JPH11236234A - Production of opaque quartz glass ring - Google Patents

Production of opaque quartz glass ring

Info

Publication number
JPH11236234A
JPH11236234A JP10041858A JP4185898A JPH11236234A JP H11236234 A JPH11236234 A JP H11236234A JP 10041858 A JP10041858 A JP 10041858A JP 4185898 A JP4185898 A JP 4185898A JP H11236234 A JPH11236234 A JP H11236234A
Authority
JP
Japan
Prior art keywords
powder
quartz glass
opaque quartz
ring
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10041858A
Other languages
Japanese (ja)
Other versions
JP4035794B2 (en
Inventor
Hironari Osada
裕也 長田
Masayuki Kudo
正行 工藤
Koji Tsukuma
孝次 津久間
Tomoyuki Akiyama
智幸 秋山
Hideaki Segawa
英明 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Tosoh Corp
Original Assignee
Nippon Silica Glass Co Ltd
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Silica Glass Co Ltd, Tosoh Corp filed Critical Nippon Silica Glass Co Ltd
Priority to JP04185898A priority Critical patent/JP4035794B2/en
Publication of JPH11236234A publication Critical patent/JPH11236234A/en
Application granted granted Critical
Publication of JP4035794B2 publication Critical patent/JP4035794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • C03C11/007Foam glass, e.g. obtained by incorporating a blowing agent and heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/80Glass compositions containing bubbles or microbubbles, e.g. opaque quartz glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for easily producing an opaque quartz glass ring which is uniformly dispersed with air bubbles, is excellent in high-temp. viscosity and heat shieldability and is useful as a blank of the flange parts of the furnace core tubes of various kinds of heat treatment devices in semiconductor production. SOLUTION: The process for producing the opaque quartz glass ring having an apparent density of 1.70 to 2.15 kg/cm<3> , an average air bubble size of 10 to 100 μm and an air bubble quantity of 5×10<4> to 5×10<6> pieces/cm<3> , in which a power mixture composed of crystalline silica powder of 10 to 500 μm in average particle size and 0.001 to 0.05 pt.wt. silicon nitride powder per 100 pts.wt. crystalline silica powder is packed into heat resistant molds of an annular shape in the in-mold space and thereafter, the molds are installed in an electric furnace and the powder mixture is held for >=1 hour at >=1400 to <=1650 deg.C at least once in a heating up process of heating the powder mixture from room temp. in a vacuum atmosphere and is subsequently heated to the temp. at which the powder mixture melts or above to <=1900 deg.C, by which the powder mixture is vitrified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱遮断性に優れた
不透明石英ガラスリングに関し、特に半導体製造分野で
使用される各種加熱処理装置の炉芯管のフランジ部、例
えばシリコンウエハーの熱処理用加熱炉の炉芯管のフラ
ンジ部の素材として有用な不透明石英ガラスリングの製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an opaque quartz glass ring having excellent heat insulation properties, and more particularly to a flange portion of a furnace core tube of various heat treatment apparatuses used in the semiconductor manufacturing field, for example, a heat treatment for heat treatment of a silicon wafer. The present invention relates to a method for producing an opaque quartz glass ring useful as a material for a flange portion of a furnace core tube of a furnace.

【0002】[0002]

【従来の技術】シリコンウエハーの熱処理用加熱炉とし
て、例えば図1に示すような構造のものが従来使用され
ている。この加熱炉は、発熱体1と、炉芯管2と、シリ
コンウエハー3を支持するボート4と、保温筒5と、基
台6を有する。炉芯管2の下部にはフランジ9が設けら
れている。フランジ9は不透明石英ガラス製であり、透
明石英ガラス製の炉芯管2と酸水素炎による溶接により
一体に接合される。フランジ9は熱遮断材として作用
し、耐熱性に劣るパッキン7や基台6への熱の伝播を抑
制している。またパッキン7を介してフランジ9と基台
6とのシールにより炉芯管内は所定の雰囲気に保たれ
る。
2. Description of the Related Art As a heating furnace for heat treatment of a silicon wafer, for example, a heating furnace having a structure as shown in FIG. 1 is conventionally used. This heating furnace has a heating element 1, a furnace core tube 2, a boat 4 supporting a silicon wafer 3, a heat retaining cylinder 5, and a base 6. A flange 9 is provided below the furnace core tube 2. The flange 9 is made of opaque quartz glass, and is integrally joined to the furnace core tube 2 made of transparent quartz glass by welding using an oxyhydrogen flame. The flange 9 functions as a heat-blocking material, and suppresses the propagation of heat to the packing 7 and the base 6 having poor heat resistance. The inside of the furnace core tube is maintained at a predetermined atmosphere by sealing the flange 9 and the base 6 via the packing 7.

【0003】このような用途における不透明石英ガラス
の熱遮断性とは、主に熱線による輻射熱として伝わる熱
を遮断する性能のことであり、微細な気泡を多量にかつ
均一に含む不透明石英ガラスほどその性能は高い。
[0003] The thermal barrier properties of opaque quartz glass in such applications refer to the ability to block heat mainly transmitted as radiant heat from heat rays. Performance is high.

【0004】従来の不透明石英ガラスの製造方法は、硅
酸質原料粉末を加熱溶融しガラス化する方法であり、そ
の加熱溶融の方式として、アルゴン−酸素プラズマ炎、
酸水素炎などの火炎中で溶融させるベルヌーイ法、ある
いは容器に充填し真空下で加熱溶融する真空溶融法など
がある。不透明石英ガラスの原料としては、従来より、
天然の硅石または低品位の水晶が用いられている。これ
らの原料中には多数の微細な気泡が包含されており、原
料が溶融されたとき、気泡はそのままガラス中に残留
し、不透明石英ガラスが得られる。
A conventional method for producing opaque quartz glass is a method in which a siliceous raw material powder is heated and melted to form a glass.
There is a Bernoulli method of melting in a flame such as an oxyhydrogen flame, or a vacuum melting method of filling a container and heating and melting under vacuum. As a raw material for opaque quartz glass,
Natural silica or low-grade quartz is used. Many fine bubbles are contained in these raw materials, and when the raw materials are melted, the bubbles remain in the glass as they are, and opaque quartz glass is obtained.

【0005】近年、半導体分野においてLSIの高集積
化が進むに伴い、使用する原材料に対する高純度化の要
求が厳しくなり、従来は低純度品が使用されていた分野
においても、高純度品が求められ始めた。その代表的な
分野がシリコンウエハー熱処理用加熱炉等に用いられて
いる炉芯管のフランジ部であり、その素材として、不透
明でかつ高純度の石英ガラスリング、すなわち高純度不
透明石英ガラスリングの供給が望まれていた。しかしな
がら、従来から用いられている不透明石英ガラス製造用
の天然原料は、微細な気泡と共に多量の不純物を含有し
ており、これらの不純物を除去することは極めて困難で
あって、精製による高純度化は不可能であるといわれて
いる。一方、比較的高純度の水晶は、結晶中に存在する
気泡、特に微細気泡の量が少ないために溶融しても不透
明度が高まらず、得られた石英ガラスは半透明なものに
なるに過ぎないという問題点があった。
In recent years, with the progress of high integration of LSIs in the field of semiconductors, demands for high purity of raw materials to be used have become severe, and high purity products have been demanded even in fields where low purity products were conventionally used. Began to be. A typical field is the flange part of a furnace core tube used in a heating furnace for heat treatment of silicon wafers and the like, which supplies opaque and high-purity quartz glass rings, that is, high-purity opaque quartz glass rings. Was desired. However, the natural raw materials used in the production of opaque quartz glass, which are conventionally used, contain a large amount of impurities together with fine bubbles, and it is extremely difficult to remove these impurities. Is said to be impossible. On the other hand, relatively high-purity quartz does not increase its opacity even when it is melted due to the small amount of bubbles present in the crystal, especially fine bubbles, and the resulting quartz glass is only translucent. There was no problem.

【0006】その改良方法として、アルカリ金属、アル
カリ土類金属、Fe、Alの各元素の含有量が低く、多
数の微細気泡を包含し、気化性成分としてシラノール基
を特定の範囲で均一に含有した高純度の非晶質シリカを
火炎溶融することによる方法が提案されている(特開平
6−24771号)。しかしながら、この方法によれ
ば、IC封止材用シリカフィラーやシリカガラス粉製造
用の母材インゴットのような簡単な形状の石英ガラス製
品しか直接製造できず、リング状のような異形の石英ガ
ラス製品を製造するには、多大な削り出し等の後加工が
必要となり、石英ガラスの利用率が低くなり、結果とし
て製造コストの上昇を招くという問題点があった。
As an improved method, the content of each element of alkali metals, alkaline earth metals, Fe and Al is low, many fine bubbles are contained, and silanol groups are uniformly contained in a specific range as a vaporizable component. A method of flame melting high purity amorphous silica has been proposed (JP-A-6-24771). However, according to this method, only a silica glass product having a simple shape such as a silica filler for an IC encapsulant or a base material ingot for producing a silica glass powder can be directly produced, and a quartz glass having a deformed shape such as a ring shape is produced. In order to manufacture a product, a large amount of post-processing such as shaving is required, and the utilization rate of quartz glass is reduced, resulting in an increase in manufacturing cost.

【0007】また、別の不透明石英ガラスの製造方法と
して、高純度に精製された結晶質シリカ粉末を、あるい
はこれをアンモニア雰囲気中で加熱してアンモニア化し
た結晶質シリカ粉末を、耐熱性型に充填し不活性ガス雰
囲気下で加熱溶融する製造法により、気泡の径は小さく
するが、気泡の数量を多くし、不透明石英ガラスの単位
体積あたりの気泡総断面積を大きくして、断熱性が向上
した不透明石英ガラスの製造方法が提案されている(特
開平7−61827号公報、特開平7−300341号
公報)。しかしながら、この方法では、耐熱性型の空間
形状を適宜選択することによりリング状のような異形の
石英ガラス製品の製造が可能となるが、不透明石英ガラ
スの密度、気泡径、気泡量は原料粉末の粒子径、耐熱性
型に充填した時の充填状態に非常に敏感に反応するため
に再現性良く気泡制御することが容易ではなく、表面と
内部で気泡径や気泡量が大きく異なるなどの問題があっ
た。
Further, as another method for producing opaque quartz glass, crystalline silica powder purified to high purity, or crystalline silica powder obtained by heating this in a ammonia atmosphere to form ammonia, is converted into a heat-resistant type. By the manufacturing method of filling and heating and melting under an inert gas atmosphere, the diameter of air bubbles is reduced, but the number of air bubbles is increased, the total cross-sectional area of air bubbles per unit volume of opaque quartz glass is increased, and heat insulation is improved. An improved method for producing opaque quartz glass has been proposed (JP-A-7-61827, JP-A-7-300341). However, according to this method, it is possible to produce a quartz glass product having a deformed shape such as a ring shape by appropriately selecting the space shape of the heat-resistant mold. It is not easy to control bubbles with good reproducibility because it reacts very sensitively to the particle size of the particles and the state of filling when filled into a heat-resistant mold. was there.

【0008】他の不透明石英ガラスの製造方法として
は、硅石、硅砂、α−クォーツ、クリストバライトなど
の硅酸質原料粉末に、発泡剤として炭素、窒化ケイ素な
どの微粉末を添加して加熱溶融する方法が提案されてい
る(例えば、特開平4−65328号公報)。しかしな
がら、この方法では前記手法のような気泡状態や純度に
関する問題は回避し得るが、酸水素炎で溶融するため
に、得られるガラスにOH基が取り込まれやすくなって
高温での粘性が低下し、高温で長時間使用する半導体製
造の用途には不利となり、また、火炎溶融法であること
から直接にはコラム状のような簡単な形状のガラス塊し
か得られず、リング状のような異形のガラス製品を得る
には多大な後加工が必要となりコスト的にも不利になっ
てしまうという課題を有していた。
Another method for producing opaque quartz glass is to add a fine powder such as carbon or silicon nitride as a foaming agent to a siliceous raw material powder such as silica stone, silica sand, α-quartz, cristobalite, and heat and melt. A method has been proposed (for example, Japanese Patent Application Laid-Open No. 4-65328). However, this method can avoid the problems with the bubble state and purity as in the above method, but because it is melted by an oxyhydrogen flame, OH groups are easily incorporated into the obtained glass, and the viscosity at high temperatures decreases. However, it is disadvantageous for semiconductor manufacturing applications that are used for a long time at high temperature, and because it is a flame melting method, only a simple shaped glass block like a column can be obtained directly, In order to obtain such a glass product, a large amount of post-processing is required, which is disadvantageous in terms of cost.

【0009】このように、上記記載のいずれの先行技術
においても、各々未だに解決されない課題を有してい
た。
As described above, any of the above-mentioned prior arts has a problem which has not been solved yet.

【0010】[0010]

【発明が解決しようとする課題】本願発明はこれらの課
題を解決することを目的としてなされたものであり、気
泡が均一に分散され、高温粘性及び熱遮断性に優れた、
半導体製造における各種加熱処理装置の炉芯管のフラン
ジ部の素材として有用な不透明石英ガラスリングを容易
に製造する方法を提供することにある。
DISCLOSURE OF THE INVENTION The present invention has been made to solve these problems, and has a structure in which bubbles are uniformly dispersed, and has excellent high-temperature viscosity and heat-blocking properties.
An object of the present invention is to provide a method for easily manufacturing an opaque quartz glass ring useful as a material for a flange portion of a furnace core tube of various heat treatment apparatuses in semiconductor manufacturing.

【0011】[0011]

【課題を解決するための手段】本発明者らは上記の課題
を解決すべく鋭意検討を重ねた結果、上記の硅石、硅
砂、α−クォーツ、クリストバライトなどの硅酸質原料
粉末に、発泡剤として炭素、窒化ケイ素などの微粉末を
添加して加熱溶融する方法(特開平4−65328号公
報)と類似の方法を採用し、原料粉末として結晶質シリ
カ粉末に結晶質シリカ粉末100重量部に対して0.0
01〜0.05重量部の窒化ケイ素粉末を混合したもの
を用い、図2に示すような型内の空間がリング状である
耐熱性型を用い、その型内に原料粉末を充填した後電気
炉に設置し、その後真空雰囲気下で前記混合粉末を室温
から加熱する昇温過程において、少なくとも1回140
0℃以上1650℃以下の温度で1時間以上保持し、次
に前記混合粉末が溶融する温度以上1900℃以下の温
度にて加熱しガラス化させる製造方法を採用することに
より、以下の知見を見出だし本発明を完成するに至っ
た。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, a blowing agent has been added to the above-mentioned siliceous raw material powders such as silica stone, silica sand, α-quartz and cristobalite. A method similar to a method of adding a fine powder such as carbon or silicon nitride and melting by heating (Japanese Patent Laid-Open No. 4-65328) is adopted, and as a raw material powder, 100 parts by weight of crystalline silica powder and crystalline silica powder are used. 0.0 for
Using a mixture of 01 to 0.05 parts by weight of silicon nitride powder, a heat-resistant mold having a ring-shaped space in the mold as shown in FIG. In a furnace, and then at least once in a heating process of heating the mixed powder from room temperature under a vacuum atmosphere.
The following findings are obtained by employing a manufacturing method in which the mixed powder is held at a temperature of 0 ° C. to 1650 ° C. for 1 hour or more, and then heated at a temperature of 1900 ° C. to a temperature at which the mixed powder melts to vitrify. The present invention has been completed.

【0012】1)混合粉末として結晶質シリカ粉末に所
定量の窒化ケイ素粉末を分散混合させ真空雰囲気下でそ
れを溶融させて発生する気泡径及び気泡量を制御するた
めに、得られるガラスリング内に気泡が均一に分散さ
れ、熱遮断性に優れている。
1) As a mixed powder, a predetermined amount of silicon nitride powder is dispersed and mixed in a crystalline silica powder and melted in a vacuum atmosphere to control the bubble diameter and the amount of bubbles generated. Air bubbles are uniformly dispersed, and have excellent heat barrier properties.

【0013】2)昇温過程において少なくとも1回14
00℃以上1650℃以下の温度で1時間以上保持する
ことにより、結晶質シリカ粉末に由来する昇華ガスが型
より外へ排出されるためにガラス中心部に空洞や大気泡
の群落のない不透明石英ガラスリングが得られる。
2) At least once during the heating process
By holding at a temperature of 00 ° C. or more and 1650 ° C. or less for 1 hour or more, sublimation gas derived from the crystalline silica powder is discharged out of the mold, so that opaque quartz having no hollow or large bubbles in the center of the glass. A glass ring is obtained.

【0014】3)原料を加熱溶融させる際にOH基を取
り込むものではなく、また、OH基が揮散しうるのでO
H基の含有量を低くすることができ、得られる不透明石
英ガラスは高温粘性に優れたものとなる。
3) When the raw material is heated and melted, it does not take in OH groups, and since OH groups can be volatilized, O
The content of the H group can be reduced, and the resulting opaque quartz glass has excellent high-temperature viscosity.

【0015】4)型内の空間がリング状の耐熱性の型を
用いて製造するため、製造中のガラスの変形が極めて小
さくなって目的の寸法に近いリング状ガラス体を直接製
造することが可能となる。
4) Since the space inside the mold is manufactured using a ring-shaped heat-resistant mold, the deformation of the glass during the manufacture is extremely small, and it is possible to directly manufacture a ring-shaped glass body having a size close to a target size. It becomes possible.

【0016】以下、本発明をさらに詳細に説明する。Hereinafter, the present invention will be described in more detail.

【0017】[1]出発原料 原料としては、結晶質シリカ粉末と窒化ケイ素粉末とに
より得られる粉末(以下、この結晶質シリカ粉末と窒化
ケイ素粉末とが混合された粉末を単に「混合粉末」とい
う)が用いられる。
[1] Starting Material The starting material is a powder obtained from a crystalline silica powder and a silicon nitride powder (hereinafter, a powder obtained by mixing the crystalline silica powder and the silicon nitride powder is simply referred to as a “mixed powder”). ) Is used.

【0018】(a)結晶質シリカ粉末 結晶質シリカ粉末としては高純度の水晶粉末を用いるこ
とが好ましい。その理由は、結晶質シリカ粉末としては
水晶粉末の他にクリストバライト粉末も挙げられるが、
クリストバライト粉末の真密度は2.3g/cm3であ
るのに対し水晶粉末の真密度は2.6g/cm3である
ので、混合粉末が不透明石英ガラスに変態するまでの寸
法収縮が、水晶粉末の場合ではクリストバライト粉末の
場合に比べ小さくなり、変形が極めて少ないリング状ガ
ラスを得ることができるからである。
(A) Crystalline Silica Powder It is preferable to use high purity quartz powder as the crystalline silica powder. The reason is that crystalline silica powder also includes cristobalite powder in addition to quartz powder,
The true density of cristobalite powder is 2.3 g / cm 3 , while the true density of quartz powder is 2.6 g / cm 3. This is because in the case of cristobalite powder, a ring-shaped glass which is smaller than that of the case of cristobalite powder and has very little deformation can be obtained.

【0019】この水晶粉末としては、その含有金属不純
物として少なくともNa、K、Mg、Ca、Feが各々
独立して1ppm以下とした高純度水晶粉末を用いるこ
とが好ましい。この理由としては、本発明の方法により
得られる不透明石英ガラスリングがフランジとして実装
置に組み込まれて高温に晒された時、蒸気圧の高い不純
物が飛散して汚染物の発生源となったり、不透明石英ガ
ラス自体が一部結晶化して破損しやすくなったり、着色
してしまったりするのを避けるためである。このような
水晶粉末を得るには、天然水晶をフッ酸処理する方法な
どが有効である。また、他に含有しうる金属不純物もそ
の含有量が少ないことが望ましい。
As the quartz powder, it is preferable to use a high-purity quartz powder in which at least Na, K, Mg, Ca, and Fe are independently 1 ppm or less as metal impurities. The reason for this is that when the opaque quartz glass ring obtained by the method of the present invention is incorporated into a real device as a flange and exposed to high temperatures, impurities having a high vapor pressure are scattered and become a source of contaminants, This is to prevent the opaque quartz glass itself from being partially crystallized to be easily damaged or colored. In order to obtain such a quartz powder, a method of treating natural quartz with hydrofluoric acid is effective. It is also desirable that the content of other metal impurities that can be contained is small.

【0020】結晶質シリカ粉末の平均粒子径としては、
耐熱性の型に充填しやすいように流動性を付与すること
が必要であり、そのために10〜500μmの範囲が好
ましい。平均粒子径が10μm未満の場合では粉末の流
動性が低下し均一に粉末を充填することが困難となり、
500μmを越える場合では粒子間の空隙が大きくなり
300μm以上の巨大な気泡が発生する原因となる。
The average particle size of the crystalline silica powder is as follows:
It is necessary to impart fluidity so that the heat-resistant mold can be easily filled. For this reason, the range of 10 to 500 μm is preferable. If the average particle size is less than 10 μm, the fluidity of the powder decreases, making it difficult to uniformly fill the powder,
If it exceeds 500 μm, the voids between the particles become large, which causes the generation of huge bubbles of 300 μm or more.

【0021】(b)窒化ケイ素粉末 窒化ケイ素粉末としては、四塩化ケイ素、シリコン、シ
リカ等を原料とし、それらを窒化することにより得られ
る高純度のものを使用することが好ましい。この理由と
しては、本発明の方法により得られる不透明石英ガラス
リングがフランジとして実装置に組み込まれて高温に晒
された時、蒸気圧の高い不純物が飛散して汚染物の発生
源となったり、不透明石英ガラス自体が一部結晶化して
破損しやすくなったり、着色してしまったりするのを避
けるためである。
(B) Silicon Nitride Powder As silicon nitride powder, it is preferable to use silicon tetrachloride, silicon, silica, or the like as a raw material, and use a high-purity powder obtained by nitriding them. The reason for this is that when the opaque quartz glass ring obtained by the method of the present invention is incorporated into a real device as a flange and exposed to high temperatures, impurities having a high vapor pressure are scattered and become a source of contaminants, This is to prevent the opaque quartz glass itself from being partially crystallized to be easily damaged or colored.

【0022】また、窒化ケイ素粉末の量としては、結晶
質シリカ粉末100重量部に対して窒化ケイ素粉末0.
001〜0.05重量部である。0.001重量部未満
では発泡による気泡の生成量が少なくなり充分な熱遮断
性が得られず、0.05重量部を越える場合には発泡に
よる気泡が粗大化して得られる不透明石英ガラスリング
の機械強度を低下させるため好ましくない。
Further, the amount of the silicon nitride powder is set to 0.1 part by weight based on 100 parts by weight of the crystalline silica powder.
001 to 0.05 parts by weight. If the amount is less than 0.001 part by weight, the amount of bubbles generated by foaming is reduced, and sufficient heat barrier property cannot be obtained. If the amount exceeds 0.05 parts by weight, the opaque quartz glass ring obtained by enlarging the bubbles by foaming is used. It is not preferable because the mechanical strength is reduced.

【0023】窒化ケイ素粉末の平均粒子径としては、
0.1〜1μmであることが好ましく、0.1〜0.5
μmであることがさらに好ましい。この理由は、平均粒
子径がこの範囲にあれば、気泡が粗大化したり、気泡量
が激減してしまうこともなく、さらに、粉末が凝集して
シリカ粉末との混合において均一に混合できなくなるの
を避けるためである。
The average particle diameter of the silicon nitride powder is as follows:
0.1 to 1 μm, preferably 0.1 to 0.5
More preferably, it is μm. The reason is that if the average particle diameter is in this range, the bubbles do not become coarse or the amount of the bubbles does not drastically decrease, and further, the powder is agglomerated and cannot be uniformly mixed with the silica powder. To avoid.

【0024】[2]混合分散 原料粉末を調製するために結晶質シリカ粉末と窒化ケイ
素粉末を混合して混合粉末を得る。
[2] Mixing and Dispersion To prepare a raw material powder, a crystalline silica powder and a silicon nitride powder are mixed to obtain a mixed powder.

【0025】この混合粉末中の窒化ケイ素粉末の分散性
を良好にするために分散媒を用いる方法が好ましく用い
られる。分散媒としては、例えば、水や、エタノール、
メタノールなどのアルコール等が例示できる。また、窒
化ケイ素粉末の混合粉末中における分散性をさらに良好
にするために、必要に応じて超音波発生器などにより振
動を与えつつ分散させてもよい。
In order to improve the dispersibility of the silicon nitride powder in the mixed powder, a method using a dispersion medium is preferably used. As the dispersion medium, for example, water, ethanol,
Examples include alcohols such as methanol. Further, in order to further improve the dispersibility of the silicon nitride powder in the mixed powder, the silicon nitride powder may be dispersed while giving vibrations by an ultrasonic generator or the like, if necessary.

【0026】[3]耐熱性型への充填 次に、図2に示されるような型内の空間がリング状であ
る耐熱性型を用い、その型内に[2]の工程で得られた
混合粉末を充填する。
[3] Filling into heat-resistant mold Next, a heat-resistant mold having a ring-shaped space as shown in FIG. 2 was used, and the mold was obtained in step [2]. Fill the mixed powder.

【0027】使用される耐熱性の型としては、本発明の
方法において実施される加熱温度において耐熱性を有
し、加熱工程中に原料を変質させないようなものであれ
ばその材質は特に限定されるものでなく、例えば、シリ
カと反応しにくい性質を有するカーボン、窒化ホウ素、
炭化ケイ素等が好ましく用いられる。
The material of the heat-resistant mold used is not particularly limited as long as it has heat resistance at the heating temperature used in the method of the present invention and does not deteriorate the raw material during the heating step. What is not, for example, carbon having a property hardly react with silica, boron nitride,
Silicon carbide and the like are preferably used.

【0028】さらに耐熱性型内の内面と原料との滑りを
良好にするためにカーボンフェルトやカーボンペーパー
等を用いて、充填及び加熱を実施することが好ましい。
また、この時の混合粉末の充填密度としては、耐熱性の
型に均一に充填するために1.0〜1.8g/cm3
好ましい。
Further, it is preferable to perform filling and heating using carbon felt, carbon paper, or the like in order to improve the slip between the inner surface of the heat resistant mold and the raw material.
At this time, the packing density of the mixed powder is preferably 1.0 to 1.8 g / cm 3 in order to uniformly fill the heat-resistant mold.

【0029】[4]ガラス化及び気泡生成 混合粉末中の結晶質シリカを溶融し、かつ窒化ケイ素を
完全に分解、発泡させて不透明石英ガラスとするため
に、耐熱性型内に充填した混合粉末を加熱する。
[4] Vitrification and Bubble Generation Mixed powder filled in a heat-resistant mold in order to melt crystalline silica in the mixed powder and completely decompose and foam silicon nitride to form opaque quartz glass. Heat.

【0030】この加熱処理において用いられる電気炉と
しては、混合粉末をガラス状態とするに要する加熱能力
を有し、炉内を真空雰囲気及び不活性ガス雰囲気にする
ことができるものであれば特に限定されるものではな
い。
The electric furnace used in this heat treatment is not particularly limited as long as it has a heating capacity required to bring the mixed powder into a glass state and can make the inside of the furnace a vacuum atmosphere and an inert gas atmosphere. It is not something to be done.

【0031】ここで、加熱にあたっては室温より昇温し
混合粉末が溶融させることとなるが、まず加熱昇温過程
において少なくとも1回1400℃以上1650℃以下
の範囲で1時間以上保持する処理(以下、この処理を単
に「加熱処理1」という)と、加熱処理1の後に混合粉
末が溶融しうる温度以上1900℃以下の温度に加熱す
る処理(以下、この処理を単に「加熱処理2」という)
とを行う。
Here, upon heating, the temperature of the mixed powder is raised by raising the temperature from room temperature. First, at least once in the heating and heating process, the temperature is kept in the range of 1400 ° C. to 1650 ° C. for 1 hour or more (hereinafter referred to as “heating”). This treatment is simply referred to as “heat treatment 1”), and a treatment in which the mixed powder is heated to a temperature of 1900 ° C. or higher after the heat treatment 1 (hereinafter, this treatment is simply referred to as “heat treatment 2”).
And do.

【0032】ここで、加熱昇温過程においては、混合粉
末充填体が開気孔状態から閉気孔状態に転じ、さらに溶
融するまで真空雰囲気とすることが好ましく、その真空
度は50mmHg以下、さらに10mmHg以下である
ことが好ましい。この理由としては、不透明石英ガラス
中においては、主に混合粉末中の窒化ケイ素と結晶質シ
リカとの反応により生成する固溶窒素の脱離ガス、及び
分解ガスを気泡として存在させることにより気泡をガラ
ス中に均一に分布させることができるからである。
Here, in the heating and heating process, it is preferable that the mixed powder is turned from an open pore state to a closed pore state and a vacuum atmosphere is maintained until the mixed powder is further melted, and the degree of vacuum is 50 mmHg or less, further 10 mmHg or less. It is preferred that The reason for this is that in opaque quartz glass, bubbles are generated mainly by the presence of desorbed gas of dissolved nitrogen generated by the reaction between silicon nitride and crystalline silica in the mixed powder and decomposed gas as bubbles. This is because they can be uniformly distributed in the glass.

【0033】加熱処理1では加熱昇温過程において少な
くとも1回1400℃以上1650℃以下のいずれかの
温度にて1時間以上保持することが好ましい。この理由
は、この温度範囲で混合粉末充填体の表面から徐々に焼
結が開始し開気孔状態から閉気孔状態に転じていくが、
この温度範囲内で保持を行わずに昇温すると表面側と中
心側では大きな温度差が生じるため、表面側が閉気孔状
態であるが中心側では開気孔状態になってしまい、加え
てこの温度範囲から結晶質シリカの昇華が開始するが、
中心側で発生した結晶質シリカの昇華ガスは表面側が閉
気孔状態であるために中心側に閉じ込められ、その状態
のまま昇温されると得られたガラスの中心側に空洞や大
気泡の群落が発生してしまうからである。
In the heat treatment 1, it is preferable that the heating is carried out at least once at any temperature between 1400 ° C. and 1650 ° C. for at least one hour in the heating and heating process. The reason is that sintering starts gradually from the surface of the mixed powder filling in this temperature range and turns from an open pore state to a closed pore state,
If the temperature is raised without holding within this temperature range, a large temperature difference occurs between the surface side and the center side, so that the surface side is in a closed pore state, but the center side is in an open pore state. Sublimation of crystalline silica starts from
The sublimation gas of crystalline silica generated on the center side is confined on the center side because the surface side is in a closed pore state, and if the temperature is raised in that state, the cavities and large bubbles cluster on the center side of the obtained glass Is generated.

【0034】続いて加熱処理2を行うが、その際の加熱
温度としては、混合粉末が溶融しうる温度以上1900
℃以下の温度が好ましい。ここで、混合粉末が溶融しう
る温度とは、水晶がクリストバライトに転移していると
常圧ではクリストバライトの融点である1713℃とな
るが、この転移は生じにくいため、溶融温度はこの温度
より低くなり、通常、1700℃程度である。この混合
粉末を溶融しうる温度より低い温度で加熱した場合、混
合粉末が溶融せず、また、1900℃を越える温度で加
熱すると、気泡が粗大化するために得られるガラスリン
グの密度は低下し、リングをフランジに機械加工する際
に必要な機械的強度が得られないため好ましくない。
Subsequently, a heat treatment 2 is performed. The heating temperature at this time is not lower than a temperature at which the mixed powder can be melted, and 1900 or more.
Temperatures below 0 C are preferred. Here, the temperature at which the mixed powder can be melted is 1713 ° C., which is the melting point of cristobalite at normal pressure when the crystal is transformed to cristobalite, but since this transition is unlikely to occur, the melting temperature is lower than this temperature. The temperature is usually about 1700 ° C. When the mixed powder is heated at a temperature lower than the melting temperature, the mixed powder does not melt, and when the mixed powder is heated at a temperature exceeding 1900 ° C., the density of the glass ring obtained due to coarsening of the bubbles decreases. However, it is not preferable because the mechanical strength required for machining the ring into the flange cannot be obtained.

【0035】加熱処理2の加熱処理時間としては、加熱
温度に左右され一定しないが、混合粉末が全量溶融しガ
ラス化できる時間であれば特に制限はなく、通常1時間
程度で十分である。
The heat treatment time of the heat treatment 2 is not fixed depending on the heating temperature, but is not particularly limited as long as the entire mixed powder can be melted and vitrified, and about 1 hour is usually sufficient.

【0036】なお、上記記載のガラス化、気泡生成の工
程において、混合粉末充填体の上にカーボン製などの適
当な材質のリング状重しを載せ、ガラス上面の形状を整
えたり、窒化ケイ素由来の気泡が型の外へ逃げるのを抑
制したりしてもよい。さらにこの重しとしては、本発明
の方法により生成するガラスと一体化しない材質のもの
を用いることが好ましく、例えばカーボン製のものが用
いられる。その形状としては、混合粉末に均等に荷重を
かけるために耐熱性の型内の空間形状に応じた形状を有
していることが好ましい。重しの重量としては、最終的
に得られるガラスの上部に平滑性をなくさない程度の荷
重がかかるものであればよい。
In the above-described vitrification and bubble generation steps, a ring-shaped weight made of a suitable material such as carbon is placed on the mixed powder filling to adjust the shape of the glass upper surface or to remove silicon nitride-derived material. May be suppressed from escaping from the mold. Further, as the weight, it is preferable to use a material that does not integrate with the glass produced by the method of the present invention. For example, a carbon material is used. It is preferable that the shape has a shape corresponding to the space shape in the heat-resistant mold in order to apply a load evenly to the mixed powder. The weight of the weight may be such that a load is applied to the upper part of the finally obtained glass so as not to lose the smoothness.

【0037】真空雰囲気は最高保持温度でガラスへの変
態が終了した時点で解除され、不活性ガスが導入され
る。不活性ガスとしては、本発明の方法において使用さ
れる容器、原料、生成物とは実質的に反応性を有しない
ものであれば特に制限なく用いることができ、例えば、
窒素、アルゴン、ヘリウム等が使用できる。特に、経済
性、気密性を考慮して窒素、アルゴンが好ましく用いら
れる。導入する不活性ガスの圧力としては、得られたガ
ラスを火炎加工など再加熱するにあたり、ガラス中の気
泡の膨脹、収縮など不安定な挙動を防ぐために通常常圧
が用いられるが、やや加圧された状態でもさしつかえな
い。所望によりやや減圧された状態にすることもでき
る。
The vacuum atmosphere is released when the transformation to glass at the maximum holding temperature is completed, and an inert gas is introduced. As the inert gas, the container used in the method of the present invention, the raw materials, the product can be used without any particular limitation as long as it has substantially no reactivity, for example,
Nitrogen, argon, helium and the like can be used. Particularly, nitrogen and argon are preferably used in consideration of economy and airtightness. As the pressure of the inert gas to be introduced, normal pressure is usually used to prevent unstable behavior such as expansion and contraction of bubbles in the glass when the obtained glass is reheated by flame processing, etc. It can be done even if it is done. If desired, the pressure may be slightly reduced.

【0038】また、加熱処理が終了した後冷却される
が、冷却の条件としては上記記載の加熱処理時の温度よ
り1000℃程度まで加熱を停止して冷却したり、冷却
装置により冷却すればよく、通常1000℃/時間程度
の速度で冷却される。その後、室温まで冷却する。さら
に、冷却時に冷却速度を速くするために溶融時において
用いた不活性ガスを導入してもよい。
Cooling is performed after the completion of the heat treatment. The cooling condition may be such that cooling is stopped by stopping the heating to about 1000 ° C. from the temperature at the time of the heat treatment described above, or cooling may be performed by a cooling device. , Usually at a rate of about 1000 ° C./hour. Then, it cools to room temperature. Further, an inert gas used during melting may be introduced to increase the cooling rate during cooling.

【0039】[5]不透明石英ガラスリング 上記工程で得られる石英ガラスリングの特性としては、
機械的強度を高め加工性に優れるようにするために、見
掛密度として1.70〜2.15g/cm3、好ましく
は1.80〜2.12g/cm3の範囲であり、気泡量
が5×104〜5×106個/cm3であり、かつ平均気
泡径として10〜100μmの範囲であることが好まし
い。
[5] Opaque Quartz Glass Ring The characteristics of the quartz glass ring obtained in the above process include:
In order to increase the mechanical strength and improve the processability, the apparent density is in the range of 1.70 to 2.15 g / cm 3 , preferably 1.80 to 2.12 g / cm 3 , and the amount of air bubbles is small. It is preferably 5 × 10 4 to 5 × 10 6 cells / cm 3 , and the average bubble diameter is preferably in the range of 10 to 100 μm.

【0040】本発明の不透明石英ガラスリングの製造方
法において、ガラス中の気泡径及び気泡量を制御する因
子としては、窒化ケイ素粉末添加量、結晶質シリカ粉末
の粒子径及びその分布、溶融温度、導入ガス圧力が挙げ
られる。気泡量を支配する最も大きい因子は結晶質シリ
カ粉末の粒子径であり、より微細な粒度の結晶質シリカ
粉末を用いることにより、気泡径が小さくかつ気泡量が
多い熱遮断性に優れた不透明石英ガラスリングとするこ
とができる。
In the method for producing an opaque quartz glass ring of the present invention, factors controlling the bubble diameter and bubble amount in the glass include the amount of silicon nitride powder added, the particle diameter and distribution of crystalline silica powder, the melting temperature, and the like. Introduced gas pressure. The largest factor that governs the amount of bubbles is the particle size of the crystalline silica powder.By using crystalline silica powder having a finer particle size, opaque quartz with a small bubble size and a large amount of bubbles is excellent in thermal barrier properties. It can be a glass ring.

【0041】このようにして得られた不透明石英ガラス
リングの特性としては、その外観が白色であれば特に限
定されるものではないが、気泡が均一に分散されてお
り、例えば、波長300〜900nmの光を照射した場
合の直線透過率が低くなることで不透明となることが確
認できる。この直線透過率としては、熱遮断性を確保す
るために、部材の厚さ1mm以上において、300〜9
00nmの光を照射した場合の直線透過率が5%以下で
あることが好ましい。このような直線透過率を有する不
透明石英ガラスは気泡を有することでガラスの熱伝導性
が低くなるとともに熱線を散乱させることによりその効
果が増幅される。従って、直線透過率を低くすることで
熱線が散乱しやすくなり、熱遮断性に優れた不透明石英
ガラスリングとすることができる。
The characteristics of the opaque quartz glass ring thus obtained are not particularly limited as long as the appearance is white, but the bubbles are uniformly dispersed, for example, at a wavelength of 300 to 900 nm. It can be confirmed that the opacity is caused by the decrease in the linear transmittance when the light is irradiated. The linear transmittance is 300 to 9 when the thickness of the member is 1 mm or more in order to secure the heat shielding property.
The linear transmittance when irradiated with light of 00 nm is preferably 5% or less. Since the opaque quartz glass having such a linear transmittance has bubbles, the thermal conductivity of the glass is reduced, and the effect is amplified by scattering heat rays. Therefore, by reducing the linear transmittance, heat rays are easily scattered, and an opaque quartz glass ring having excellent heat shielding properties can be obtained.

【0042】本発明の方法は、上記の記載のように原料
を加熱溶融する工程においてガラスにOH基を取り込む
ものではなく、また、OH基が揮散しうるのでOH基の
含有量を低くすることができ、得られる不透明石英ガラ
スは高温における粘性が高い、すなわち高温粘性に優れ
た不透明石英ガラスリングとすることができるものであ
る。
The method of the present invention does not incorporate OH groups into the glass in the step of heating and melting the raw material as described above, and the OH groups can be volatilized so that the content of OH groups is reduced. The resulting opaque quartz glass has a high viscosity at high temperatures, that is, an opaque quartz glass ring excellent in high-temperature viscosity.

【0043】本発明の方法により得られる不透明石英ガ
ラスリングの形状としては、フランジ部の素材として使
用できるものであればよく、通常、リングの外直径と内
直径との差の1/2であるリングの幅が150mm以下
であり、厚さが20〜300mmであるものが望まれて
いる。
The shape of the opaque quartz glass ring obtained by the method of the present invention may be any shape as long as it can be used as a material for the flange portion, and is usually 1 / of the difference between the outer diameter and the inner diameter of the ring. A ring having a width of 150 mm or less and a thickness of 20 to 300 mm is desired.

【0044】このように本発明の方法により得られる不
透明石英ガラスリングは、均一な気泡分布と高い熱遮断
性、及び高い高温粘性を備えているので、半導体製造分
野で使用される各種加熱処理装置の炉芯管のフランジ
部、例えばシリコンウエハーの熱処理用加熱炉の炉芯管
のフランジ部の素材として有用なものである。
As described above, the opaque quartz glass ring obtained by the method of the present invention has a uniform bubble distribution, a high heat-insulating property, and a high high-temperature viscosity. For example, a material useful for a flange portion of a furnace core tube of a furnace core tube of a heating furnace for heat treatment of silicon wafers.

【0045】[0045]

【実施例】本発明を以下の実施例によりさらに詳細に説
明するが、本発明はこれに限定されるものではない。な
お不純物の分析等は以下により行った。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. The analysis of impurities and the like were performed as follows.

【0046】〜不純物の分析〜 結晶質シリカ粉末をICP法により分析した。Analysis of Impurities Crystalline silica powder was analyzed by ICP method.

【0047】〜X線回折〜 ガラスを切断機を用いて20mm×10mm×2mm
(厚さ)の大きさに切断し、測定用サンプルとした。こ
れをX線回折装置(マックサイエンス社製、型式:MX
P3)を使用し、そのガラス状態を観察した。得られた
回折パターン中における石英、クリストバライト等の結
晶に起因する回折ピークの有無によりガラス状態を観察
した。
X-ray Diffraction The glass is cut into 20 mm × 10 mm × 2 mm using a cutting machine.
(Thickness) was cut to obtain a sample for measurement. An X-ray diffractometer (made by Mac Science, model: MX)
Using P3), the glass state was observed. The glass state was observed by the presence or absence of a diffraction peak attributable to crystals such as quartz and cristobalite in the obtained diffraction pattern.

【0048】〜見掛密度〜 ガラスを切断機を用いて30mm×30mm×10mm
(厚さ)の大きさに切断し、測定用サンプルとした。こ
れを電子天秤(メトラー社製、型式:AT261)を使
用し、アルキメデス法によりその密度を測定した。
~ Apparent Density ~ The glass is cut into 30 mm x 30 mm x 10 mm using a cutting machine.
(Thickness) was cut to obtain a sample for measurement. Using an electronic balance (manufactured by Mettler, model: AT261), the density was measured by the Archimedes method.

【0049】〜気泡径及び気泡量〜 ガラスを切断機を用いて30mm×10mm×0.3m
m(厚さ)の大きさに切断し、測定用サンプルとした。
これを目盛り付レンズのある偏光顕微鏡(オリンパス社
製、型式:BH−2)を使用し、その気泡径及び気泡量
を測定した。平均気泡径については、カウントした気泡
を完全球体と見なしてその総体積を算出し、それを気泡
数で除して得た平均気泡体積からさらに平均直径を算出
して平均気泡径とした。
~ Bubble Diameter and Bubble Amount ~ A glass is cut into 30 mm × 10 mm × 0.3 m using a cutting machine.
m (thickness) to obtain a measurement sample.
Using a polarizing microscope (Model: BH-2, manufactured by Olympus Corporation) having a graduated lens, the bubble diameter and bubble amount were measured. Regarding the average bubble diameter, the counted bubbles were regarded as complete spheres, the total volume was calculated, and the total volume was calculated by dividing the total volume by the number of bubbles, and the average diameter was further calculated as the average bubble diameter.

【0050】〜粒子径〜 原料粉末の粒子径分布及び平均粒子径はレーザー回折散
乱法COUTER LS−130(COULTER E
LECTRONICS社製)により測定した。 〜充填密度〜 原料粉末の充填密度は、所定の重量の粉末を耐熱性の型
に充填し、その際の粉末が占める体積を測定し、粉末重
量をその体積で除して求めた。
-Particle size- The particle size distribution and average particle size of the raw material powder are determined by laser diffraction scattering method COUTER LS-130 (COULTER E).
LECTRONICS). -Packing Density-The packing density of the raw material powder was determined by filling a predetermined weight of powder into a heat-resistant mold, measuring the volume occupied by the powder at that time, and dividing the powder weight by the volume.

【0051】〜空洞の確認〜 ガラスを切断機を用いて切断し、目視にて切断面を観察
した。
[Confirmation of Cavity] The glass was cut using a cutting machine, and the cut surface was visually observed.

【0052】〜光透過率〜 ガラスを切断機を用いて切断し、さらに厚さ方向の両面
を#1200のアルミナ砥粒で研磨して30mm×10
mm×1mm(厚さ)の大きさの測定用サンプルとし
た。これを分光光度計(日立製作所社製、型式:ダブル
ビーム分光光度計220型)を使用し、サンプルの厚さ
方向に300、500、700、900nmの各波長の
光(バンドパス2nm)を照射した時の直線透過率を測
定した。
~ Light Transmittance ~ The glass is cut using a cutter, and both surfaces in the thickness direction are polished with # 1200 alumina abrasive grains to obtain a 30 mm × 10
A sample for measurement having a size of mm × 1 mm (thickness) was used. Using a spectrophotometer (manufactured by Hitachi, Ltd., model: double beam spectrophotometer 220), light of each wavelength of 300, 500, 700, and 900 nm (band pass 2 nm) is irradiated in the thickness direction of the sample. Then, the linear transmittance was measured.

【0053】〜気泡総断面積〜 気泡が完全球体であるとみなし、その直径を含む円の面
積の総和で定義され、平均気泡断面積を算出し、これに
気泡量を乗じて算出した。
-Total bubble cross-sectional area- The bubble was regarded as a perfect sphere, defined by the sum of the areas of the circles including the diameter thereof, and the average bubble cross-sectional area was calculated.

【0054】実施例1 平均粒子径300μmで30〜500μmの範囲の粒子
径分布を有する天然水晶粉末(ユニミン製)をフッ酸処
理により高純度化したもの(以降、単に、「水晶粉末」
という)を原料粉末として用いた。四塩化ケイ素からア
ンモニア処理法により得られた窒化ケイ素粉末(宇部興
産製、商品名:SN−E10、平均粒子径0.5μm)
を、水晶粉末100重量部に対して0.03重量部とな
るように秤取し、水晶粉末100重量部に対して50重
量部のエタノールに投入した後、攪拌と同時に超音波振
動を与えて十分に分散させた。得られた窒化ケイ素分散
液に水晶粉末を投入し、十分に攪拌し混合した。次に、
真空エバポレーターを用いてエタノールを除去、乾燥し
て水晶粉末と窒化ケイ素粉末の混合粉末を作製し、不透
明石英ガラス用原料粉末を得た。
Example 1 Natural quartz powder (manufactured by Unimin) having an average grain size of 300 μm and a grain size distribution in the range of 30 to 500 μm was purified to a high degree by hydrofluoric acid treatment (hereinafter simply referred to as “quartz powder”).
Was used as a raw material powder. Silicon nitride powder obtained from silicon tetrachloride by an ammonia treatment method (manufactured by Ube Industries, trade name: SN-E10, average particle size 0.5 μm)
Was weighed so as to be 0.03 parts by weight with respect to 100 parts by weight of the quartz powder, and poured into 50 parts by weight of ethanol with respect to 100 parts by weight of the quartz powder. Well dispersed. Quartz powder was added to the obtained silicon nitride dispersion liquid, and sufficiently stirred and mixed. next,
Ethanol was removed using a vacuum evaporator and dried to prepare a mixed powder of quartz powder and silicon nitride powder, thereby obtaining a raw powder for opaque quartz glass.

【0055】次に、内面に厚さ5mmのカーボンフェル
トを貼り付けたカーボン製型(型内の空間が、外直径5
60mm、内直径380mm、深さ100mmのリング
状)内に、上記記載の混合粉末15kgを充填した。こ
の時の充填密度を上記記載の方法により測定したとこ
ろ、1.4g/cm3であった。さらに図3のように、
充填した混合粉末の上に、外直径560mm、内直径3
80mm、厚さ50mmのカーボン製リングを重しとし
て載せた。これを電気炉に入れ、1×10-3mmHgの
真空雰囲気にした後、室温から1600℃まで300℃
/時間の速度で昇温した。1600℃に3時間保持した
後、次いで1800℃まで300℃/時間の速度で昇温
した。1800℃に30分間保持した後、電気炉内の圧
力が常圧(1kgf/cm2)に達するまで窒素ガスを
導入し加熱を終了した。この後、電気炉の加熱用電源を
切り、放冷した。炉内の温度は50分程度で1000℃
に到達し、その後は徐々に低下し、最終的に室温になっ
た。このようにして外直径560mm、内直径380m
m、厚さ54mmの不透明石英ガラスリングを得た。こ
の不透明石英ガラスリングを上記記載の方法によりその
X線回折を行い、ガラス状態であることを確認した。ま
た、この不透明石英ガラスリングを上記記載の方法によ
り評価し、その結果として、見掛密度、平均気泡径及び
気泡量を表1に、気泡総断面積及び光透過率を表2に示
した。
Next, a carbon mold in which a carbon felt having a thickness of 5 mm is adhered to the inner surface (the space in the mold has an outer diameter of 5 mm).
15 kg of the mixed powder described above was filled in a 60 mm, 380 mm inner diameter, and 100 mm deep ring. When the packing density at this time was measured by the method described above, it was 1.4 g / cm 3 . Further, as shown in FIG.
An outer diameter of 560 mm and an inner diameter of 3
A carbon ring having a thickness of 80 mm and a thickness of 50 mm was placed as a weight. This was put into an electric furnace, and a vacuum atmosphere of 1 × 10 −3 mmHg was applied, and then 300 ° C. from room temperature to 1600 ° C.
/ Hour. After maintaining at 1600 ° C. for 3 hours, the temperature was raised to 1800 ° C. at a rate of 300 ° C./hour. After maintaining the temperature at 1800 ° C. for 30 minutes, nitrogen gas was introduced until the pressure in the electric furnace reached normal pressure (1 kgf / cm 2 ) to terminate the heating. Thereafter, the heating power supply of the electric furnace was turned off and the electric furnace was allowed to cool. Furnace temperature is 1000 ℃ for about 50 minutes
, Then gradually decreased and finally reached room temperature. Thus, the outer diameter is 560 mm and the inner diameter is 380 m
An opaque quartz glass ring having a thickness of 54 mm and a thickness of 54 mm was obtained. The opaque quartz glass ring was subjected to X-ray diffraction by the method described above, and it was confirmed that the ring was in a glass state. The opaque quartz glass ring was evaluated by the method described above. As a result, the apparent density, the average cell diameter, and the cell amount are shown in Table 1, and the total cell cross-sectional area and the light transmittance are shown in Table 2.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【表2】 [Table 2]

【0058】実施例2 室温から1800℃までの昇温過程において、室温から
1500℃まで300℃/時間の速度で昇温し、150
0℃に3時間保持した後、次いで1800℃まで300
℃/時間の速度で昇温した以外は実施例1と同様の条件
にて実施し、外直径560mm、内直径380mm、厚
さ54mmの不透明石英ガラスリングを得た。なお、こ
の時の混合粉末の充填密度は1.4g/cm3であっ
た。この不透明石英ガラスリングを上記記載の方法によ
りそのX線回折を行い、ガラス状態であることを確認し
た。また、この不透明石英ガラスリングを上記記載の方
法により評価し、その結果として、見掛密度、平均気泡
径及び気泡量を表1に、気泡総断面積及び光透過率を表
2に示した。
Example 2 In the process of raising the temperature from room temperature to 1800 ° C., the temperature was raised from room temperature to 1500 ° C. at a rate of 300 ° C./hour.
After holding at 0 ° C. for 3 hours, then 300 to 1800 ° C.
An opaque quartz glass ring having an outer diameter of 560 mm, an inner diameter of 380 mm, and a thickness of 54 mm was obtained under the same conditions as in Example 1 except that the temperature was raised at a rate of ° C./hour. The packing density of the mixed powder at this time was 1.4 g / cm 3 . The opaque quartz glass ring was subjected to X-ray diffraction by the method described above, and it was confirmed that the ring was in a glass state. The opaque quartz glass ring was evaluated by the method described above. As a result, the apparent density, the average cell diameter, and the cell amount are shown in Table 1, and the total cell cross-sectional area and the light transmittance are shown in Table 2.

【0059】実施例3 カーボン製型において、型内の空間が外直径400m
m、内直径280mm、深さ200mmのリング状と
し、充填した混合粉末の上に載せるカーボン製リングを
外直径400mm、内直径280mm、厚さ50mmと
した以外は実施例1と同様の条件にて実施し、外直径4
00mm、内直径280mm、厚さ115mmの不透明
石英ガラスリングを得た。なお、この時の混合粉末の充
填密度は1.4g/cm3であった。この不透明石英ガ
ラスリングを上記記載の方法によりそのX線回折を行
い、ガラス状態であることを確認した。また、この不透
明石英ガラスリングを上記記載の方法により評価しその
結果として、見掛密度、平均気泡径及び気泡量を表1
に、気泡総断面積及び光透過率を表2に示した。
Example 3 In a carbon mold, the space inside the mold was 400 m in outer diameter.
m, a ring shape having an inner diameter of 280 mm and a depth of 200 mm, and under the same conditions as in Example 1, except that the carbon ring placed on the filled mixed powder had an outer diameter of 400 mm, an inner diameter of 280 mm, and a thickness of 50 mm. Conducted, outer diameter 4
An opaque quartz glass ring having a thickness of 00 mm, an inner diameter of 280 mm and a thickness of 115 mm was obtained. The packing density of the mixed powder at this time was 1.4 g / cm 3 . The opaque quartz glass ring was subjected to X-ray diffraction by the method described above, and it was confirmed that the ring was in a glass state. The opaque quartz glass ring was evaluated by the method described above, and as a result, the apparent density, average cell diameter, and cell amount were measured as shown in Table 1.
Table 2 shows the total cross-sectional area of the bubbles and the light transmittance.

【0060】実施例4 実施例1における水晶粉末を平均粒子径が50μm、粒
子径分布が10〜200μmとした以外は実施例1と同
様の条件にて実施し、外直径560mm、内直径380
mm、厚さ56mmの不透明石英ガラスリングを得た。
なお、この時の混合粉末の充填密度は1.5g/cm3
であった。この不透明石英ガラスリングを上記記載の方
法によりそのX線回折を行い、ガラス状態であることを
確認した。また、この不透明石英ガラスリングを上記記
載の方法により評価し、その結果として、見掛密度、平
均気泡径及び気泡量を表1に、気泡総断面積及び光透過
率を表2に示した。
Example 4 Example 4 was carried out under the same conditions as in Example 1 except that the quartz powder used in Example 1 had an average particle size of 50 μm and a particle size distribution of 10 to 200 μm, and had an outer diameter of 560 mm and an inner diameter of 380 mm.
An opaque quartz glass ring having a thickness of 56 mm and a thickness of 56 mm was obtained.
The packing density of the mixed powder at this time was 1.5 g / cm 3
Met. The opaque quartz glass ring was subjected to X-ray diffraction by the method described above, and it was confirmed that the ring was in a glass state. The opaque quartz glass ring was evaluated by the method described above. As a result, the apparent density, the average cell diameter, and the cell amount are shown in Table 1, and the total cell cross-sectional area and the light transmittance are shown in Table 2.

【0061】実施例5 実施例1における窒化ケイ素粉末の混合量を、水晶粉末
100重量部に対して0.01重量部とした以外は実施
例1と同様の条件にて実施し、外直径560mm、内直
径380mm、厚さ53mmの不透明石英ガラスリング
を得た。なお、この時の混合粉末の充填密度は1.4g
/cm3であった。この不透明石英ガラスリングを上記
記載の方法によりそのX線回折を行い、ガラス状態であ
ることを確認した。また、この不透明石英ガラスリング
を上記記載の方法により評価し、その結果として、見掛
密度、平均気泡径及び気泡量を表1に、気泡総断面積及
び光透過率を表2に示した。
Example 5 The same procedure as in Example 1 was carried out except that the mixing amount of the silicon nitride powder in Example 1 was 0.01 part by weight with respect to 100 parts by weight of the quartz powder, and the outer diameter was 560 mm. An opaque quartz glass ring having an inner diameter of 380 mm and a thickness of 53 mm was obtained. At this time, the packing density of the mixed powder was 1.4 g.
/ Cm 3 . The opaque quartz glass ring was subjected to X-ray diffraction by the method described above, and it was confirmed that the ring was in a glass state. The opaque quartz glass ring was evaluated by the method described above. As a result, the apparent density, the average cell diameter, and the cell amount are shown in Table 1, and the total cell cross-sectional area and the light transmittance are shown in Table 2.

【0062】比較例1 室温から1800℃までの昇温過程において、室温から
1800℃まで300℃/時間の速度で昇温した以外は
実施例1と同様の条件にて実施し、外直径560mm、
内直径380mm、厚さ60mmの不透明石英ガラスリ
ングを得た。なお、この時の混合粉末の充填密度は1.
4g/cm3であった。この不透明石英ガラスリングを
上記記載の方法によりそのX線回折を行い、ガラス状態
であることを確認した。しかし、このガラスリングの厚
さ方向の切断面を観察したところ、ガラスの中心部に、
直径約20mmの空洞が生じていた。
Comparative Example 1 In the process of raising the temperature from room temperature to 1800 ° C., the same procedure as in Example 1 was carried out except that the temperature was raised from room temperature to 1800 ° C. at a rate of 300 ° C./hour.
An opaque quartz glass ring having an inner diameter of 380 mm and a thickness of 60 mm was obtained. The packing density of the mixed powder at this time was 1.
It was 4 g / cm 3 . The opaque quartz glass ring was subjected to X-ray diffraction by the method described above, and it was confirmed that the ring was in a glass state. However, when observing the cut surface in the thickness direction of this glass ring,
A cavity having a diameter of about 20 mm was formed.

【0063】比較例2 室温から1800℃までの昇温過程において、室温から
1300℃まで300℃/時間の速度で昇温し、130
0℃で3時間保持した後、次いで1800℃まで300
℃/時間の速度で昇温した以外は実施例1と同様の条件
にて実施し、外直径560mm、内直径380mm、厚
さ60mmの不透明石英ガラスリングを得た。なお、こ
の時の混合粉末の充填密度は1.4g/cm3であっ
た。この不透明石英ガラスリングを上記記載の方法によ
りそのX線回折を行い、ガラス状態であることを確認し
た。しかし、このガラスリングの厚さ方向の切断面を観
察したところ、ガラスの中心部に、直径約20mmの空
洞が生じていた。
COMPARATIVE EXAMPLE 2 In the process of raising the temperature from room temperature to 1800 ° C., the temperature was raised from room temperature to 1300 ° C. at a rate of 300 ° C./hour.
After holding at 0 ° C. for 3 hours, then 300 to 1800 ° C.
An opaque quartz glass ring having an outer diameter of 560 mm, an inner diameter of 380 mm, and a thickness of 60 mm was obtained under the same conditions as in Example 1 except that the temperature was raised at a rate of ° C./hour. The packing density of the mixed powder at this time was 1.4 g / cm 3 . The opaque quartz glass ring was subjected to X-ray diffraction by the method described above, and it was confirmed that the ring was in a glass state. However, when the cut surface of the glass ring in the thickness direction was observed, a cavity having a diameter of about 20 mm was formed at the center of the glass.

【0064】比較例3 室温から1800℃までの昇温過程において、室温から
1700℃まで300℃/時間の速度で昇温し、170
0℃で3時間保持した後、次いで1800℃まで300
℃/時間の速度で昇温した以外は実施例1と同様の条件
にて実施し、外直径560mm、内直径380mm、厚
さ65mmの不透明石英ガラスリングを得た。なお、こ
の時の混合粉末の充填密度は1.4g/cm3であっ
た。この不透明石英ガラスリングを上記記載の方法によ
りそのX線回折を行い、ガラス状態であることを確認し
た。しかし、このガラスリングの厚さ方向の切断面を観
察したところ、ガラスの中心部に、直径約20mmの空
洞が生じていた。
COMPARATIVE EXAMPLE 3 In the process of raising the temperature from room temperature to 1800 ° C., the temperature was raised from room temperature to 1700 ° C. at a rate of 300 ° C./hour.
After holding at 0 ° C. for 3 hours, then 300 to 1800 ° C.
An opaque quartz glass ring having an outer diameter of 560 mm, an inner diameter of 380 mm, and a thickness of 65 mm was obtained under the same conditions as in Example 1 except that the temperature was raised at a rate of ° C./hour. The packing density of the mixed powder at this time was 1.4 g / cm 3 . The opaque quartz glass ring was subjected to X-ray diffraction by the method described above, and it was confirmed that the ring was in a glass state. However, when the cut surface of the glass ring in the thickness direction was observed, a cavity having a diameter of about 20 mm was formed at the center of the glass.

【0065】[0065]

【発明の効果】本発明の不透明石英ガラスリングの製造
方法によれば、以下の優れた点がある。
According to the method for manufacturing an opaque quartz glass ring of the present invention, there are the following excellent points.

【0066】1)結晶質シリカ粉末に窒化ケイ素粉末を
添加し真空雰囲気下で電気炉により加熱することによ
り、結晶質シリカ粉末のガラス化及び窒化ケイ素粉末の
分解発泡を行うものであるので、アルカリ金属等の不純
物の混入を防止することができ、高純度で高温粘性に優
れたものを得ることができる。
1) The vitrification of the crystalline silica powder and the decomposition and foaming of the silicon nitride powder are performed by adding the silicon nitride powder to the crystalline silica powder and heating the mixture in an electric furnace in a vacuum atmosphere. Incorporation of impurities such as metals can be prevented, and a product having high purity and excellent high-temperature viscosity can be obtained.

【0067】2)結晶質シリカ粉末の粒子径や窒化ケイ
素粉末の混合量を調節したり加熱温度を調節することに
より、得られる不透明石英ガラスリングの気泡径や見掛
密度を制御することができ、熱遮断性に優れた不透明ガ
ラスリングを容易に得ることができる。
2) The bubble diameter and apparent density of the resulting opaque quartz glass ring can be controlled by adjusting the particle size of the crystalline silica powder, the mixing amount of the silicon nitride powder, and the heating temperature. An opaque glass ring having excellent heat blocking properties can be easily obtained.

【0068】3)昇温過程の温度制御により、結晶質シ
リカの昇華ガスが原料粉末充填体内に閉じ込められない
ので、得られるガラスの中心部に空洞や大気泡の群落が
なく、気泡が均一に分散されている不透明石英ガラスリ
ングを得ることができる。
3) Since the sublimation gas of crystalline silica is not confined in the raw material powder filling by the temperature control in the temperature raising process, there is no hollow or large bubbles in the center of the obtained glass, and the bubbles are uniform. A dispersed opaque quartz glass ring can be obtained.

【0069】4)型内の空間がリング状の耐熱性の型を
用いて製造するため、製造中のガラスの変形が極めて小
さくなって目的の寸法に近い不透明石英ガラスリングを
直接製造することができる。
4) Since the space inside the mold is manufactured using a heat-resistant mold having a ring shape, the deformation of the glass during the manufacture is extremely small, so that it is possible to directly manufacture an opaque quartz glass ring close to the target size. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】シリコンウエハー熱処理用加熱炉の一例を示す
図である。
FIG. 1 is a diagram showing an example of a heating furnace for heat treatment of a silicon wafer.

【図2】型内の空間形状がリング状である耐熱性型の一
例を中心より切断しその様子を示した断面の斜面図であ
る。
FIG. 2 is an oblique view of a cross-section showing an example of a heat-resistant mold having a ring-shaped space shape cut from the center of the mold and showing a state of the cut.

【図3】実施例1〜5及び比較例1〜3における混合粉
末の充填状態を示す断面図である。
FIG. 3 is a cross-sectional view showing a filled state of mixed powders in Examples 1 to 5 and Comparative Examples 1 to 3.

【符号の説明】[Explanation of symbols]

1:図1における発熱体 2:図1における炉芯管 3:図1におけるシリコンウエハー 4:図1におけるボート 5:図1における保温筒 6:図1における基台 7:図1におけるパッキン 8:図1におけるガス導入口 9:図1におけるフランジ 10:図2、3におけるカーボン製型 11:図3におけるカーボンフェルト 12:図3における混合粉末 13:図3におけるカーボン製リングの重し 1: Heating element in FIG. 1 2: Furnace tube in FIG. 1: Silicon wafer in FIG. 4: Boat in FIG. 5: Heat retaining tube in FIG. 6: Base in FIG. 7: Packing in FIG. Gas inlet in FIG. 9 9: Flange in FIG. 1 10: Carbon mold in FIGS. 2 and 3 11: Carbon felt in FIG. 3 12: Mixed powder in FIG. 13 13: Weight of carbon ring in FIG.

フロントページの続き (72)発明者 秋山 智幸 山形県山形市桜田東2−11−16−309 (72)発明者 瀬川 英明 山形県山形市双月町2−3−11−606Continued on the front page (72) Inventor Tomoyuki Akiyama 2-11-16-309 Sakuradahigashi, Yamagata City, Yamagata Prefecture (72) Inventor Hideaki Segawa 2-3-11-606 Sogetsucho, Yamagata City, Yamagata Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】見掛密度が1.70〜2.15g/cm3
であり、平均気泡径が10〜100μmであり、気泡量
が5×104〜5×106個/cm3である不透明石英ガ
ラスリングの製造方法において、型内の空間がリング状
である耐熱性の型に平均粒子径10〜500μmの結晶
質シリカ粉末と前記結晶質シリカ粉末100重量部に対
して窒化ケイ素粉末0.001〜0.05重量部との混
合粉末を充填した後電気炉に設置し、その後真空雰囲気
下で前記混合粉末を室温から加熱する昇温過程におい
て、少なくとも1回1400℃以上1650℃以下の温
度で1時間以上保持し、次に前記混合粉末が溶融する温
度以上1900℃以下の温度にて加熱しガラス化させる
ことを特徴とする不透明石英ガラスリングの製造方法。
1. An apparent density of 1.70 to 2.15 g / cm 3.
In the method for producing an opaque quartz glass ring having an average cell diameter of 10 to 100 μm and an amount of cells of 5 × 10 4 to 5 × 10 6 / cm 3 , the heat resistance is such that the space in the mold is ring-shaped. After filling a mixed powder of crystalline silica powder having an average particle size of 10 to 500 μm and silicon nitride powder in an amount of 0.001 to 0.05 part by weight with respect to 100 parts by weight of the crystalline silica powder, the mixture was placed in an electric furnace. In the heating process of heating the mixed powder from room temperature under a vacuum atmosphere, the mixed powder is held at least once at a temperature of 1400 ° C. or more and 1650 ° C. or less for one hour or more, and then at a temperature of 1900 ° C. or more at which the mixed powder melts. A method for producing an opaque quartz glass ring, comprising heating at a temperature of not more than ° C to vitrify.
JP04185898A 1998-02-24 1998-02-24 Method for producing opaque quartz glass ring Expired - Fee Related JP4035794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04185898A JP4035794B2 (en) 1998-02-24 1998-02-24 Method for producing opaque quartz glass ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04185898A JP4035794B2 (en) 1998-02-24 1998-02-24 Method for producing opaque quartz glass ring

Publications (2)

Publication Number Publication Date
JPH11236234A true JPH11236234A (en) 1999-08-31
JP4035794B2 JP4035794B2 (en) 2008-01-23

Family

ID=12619957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04185898A Expired - Fee Related JP4035794B2 (en) 1998-02-24 1998-02-24 Method for producing opaque quartz glass ring

Country Status (1)

Country Link
JP (1) JP4035794B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206725A (en) * 1999-12-22 2001-07-31 Shinetsu Quartz Prod Co Ltd Method for manufacturing opaque quartz glass, and opaque article manufactured by the method
CN104909558A (en) * 2015-06-10 2015-09-16 连云港市东海县宏伟石英制品有限公司 Method for preparing glassy state transparent quartz sand
KR20190002594A (en) 2016-09-13 2019-01-08 가부시키가이샤 사무코 Quartz glass crucible and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237927A (en) * 1994-02-28 1995-09-12 Yamagata Shinetsu Sekiei:Kk Flanged vessel made of quartz glass
JPH07267660A (en) * 1994-03-30 1995-10-17 Tosoh Corp Foamed quartz glass structure and its production
JPH07300326A (en) * 1994-04-28 1995-11-14 Shinetsu Quartz Prod Co Ltd Production of laminated quartz glass member having both transparent layer and opaque layer
JPH0912325A (en) * 1995-06-29 1997-01-14 Nitto Chem Ind Co Ltd High-purity opaque quartz glass and its production as well as its application
JPH11209135A (en) * 1998-01-27 1999-08-03 Tosoh Corp Production of opaque quartz glass ring with transparent part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237927A (en) * 1994-02-28 1995-09-12 Yamagata Shinetsu Sekiei:Kk Flanged vessel made of quartz glass
JPH07267660A (en) * 1994-03-30 1995-10-17 Tosoh Corp Foamed quartz glass structure and its production
JPH07300326A (en) * 1994-04-28 1995-11-14 Shinetsu Quartz Prod Co Ltd Production of laminated quartz glass member having both transparent layer and opaque layer
JPH0912325A (en) * 1995-06-29 1997-01-14 Nitto Chem Ind Co Ltd High-purity opaque quartz glass and its production as well as its application
JPH11209135A (en) * 1998-01-27 1999-08-03 Tosoh Corp Production of opaque quartz glass ring with transparent part

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206725A (en) * 1999-12-22 2001-07-31 Shinetsu Quartz Prod Co Ltd Method for manufacturing opaque quartz glass, and opaque article manufactured by the method
EP1110917A3 (en) * 1999-12-22 2001-10-04 Heraeus Quarzglas GmbH & Co. KG Method of producing opaque silica glass and opaque elements produced by the process
US6381987B1 (en) 1999-12-22 2002-05-07 Heraeus Quarzglas Gmbh & Co. Kg Process for making opaque quartz glass and opaque component made according to the process
CN104909558A (en) * 2015-06-10 2015-09-16 连云港市东海县宏伟石英制品有限公司 Method for preparing glassy state transparent quartz sand
KR20190002594A (en) 2016-09-13 2019-01-08 가부시키가이샤 사무코 Quartz glass crucible and its manufacturing method
KR20200105982A (en) 2016-09-13 2020-09-09 가부시키가이샤 사무코 Quartz glass crucible
US10822716B2 (en) 2016-09-13 2020-11-03 Sumco Corporation Quartz glass crucible and manufacturing method thereof
DE112017004599B4 (en) 2016-09-13 2022-11-03 Sumco Corporation Quartz glass crucible and method for its manufacture

Also Published As

Publication number Publication date
JP4035794B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
EP0816297B1 (en) Opaque quartz glass and process for production thereof
EP1290250B1 (en) Multilayered quartz glass crucible and method of its production
JP3578357B2 (en) Method for producing heat-resistant synthetic quartz glass
JP2004262690A (en) Method of manufacturing quartz glass crucible for pulling up silicon single crystal and quartz glass crucible manufactured by the same method
US5876473A (en) Method of producing cristobalite containing silica glass
JP4191271B2 (en) Opaque quartz glass having a transparent part and method for producing the same
JP4035794B2 (en) Method for producing opaque quartz glass ring
JPH11310423A (en) Synthetic quartz glass and its production
JPH07300341A (en) Opaque silica glass and its production
EP0909743B2 (en) Opaque silica glass article having transparent portion and process for producing same
JP4035793B2 (en) Method for producing opaque quartz glass ring having transparent portion
JPS62212235A (en) Production of glass
US6405563B1 (en) Opaque silica glass article having transparent portion and process for producing same
JPH11199252A (en) Opaque quartz glass
JP2010024137A (en) Nitrogen-doped quartz glass crucible, and method of manufacturing the same
JP3966943B2 (en) Opaque quartz glass and manufacturing method thereof
JP2003292337A (en) Plasma corrosion resisting silica glass, manufacturing method therefor and apparatus using the same
JPH0761827A (en) Opaque silica glass
JP2000256037A (en) Black quartz glass having transparent part and its production
JP3050352B2 (en) Method for producing opaque quartz glass
JP4176872B2 (en) Opaque silica glass, method for producing the same, and silica glass molding
CN220703866U (en) Crystal growth device
JP3050351B2 (en) Method for producing opaque quartz glass
JP3048800B2 (en) Method for producing opaque quartz glass
JPH08295534A (en) Silica glass containing cristobalite crystal phase and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees