JPH112276A - Damping force variable damper - Google Patents

Damping force variable damper

Info

Publication number
JPH112276A
JPH112276A JP15530097A JP15530097A JPH112276A JP H112276 A JPH112276 A JP H112276A JP 15530097 A JP15530097 A JP 15530097A JP 15530097 A JP15530097 A JP 15530097A JP H112276 A JPH112276 A JP H112276A
Authority
JP
Japan
Prior art keywords
damper
electromagnet
annular plate
rod
damping force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15530097A
Other languages
Japanese (ja)
Inventor
Atsushi Mori
淳 森
Nobuo Mori
信男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA AUTO ENG
Honda Motor Co Ltd
Showa Corp
Original Assignee
SHOWA AUTO ENG
Honda Motor Co Ltd
Showa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA AUTO ENG, Honda Motor Co Ltd, Showa Corp filed Critical SHOWA AUTO ENG
Priority to JP15530097A priority Critical patent/JPH112276A/en
Publication of JPH112276A publication Critical patent/JPH112276A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Vibration Dampers (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate a high friction force by a low power and to improve efficiency, in a damper to vary a deceleration force by using an electromagnet. SOLUTION: A cylindrical electromagnet 12 and an annular plate 13 positioned opposite thereto are arranged at a rod 4 and through excitation of the electromagnet 12, one of the electromagnet 12 and the annular plate 13 is caused to approach the other. An annular shoe member consisting of a plurality of segments 14a peripherally parted from each other is supported such that the segments 14a are radially movable. Through access of the electromagnet 12 and the annular plate 13 to each other, the segment 14a is radially pushed through a cam means 15 and is brought into pressure contact with the inner peripheral surface of a damper body 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として車両のサ
スペンションに組込まれる減衰力可変式ダンパに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a damping force variable damper mainly incorporated in a vehicle suspension.

【0002】[0002]

【従来の技術】車両のサスペンションに組込まれるダン
パは、筒状のダンパ本体と、ダンパ本体内にダンパの軸
方向に相対移動自在に挿入したロッドとを備えており、
ダンパ本体とロッドとの一方をばね下部材、他方をばね
上部材に連結している。
2. Description of the Related Art A damper incorporated in a vehicle suspension includes a cylindrical damper body and a rod inserted in the damper body so as to be relatively movable in the axial direction of the damper.
One of the damper body and the rod is connected to the unsprung member, and the other is connected to the sprung member.

【0003】また、ダンパには、ダンパ本体内に、ロッ
ドに連結されるピストンを挿入した油室を有する油室ダ
ンパや、ダンパ本体にロッドを嵌合させて両者を摩擦接
触させる摩擦ダンパがある。
The damper includes an oil chamber damper having an oil chamber in which a piston connected to a rod is inserted in a damper body, and a friction damper in which the rod is fitted to the damper body to bring the two into frictional contact. .

【0004】このようなダンパにおいて、ダンパ本体と
ロッドとのうちの一方の部材に、電磁石と、電磁石の励
磁で磁化されてダンパ本体とロッドとのうちの他方の部
材に吸着する吸着部材とを装着し、吸着部材と前記他方
の部材との間の摩擦により減衰力を可変するものも、特
願平8−349477号で提案されている。
In such a damper, one of the damper body and the rod is provided with an electromagnet and an attracting member magnetized by excitation of the electromagnet and attracted to the other member of the damper body and the rod. A device that is mounted and varies the damping force by friction between the suction member and the other member has also been proposed in Japanese Patent Application No. 8-349777.

【0005】[0005]

【発明が解決しようとする課題】上記先願のものは、電
磁石により吸着部材を介して前記他方の部材を磁化し、
吸着部材から他方の部材に磁束を通して吸着部材と他方
の部材との間の磁気吸引力を発生させているが、他方の
部材の磁気抵抗、電磁石と吸着部材との間の磁気ギャッ
プ等による損失を生ずるため、吸着部材と他方の部材と
の間の磁気吸引力による充分な摩擦力を得るには電磁石
への通電電流を大きくする必要があり、効率が悪くな
る。
In the above-mentioned prior application, the other member is magnetized by an electromagnet via an attraction member,
The magnetic attraction between the attraction member and the other member is generated by passing a magnetic flux from the attraction member to the other member, but the loss due to the magnetic resistance of the other member and the magnetic gap between the electromagnet and the attraction member is reduced. Therefore, in order to obtain a sufficient frictional force due to the magnetic attraction between the attraction member and the other member, it is necessary to increase the current supplied to the electromagnet, and the efficiency is reduced.

【0006】また、安定した摩擦力が得られるようにす
るには、吸着部材の他方の部材に対する接触面に摩擦材
を取付けることが望まれるが、これでは吸着部材と他方
の部材との間に摩擦材による磁気ギャップを生ずるた
め、効率が悪くなる。
In order to obtain a stable frictional force, it is desirable to attach a friction material to the contact surface of the suction member with the other member. Since a magnetic gap is generated by the friction material, the efficiency is reduced.

【0007】本発明は、以上の点に鑑み、少ない電力で
大きな摩擦力を得られるようにした効率の良い減衰力可
変式ダンパを提供することを課題としている。
SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide an efficient damping force variable damper capable of obtaining a large frictional force with a small amount of electric power.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すべく、
本発明は、筒状のダンパ本体と、ダンパ本体内にダンパ
の軸方向に相対移動自在に挿入したロッドとを備えるダ
ンパであって、ダンパ本体とロッドとのうちの一方の部
材に、ダンパと同心の筒状の電磁石と、電磁石に対しダ
ンパの軸方向に対向する環状板とを、電磁石と環状板と
の一方がダンパの軸方向に移動可能となるように装着し
て、電磁石の励磁で電磁石と環状板とが接近するように
し、環状板に、周方向に分断された複数のセグメントか
ら成る環状のシュー部材を、これらセグメントがダンパ
本体とロッドとのうちの他方の部材に向けてダンパの径
方向に移動可能となるように支持させ、電磁石と環状板
とが接近したときに、これらセグメントを前記他方の部
材に向けてダンパの径方向に押動させるカム手段を設け
る、ことを特徴とする。
Means for Solving the Problems In order to solve the above problems,
The present invention is a damper including a cylindrical damper main body, and a rod inserted into the damper main body so as to be relatively movable in the axial direction of the damper, wherein one of the damper main body and the rod includes a damper, A concentric cylindrical electromagnet and an annular plate opposed to the electromagnet in the axial direction of the damper are mounted such that one of the electromagnet and the annular plate is movable in the axial direction of the damper, and the excitation of the electromagnet is performed. An annular shoe member composed of a plurality of segments divided in the circumferential direction is placed on the annular plate such that the electromagnet and the annular plate approach each other, and the segments are directed toward the other member of the damper body and the rod. And a cam means for pushing these segments toward the other member in the radial direction of the damper when the electromagnet and the annular plate approach each other. When That.

【0009】本発明によれば、電磁石の励磁で電磁石と
環状板とが接近したときに、カム手段を介してシュー部
材の各セグメントがダンパの径方向に押動されて前記他
方の部材に圧接し、摩擦力が発生する。この場合、ダン
パ本体やロッドに磁束を通す必要がなく、また、カム手
段による倍力作用でシュー部材の圧接力が強められるた
め、小さな電力で大きな摩擦力を得ることができ、効率
が向上する。また、シュー部材に摩擦材を取付けても何
ら影響はない。そのため、摩擦材により安定した摩擦力
を得られ、減衰力の制御の安定性も向上する。
According to the present invention, when the electromagnet and the annular plate approach each other due to the excitation of the electromagnet, each segment of the shoe member is pushed in the radial direction of the damper via the cam means and pressed against the other member. Then, a frictional force is generated. In this case, there is no need to pass a magnetic flux through the damper body and the rod, and the pressure contact force of the shoe member is increased by the boosting action of the cam means, so that a large frictional force can be obtained with a small amount of electric power and the efficiency is improved. . Further, even if a friction material is attached to the shoe member, there is no effect. Therefore, a stable friction force can be obtained by the friction material, and the stability of damping force control is also improved.

【0010】ここで、電磁石と環状板とシュー部材とか
ら成るユニットの2組を、両ユニットの電磁石同士が隣
接するように、ダンパの軸方向に並べて配置すれば、ダ
ンパ本体に対しロッドが軸方向一方に移動する際、軸方
向一方に配置したユニットのシュー部材に摩擦による電
磁石側への軸力が作用するため、シュー部材の圧接力を
増強するセルフロック機能が得られ、また、ダンパ本体
に対しロッドが軸方向他方に移動する際も、軸方向他方
に配置したユニットのシュー部材の圧接力を増強するセ
ルフロック機能が得られ、そのため、効率が一層向上す
る。
Here, if two sets of units each composed of an electromagnet, an annular plate, and a shoe member are arranged in the axial direction of the damper so that the electromagnets of both units are adjacent to each other, the rod is axially moved relative to the damper body. When moving in one direction, an axial force due to friction acts on the shoe member of the unit arranged in one axial direction to the electromagnet side, so that a self-locking function to increase the pressure contact force of the shoe member is obtained, and the damper body On the other hand, when the rod moves in the other axial direction, a self-locking function for increasing the pressing force of the shoe member of the unit disposed in the other axial direction is obtained, and therefore, the efficiency is further improved.

【0011】電磁石の励磁で電磁石と環状板とを接近さ
せるには、環状板を磁性体で形成して、電磁石と環状板
との間に磁気吸引力を発生させれば良い。また、上記の
如く2組のユニットを設ける場合は、各ユニットの電磁
石を前記一方の部材に対しダンパの軸方向に移動自在と
し、両ユニットの電磁石を互に反発するように励磁し
て、各ユニットの電磁石を対応する環状板に接近させる
ようにしても良い。この場合、環状板は磁性体でなくて
も良い。
In order to bring the electromagnet and the annular plate close to each other by excitation of the electromagnet, the annular plate may be formed of a magnetic material and a magnetic attractive force may be generated between the electromagnet and the annular plate. When two sets of units are provided as described above, the electromagnet of each unit is made movable in the axial direction of the damper with respect to the one member, and the electromagnets of both units are excited so as to repel each other. The electromagnet of the unit may be brought closer to the corresponding annular plate. In this case, the annular plate may not be made of a magnetic material.

【0012】[0012]

【発明の実施の形態】図1は車両用のツインチューブ式
油圧ダンパを示している。該ダンパのダンパ本体1は、
インナチューブ2とアウタチューブ3とで内外2重の筒
状に構成されており、インナチューブ2に上方からロッ
ド4を挿入して、ロッド4の下端にピストン5を連結
し、インナチューブ2の内部空間で構成される油室をピ
ストン5により上下2室6,7に仕切り、上室6と下室
7とをピストン5に形成したオリフィス8を介して連通
させている。また、インナチューブ2とアウタチューブ
3との間の空間は、下室7にオリフィス9を介して連通
するリザーブ室10に構成されている。尚、リザーブ室
10の油面10a上の空間はエア室10bになってい
る。図中11はロッド4に取付けたリバウンドストップ
ラバーである。
FIG. 1 shows a twin-tube hydraulic damper for a vehicle. The damper body 1 of the damper includes:
The inner tube 2 and the outer tube 3 are formed in an inner / outer double cylindrical shape. A rod 4 is inserted into the inner tube 2 from above, and a piston 5 is connected to a lower end of the rod 4. The oil chamber formed by the space is partitioned into upper and lower two chambers 6 and 7 by a piston 5, and the upper chamber 6 and the lower chamber 7 are communicated via an orifice 8 formed in the piston 5. The space between the inner tube 2 and the outer tube 3 is formed as a reserve chamber 10 that communicates with the lower chamber 7 via the orifice 9. The space above the oil level 10a of the reserve chamber 10 is an air chamber 10b. In the figure, reference numeral 11 denotes a rebound stop rubber attached to the rod 4.

【0013】油圧ダンパは、ダンパ本体1の下端部で図
外のサスペンションアームに連結され、ロッド4の上端
部で図外の車体に連結される。そして、ダンパ本体1に
対しピストン5が上動する伸び行程では、上室6から下
室7にオリフィス8を介して油が流れると共に、伸び行
程でダンパ本体1から抜け出たロッド3の体積分の油が
リザーブ室10からオリフィス9を介して下室7に流入
し、これらオリフィス8,9による油の流通抵抗で減衰
力が発生する。また、ダンパ本体1に対しピストン5が
下動する縮み行程では、下室7から上室6にオリフィス
8を介して油が流れると共に、縮み行程でダンパ本体1
内に入ってきたロッド4の体積分の油が下室7からオリ
フィス9を介してリザーブ室10に押し出され、これら
オリフィス8,9による油の流通抵抗で減衰力が発生す
る。
The hydraulic damper is connected at a lower end of the damper body 1 to a suspension arm (not shown) and at an upper end of the rod 4 to a vehicle body (not shown). In the extension stroke in which the piston 5 moves upward with respect to the damper body 1, oil flows from the upper chamber 6 to the lower chamber 7 through the orifice 8, and the volume of the rod 3 that has escaped from the damper body 1 in the extension stroke. Oil flows from the reserve chamber 10 into the lower chamber 7 via the orifice 9, and a damping force is generated by the resistance of the oil to flow through the orifices 8 and 9. Also, in the contraction stroke in which the piston 5 moves downward with respect to the damper body 1, oil flows from the lower chamber 7 to the upper chamber 6 through the orifice 8, and the damper body 1 moves in the contraction stroke.
The oil corresponding to the volume of the rod 4 that has entered inside is pushed out from the lower chamber 7 through the orifice 9 to the reserve chamber 10, and damping force is generated by the flow resistance of the oil by the orifices 8, 9.

【0014】インナチューブ2に挿入されるロッド4の
部分には、図2に明示する如く、ダンパと同心の筒状の
電磁石12と、電磁石12に対しダンパの軸方向に対向
する環状板13と、環状板13に支持される環状のシュ
ー部材14とから成るユニットの2組が、両ユニットの
電磁石12,12同士が隣接するように、ダンパの軸方
向たる上下方向に並べて配置されている。
As shown in FIG. 2, the rod 4 inserted into the inner tube 2 has a cylindrical electromagnet 12 concentric with the damper, and an annular plate 13 facing the electromagnet 12 in the axial direction of the damper. The two sets of units each including an annular shoe member 14 supported by the annular plate 13 are arranged side by side in the vertical direction, which is the axial direction of the damper, so that the electromagnets 12 of both units are adjacent to each other.

【0015】電磁石12は、内筒部12aと外筒部12
bと両筒部12a,12bに跨る一端の端板部12cと
を有する内外2重の筒状コアの両筒部12a,12b間
にコイル12dを装填して成るもので、上下のユニット
の電磁石12,12を、両者の端板部12c,12c同
士が接するように、ロッド4に外嵌固定している。尚、
コイル12dには図1に示す如くロッド4の軸孔に挿通
したリード線12eを介して通電する。
The electromagnet 12 includes an inner cylindrical portion 12a and an outer cylindrical portion 12a.
a coil 12d is mounted between the two cylindrical portions 12a and 12b of the inner and outer double cylindrical cores having an end plate portion 12c at one end straddling the two cylindrical portions 12a and 12b. 12 and 12 are externally fitted and fixed to the rod 4 such that both end plate portions 12c and 12c are in contact with each other. still,
The coil 12d is energized through a lead wire 12e inserted into the shaft hole of the rod 4 as shown in FIG.

【0016】環状板13は磁性体で形成されており、上
下のユニットの環状板13,13を夫々ロッド4に上下
動自在に外挿している。また、各環状板13が各電磁石
12から余り離間しないよう、ロッド4に取付けた各サ
ークリップ13aで各環状板13の可動範囲を規制して
いる。
The annular plate 13 is made of a magnetic material, and the annular plates 13 and 13 of the upper and lower units are externally inserted into the rod 4 so as to be vertically movable. Further, the movable range of each annular plate 13 is regulated by each circlip 13a attached to the rod 4 so that each annular plate 13 is not separated too much from each electromagnet 12.

【0017】シュー部材14は、図3に示す如く、周方
向に分断された複数のセグメント14aで構成されてい
る。各セグメント14aはインナチューブ2に対向する
周壁部14bと環状板13に接する端壁部14cとを有
する断面L字状に形成されており、周壁部14bの外周
面に摩擦材14dを貼着している。そして、端壁部14
cの外面に突設した突起14eを環状板13に形成した
放射状のガイド溝13bに係合させ、各セグメント14
aを各ガイド溝13bに沿ってダンパの径方向に移動自
在に、且つ、各ガイド溝13b内のゴム等から成る付勢
部材14fにより径方向内方に付勢して支持している。
As shown in FIG. 3, the shoe member 14 is composed of a plurality of segments 14a divided in the circumferential direction. Each segment 14a is formed in an L-shaped section having a peripheral wall portion 14b facing the inner tube 2 and an end wall portion 14c contacting the annular plate 13, and a friction material 14d is attached to the outer peripheral surface of the peripheral wall portion 14b. ing. And the end wall part 14
c is engaged with a radial guide groove 13b formed in the annular plate 13 so that each segment 14
a is movably moved in the radial direction of the damper along each guide groove 13b, and is urged and supported radially inward by an urging member 14f made of rubber or the like in each guide groove 13b.

【0018】電磁石12とシュー部材14との間には、
環状板13が電磁石12に接近したときに、シュー部材
14の各セグメント14aをダンパの径方向外方に押動
するカム手段15が設けられている。本実施形態でカム
手段15は、電磁石12の外筒部12bの外周面に形成
したテーパー状のカム面15aと、カム面15aと各セ
グメント14aとの間に介設したボール15bとで構成
されており、環状板13が電磁石12に接近したとき、
ボール15bがセグメント14aの端壁部14cに押さ
れてカム面15aに乗り上げ、セグメント14aが径方
向外方に押動されるようにしている。セグメント14a
の端壁部14cにはボール15bを受入れるボール溝1
4gが形成されており、ボール15bがダンパの周方向
に動かないようにしている。尚、ボール15bを省略
し、セグメント14aの内周を前記カム面15aに当接
するテーパー面に形成して、セグメント14aを径方向
外方に押動させることも可能である。
Between the electromagnet 12 and the shoe member 14,
When the annular plate 13 approaches the electromagnet 12, a cam means 15 is provided for pushing each segment 14a of the shoe member 14 outward in the radial direction of the damper. In the present embodiment, the cam means 15 includes a tapered cam surface 15a formed on the outer peripheral surface of the outer cylindrical portion 12b of the electromagnet 12, and a ball 15b interposed between the cam surface 15a and each segment 14a. When the annular plate 13 approaches the electromagnet 12,
The ball 15b is pushed by the end wall portion 14c of the segment 14a and rides on the cam surface 15a, so that the segment 14a is pushed outward in the radial direction. Segment 14a
Ball groove 1 for receiving the ball 15b in the end wall portion 14c
4g are formed to prevent the ball 15b from moving in the circumferential direction of the damper. It is also possible to omit the ball 15b, form the inner periphery of the segment 14a on a tapered surface that abuts on the cam surface 15a, and push the segment 14a radially outward.

【0019】次に、上記の如く構成されたダンパの作用
について説明する。各ユニットの電磁石12のコイル1
2dに通電せず、各ユニットの環状板13が図2(A)
に示す如く電磁石12から離間している状態では、各ユ
ニットのシュー部材14のセグメント14aが付勢部材
14fの付勢力によりインナチューブ2から離間した状
態に保持される。この状態では、オリフィス8,9での
油の流通抵抗のみにより減衰力が得られ、ロッド4の移
動速度に対する減衰力の変化特性は図6にa線で示すよ
うになる。
Next, the operation of the damper configured as described above will be described. Coil 1 of electromagnet 12 of each unit
Without energizing 2d, the annular plate 13 of each unit is shown in FIG.
As shown in the figure, the segment 14a of the shoe member 14 of each unit is kept separated from the inner tube 2 by the urging force of the urging member 14f. In this state, the damping force is obtained only by the flow resistance of the oil in the orifices 8 and 9, and the change characteristic of the damping force with respect to the moving speed of the rod 4 is as shown by the line a in FIG.

【0020】各ユニットの電磁石12をそのコイル12
dへの通電で励磁すると、電磁石12の内筒部12aと
外筒部12bとの一方がN極、他方がS極となり、各ユ
ニットの環状板13が図2(B)に示す如く磁気吸引力
で電磁石12に接近する。この接近に伴い各ユニットの
シュー部材14のセグメント14aがカム手段15を介
して径方向外方に押動され、インナチューブ2の内周面
にセグメント14aが圧接する。この状態では、オリフ
ィス8,9での油の流通抵抗に加えてインナチューブ2
とシュー部材14との間の摩擦による減衰力が得られ、
その変化特性は図6にb線で示すようになる。
The electromagnet 12 of each unit is replaced by its coil 12
When energized by energizing d, one of the inner cylindrical portion 12a and the outer cylindrical portion 12b of the electromagnet 12 becomes the N pole and the other becomes the S pole, and the annular plate 13 of each unit is magnetically attracted as shown in FIG. It approaches the electromagnet 12 by force. With this approach, the segment 14a of the shoe member 14 of each unit is pushed radially outward via the cam means 15, and the segment 14a is pressed against the inner peripheral surface of the inner tube 2. In this state, in addition to the oil flow resistance in the orifices 8 and 9, the inner tube 2
And a damping force due to friction between the shoe member 14 and the
The change characteristic is as shown by the b line in FIG.

【0021】ここで、摩擦による減衰力はロッド4の移
動速度に係わらず一定であり、ロッド4の移動速度が図
6にAで示す低速度領域に収まる通常走行時においても
電磁石12のオンオフで減衰力を有効に可変できる。そ
のため、通常走行時の車両のロール剛性やダンピング特
性を効果的に切換えることができる。
Here, the damping force due to friction is constant irrespective of the moving speed of the rod 4, and even during normal running when the moving speed of the rod 4 falls within the low speed region indicated by A in FIG. The damping force can be effectively varied. Therefore, the roll stiffness and damping characteristics of the vehicle during normal traveling can be effectively switched.

【0022】更に、電磁石12と環状板13との間の磁
気吸引力でシュー部材14をインナチューブ2に圧接さ
せており、シュー部材14をインナチューブ2に吸着さ
せるものと異りインナチューブ2に磁束を通す必要がな
いため損失が少なくなる。また、カム手段15による倍
力作用が得られ、更に、ロッド4の下動に際し、下側ユ
ニットのシュー部材14がインナチューブ2からの上方
への摩擦力を受けるためカム手段15の働きで拡径する
と共に、ロッド4の上動に際し、上側ユニットのシュー
部材14がインナチューブ2からの下方への摩擦力を受
けるためカム手段15の働きで拡径し、この拡径により
インナチューブ2への圧接力を強めるセルフロック機能
も得られる。かくて、小さな電力で大きな摩擦力を得る
ことができ、効率が向上する。また、シュー部材14を
摩擦材14dを介してインナチューブ2に圧接させるこ
とができるため、安定した摩擦力を得ることができ、減
衰力の制御の安定性も向上する。
Further, the shoe member 14 is pressed against the inner tube 2 by the magnetic attraction between the electromagnet 12 and the annular plate 13, and unlike the case where the shoe member 14 is attracted to the inner tube 2, the shoe member 14 is attached to the inner tube 2. Since there is no need to pass magnetic flux, loss is reduced. Further, a boosting action is obtained by the cam means 15, and when the rod 4 is moved down, the shoe member 14 of the lower unit receives an upward frictional force from the inner tube 2 so as to expand by the action of the cam means 15. As the rod 4 moves upward, the shoe member 14 of the upper unit receives a downward frictional force from the inner tube 2 and expands in diameter by the action of the cam means 15. A self-locking function to increase the pressing force can also be obtained. Thus, a large friction force can be obtained with a small electric power, and the efficiency is improved. Further, since the shoe member 14 can be brought into pressure contact with the inner tube 2 via the friction material 14d, a stable frictional force can be obtained, and the stability of damping force control is improved.

【0023】尚、以上の第1実施形態では、ロッド4に
対し電磁石12を固定、環状板13を可動としたが、電
磁石12を可動とし、環状板13をロッド4に固定して
も良い。
In the first embodiment, the electromagnet 12 is fixed to the rod 4 and the annular plate 13 is movable. However, the electromagnet 12 may be movable and the annular plate 13 may be fixed to the rod 4.

【0024】また、第1実施形態では、電磁石12と環
状板13とをロッド4に装着しているが、図4に示す第
2実施形態のように、インナチューブ2に電磁石12と
環状板13とを装着しても良い。この場合は、電磁石1
2と環状板13との接近により、電磁石12の内筒部1
2aに形成したカム面15aとボール15bとから成る
カム手段15を介してシュー部材14の各セグメント1
4aが径方向内方に押動されてロッド4の外周面に圧接
されるようにする。
Further, in the first embodiment, the electromagnet 12 and the annular plate 13 are mounted on the rod 4, but as in the second embodiment shown in FIG. May be attached. In this case, the electromagnet 1
The inner cylindrical portion 1 of the electromagnet 12
Each segment 1 of the shoe member 14 is provided via a cam means 15 including a cam surface 15a and a ball 15b formed on the shoe member 2a.
4 a is pushed inward in the radial direction so as to be pressed against the outer peripheral surface of the rod 4.

【0025】図5は第3実施形態を示し、上記実施形態
と同一の部材には上記と同一の符号を付している。第3
実施形態のものでは、電磁石12を単筒形状のコア12
fにコイル12dを巻回して成るものとし、ロッド4に
上下のユニットの電磁石12,12を非磁性体から成る
ホルダ16を介して上下動自在に装着し、上下のユニッ
トの環状板13,13をサークリップ13aとホルダ1
6とでロッド4に対し固定している。
FIG. 5 shows a third embodiment, and the same members as those in the above embodiment are denoted by the same reference numerals. Third
In the embodiment, the electromagnet 12 is formed as a single cylindrical core 12.
f, the upper and lower units of the electromagnets 12, 12 are mounted on the rod 4 via a holder 16 made of a non-magnetic material so as to be movable up and down, and the annular plates 13, 13 of the upper and lower units are mounted. Circlip 13a and holder 1
6 is fixed to the rod 4.

【0026】減衰力を強めるときは、上下のユニットの
電磁石12,12を両者の対向端が互にN極或いはS極
になるように励磁する。すると、両電磁石12,12が
両者間の磁気反発力で上下のユニットの環状板13,1
3に接近し、各電磁石12のコア12eの環状板13側
の端部外周に形成したカム面15aとボール15bとか
ら成るカム手段15により各ユニットのシュー部材14
のセグメント14aが径方向外方に押動されてインナチ
ューブ2に圧接し、上記実施形態のものと同様に摩擦に
よって減衰力が強められる。
To increase the damping force, the electromagnets 12 and 12 of the upper and lower units are excited so that their opposing ends become N poles or S poles. Then, the two electromagnets 12, 12 are caused by the magnetic repulsion between them to form annular plates 13, 1 of the upper and lower units.
3 and a shoe member 14 of each unit by a cam means 15 comprising a cam surface 15a and a ball 15b formed on the outer periphery of the end of the core 12e of each electromagnet 12 on the annular plate 13 side.
The segment 14a is pushed radially outward and pressed against the inner tube 2, and the damping force is increased by friction as in the above embodiment.

【0027】第3実施形態のものでは、環状板13を磁
性体で形成する必要はないが、電磁石12からの磁束が
ロッド4に漏洩すると電磁石12,12間の磁気反発力
が弱まるため、上記の如く非磁性体から成るホルダ16
を用いて、磁束の漏洩を防止している。
In the third embodiment, the annular plate 13 does not need to be formed of a magnetic material. However, when the magnetic flux from the electromagnet 12 leaks to the rod 4, the magnetic repulsion between the electromagnets 12 and 12 is weakened. Holder 16 made of a non-magnetic material such as
Is used to prevent the leakage of magnetic flux.

【0028】また、第3実施形態では、電磁石12と環
状板13とをロッド4に装着しているが、これらをイン
ナチューブ2に装着し、電磁石12,12間の磁気反発
力で電磁石12が環状板15に接近したときに、シュー
部材14のセグメント14aが径方向内方に押動されて
ロッド4に圧接するように構成しても良い。
In the third embodiment, the electromagnet 12 and the annular plate 13 are mounted on the rod 4. However, these are mounted on the inner tube 2, and the electromagnet 12 is moved by the magnetic repulsion between the electromagnets 12 and 12. When approaching the annular plate 15, the segment 14 a of the shoe member 14 may be pushed inward in the radial direction and pressed against the rod 4.

【0029】以上、ツインチューブ式の油圧ダンパに本
発明を適用した実施形態について説明したが、モノチュ
ーブ式の油圧ダンパや、油室を具備しない摩擦ダンパに
も本発明を適用できる。
Although the embodiment in which the present invention is applied to the twin-tube hydraulic damper has been described above, the present invention can also be applied to a mono-tube hydraulic damper and a friction damper having no oil chamber.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、請求項
1,3,4の発明によれば、小さな電力で大きな摩擦力
を得ることができ、効率が向上すると共に、摩擦材を用
いることができて、減衰力の制御の安定性が向上し、ま
た、請求項2の発明によれば、ロッドの何れの方向への
動きに対してもセルフロック機能が得られ、効率が一層
向上する。
As is apparent from the above description, according to the first, third and fourth aspects of the present invention, a large frictional force can be obtained with a small electric power, the efficiency is improved, and the friction material is used. Thus, the stability of the control of the damping force is improved, and according to the invention of claim 2, a self-locking function is obtained for the movement of the rod in any direction, and the efficiency is further improved. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態のダンパの縦断面図FIG. 1 is a longitudinal sectional view of a damper according to a first embodiment of the present invention.

【図2】 (A)(B)第1実施形態の作用を示す要部
の拡大断面図
FIGS. 2A and 2B are enlarged cross-sectional views of main parts showing the operation of the first embodiment.

【図3】 シュー部材の電磁石側から見た平面図FIG. 3 is a plan view of the shoe member as viewed from the electromagnet side.

【図4】 第2実施形態の要部の断面図FIG. 4 is a sectional view of a main part of a second embodiment.

【図5】 第3実施形態の要部の断面図FIG. 5 is a sectional view of a main part of a third embodiment.

【図6】 減衰力の変化特性を示すグラフFIG. 6 is a graph showing a change characteristic of a damping force.

【符号の説明】 1 ダンパ本体 4 ロッド 12 電磁石 13 環状板 14 シュー部材 14a セグメン
ト 15 カム手段
[Description of Signs] 1 damper main body 4 rod 12 electromagnet 13 annular plate 14 shoe member 14a segment 15 cam means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 筒状のダンパ本体と、ダンパ本体内にダ
ンパの軸方向に相対移動自在に挿入したロッドとを備え
るダンパであって、 ダンパ本体とロッドとのうちの一方の部材に、ダンパと
同心の筒状の電磁石と、電磁石に対しダンパの軸方向に
対向する環状板とを、電磁石と環状板との一方がダンパ
の軸方向に移動可能となるように装着して、電磁石の励
磁で電磁石と環状板とが接近するようにし、 環状板に、周方向に分断された複数のセグメントから成
る環状のシュー部材を、これらセグメントがダンパ本体
とロッドとのうちの他方の部材に向けてダンパの径方向
に移動可能となるように支持させ、 電磁石と環状板とが接近したときに、これらセグメント
を前記他方の部材に向けてダンパの径方向に押動させる
カム手段を設ける、 ことを特徴とする減衰力可変式ダンパ。
1. A damper comprising: a cylindrical damper main body; and a rod inserted into the damper main body so as to be relatively movable in an axial direction of the damper, wherein one of the damper main body and the rod includes a damper. A cylindrical electromagnet concentric with the electromagnet and an annular plate facing the electromagnet in the axial direction of the damper are mounted so that one of the electromagnet and the annular plate can move in the axial direction of the damper, and the electromagnet is excited. So that the electromagnet and the annular plate approach each other, and an annular shoe member composed of a plurality of segments divided in the circumferential direction is directed to the annular plate so that these segments face the other member of the damper body and the rod. A cam means for supporting the damper so as to be movable in the radial direction, and for pushing the segments toward the other member in the radial direction of the damper when the electromagnet and the annular plate approach each other, The damping force variable damper for the butterflies.
【請求項2】 電磁石と環状板とシュー部材とから成る
ユニットの2組を、両ユニットの電磁石同士が隣接する
ように、ダンパの軸方向に並べて配置することを特徴と
する請求項1に記載の減衰力可変式ダンパ。
2. The damper according to claim 1, wherein two sets of units each including an electromagnet, an annular plate, and a shoe member are arranged in the axial direction of the damper such that the electromagnets of both units are adjacent to each other. Damping force variable damper.
【請求項3】 環状板を磁性体で形成し、電磁石と環状
板とを両者間に働く磁気吸引力で接近させることを特徴
とする請求項1又は2に記載の減衰力可変式ダンパ。
3. A damping force variable damper according to claim 1, wherein the annular plate is formed of a magnetic material, and the electromagnet and the annular plate are brought close to each other by magnetic attraction acting between the two.
【請求項4】 各ユニットの電磁石を前記一方の部材に
対しダンパの軸方向に移動自在とし、両ユニットの電磁
石を互に反発するように励磁して、各ユニットの電磁石
を対応する環状板に接近させることを特徴とする請求項
2に記載の減衰力可変式ダンパ。
4. The electromagnet of each unit is movable in the axial direction of the damper with respect to the one member, and the electromagnets of both units are excited so as to repel each other, so that the electromagnet of each unit is attached to the corresponding annular plate. 3. The damping force variable damper according to claim 2, wherein the damper is brought closer.
JP15530097A 1997-06-12 1997-06-12 Damping force variable damper Pending JPH112276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15530097A JPH112276A (en) 1997-06-12 1997-06-12 Damping force variable damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15530097A JPH112276A (en) 1997-06-12 1997-06-12 Damping force variable damper

Publications (1)

Publication Number Publication Date
JPH112276A true JPH112276A (en) 1999-01-06

Family

ID=15602890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15530097A Pending JPH112276A (en) 1997-06-12 1997-06-12 Damping force variable damper

Country Status (1)

Country Link
JP (1) JPH112276A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073313A3 (en) * 2000-03-29 2002-04-04 Lord Corp Magnetically controlled friction damper
JP2010230168A (en) * 2010-05-06 2010-10-14 Lord Corp Magnetic operation motion controller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073313A3 (en) * 2000-03-29 2002-04-04 Lord Corp Magnetically controlled friction damper
JP2003529028A (en) * 2000-03-29 2003-09-30 ロード コーポレーション Magnetic control friction damper
EP1669630A2 (en) * 2000-03-29 2006-06-14 Lord Corporation Magnetically controlled friction damper
EP1669630A3 (en) * 2000-03-29 2006-07-05 Lord Corporation Magnetically controlled friction damper
KR100851276B1 (en) * 2000-03-29 2008-08-08 로드코포레이션 Magnetically Controlled friction damper
JP2010230168A (en) * 2010-05-06 2010-10-14 Lord Corp Magnetic operation motion controller

Similar Documents

Publication Publication Date Title
JP3696358B2 (en) Variable damping force damper
US6547044B2 (en) Magneto-rheological damper with ferromagnetic housing insert
US10054186B2 (en) Magnetorheological transmission apparatus
US6390252B1 (en) Magnetorheological fluid damper with optimum damping
US5427362A (en) Active vibration damper
US6497308B2 (en) Magneto-rheological fluid damper piston-flux ring attachment
US6390253B1 (en) Magneto-rheological damping apparatus
US9004243B2 (en) Magneto-rheological damping assembly
US6637556B1 (en) Magneto-rheological damper with grooved fluid passages
US6318519B1 (en) Magnetorheological fluid damper tunable for smooth transitions
CN110486406B (en) Hydraulic damper
JP2014011352A (en) Solenoid
JPS5950242A (en) Shock absorber device
US6059275A (en) Vibration damper having oscillating force generating means
JPH112276A (en) Damping force variable damper
KR102023268B1 (en) Semi-active eddy current damper for automobile
JPH112277A (en) Damping force variable damper
JP4383470B2 (en) Vehicle damping force variable damper
JPS58106239A (en) Oil pressure damper
JPH1182619A (en) Damping force variable damper
JPS6210514Y2 (en)
JP2003278821A (en) Shock absorber
JP3119915B2 (en) Power generator
CN217539344U (en) Axial magnetic suspension bearing
CN113074210B (en) Passive magnetorheological vibration damper