution ) A disk having a hole having a diameter of 5 mm was cleaned by ultrasonic cleaning, and then placed on the recording medium. Water in which a large number of polystyrene microspheres having a diameter of 500 nm were dispersed in the hole was removed. Dropped a few drops. Then, after leaving the water to evaporate by natural drying, using an air-cooled argon laser (output: 20 mW), the wavelength is 488 nm and the beam diameter is about 3 m.
The laser beam of m was directly irradiated on the recording area surface, that is, the area where the polystyrene microspheres were arranged on the recording medium.

【0042】照射後の記録媒体を水で洗浄して前記微小
球の一部を取除いた後、原子間力顕微鏡(セイコー電子
製SPI−3700)を用いて記録媒体の記録領域面を
観察した。その観察像を図1及び図2に示す。図1と図
2は同一像の異なるアングルからの観察像であって、い
ずれの図からも、記録媒体1上に残存する情報物体たる
微小球2と、取除かれた微小球の形状に対応した凹み3
とを観察できる。
After the irradiated recording medium was washed with water to remove a part of the microspheres, the recording area surface of the recording medium was observed using an atomic force microscope (SPI-3700 manufactured by Seiko Denshi). . The observed images are shown in FIGS. FIG. 1 and FIG. 2 are observation images of the same image from different angles, and correspond to the shape of the microsphere 2 as an information object remaining on the recording medium 1 and the shape of the microsphere removed from both figures. Dent 3
And can be observed.

【0043】〔実施例2〕ポリスチレン製微小球として
直径100nmのものを用いた点以外は全て実施例1と
同様に行った。本実施例は、照射光の波長の約1/5の
大きさである微小球を情報物体とすることにより、凹み
の形成が情報物体に生じた近接場光によるものであるこ
とを確認するために行った。その観察像を図3及び図4
に示す。図3と図4は同一像の異なるアングルからの観
察像であって、いずれの図からも、記録媒体4上におけ
る取除かれた微小球の形状に対応した凹み5を観察する
ことができる。
Example 2 The procedure was the same as in Example 1 except that polystyrene microspheres having a diameter of 100 nm were used. This example uses a microsphere having a size of about 1/5 of the wavelength of the irradiation light as an information object to confirm that the formation of the dent is due to the near-field light generated in the information object. I went to. 3 and 4 show the observed images.
Shown in FIG. 3 and FIG. 4 are observation images of the same image from different angles, and in each case, the dent 5 corresponding to the shape of the removed microsphere on the recording medium 4 can be observed.

【0044】なお、比較例として、記録媒体上に微小球
を配置せずに、実施例1と同様にして原子間力顕微鏡に
よる観察を行ったが、当然ながら記録媒体面に別段の凹
凸は観察されなかった。
As a comparative example, observation was performed with an atomic force microscope in the same manner as in Example 1 without disposing microspheres on the recording medium. Obviously, however, other irregularities were observed on the surface of the recording medium. Was not done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例における原子間力顕微鏡の観察像を示す
図である。
FIG. 1 is a view showing an observation image of an atomic force microscope in an example.

【図2】実施例における原子間力顕微鏡の観察像を示す
図である。
FIG. 2 is a diagram showing an observation image of an atomic force microscope in an example.

【図3】実施例における原子間力顕微鏡の観察像を示す
図である。
FIG. 3 is a diagram showing an observation image of an atomic force microscope in an example.

【図4】実施例における原子間力顕微鏡の観察像を示す
図である。
FIG. 4 is a diagram showing an observation image of an atomic force microscope in an example.

【符号の説明】[Explanation of symbols]

1,4 記録媒体 2 微小球 3,5 凹み 1,4 recording medium 2 microsphere 3,5 dent

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江上 力 静岡県浜松市和合町154−100 (72)発明者 杉原 興浩 静岡県浜松市上島5丁目15番地 (72)発明者 岡本 尚道 静岡県浜松市増楽町2578番地 (72)発明者 中村 收 大阪府高槻市日吉台4番町17−11 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Riki Egami 154-100 Wago-cho, Hamamatsu City, Shizuoka Prefecture (72) Inventor Hirohiro Sugihara 5-15-15 Uejima, Hamamatsu City, Shizuoka Prefecture (72) Inventor Naomichi Okamoto Hamamatsu, Shizuoka Prefecture 2578, Masuraku-cho, City (72) Inventor Haru Nakamura 17-11, Hiyoshidai, Takatsuki-shi, Osaka 17-11

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 以下の記録プロセス(A)と観察プロセ
ス(B)とを含むことを特徴とする試料観察方法。 (A)保存及び検出が可能な任意の光反応を起こし得る
感光材料を用いて構成された記録領域面に観察試料を接
触状態で位置させたもとで、前記記録領域面の少なくと
も観察試料が位置するエリアに光を照射して、前記観察
試料に生じた近接場光の分布を、前記感光材料の光反応
量に対応する情報として記録する記録プロセス。 (B)前記記録した情報を、その記録形態に対応して選
択される観察手段によって観察する観察プロセス。
1. A sample observation method comprising the following recording process (A) and observation process (B). (A) At least the observation sample on the recording area surface is located under the condition that the observation sample is in contact with the recording area surface made of a photosensitive material capable of causing any photoreaction that can be stored and detected. A recording process of irradiating an area with light and recording a distribution of near-field light generated in the observation sample as information corresponding to a photoreaction amount of the photosensitive material. (B) an observation process of observing the recorded information by an observation unit selected according to the recording mode.
JP04607398A 1998-02-26 1998-02-26 Sample observation method Expired - Lifetime JP3397121B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP04607398A JP3397121B2 (en) 1998-02-26 1998-02-26 Sample observation method
US09/257,196 US6413680B1 (en) 1998-02-26 1999-02-25 Optical recording method, optical recording medium, and optical recording system
US10/131,191 US20020150825A1 (en) 1998-02-26 2002-04-25 Optical recording method, optical recording medium, and optical recording system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04607398A JP3397121B2 (en) 1998-02-26 1998-02-26 Sample observation method

Publications (2)

Publication Number Publication Date
JPH11248621A true JPH11248621A (en) 1999-09-17
JP3397121B2 JP3397121B2 (en) 2003-04-14

Family

ID=12736829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04607398A Expired - Lifetime JP3397121B2 (en) 1998-02-26 1998-02-26 Sample observation method

Country Status (1)

Country Link
JP (1) JP3397121B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308475A (en) * 2005-04-28 2006-11-09 Kawasaki Heavy Ind Ltd Near-field photoelectron microscope
US8697349B2 (en) 2007-11-01 2014-04-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of producing solid-phase body having immobilized microobject and the use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308475A (en) * 2005-04-28 2006-11-09 Kawasaki Heavy Ind Ltd Near-field photoelectron microscope
JP4558574B2 (en) * 2005-04-28 2010-10-06 川崎重工業株式会社 Near-field photoelectron microscope
US8697349B2 (en) 2007-11-01 2014-04-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of producing solid-phase body having immobilized microobject and the use thereof

Also Published As

Publication number Publication date
JP3397121B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
JP2744339B2 (en) Information processing apparatus and information processing method
US6413680B1 (en) Optical recording method, optical recording medium, and optical recording system
JP3477024B2 (en) Recording medium, recording method, erasing method, reproducing method, recording / reproducing method, reproducing apparatus, and recording / reproducing apparatus
IL103357A (en) Surface-enhanced raman optical data storage system
JP3397121B2 (en) Sample observation method
JP2000512061A (en) Three-dimensional optical memory with fluorescent photosensitive material
JP3267992B2 (en) Near-field scanning optical microscope and its use
JP3449210B2 (en) Optical recording method and optical recording system
JP3466650B2 (en) Rewritable optical recording method
Kawata et al. Nonoptically probing near-field microscopy for the observation of biological living specimens
JP3388221B2 (en) Recording medium and recording / reproducing apparatus using the same
JP4395942B2 (en) Optical recording method and sample observation method
JP2002063722A (en) Method for recording optical information and optical information recording medium
Kitano et al. Non‐optically probing near‐field microscopy with illumination of total internal reflection
Yatsui et al. Subwavelength-sized phase-change recording with a silicon planar apertured probe
JP2001291258A (en) Near field optical head, method for manufacturing near field optical head and optical information recording and reproducing device
JPH06267109A (en) Recording medium and production thereof
Sandoghdar Beating the diffraction limit
JP4169466B2 (en) Recording / reproducing method and recording / reproducing apparatus
JP4201227B2 (en) Near-field optical head
JP4628454B2 (en) Recording medium and optical information recording / reproducing apparatus
JP3280509B2 (en) Optical memory and its recording method and reproducing method
JP2000251282A (en) Near-field optical recording/reproducing apparatus
Nishimura et al. Observation of recording pits on phase-change film using a scanning probe microscope
JP3356837B2 (en) Optical memory device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

EXPY Cancellation because of completion of term