JPH11222447A - Production of cycloolefins by partial hydrogenation of aromatic compound - Google Patents

Production of cycloolefins by partial hydrogenation of aromatic compound

Info

Publication number
JPH11222447A
JPH11222447A JP10023105A JP2310598A JPH11222447A JP H11222447 A JPH11222447 A JP H11222447A JP 10023105 A JP10023105 A JP 10023105A JP 2310598 A JP2310598 A JP 2310598A JP H11222447 A JPH11222447 A JP H11222447A
Authority
JP
Japan
Prior art keywords
solution
catalyst
reaction
ruthenium
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10023105A
Other languages
Japanese (ja)
Inventor
Jun Takahara
潤 高原
Toru Setoyama
亨 瀬戸山
Naoko Fujita
直子 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10023105A priority Critical patent/JPH11222447A/en
Publication of JPH11222447A publication Critical patent/JPH11222447A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • C07C5/11Partial hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing cycloolefins by highly selective partial hydrogenation of an aromatic compound. SOLUTION: A catalyst precursor containing a ruthenium compound and obtained from a solution comprising an aqueous solution of ruthenium chloride, extremely diluted hydrochloric acid solution of zinc chloride and a zirconia- modified silica simple substance is reduced in a solution having <7 hydrogen ion concentration to produce a catalyst. An aromatic compound such as benzene is partially hydrogenated by using the catalyst to produce cycloolefins such as cyclohexene.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高選択的な芳香族
化合物の部分水素化よるシクロオレフィン類の製造方
法、特にベンゼンからシクロヘキサンの製造に関するも
のである。シクロオレフィンは、ラクタム類、ジカルボ
ン酸等のポリアミド原料、リジン、医薬、農薬などの重
要な中間原料として有用な化合物である。
The present invention relates to a process for producing cycloolefins by highly selective partial hydrogenation of aromatic compounds, and more particularly to a process for producing cyclohexane from benzene. Cycloolefins are compounds useful as important raw materials for polyamides, such as lactams and dicarboxylic acids, and for lysine, drugs, agricultural chemicals, and the like.

【0002】[0002]

【従来の技術】一般に、部分水素化用触媒であるルテニ
ウム触媒は、0価のルテニウムが触媒活性を持つため、
その製造工程に還元工程が含まれている。この還元工程
としては、大きく分けて水素で気相還元する方法、液相
で還元剤を使用する方法がある。液相で使用される還元
剤としては、ホルマリン、ヒドラジン等が知られている
が、水素を用いる方法(即ち液相水素還元)が、反応の
簡便さ、還元剤および還元剤からの生成物の分離の容易
さから考えて最も優れている。ルテニウム化合物の液相
水素還元を行う際には、アルカリを添加する方法が特開
昭61−50930号公報、特開昭62−45541号
公報、特開昭62−45544号公報などで報告されて
いる。
2. Description of the Related Art In general, a ruthenium catalyst which is a catalyst for partial hydrogenation has a catalytic activity of zero-valent ruthenium.
The manufacturing process includes a reduction process. The reduction step is roughly classified into a method of reducing the gas phase with hydrogen and a method of using a reducing agent in the liquid phase. As a reducing agent used in the liquid phase, formalin, hydrazine and the like are known, but a method using hydrogen (that is, liquid phase hydrogen reduction) is simpler in reaction, reducing the reducing agent and the product of the reducing agent. It is the best in terms of ease of separation. When performing liquid phase hydrogen reduction of a ruthenium compound, a method of adding an alkali is reported in JP-A-61-50930, JP-A-62-45541, JP-A-62-45544, and the like. I have.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、いずれ
の方法で還元した場合も選択性の面で不十分であり、選
択性を向上させるため、還元した触媒を水素存在下、金
属塩水溶液中などで処理(再還元)している。このよう
な処理をすることなく、還元工程だけで高選択的な触媒
が製造できれば、その触媒を用いる芳香族化合物の部分
水素化反応は工業的に有利なシクロオレフィンの製造方
法となる。
However, when any of the reduction methods is used, the selectivity is insufficient. In order to improve the selectivity, the reduced catalyst is used in the presence of hydrogen in an aqueous metal salt solution or the like. Processing (reduction). If a highly selective catalyst can be produced only by the reduction step without performing such treatment, the partial hydrogenation reaction of an aromatic compound using the catalyst becomes an industrially advantageous method for producing a cycloolefin.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決するために鋭意研究を重ねた結果、ルテニウムを
中心とする触媒成分を水素イオン濃度pH7未満の酸性
条件下で還元することにより、高選択的な部分水素化触
媒が得られることを見い出し、本発明に到達した。即
ち、本発明の要旨は、ルテニウムを含有する化合物を、
pH7未満の酸性溶液中で還元することによって得られ
る触媒を用いることを特徴とする芳香族化合物の部分水
素化によるシクロオレフィン類の製造方法に存する。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a catalyst component mainly composed of ruthenium can be reduced under acidic conditions having a hydrogen ion concentration of less than pH 7. As a result, a highly selective partial hydrogenation catalyst can be obtained, and the present invention has been achieved. That is, the gist of the present invention is to provide a compound containing ruthenium,
A method for producing cycloolefins by partial hydrogenation of an aromatic compound, characterized by using a catalyst obtained by reduction in an acidic solution having a pH of less than 7.

【0005】[0005]

【発明の実施の形態】以下、本発明を詳細に説明する。
触媒の活性成分であるルテニウムは単独で使用すること
ができるが、他の金属成分を共に使用してもよい。その
場合、ルテニウムと共に使用する成分としては、亜鉛、
鉄、コバルト、マンガン、金、ランタン、銅などが有効
である。触媒活性成分のルテニウムの原料としては、ル
テニウムのハロゲン化物、硝酸塩、水酸化物、または、
酸化物、さらにルテニウムカルボニル、ルテニウムアン
ミン錯体などの錯体化合物や、ルテニウムアルコキシド
等が使用される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
Ruthenium, which is the active component of the catalyst, can be used alone, but other metal components may be used together. In that case, the components used with ruthenium include zinc,
Iron, cobalt, manganese, gold, lanthanum, copper and the like are effective. As the raw material of ruthenium as a catalytically active component, ruthenium halide, nitrate, hydroxide, or
Oxides, further complex compounds such as ruthenium carbonyl and ruthenium ammine complexes, ruthenium alkoxides and the like are used.

【0006】ルテニウム以外の併用される金属成分とし
て用いられる亜鉛、鉄、コバルト、マンガン、金、ラン
タン、銅等の化合物としては、各金属のハロゲン化物、
硝酸塩、酢酸塩、硫酸塩、各金属を含む錯体化合物など
が使用される。ルテニウムは担体に担持した形で使用し
てもよい。この場合の触媒の調製は、一般的に用いられ
る通常の担持金属触媒の調製法に従って行われる。すな
わち、触媒成分液に担体を浸漬後、撹拌しながら溶媒を
蒸発させ活性成分を固定化する蒸発乾固法、担体を乾燥
状態に保ちながら触媒活性成分液を噴霧するスプレー
法、あるいは、触媒活性成分液に担体を浸漬後、ろ過す
る方法等の公知の含浸担持法が好適に用いられる。
[0006] Compounds such as zinc, iron, cobalt, manganese, gold, lanthanum, and copper used as a metal component to be used in combination other than ruthenium include halides of the respective metals,
Nitrate, acetate, sulfate, complex compounds containing each metal and the like are used. Ruthenium may be used in a form supported on a carrier. The preparation of the catalyst in this case is performed according to a generally used method for preparing a supported metal catalyst. That is, after the carrier is immersed in the catalyst component liquid, the solvent is evaporated with stirring to evaporate the active ingredient to fix the active ingredient, the spray method of spraying the catalyst active ingredient liquid while keeping the carrier in a dry state, or the catalyst activity. A known impregnation-supporting method such as a method of immersing the carrier in the component liquid and then filtering is preferably used.

【0007】これら担体にルテニウムを担持した触媒
は、酸性溶液中で還元を行う前に、加熱する、もしくは
アルカリを添加するなどの処理を行うと有効である。こ
れらの処理により、おそらく、触媒成分が加水分解さ
れ、ルテニウム源が塩化ルテニウムの場合、水酸化ルテ
ニウム、ジクロロヒロドキシルテニウム及びその脱水縮
合物、クロロジヒドロキシルテニウム及びその脱水縮合
物からなる混合物が生じて、難水溶性になっているもの
と考えている。
[0007] It is effective to carry out a treatment such as heating or addition of an alkali before carrying out reduction in an acidic solution to a catalyst in which ruthenium is supported on these carriers. These treatments presumably hydrolyze the catalyst component and, if the ruthenium source is ruthenium chloride, produce a mixture consisting of ruthenium hydroxide, dichlorohydroxyruthenium and its dehydration condensate, chlorodihydroxyruthenium and its dehydration condensate. I think that it is poorly water-soluble.

【0008】また、ルテニウムを担持した触媒を用いる
場合、先に挙げたルテニウムと共に用いてもよい金属成
分は、ルテニウム原料と同時に担体に担持してもよい
し、予めルテニウムを担持後に担持してもよいし、ある
いは先にこれらの金属を担持した後でルテニウム担持し
てもよい。なお、触媒調製時の活性成分を担持する際に
使用する溶媒としては、水、またはアルコール、アセト
ン、テトラヒドロフラン、ヘキサン、トルエンなどの有
機溶媒が使用される。
When a catalyst supporting ruthenium is used, the metal component which may be used together with the above-mentioned ruthenium may be supported on the carrier at the same time as the ruthenium raw material, or may be supported after the ruthenium has been previously supported. Alternatively, these metals may be supported first, and then ruthenium may be supported. In addition, as a solvent used when supporting the active component at the time of catalyst preparation, water or an organic solvent such as alcohol, acetone, tetrahydrofuran, hexane, and toluene is used.

【0009】ルテニウムを担持する担体としては、使用
可能なものであれば特に限定されず、例えば、シリカ、
アルミナ、チタニア、シルコニアなどの酸化物や結晶性
アルミノシリケート、メタロシリケート、アルミノメタ
ロシリケート等のゼオライト、粘土化合物等を使用する
こともできる。この中で特に優れているのが、ジルコ
ン、ジルコニア、もしくはジルコニアで修飾されたシリ
カである。ルテニウムを担持した触媒を用いる場合、ル
テニウムの担持量は、担体に対して、通常0.001〜
10重量%、好ましくは0.05〜5重量%である。共
担持成分である亜鉛、鉄、コバルト、マンガン、金、ラ
ンタン、銅等を用いる場合は、ルテニウムに対する原子
比で0.01〜20、好ましくは0.05〜10の範囲
から選択される。
The carrier for supporting ruthenium is not particularly limited as long as it can be used.
Oxides such as alumina, titania, and zirconia, zeolites such as crystalline aluminosilicate, metallosilicate, and aluminometallosilicate, and clay compounds can also be used. Of these, zircon, zirconia or silica modified with zirconia is particularly excellent. When using a catalyst supporting ruthenium, the amount of ruthenium supported is usually 0.001 to
It is 10% by weight, preferably 0.05 to 5% by weight. When zinc, iron, cobalt, manganese, gold, lanthanum, copper, or the like, which is a co-supporting component, is used, the atomic ratio to ruthenium is selected from the range of 0.01 to 20, preferably 0.05 to 10.

【0010】本発明は、ルテニウムを含む化合物を水素
イオン濃度pH7未満の溶液中で還元を行うことを特徴
とする。ここで、pHが7未満の溶液中での還元とは、
あらかじめ還元雰囲気を鉱酸や弱塩基強酸塩等で酸性に
しておいてから還元を行うことはもちろん、還元中に触
媒の加水分解、もしくは還元により液中に放出される酸
により還元雰囲気が酸性になることも含まれる。pHの
下限に特に制限がないが、好ましくはpH2以上であ
る。
The present invention is characterized in that a compound containing ruthenium is reduced in a solution having a hydrogen ion concentration of less than pH7. Here, the reduction in a solution having a pH of less than 7 means
The reduction atmosphere is made acidic with a mineral acid or a weak base strong acid salt, etc. in advance, and then the reduction atmosphere is made acidic by the acid released into the liquid by the hydrolysis of the catalyst or the reduction during the reduction. It also includes becoming. The lower limit of the pH is not particularly limited, but is preferably 2 or more.

【0011】溶液中での還元とは、触媒の上部が溶液に
浸っている状態、または触媒が溶液に可溶の場合は、溶
解度以上の触媒を添加し、溶けきれない触媒が溶液に浸
っている状態、であればよい。還元時の圧力、温度は、
溶液が液体の状態であればいずれでもよいが、好ましく
は0℃〜500℃、常圧〜50MPa、さらに好ましく
は25℃〜300℃、1MPa〜10MPaである。還
元の時間は、還元条件によって異なるが、通常10分〜
10時間程度である。還元剤としては、酸性で作用する
ものであればなんでもよいが、蟻酸もしくはその塩、ま
たは水素が好適に用いることができる。
[0011] Reduction in a solution refers to a state in which the upper part of the catalyst is immersed in the solution, or if the catalyst is soluble in the solution, a catalyst having a solubility or higher is added, and the catalyst that cannot be completely dissolved is immersed in the solution. It is sufficient if it is in the state of being. The pressure and temperature during reduction are
Any solution may be used as long as the solution is in a liquid state, but the temperature is preferably 0 ° C to 500 ° C, normal pressure to 50 MPa, more preferably 25 ° C to 300 ° C, and 1 MPa to 10 MPa. The reduction time varies depending on the reduction conditions, but is usually from 10 minutes to
It takes about 10 hours. Any reducing agent may be used as long as it acts acidicly, but formic acid or a salt thereof, or hydrogen can be suitably used.

【0012】本発明で部分水素化の対象する単環芳香族
炭化水素としては、ベンゼン、トルエン、キシレン、お
よび、炭素数1〜4の低級アルキル基で置換されたベン
ゼンなどが挙げられる。本発明の部分水素化の反応条件
としては、反応温度は、通常50〜250℃、好ましく
は100〜220℃の範囲から選択される。250℃以
上ではシクロオレフィンの選択率が低下し、50℃以下
では反応速度が著しく低下し好ましくない。また、反応
時の水素の圧力は、通常0.1〜20MPa、好ましく
は0.5〜10MPaの範囲から選ばれる。通常20M
Paを超えると設備の耐圧性を高くする必要があるため
工業的には不利であり、一方、0.1MPa未満では反
応速度が著しく低下し、不経済である。反応は気相反
応、液相反応のいずれも実施することができるが、好ま
しくは液相反応である。反応型式としては、一槽または
二槽以上の反応槽を用いて、回分式に行うこともできる
し、連続的に行うことも可能であり、特に限定されな
い。
The monocyclic aromatic hydrocarbon to be partially hydrogenated in the present invention includes benzene, toluene, xylene and benzene substituted with a lower alkyl group having 1 to 4 carbon atoms. As the reaction conditions for the partial hydrogenation of the present invention, the reaction temperature is generally selected from the range of 50 to 250 ° C, preferably 100 to 220 ° C. If the temperature is higher than 250 ° C., the selectivity of the cycloolefin decreases, and if the temperature is lower than 50 ° C., the reaction rate remarkably decreases, which is not preferable. The pressure of hydrogen during the reaction is generally selected from the range of 0.1 to 20 MPa, preferably 0.5 to 10 MPa. Normal 20M
If the pressure exceeds Pa, the pressure resistance of the equipment must be increased, which is industrially disadvantageous. On the other hand, if the pressure is lower than 0.1 MPa, the reaction rate is remarkably reduced, which is uneconomical. The reaction can be carried out in any of a gas phase reaction and a liquid phase reaction, but is preferably a liquid phase reaction. The reaction type may be a batch type or a continuous type using one or more reaction vessels, and is not particularly limited.

【0013】本発明においては、好ましくは水を部分水
素化の反応系へ添加する。水の添加量は芳香族炭化水素
による容量比で通常0.01〜10倍、好ましくは0.
1〜5倍の範囲で行われる。かかる範囲において高い反
応成績を達成することができる。なお、金属塩などの添
加剤を本発明の反応系に添加しても高い反応成績を得る
ことも可能である。
In the present invention, water is preferably added to the partial hydrogenation reaction system. The amount of water to be added is usually 0.01 to 10 times, preferably 0.1 to 10 times by volume, based on the aromatic hydrocarbon.
It is performed in the range of 1 to 5 times. High reaction results can be achieved in such a range. It should be noted that a high reaction result can be obtained even when an additive such as a metal salt is added to the reaction system of the present invention.

【0014】[0014]

【実施例】次に実施例によって本発明について更に詳し
く説明するが、本発明はその要旨を越えない限り以下の
実施例に限定されるものではない。 実施例1 (還元前の触媒前駆体の調製)オキシ硝酸ジルコニウム
2水和物0.87gを20mlの脱塩水に溶解させた水
溶液にシリカ(富士シリアル化学社製、商品名:CAR
IACT50、平均粒径:50ミクロン、比表面積:7
0m2 /g)8.0gを加え、室温にて浸漬後、ロータ
リーエバポレーターにて水を留去し、乾燥させた。次
に、これを石英ガラス反応管に仕込み、空気流通下、1
000℃にて4時間焼成し、5wt%のジルコニア修飾
シリカ担体を調製した。塩化ルテニウム1.00g を水に溶
かし全量を100ml とした溶液をA 液、塩化亜鉛1.00g を
極希塩酸水溶液に溶かし全量を100ml とした溶液をB 液
とした。A 液 10.4ml とB 液 8.4ml、1000℃にて焼成し
たジルコニア修飾シリカ担体8g、及び水50mlを、60℃で
1 時間、撹拌した後、温度を80℃に上げ、減圧し撹拌し
ながら少しづつ水を留去させた。さらに水を15ml加え、
減圧下80℃で撹拌しながら水を留去させた。これを120
℃の恒温槽に入れ、60時間静置した。これを触媒前駆体
とする。
Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist. Example 1 (Preparation of catalyst precursor before reduction) An aqueous solution in which 0.87 g of zirconium oxynitrate dihydrate was dissolved in 20 ml of demineralized water was mixed with silica (manufactured by Fuji Serial Chemical Co., trade name: CAR).
IACT50, average particle size: 50 microns, specific surface area: 7
(0 m 2 / g) 8.0 g was added, and after immersion at room temperature, water was distilled off with a rotary evaporator and dried. Next, this was charged into a quartz glass reaction tube, and 1
By calcining at 000 ° C. for 4 hours, a 5 wt% zirconia-modified silica support was prepared. Solution A was prepared by dissolving 1.00 g of ruthenium chloride in water to make a total amount of 100 ml, and Solution B was prepared by dissolving 1.00 g of zinc chloride in a very dilute hydrochloric acid aqueous solution to make a total amount of 100 ml. 10.4 ml of solution A and 8.4 ml of solution B, 8 g of a zirconia-modified silica carrier calcined at 1000 ° C, and 50 ml of water are mixed at 60 ° C.
After stirring for 1 hour, the temperature was raised to 80 ° C., and the water was gradually distilled off under reduced pressure and stirring. Add 15 ml of water,
Water was distilled off while stirring at 80 ° C. under reduced pressure. This is 120
The sample was placed in a constant temperature bath at a temperature of 60 ° C. and left standing for 60 hours. This is used as a catalyst precursor.

【0015】(酸性溶液中の還元)触媒前駆体2.5gを6%
硫酸亜鉛水溶液15ml(pH4.85、25℃)と共にミ
クロオートクレーブに仕込み、水素圧5MPa、150 ℃で5
時間撹拌し、還元した。触媒をろ別した後、150ml の水
に懸濁させ1 時間撹拌する。触媒をろ別後水洗し、常温
で乾燥し、触媒とした。 (芳香族化合物の部分還元反応)この触媒2gを水素気流
下200 ℃2 時間気相還元し、水素気流下で室温まで冷却
した後、脱気した0.1%硫酸コバルト水溶液120gとベンゼ
ン69g が入っている500ml の撹拌翼を備えたオートクレ
ーブに入れた。窒素置換後、水素を導入し、温度を150
℃にした後、撹拌を開始した。反応中は水素圧を5MPaに
保つようにした。反応終了後、得られた反応溶液の油相
部分をガスクロマトグラフィーにより分析した。反応時
間33分で、ベンゼンの転化率は65.4%、得られた生成物
はシクロヘキサン及びシクロヘキセンであり、生成物に
占めるシクロヘキセンの割合(以下、選択性と表記)は
66.1% であった。
(Reduction in acidic solution) 2.5 g of a catalyst precursor was added to 6%
The solution was charged into a micro autoclave together with 15 ml of an aqueous solution of zinc sulfate (pH 4.85, 25 ° C).
Stirred for hours and reduced. After filtering off the catalyst, it is suspended in 150 ml of water and stirred for 1 hour. After filtering off the catalyst, the catalyst was washed with water and dried at normal temperature to obtain a catalyst. (Partial reduction reaction of aromatic compound) 2 g of this catalyst was subjected to gas phase reduction under a hydrogen stream at 200 ° C. for 2 hours, cooled to room temperature under a hydrogen stream, and then 120 g of a degassed 0.1% aqueous cobalt sulfate solution and 69 g of benzene were added. Into a 500 ml autoclave equipped with stirring blades. After purging with nitrogen, introduce hydrogen and raise the temperature to 150
After the temperature reached ℃, stirring was started. During the reaction, the hydrogen pressure was kept at 5 MPa. After completion of the reaction, the oil phase portion of the obtained reaction solution was analyzed by gas chromatography. At a reaction time of 33 minutes, the conversion of benzene was 65.4%, the obtained products were cyclohexane and cyclohexene, and the ratio of cyclohexene to the product (hereinafter referred to as selectivity) was
66.1%.

【0016】実施例2 芳香族化合物の部分還元反応を以下の方法で行った以外
は実施例1と同じ方法で行った。実施例1記載の方法で
作成した触媒2gを、脱気した水100gが入っている500ml
の撹拌翼を備えたオートクレーブに入れた。窒素置換
後、水素を導入し、温度を150 ℃にした後、撹拌を開始
した。水素圧4.5MPaで5 時間撹拌した後、ベンゼン69g
、及び0.6%硫酸コバルト水溶液20g を導入し反応を開
始した。反応中は水素圧5MPa、150 ℃を保つようにし
た。反応終了後、得られた反応溶液の油相部分をガスク
ロマトグラフィーにより分析した。反応時間27分で、ベ
ンゼンの転化率は62.5%、シクロヘキセンの選択性は6
3.1%であった。
Example 2 The same procedure as in Example 1 was carried out except that the partial reduction reaction of the aromatic compound was carried out in the following manner. 2 g of the catalyst prepared by the method described in Example 1 was added to 500 ml of 100 g of degassed water.
In an autoclave equipped with stirring blades. After the replacement with nitrogen, hydrogen was introduced, the temperature was raised to 150 ° C., and then stirring was started. After stirring at a hydrogen pressure of 4.5 MPa for 5 hours, benzene 69 g
, And 20 g of a 0.6% aqueous cobalt sulfate solution were introduced to initiate the reaction. During the reaction, the hydrogen pressure was kept at 5 MPa and 150 ° C. After completion of the reaction, the oil phase portion of the obtained reaction solution was analyzed by gas chromatography. With a reaction time of 27 minutes, the conversion of benzene is 62.5% and the selectivity of cyclohexene is 6
It was 3.1%.

【0017】実施例3 酸性溶液中の還元、及び、芳香族化合物の部分還元反応
以外は実施例1と同じ方法で行った。触媒前駆体を2g、
脱気した0.1%硫酸コバルト水溶液120gが入っている500m
l の撹拌翼を備えたオートクレーブに入れた。窒素置換
後、水素を導入し撹拌しながら150 ℃、水素圧4.5MPaで
5 時間還元した。さらにこのオートクレーブにベンゼン
69g を導入し反応を開始した。反応中は水素圧5MPa、15
0 ℃を保つようにした。反応終了後、得られた反応溶液
の油相部分をガスクロマトグラフィーにより分析した。
反応時間20分で、ベンゼンの転化率は60.4%、シクロヘ
キセンの選択性は60.9%であった。
Example 3 The same procedure as in Example 1 was carried out except for the reduction in an acidic solution and the partial reduction of an aromatic compound. 2 g of catalyst precursor,
500m containing 120g of degassed 0.1% cobalt sulfate aqueous solution
l in an autoclave equipped with stirring blades. After replacing with nitrogen, introduce hydrogen and stir at 150 ° C and hydrogen pressure 4.5MPa.
Reduced for 5 hours. In addition, benzene is added to this autoclave.
The reaction was started by introducing 69 g. During the reaction, hydrogen pressure 5MPa, 15
It was kept at 0 ° C. After completion of the reaction, the oil phase portion of the obtained reaction solution was analyzed by gas chromatography.
At a reaction time of 20 minutes, the conversion of benzene was 60.4% and the selectivity of cyclohexene was 60.9%.

【0018】実施例4 6%硫酸亜鉛水溶液15mlの代わりに0.1%硫酸水溶液15mlを
用いる他は実施例1と同様に反応した。反応時間44分で
ベンゼンの転化率は69.6%で、シクロヘキセンの選択性
は62.9%であった。
Example 4 A reaction was carried out in the same manner as in Example 1 except that 15 ml of 0.1% aqueous sulfuric acid was used instead of 15 ml of 6% aqueous zinc sulfate. At a reaction time of 44 minutes, the conversion of benzene was 69.6%, and the selectivity of cyclohexene was 62.9%.

【0019】実施例5 6%硫酸亜鉛水溶液15mlの代わりに水15mlを用いる他は実
施例1と同様に反応した。反応時間18分でベンゼンの転
化率は65.3%で、シクロヘキセンの選択性は64.6%あっ
た。(還元終了後の溶液のpHは4.00、25℃であ
った。)
Example 5 A reaction was carried out in the same manner as in Example 1 except that 15 ml of water was used instead of 15 ml of a 6% aqueous zinc sulfate solution. At a reaction time of 18 minutes, the conversion of benzene was 65.3% and the selectivity of cyclohexene was 64.6%. (The pH of the solution after completion of the reduction was 4.00 and 25 ° C.)

【0020】実施例6 6%硫酸亜鉛水溶液15mlの代わりに6%硫酸カリウム水溶液
15mlを用いる他は実施例1と同様に反応した。反応時間
23分でベンゼンの転化率は64.2%で、シクロヘキセンの
選択性は64.8%であった(還元終了後の溶液のpHは、
5.50、25℃であった)。
Example 6 A 6% aqueous potassium sulfate solution is used instead of 15 ml of a 6% aqueous zinc sulfate solution.
The reaction was carried out in the same manner as in Example 1 except that 15 ml was used. Reaction time
In 23 minutes, the conversion of benzene was 64.2% and the selectivity of cyclohexene was 64.8% (the pH of the solution after completion of the reduction was
5.50, 25 ° C).

【0021】実施例7 還元前の触媒前駆体の調製を以下の方法で行った以外は
実施例1と同じ方法で行った。オキシ硝酸ジルコニウム
2水和物0.87g及び硝酸亜鉛6水和物36mgを2
0mlの脱塩水に溶解させた水溶液にシリカ(富士シリ
アル化学社製、商品名:CARIACT50、平均粒
径:50ミクロン、比表面積:70m2 /g)8.0g
を加え、室温にて浸漬後、ロータリーエバポレーターに
て水を留去し、乾燥させた。次に、これを石英ガラス反
応管に仕込み、空気流通下、1000℃にて4時間焼成
し、2wt%酸化亜鉛−5wt%ジルコニア修飾シリカ
担体を調製した。塩化ルテニウム1.00g を水に溶かし全
量を100ml とした溶液10.4mlと、1000℃にて焼成した酸
化亜鉛−ジルコニア修飾シリカ担体8g、及び水50mlを、
80℃で1 時間、撹拌した後、濾過し、これを触媒前駆体
とした。この触媒前駆体を実施例1記載の方法で還元し
触媒とし、実施例1記載の方法で芳香族の部分還元反応
を行ったところ、反応終了後、得られた反応溶液の油相
部分をガスクロマトグラフィーにより分析した。反応時
間33分で、ベンゼンの転化率は64.0%、シクロヘキセン
の選択性は60.8%であった。
Example 7 A catalyst precursor was prepared in the same manner as in Example 1 except that the catalyst precursor before reduction was prepared by the following method. 0.87 g of zirconium oxynitrate dihydrate and 36 mg of zinc nitrate hexahydrate were added to 2
8.0 g of silica (manufactured by Fuji Serial Chemical Co., trade name: CARIACT50, average particle size: 50 microns, specific surface area: 70 m 2 / g) in an aqueous solution dissolved in 0 ml of demineralized water
After immersion at room temperature, water was distilled off with a rotary evaporator and dried. Next, this was charged into a quartz glass reaction tube, and calcined at 1000 ° C. for 4 hours under an air flow to prepare a 2 wt% zinc oxide-5 wt% zirconia-modified silica carrier. A solution prepared by dissolving 1.00 g of ruthenium chloride in water to make the total amount 100 ml, a zinc oxide-zirconia-modified silica carrier 8 g calcined at 1000 ° C., and 50 ml of water,
After stirring at 80 ° C. for 1 hour, the mixture was filtered to obtain a catalyst precursor. This catalyst precursor was reduced by the method described in Example 1 to obtain a catalyst, and an aromatic partial reduction reaction was performed according to the method described in Example 1. After the reaction was completed, the oil phase portion of the obtained reaction solution was converted to gas. Analyzed by chromatography. At a reaction time of 33 minutes, the conversion of benzene was 64.0% and the selectivity for cyclohexene was 60.8%.

【0022】実施例8 還元前の触媒前駆体の調製を以下の方法で行った以外は
実施例1と同じ方法で行った。オキシ硝酸ジルコニウム
2水和物0.87gを20mlの脱塩水に溶解させた水
溶液にシリカ(富士シリアル化学社製、商品名:CAR
IACT50、平均粒径:50ミクロン、比表面積:7
0m2 /g)8.0gを加え、室温にて浸漬後、ロータ
リーエバポレーターにて水を留去し、乾燥させた。次
に、これを石英ガラス反応管に仕込み、空気流通下、1
000℃にて4時間焼成し、5wt%のジルコニア修飾
シリカ担体を調製した。硝酸亜鉛6水和物36mgを2
0mlの脱塩水に溶解させた水溶液にジルコニア修飾シ
リカ担体8gを加え、室温にて浸漬後、ロータリーエバ
ポレーターにて水を留去し、乾燥させた。次に、これを
石英ガラス反応管に仕込み、空気流通下、350℃にて
4時間焼成し、2wt%酸化亜鉛−5wt%のジルコニ
ア修飾シリカ担体を調製した。塩化ルテニウム1.00g を
水に溶かし全量を100ml とした溶液10.4mlと、1000℃に
て焼成した酸化亜鉛−ジルコニア修飾シリカ担体8g、及
び水50mlを、80℃で1時間、撹拌した後、濾過し、これ
を触媒前駆体とした。この触媒前駆体を実施例1記載の
方法で還元し触媒とし、実施例1記載の方法で芳香族の
部分還元反応を行ったところ、反応終了後、得られた反
応溶液の油相部分をガスクロマトグラフィーにより分析
した。反応時間35分で、ベンゼンの転化率は63.9%、シ
クロヘキセンの選択性は60.8%であった。
Example 8 The same procedure as in Example 1 was carried out except that the preparation of the catalyst precursor before reduction was carried out by the following method. In an aqueous solution in which 0.87 g of zirconium oxynitrate dihydrate was dissolved in 20 ml of deionized water, silica (manufactured by Fuji Serial Chemical Co., trade name: CAR)
IACT50, average particle size: 50 microns, specific surface area: 7
(0 m 2 / g) 8.0 g was added, and after immersion at room temperature, water was distilled off with a rotary evaporator and dried. Next, this was charged into a quartz glass reaction tube, and 1
By calcining at 000 ° C. for 4 hours, a 5 wt% zirconia-modified silica support was prepared. 36 mg of zinc nitrate hexahydrate in 2
8 g of a zirconia-modified silica carrier was added to an aqueous solution dissolved in 0 ml of demineralized water, immersed at room temperature, and water was distilled off with a rotary evaporator and dried. Next, this was charged into a quartz glass reaction tube, and calcined at 350 ° C. for 4 hours under a flow of air to prepare a zirconia-modified silica carrier containing 2 wt% zinc oxide and 5 wt%. A solution obtained by dissolving 1.00 g of ruthenium chloride in water to make a total volume of 100 ml, 10.4 ml of a zinc oxide-zirconia-modified silica carrier calcined at 1000 ° C, and 50 ml of water were stirred at 80 ° C for 1 hour, and then filtered. This was used as a catalyst precursor. This catalyst precursor was reduced by the method described in Example 1 to obtain a catalyst, and an aromatic partial reduction reaction was performed according to the method described in Example 1. After the reaction was completed, the oil phase portion of the obtained reaction solution was converted to gas. Analyzed by chromatography. At a reaction time of 35 minutes, the conversion of benzene was 63.9% and the selectivity for cyclohexene was 60.8%.

【0023】実施例9 還元前の触媒前駆体の調製を以下の方法で行った以外は
実施例1と同じ方法で行った。オキシ硝酸ジルコニウム
2水和物13.5gを300mlの脱塩水に溶解させた
水溶液にシリカ(富士シリアル化学社製、商品名:CA
RIACT50、平均粒径:50ミクロン、比表面積:
70m2 /g)120gを加え、室温にて浸漬後、ロー
タリーエバポレーターにて水を留去し、乾燥させた。次
に、これを石英ガラス反応管に仕込み、空気流通下、1
000℃にて4時間焼成し、5wt%のジルコニア修飾
シリカ担体を調製した。この担体120gに20wt%
塩化ルテニウム水溶液7.39gと、20wt%塩化亜
鉛水溶液6.24gに水61.61gを加えた溶液を一
般に用いられるスプレー装置を用いて噴霧した。ロータ
リーエバポレーターにて水を留去し、乾燥させた後、再
びスプレー装置にて4.2wt%水酸化ナトリウム水溶
液を噴霧した。これを500mlに水に懸濁させ、濾過
した。これを3回繰り返して洗浄したものを触媒前駆体
とした。この触媒前駆体を実施例1記載の方法で還元し
触媒とし、この触媒6gを用い、脱気した0.1%硫酸コバル
ト水溶液120gの代わりに6%硫酸亜鉛水溶液134.4gを用い
る他は実施例1記載の方法で芳香族の部分還元反応を行
ったところ、反応終了後、得られた反応溶液の油相部分
をガスクロマトグラフィーにより分析した。反応時間15
分で、ベンゼンの転化率は56.9%、シクロヘキセンの選
択性は76.3%であった。
Example 9 The same procedure as in Example 1 was carried out except that the preparation of the catalyst precursor before reduction was carried out by the following method. An aqueous solution in which 13.5 g of zirconium oxynitrate dihydrate was dissolved in 300 ml of demineralized water was mixed with silica (trade name: CA manufactured by Fuji Serial Chemical Co., Ltd.).
RIACT50, average particle size: 50 microns, specific surface area:
(70 m 2 / g), and after immersion at room temperature, water was distilled off using a rotary evaporator and dried. Next, this was charged into a quartz glass reaction tube, and 1
By calcining at 000 ° C. for 4 hours, a 5 wt% zirconia-modified silica support was prepared. 20wt% in 120g of this carrier
A solution obtained by adding 7.39 g of an aqueous ruthenium chloride solution and 6.24 g of a 20 wt% aqueous zinc chloride solution to 61.61 g of water was sprayed using a commonly used spray device. After water was distilled off by a rotary evaporator and dried, a 4.2 wt% aqueous sodium hydroxide solution was sprayed again by a spray device. This was suspended in 500 ml of water and filtered. This was repeated three times and washed to obtain a catalyst precursor. This catalyst precursor was reduced by the method described in Example 1 to obtain a catalyst. Using 6 g of this catalyst, 134.4 g of a 6% aqueous zinc sulfate solution was used instead of 120 g of a degassed 0.1% cobalt sulfate aqueous solution. When the aromatic partial reduction reaction was performed by the method described above, after the reaction was completed, the oil phase portion of the obtained reaction solution was analyzed by gas chromatography. Reaction time 15
In minutes, the conversion of benzene was 56.9% and the selectivity of cyclohexene was 76.3%.

【0024】比較例1(酸性液相還元工程なし) 触媒前駆体2gを、脱気した0.1%硫酸コバルト水溶液120g
とベンゼン69g が入っている500ml の撹拌翼を備えたオ
ートクレーブに入れた。窒素置換後、水素を導入し、温
度を150 ℃にした後、撹拌を開始した。反応中は水素圧
を5MPaに保つようにした。反応終了後、得られた反応溶
液の油相部分をガスクロマトグラフィーにより分析し
た。反応時間10分で、ベンゼンの転化率は63.0%、シク
ロヘキセンの選択性は43.9%であった。
Comparative Example 1 (no acidic liquid phase reduction step) 2 g of the catalyst precursor was mixed with 120 g of a degassed 0.1% aqueous cobalt sulfate solution.
And 69 g of benzene in an autoclave equipped with a 500 ml stirring blade. After the replacement with nitrogen, hydrogen was introduced, the temperature was raised to 150 ° C., and then stirring was started. During the reaction, the hydrogen pressure was kept at 5 MPa. After completion of the reaction, the oil phase portion of the obtained reaction solution was analyzed by gas chromatography. At a reaction time of 10 minutes, the conversion of benzene was 63.0% and the selectivity of cyclohexene was 43.9%.

【0025】比較例2(酸性液相還元の代わりに気相水
素還元) 触媒前駆体をパイレックスガラス管に入れ、水素気流下
(水素流量200ml / mim )で200 ℃、3 時間還元したも
のを触媒とし、実施例1と同様に反応した。反応時間39
分でベンゼンの転化率は60.6%で、シクロヘキセンの選
択性は49.0%であった。
Comparative Example 2 (gas phase hydrogen reduction instead of acidic liquid phase reduction) A catalyst precursor was placed in a Pyrex glass tube, and reduced at 200 ° C. for 3 hours under a hydrogen stream (hydrogen flow rate 200 ml / mim). And reacted in the same manner as in Example 1. Reaction time 39
In 6 minutes, the conversion of benzene was 60.6%, and the selectivity of cyclohexene was 49.0%.

【0026】比較例3(アルカリ条件下での還元) 6%硫酸亜鉛水溶液15mlの代わりに6%炭酸水素ナトリウム
水溶液15mlを用いる他は実施例1と同様に反応した。反
応時間180分でベンゼンの転化率は20%で、シクロヘ
キセンの選択性は39%であった。
Comparative Example 3 (Reduction under alkaline conditions) The reaction was carried out in the same manner as in Example 1 except that 15 ml of a 6% aqueous sodium hydrogen carbonate solution was used instead of 15 ml of a 6% aqueous zinc sulfate solution. At a reaction time of 180 minutes, the conversion of benzene was 20% and the selectivity of cyclohexene was 39%.

【0027】[0027]

【発明の効果】本発明によれば、芳香族化合物の部分水
素化反応において、酸性条件下で還元した触媒を用いる
ことにより、触媒処理などを行うことなく、シクロオレ
フィンの選択性を向上させることができる。
According to the present invention, in the partial hydrogenation reaction of an aromatic compound, by using a catalyst reduced under acidic conditions, the selectivity of cycloolefin can be improved without performing a catalyst treatment or the like. Can be.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C07B 61/00 300 C07B 61/00 300 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI // C07B 61/00 300 C07B 61/00 300

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ルテニウムを含有する化合物を、水素イ
オン濃度7未満の溶液中で還元することによって得れる
触媒を用いることを特徴とする芳香族化合物の部分水素
化によるシクロオレフィン類の製造方法。
1. A process for producing cycloolefins by partial hydrogenation of an aromatic compound, comprising using a catalyst obtained by reducing a ruthenium-containing compound in a solution having a hydrogen ion concentration of less than 7.
【請求項2】 水素イオン濃度7未満の溶液中で還元す
ることによって得られる触媒が、ルテニウム化合物を担
体に固定化した触媒である請求項1に記載の芳香族化合
物の部分水素化によるシクロオレフィン類の製造方法。
2. The cycloolefin obtained by partially hydrogenating an aromatic compound according to claim 1, wherein the catalyst obtained by reduction in a solution having a hydrogen ion concentration of less than 7 is a catalyst having a ruthenium compound immobilized on a carrier. Manufacturing methods.
【請求項3】 芳香族化合物がベンゼンであり、得られ
る生成物がシクロヘキセンである請求項1または2に記
載の部分水素化によるシクロオレフィン類の製造方法。
3. The process for producing cycloolefins by partial hydrogenation according to claim 1, wherein the aromatic compound is benzene and the obtained product is cyclohexene.
JP10023105A 1998-02-04 1998-02-04 Production of cycloolefins by partial hydrogenation of aromatic compound Pending JPH11222447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10023105A JPH11222447A (en) 1998-02-04 1998-02-04 Production of cycloolefins by partial hydrogenation of aromatic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10023105A JPH11222447A (en) 1998-02-04 1998-02-04 Production of cycloolefins by partial hydrogenation of aromatic compound

Publications (1)

Publication Number Publication Date
JPH11222447A true JPH11222447A (en) 1999-08-17

Family

ID=12101195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10023105A Pending JPH11222447A (en) 1998-02-04 1998-02-04 Production of cycloolefins by partial hydrogenation of aromatic compound

Country Status (1)

Country Link
JP (1) JPH11222447A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543550A (en) * 2005-06-22 2008-12-04 ビーエーエスエフ ソシエタス・ヨーロピア Catalyst for hydrogenation of organic compounds containing hydrogenatable groups and hydrogenation method
US7919659B2 (en) 2004-07-09 2011-04-05 Asahi Kasei Chemicals Corporation Catalyst for cycloolefin production and process for production
CN103288576A (en) * 2012-02-29 2013-09-11 北京安耐吉能源工程技术有限公司 Method for preparing cyclohexene
CN106140154A (en) * 2015-04-17 2016-11-23 中国石油化工股份有限公司 A kind of catalyst of producing cyclohexene with benzene selective hydrogenation and preparation method and application

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919659B2 (en) 2004-07-09 2011-04-05 Asahi Kasei Chemicals Corporation Catalyst for cycloolefin production and process for production
JP2008543550A (en) * 2005-06-22 2008-12-04 ビーエーエスエフ ソシエタス・ヨーロピア Catalyst for hydrogenation of organic compounds containing hydrogenatable groups and hydrogenation method
CN103288576A (en) * 2012-02-29 2013-09-11 北京安耐吉能源工程技术有限公司 Method for preparing cyclohexene
CN106140154A (en) * 2015-04-17 2016-11-23 中国石油化工股份有限公司 A kind of catalyst of producing cyclohexene with benzene selective hydrogenation and preparation method and application

Similar Documents

Publication Publication Date Title
KR870000713B1 (en) Nickel-based catalyst &amp; it&#39;s preparation
JP2814711B2 (en) Method for producing cycloolefin
JPS6045938B2 (en) Method for producing oxalic acid diester hydrogenation catalyst
JPS6237030B2 (en)
JPH064545B2 (en) Method for producing cycloolefin
JP2003520662A (en) Supported metal catalyst, method for its production and its application in direct production of hydrogen peroxide
JP2002501817A (en) Method for producing ruthenium-containing catalyst and use for hydrogenation
JP2007518557A (en) Non-chromium containing catalyst of Cu metal and at least one second metal
JPH11222447A (en) Production of cycloolefins by partial hydrogenation of aromatic compound
CN107519882B (en) Preparation method of cyclohexyl acetate hydrogenation catalyst, prepared hydrogenation catalyst and cyclohexyl acetate hydrogenation method
CN101284231B (en) Supported noble metal catalyst
JPH09118638A (en) Production of cycloolefin
EP3181543B1 (en) Process of preparing 4-methyl-3-decen-5-one
JP2000051701A (en) Method for regenerating catalyst and hydrogenation method using regenerated catalyst
JP3153526B2 (en) Catalyst for partial hydrogenation of aromatic olefin and method for partial hydrogenation thereof
JP3125913B2 (en) Method for producing cycloolefin
JPH07285892A (en) Production of cycloolefin
JPH10137588A (en) Ruthenium catalyst and production of cycloolefin by using it
JPH0912492A (en) Production of 1,4-butanediol and/or tetrahydrofurane
JPH08325171A (en) Production of cycloolefin
JP4174788B2 (en) Process for producing unsaturated alcohol
JPH09104643A (en) Production of cycloolefin
JPH08225470A (en) Production of cyclo-olefin
JPH09110733A (en) Production of cycloolefin
JPH09208499A (en) Production of cycloolefin