JPH11216358A - Hydrocarbon adsorbent and catalyst for cleaning waste gas - Google Patents

Hydrocarbon adsorbent and catalyst for cleaning waste gas

Info

Publication number
JPH11216358A
JPH11216358A JP10154337A JP15433798A JPH11216358A JP H11216358 A JPH11216358 A JP H11216358A JP 10154337 A JP10154337 A JP 10154337A JP 15433798 A JP15433798 A JP 15433798A JP H11216358 A JPH11216358 A JP H11216358A
Authority
JP
Japan
Prior art keywords
catalyst
adsorbent
exhaust gas
hydrocarbon
hydrocarbon adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10154337A
Other languages
Japanese (ja)
Other versions
JP3918305B2 (en
Inventor
Hiroshi Ogawa
宏 小川
Hiroshi Miura
比呂志 三浦
Masao Nakano
雅雄 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP15433798A priority Critical patent/JP3918305B2/en
Publication of JPH11216358A publication Critical patent/JPH11216358A/en
Application granted granted Critical
Publication of JP3918305B2 publication Critical patent/JP3918305B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an adsorbent having a high adsorption capacity for hydrocar bon and a high heat resistance by preparing an adsorbent for hydrocarbon used for cleaning waste gas containing hydrocarbon from calcined β zeolite having the sum of X-ray diffraction intensities of a particular value against a specified diffraction intensity. SOLUTION: This adsorbent for hydrocarbon must comprise βzeolite. This βzeolite has a composition of x M2/n O.Al2 O3 .ySiO2 .zH2 O (wherein n is valence of cation M, x is a number within the range of 0 to 2.5, y is 1 or higher number and z is 0 or higher number). The sum of diffraction intensities of this zeolite for lattice plane distances of X ray powder diffraction d=1.15±0.03 nm and 0.397±0.01 nm must be a crystallinity of not less than 90% against a diffraction intensity of d=0.346±0.01 nm in terms of the Catalyst Society reference catalyst JRC-Z-HM-20, in conditions after the zeolite is calcined for removing organic substances contained when the zeolite is synthesized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭化水素の吸着剤に
関するものである。また本発明は自動車等の内燃機関か
ら排出される排気ガス中の窒素酸化物を除去するための
触媒及び排ガスの浄化方法に関するものである。
TECHNICAL FIELD The present invention relates to a hydrocarbon adsorbent. The present invention also relates to a catalyst for removing nitrogen oxides in exhaust gas discharged from an internal combustion engine of an automobile or the like, and a method for purifying exhaust gas.

【0002】[0002]

【従来の技術】自動車などの内燃機関から排出される炭
化水素を含有する排ガスの浄化において、三元触媒を排
ガスと接触させる方法が実用化されている。しかしなが
ら、エンジン始動時などの排ガス温度が低い場合、炭化
水素は触媒浄化されずにそのまま排出されてしまう。
2. Description of the Related Art In purifying exhaust gas containing hydrocarbons discharged from an internal combustion engine of an automobile or the like, a method of bringing a three-way catalyst into contact with the exhaust gas has been put to practical use. However, when the temperature of the exhaust gas is low at the time of starting the engine or the like, the hydrocarbons are discharged without being purified by the catalyst.

【0003】そこで低温時の排ガスからの炭化水素の浄
化に対し、特開平2−135126号公報では炭化水素
を吸着浄化することを目的として、Y型ゼオライト及び
モルデナイト構造のゼオライトをコートしたモノリス担
体の一部に1種以上の金属を担持した炭化水素の吸着剤
を用いた排ガス浄化装置が提案されている。この他にも
ゼオライトを構成成分とした炭化水素の吸着剤が数多く
提案されている。
In order to purify hydrocarbons from exhaust gas at low temperatures, Japanese Patent Application Laid-Open No. 2-135126 discloses a monolithic carrier coated with Y-type zeolite and zeolite having a mordenite structure for the purpose of adsorbing and purifying hydrocarbons. An exhaust gas purifying apparatus using a hydrocarbon adsorbent partially supporting one or more metals has been proposed. Many other hydrocarbon adsorbents containing zeolite as a component have been proposed.

【0004】例えば、特開平5−31359号公報では
SiO2/Al23モル比が40以上のゼオライト、特
開平7−213910号公報ではSiO2/Al23
ル比が50〜2000であるモルデナイト、β型ゼオラ
イト、ZSM−5及びSiO2/Al23モル比が50
〜300であるUYSからなる群から選ばれた少なくと
も一種のゼオライト、特開平8−10566号公報で
は、SiO2/Al23モル比が40以上であるZSM
−5、USY、β型ゼオライトのいずれかのゼオライ
ト、特開平8−224449号公報では300より大き
いシリカ対アルミナの重量比のゼオライトであり、好ま
しいゼオライトとしてZSM−5、ゼオライトY、ゼオ
ライト11,β型ゼオライト又はシリカライトが提案さ
れている。
For example, JP-A-5-31359 discloses a zeolite having a SiO 2 / Al 2 O 3 molar ratio of 40 or more, and JP-A 7-2113910 discloses a zeolite having a SiO 2 / Al 2 O 3 molar ratio of 50 to 2000. there mordenite, beta-zeolite, ZSM-5 and SiO 2 / Al 2 O 3 molar ratio of 50
At least one zeolite selected from the group consisting of UYS having a molar ratio of SiO 2 / Al 2 O 3 of at least 40 in U.S. Pat.
ZSM-5, zeolite Y, zeolite 11, β, zeolite having a weight ratio of silica to alumina of greater than 300 in JP-A-8-224449. Type zeolites or silicalites have been proposed.

【0005】また特開平8−229386号公報では混
合ゲルにβ型ゼオライトの種結晶を添加した上で、28
〜55℃/hr程度の緩やかな昇温速度で昇温すること
を特徴として合成されたβ型ゼオライト、特開平9−3
8485号公報では残留アルミニウム率が20%未満と
なるように脱アルミニウム処理されると共に、比表面積
が500m2/g以上に維持されるように脱アルミニウ
ム度を設定したβ型ゼオライトが炭化水素の吸着剤の構
成成分として提案されている。
In Japanese Patent Application Laid-Open No. Hei 8-229386, after adding a β-type zeolite seed crystal to a mixed gel,
Β-type zeolite synthesized by raising the temperature at a gradual rate of about 55 ° C./hr, JP-A-9-3
No. 8485 discloses a β-type zeolite in which a dealumination treatment is performed so that a residual aluminum ratio is less than 20% and a dealumination degree is set so that a specific surface area is maintained at 500 m 2 / g or more. It has been proposed as a component of the agent.

【0006】これらの吸着剤を用いた炭化水素の吸着除
去方法は、いずれも排ガス中に含まれる炭化水素をエン
ジン始動時の低温域で吸着剤に一旦吸着せしめておき、
かつ排ガス浄化触媒が作動する温度まで吸着保持し、そ
れ以上の温度域で吸着剤から脱離した炭化水素を排ガス
浄化触媒で触媒浄化するものである。
[0006] In any of the methods for adsorbing and removing hydrocarbons using these adsorbents, the hydrocarbons contained in the exhaust gas are once adsorbed to the adsorbent in a low temperature range when the engine is started.
In addition, the exhaust gas purifying catalyst is adsorbed and held to a temperature at which the exhaust gas purifying catalyst operates, and hydrocarbons desorbed from the adsorbent are purified by the exhaust gas purifying catalyst in a temperature range higher than the temperature.

【0007】現在、ガソリンエンジンより排出される排
気ガスの中で人体に対して有害である窒素酸化物、一酸
化炭素及び炭化水素はPt,Pd,Rhを担体上に担持
させた三元触媒により除去されている。近年では、資源
問題、地球温暖化の環境問題がクローズアップされてい
る中で、二酸化炭素の排出量低減のため、希薄燃焼方式
あるいは直噴燃焼方式のガソリンエンジンやディーゼル
エンジンの普及が図られている。これらのエンジン排ガ
スは過剰の酸素を含んでいるために、従来の三元触媒に
よる窒素酸化物の除去が困難である。
At present, nitrogen oxides, carbon monoxide and hydrocarbons which are harmful to the human body in exhaust gas discharged from a gasoline engine are converted by a three-way catalyst having Pt, Pd and Rh supported on a carrier. Has been removed. In recent years, as the issue of resources and the environmental issue of global warming have been highlighted, gasoline and diesel engines of lean-burn or direct-injection combustion have been widely used to reduce carbon dioxide emissions. I have. Since these engine exhaust gases contain excess oxygen, it is difficult to remove nitrogen oxides using a conventional three-way catalyst.

【0008】これまでに、酸素過剰の排ガスから窒素酸
化物を除去する方法として、アンモニアを還元剤とした
25/TiO2上での選択還元法、アルカリ溶液への
吸収法が知られている。しかし、アンモニアは法令で指
定される毒物であり、危険性も高く、移動体である自動
車への適用は困難である。一方、吸収法ではアルカリ溶
液の補充、処理等の操作性の点で、一般的な自動車等の
移動体への適用は困難である。
Hitherto, as a method for removing nitrogen oxides from an exhaust gas containing excess oxygen, a method of selective reduction on V 2 O 5 / TiO 2 using ammonia as a reducing agent and a method of absorption into an alkaline solution have been known. ing. However, ammonia is a poison specified by laws and regulations, and its danger is high, and it is difficult to apply it to automobiles that are moving bodies. On the other hand, it is difficult to apply the absorption method to mobile objects such as general automobiles in terms of operability such as replenishment and treatment of an alkaline solution.

【0009】これまでに、酸素過剰下での排ガス浄化に
対して、Pt,Pd,Rh,Ir,Ruから選択される
1種以上の金属でイオン交換されたゼオライトから成る
排ガス浄化触媒(特開平1−135541号公報)をは
じめ、多くの排ガス浄化触媒が提案されている。特開平
1−135541号公報で提案されている触媒は、排ガ
ス中に含まれている炭化水素、水素などの還元性ガスを
利用して、窒素酸化物を還元除去するものである。
Heretofore, exhaust gas purification catalysts made of zeolite ion-exchanged with one or more metals selected from Pt, Pd, Rh, Ir, and Ru have been proposed for exhaust gas purification under an excess of oxygen (Japanese Patent Laid-Open Publication No. Many exhaust gas purifying catalysts have been proposed. The catalyst proposed in Japanese Patent Application Laid-Open No. 1-135541 is for reducing and removing nitrogen oxides by using a reducing gas such as hydrocarbon or hydrogen contained in exhaust gas.

【0010】また、排ガス中の窒素酸化物の除去及び炭
化水素の排出抑制を目的に、低温時に排ガス中の炭化水
素を吸着剤に吸着させておき、排ガス温度が上昇する際
に吸着剤から脱離する炭化水素を利用して、更に窒素酸
化物の除去性能を向上させることが提案されている。炭
化水素の吸着剤と窒素酸化物除去触媒を組み合わせた排
ガス浄化触媒において、これまでに以下の触媒が提案さ
れている。
In addition, for the purpose of removing nitrogen oxides in the exhaust gas and suppressing the emission of hydrocarbons, hydrocarbons in the exhaust gas are adsorbed to the adsorbent at a low temperature, and are removed from the adsorbent when the temperature of the exhaust gas rises. It has been proposed to further improve the performance of removing nitrogen oxides by utilizing hydrocarbons that separate. The following catalysts have been proposed as exhaust gas purifying catalysts combining a hydrocarbon adsorbent and a nitrogen oxide removing catalyst.

【0011】特開平2−56247号公報では、三元触
媒に関して冷間状態でかつ空燃比がリッチの状態で炭化
水素を選択的にゼオライトに吸着し、排ガス温度の上昇
によりゼオライトから脱離した炭化水素及び排ガス中の
窒素酸化物、一酸化炭素、炭化水素を浄化する触媒とし
て、担体上にゼオライトを主成分とする第一触媒層とそ
の上に酸化還元能を備えた貴金属触媒を主成分とする第
二触媒層から成ることを特徴とする排ガス浄化触媒、特
開平5−293380号公報では多孔体から成る担体に
少なくともPtを含む触媒成分を担持させた触媒と、固
体酸性及び分子篩性を有するアルミノシリケートを主体
とし、アルカリ金属及びアルカリ土類金属から選択され
た少なくとも1種以上の金属を担持してなる炭化水素吸
着剤から構成されることを特徴とする排ガス浄化触媒が
提案されている。
In Japanese Patent Application Laid-Open No. 2-56247, hydrocarbons are selectively adsorbed to zeolite in a cold state and in a rich air-fuel ratio with respect to a three-way catalyst, and carbonized desorbed from zeolite due to a rise in exhaust gas temperature. As a catalyst for purifying hydrogen and nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas, the main component is a first catalyst layer mainly composed of zeolite on a carrier and a noble metal catalyst having redox ability on it. An exhaust gas purifying catalyst comprising a second catalyst layer comprising: a catalyst in which a catalyst component containing at least Pt is supported on a carrier made of a porous material; and having a solid acidity and a molecular sieve property in JP-A-5-293380. A hydrocarbon adsorbent mainly comprising aluminosilicate and carrying at least one or more metals selected from alkali metals and alkaline earth metals. Exhaust gas purifying catalyst has been proposed, wherein a.

【0012】また、特開平8−24655号公報では、
結晶質の金属含有シリケートに触媒金属を担持させてな
り排気ガス中のNOxをHCの存在下で浄化するNOx
触媒に、排気ガス中のHCを吸着し一定温度以上になる
と該吸着したHCを脱離するHC吸着剤が混入されてい
る排ガス浄化触媒、特開平8−164338号公報では
担体上に無機結晶性モレキュラーシーブよりなる炭化水
素吸着剤が担持され、その炭化水素吸着剤粒子の表面に
Pdを触媒金属とする第一触媒層を形成し、更に第一触
媒層の上に希土類酸化物を主成分とする希土類酸化物層
を形成し、希土類酸化物層の上にPt、Rhのうち少な
くとも一方を触媒とする第二触媒層を形成していること
を特徴とする排ガス浄化触媒が提案されている。また特
開平9−872号公報での内燃機関の排気管内に電子供
与性及び/又は二酸化窒素の吸収及び放出作用を有する
物質と貴金属とを含む低温着火性触媒組成物と炭化水素
吸着能を有する吸着剤が配置されて成る排ガス浄化シス
テムも提案されている。
In Japanese Patent Application Laid-Open No. Hei 8-24655,
NOx for purifying NOx in exhaust gas in the presence of HC by carrying a catalytic metal on a crystalline metal-containing silicate
An exhaust gas purifying catalyst in which an HC adsorbent which adsorbs HC in exhaust gas and desorbs the adsorbed HC when the temperature exceeds a certain temperature is mixed in the catalyst. In Japanese Patent Application Laid-Open No. 8-164338, A hydrocarbon adsorbent made of molecular sieve is supported, a first catalyst layer containing Pd as a catalyst metal is formed on the surface of the hydrocarbon adsorbent particles, and a rare earth oxide is mainly formed on the first catalyst layer. An exhaust gas purifying catalyst has been proposed in which a rare earth oxide layer is formed, and a second catalyst layer using at least one of Pt and Rh as a catalyst is formed on the rare earth oxide layer. Also, a low-temperature ignitable catalyst composition containing a substance having an electron donating property and / or a function of absorbing and releasing nitrogen dioxide and a noble metal in an exhaust pipe of an internal combustion engine disclosed in Japanese Patent Application Laid-Open No. 9-872, and having a hydrocarbon adsorbing ability. An exhaust gas purification system including an adsorbent has also been proposed.

【0013】[0013]

【発明が解決しようとする課題】近年では炭化水素の排
出による環境汚染の問題が大きくクローズアップされて
おり、炭化水素の除去技術の向上が望まれている。
In recent years, the problem of environmental pollution due to the emission of hydrocarbons has been greatly highlighted, and it is desired to improve the technology for removing hydrocarbons.

【0014】ゼオライトを吸着剤に用いた場合の炭化水
素の吸着特性は、炭化水素の種類及びゼオライトのマト
リックス特性に大きく影響される。炭化数の少ない炭化
水素の吸着特性については、その分子径が小さいため、
ゼオライト細孔内への拡散、移動が起こりやすく、吸着
も容易である。しかし炭化水素の移動の容易性のため、
脱離も容易となり、結果として三元触媒に代表される炭
化水素の浄化触媒が作動する温度より低温で炭化水素が
脱離し、浄化が不十分となる。一方、炭素数が大きい炭
化水素の吸着特性については、ゼオライトの細孔径より
分子径が大きい炭化水素では、細孔内への拡散、移動が
容易でないため、ゼオライト細孔内が吸着点として十分
に機能しない。よって炭化水素の吸着量が減少し、炭化
水素が十分に浄化されずにそのまま排出される。
[0014] The adsorption characteristics of hydrocarbons when zeolite is used as the adsorbent are greatly affected by the types of hydrocarbons and the matrix characteristics of the zeolite. Regarding the adsorption characteristics of hydrocarbons with a small number of carbon atoms, the molecular diameter is small,
Diffusion and migration into zeolite pores are easy to occur, and adsorption is also easy. However, because of the ease of hydrocarbon transfer,
Desorption is also facilitated, and as a result, hydrocarbons are desorbed at a temperature lower than the temperature at which a hydrocarbon purification catalyst represented by a three-way catalyst operates, resulting in insufficient purification. On the other hand, regarding the adsorption characteristics of hydrocarbons having a large number of carbon atoms, in the case of hydrocarbons having a molecular diameter larger than the pore diameter of zeolite, diffusion and movement into the pores are not easy, so that the inside of the zeolite pores is sufficient as an adsorption point. Does not work. Therefore, the amount of adsorption of the hydrocarbons is reduced, and the hydrocarbons are directly discharged without being sufficiently purified.

【0015】またこれまでに提案された吸着剤は、エチ
レン、プロピレンなどの低級炭化水素あるいはトルエン
などの芳香族化合物及びガソリンエンジンから排出され
る炭化水素に対する吸着特性に関して検討されている
が、炭素数が7以上の炭化水素、特に軽油の構成成分で
もある直鎖状のパラフィン及び多環芳香族化合物などの
炭化水素に関する吸着特性の詳細は明確でない。
The adsorbents proposed so far have been studied with respect to their adsorption characteristics with respect to lower hydrocarbons such as ethylene and propylene or aromatic compounds such as toluene and hydrocarbons discharged from gasoline engines. However, the details of the adsorption characteristics of hydrocarbons having 7 or more, particularly hydrocarbons such as linear paraffins and polycyclic aromatic compounds, which are also constituents of light oil, are not clear.

【0016】また上記で提案されている排ガス浄化触媒
は、炭化水素吸着剤と組み合わせることで、吸着炭化水
素による窒素酸化物の除去活性の向上が認められるが、
その効果は十分なものではなく、更なる性能向上が求め
られる。
[0016] The exhaust gas purifying catalyst proposed above can be combined with a hydrocarbon adsorbent to improve the nitrogen oxide removal activity by the adsorbed hydrocarbon.
The effect is not sufficient, and further improvement in performance is required.

【0017】更に、内燃機関の排ガス温度は高くは60
0℃以上にも達するため、炭化水素吸着剤及び排ガス浄
化触媒が高温に晒された後でも、吸着性能及び浄化活性
が低下しない、即ち耐熱性の高い吸着剤及び浄化触媒で
ある必要がある。
Furthermore, the exhaust gas temperature of the internal combustion engine is as high as 60
Since the temperature reaches 0 ° C. or higher, even if the hydrocarbon adsorbent and the exhaust gas purifying catalyst are exposed to high temperatures, the adsorbing performance and the purifying activity do not decrease, that is, the adsorbent and the purifying catalyst must have high heat resistance.

【0018】本発明の目的は、以上のような従来技術の
問題点を解決するためになされたものであり、炭化水素
の吸着能が高く、十分な耐熱性を有する吸着剤、及びそ
の吸着剤を用いてガス中に含有される炭化水素を吸着除
去する方法を提供することにある。また本発明の吸着剤
と窒素酸化物除去触媒とを用いた排ガス浄化触媒及び排
ガス浄化方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, and an adsorbent having a high ability to adsorb hydrocarbons and sufficient heat resistance, and an adsorbent thereof It is to provide a method for adsorbing and removing hydrocarbons contained in a gas using the method. Another object of the present invention is to provide an exhaust gas purifying catalyst and an exhaust gas purifying method using the adsorbent of the present invention and the nitrogen oxide removing catalyst.

【0019】[0019]

【課題を解決するするための手段】本発明者らは、上記
課題に対して鋭意検討した結果、結晶性の高いβ型ゼオ
ライトから成る炭化水素の吸着剤が高い耐熱性を有し、
そのような吸着剤と、窒素酸化物の除去性能及び耐久性
に優れる触媒とを組み合わせた排ガス浄化触媒が、高い
窒素酸化物の除去活性を有し、更には高温に晒された後
の活性低下が小さく、耐久性に優れていることを見出し
本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies on the above-mentioned problems, the present inventors have found that a hydrocarbon adsorbent composed of β-zeolite having high crystallinity has high heat resistance,
An exhaust gas purifying catalyst combining such an adsorbent with a catalyst having excellent nitrogen oxide removal performance and durability has a high activity of removing nitrogen oxides, and furthermore has a reduced activity after being exposed to high temperatures. Was found to be small and excellent in durability, and the present invention was completed.

【0020】即ち本発明は、X線粉末回折の格子面間隔
d=1.15±0.03nmと0.397±0.01n
mのX線回折強度の和が触媒学会参照触媒JRC−Z−
HM−20(3)のd=0.346±0.01nmの回
折強度に対して90%以上であるか焼されたβ型ゼオラ
イトから構成されることを特徴とする、炭化水素吸着剤
である。また本発明は、このような炭化水素吸着剤を気
相と接触させることを特徴とする、気相中の炭化水素の
吸着除去方法である。また本発明は、このような炭化水
素吸着剤と、活性金属を多孔性担体に含有させた窒素酸
化物除去触媒から構成されることを特徴とする排ガス浄
化触媒である。更に本発明は、このような排ガス浄化触
媒を排ガスに接触させることを特徴とする排ガス浄化方
法である。以下、本発明を詳細に説明する。
That is, according to the present invention, the lattice spacing d = 1.15 ± 0.03 nm and 0.397 ± 0.01 n in the X-ray powder diffraction are used.
The sum of the X-ray diffraction intensities of m is the reference catalyst of the Catalysis Society of Japan JRC-Z-
A hydrocarbon adsorbent characterized by being composed of a calcined β-type zeolite having a diffraction intensity of d = 0.346 ± 0.01 nm or more of HM-20 (3) of at least 90%. . The present invention is also a method for adsorbing and removing hydrocarbons in a gaseous phase, which comprises contacting such a hydrocarbon adsorbent with a gaseous phase. Further, the present invention is an exhaust gas purifying catalyst comprising the hydrocarbon adsorbent and a nitrogen oxide removing catalyst containing an active metal in a porous carrier. Further, the present invention is an exhaust gas purifying method characterized by bringing such an exhaust gas purifying catalyst into contact with exhaust gas. Hereinafter, the present invention will be described in detail.

【0021】本発明の炭化水素の吸着剤はβ型ゼオライ
トからなることが必須である。β型ゼオライトとは、x
n/2O・Al23・ySiO2・zH2O(但し、nは
陽イオンMの原子価、xは0〜2.5の範囲の数、yは
1以上の数、zは0以上の数)の組成を有する。その構
造に関してはZEOLITES,12(5)58−59
(1992)及び特開平5−201722号公報に記載
されており、12員環細孔を有し、表1に示すX線回折
で得られる結晶構造を有するゼオライトとして、公知で
ある。
It is essential that the hydrocarbon adsorbent of the present invention comprises β-type zeolite. Beta zeolite is x
M n / 2 O · Al 2 O 3 · ySiO 2 · zH 2 O ( where, n is the valence of the cation M, x is a number in the range of 0 to 2.5, y is a number of 1 or more, z is 0 or more). The structure is described in ZEOLITES, 12 (5) 58-59.
(1992) and JP-A-5-201722, which are known as zeolites having 12-membered ring pores and having a crystal structure obtained by X-ray diffraction shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】本発明の吸着剤を構成するβ型ゼオライト
は、ゼオライトの合成時に含有させた有機化合物を除去
するためにか焼した後の状態で、X線粉末回折の格子面
間隔d=1.15±0.03nmと0.397±0.0
1nmの回折強度の和が触媒学会参照触媒JRC−Z−
HM−20(3)のd=0.346±0.01nmの回
折強度に対して90%以上である結晶性を有しているこ
とが必須である。ゼオライトの結晶性については、通
常、X線回折により評価することができる。一般にX線
回折による結晶性は、検出される回折ピークのピーク強
度(高さ)及びピーク面積で評価することができる。ゼ
オライトの結晶性が高い場合はゼオライトに帰属される
回折ピークの検出強度が大きくなり、アモルファス成分
等の不純物が共存するような結晶性が低い場合には、回
折ピークが小さくなる。即ち、本発明に係るβ型ゼオラ
イトは、アモルファス成分などの不純物をほとんど含ま
ず、その結晶性が高いことから吸着容量が増加すると共
に耐熱性も向上する。
The β-type zeolite constituting the adsorbent of the present invention is calcined in order to remove organic compounds contained during the synthesis of the zeolite, and the lattice spacing d = 1. 15 ± 0.03 nm and 0.397 ± 0.0
The sum of the diffraction intensities of 1 nm is the reference catalyst JRC-Z-
It is essential that HM-20 (3) has a crystallinity of 90% or more with respect to the diffraction intensity of d = 0.346 ± 0.01 nm. The crystallinity of zeolite can usually be evaluated by X-ray diffraction. Generally, crystallinity by X-ray diffraction can be evaluated by the peak intensity (height) and peak area of the detected diffraction peak. When the crystallinity of the zeolite is high, the intensity of detection of the diffraction peak attributed to the zeolite increases, and when the crystallinity where impurities such as amorphous components coexist is low, the diffraction peak decreases. That is, the β-type zeolite according to the present invention hardly contains impurities such as an amorphous component and has high crystallinity, so that the adsorption capacity is increased and the heat resistance is also improved.

【0024】β型ゼオライトのSiO2/Al23モル
比は、特に限定されないが、炭化水素の吸着特性及び耐
熱性を高めるためには10〜1000が好ましく、更に
好ましくは20〜500である。
The SiO 2 / Al 2 O 3 molar ratio of the β-zeolite is not particularly limited, but is preferably from 10 to 1,000, more preferably from 20 to 500, in order to improve the adsorption characteristics and heat resistance of hydrocarbons. .

【0025】また、本発明で用いられるβ型ゼオライト
の結晶粒径は特に限定されるものではないが、耐熱性を
高めるためには、平均粒径が3〜10μmであり、1μ
m以上の粒子が80%以上である粒径分布を有している
ことが好ましい。ゼオライトの粒径については、電子線
顕微鏡やコールターカウンター等の分析機器で測定する
ことができ、所定範囲の粒径の占有割合で表されるガウ
ス型の粒径分布及びその粒径分布から算出される平均粒
径として評価することができる。
Further, the crystal grain size of the β-type zeolite used in the present invention is not particularly limited, but in order to enhance heat resistance, the average grain size is 3 to 10 μm and 1 μm.
It is preferable that particles having a particle size of m or more have a particle size distribution of 80% or more. The particle size of the zeolite can be measured with an analytical instrument such as an electron microscope or a Coulter counter, and is calculated from the Gaussian particle size distribution represented by the occupation ratio of the particle size in a predetermined range and the particle size distribution. It can be evaluated as an average particle size.

【0026】β型ゼオライトの製造方法について説明す
る。本発明に係るβ型ゼオライトは前述の様な結晶性を
有していれば良く、製造方法は特に限定されない。例え
ば、特開平5−201722号公報で記載されているよ
うなテンプレート剤として、テトラエチルアンモニウム
等を用いた水性反応スラリーを原料に、加熱して結晶化
する水熱合成法で製造することができる。更には特開平
9−175818号公報に記載されているように、50
℃以上の温度で乾燥した粉末状原料組成物を液相の水と
直接接触させることなく、80〜200℃で自生する水
蒸気と接触させて製造されることに特徴づけられる方法
を採用すると、結晶性のより高いβ型ゼオライトが得ら
れ、より好ましい。
The method for producing β-type zeolite will be described. The β-type zeolite according to the present invention only needs to have the above-described crystallinity, and the production method is not particularly limited. For example, it can be produced by a hydrothermal synthesis method in which an aqueous reaction slurry using tetraethylammonium or the like is used as a raw material as a template agent as described in JP-A-5-201722 to heat and crystallize. Further, as described in JP-A-9-175818,
A method characterized by being produced by contacting powdered raw material composition dried at a temperature of at least 80 ° C. with water vapor generated at 80 to 200 ° C. without directly contacting water in a liquid phase, Β-type zeolite having higher properties is obtained, which is more preferable.

【0027】特開平9−175818号公報に記載のβ
型ゼオライトの製造において、原料組成はアルミナ源、
シリカ源、アルカリ源及びテトラエチルアンモニウムイ
オンからなる。アルミナ源として硫酸アルミニウム、ア
ルミン酸ナトリウム、水酸化アルミニウム、アルミノシ
リケートゲル等を、またシリカ源としてコロイダルシリ
カ、無定型シリカ、珪酸ナトリウム、アルミノシリケー
トゲル等を用いることができ、他の成分と十分均一に混
合できる形態のものが望ましい。
The β described in Japanese Patent Application Laid-Open No. 9-175818
In the production of type zeolite, the raw material composition is an alumina source,
It consists of a silica source, an alkali source and tetraethylammonium ions. Aluminum sulfate, sodium aluminate, aluminum hydroxide, aluminosilicate gel, etc. can be used as the alumina source, and colloidal silica, amorphous silica, sodium silicate, aluminosilicate gel, etc. can be used as the silica source. It is desirable to use a form that can be mixed with the mixture.

【0028】アルカリ源としては水酸化ナトリウム、ア
ルミン酸ナトリウム及び珪酸ナトリウム中のアルカリ成
分、又はアルミノシリケートゲル中のアルカリ成分等が
好適に用いられる。また、水酸化カリウム、アルミン酸
カリウム等を用いても良い。テトラエチルアンモニウム
イオンについては、通常テトラエチルアンモニウムヒド
ロキシドが用いられる。
As the alkali source, an alkali component in sodium hydroxide, sodium aluminate and sodium silicate or an alkali component in an aluminosilicate gel is preferably used. Further, potassium hydroxide, potassium aluminate, or the like may be used. As for the tetraethylammonium ion, tetraethylammonium hydroxide is usually used.

【0029】これらの原料を水の存在下で十分に混合
し、均一なスラリーとする。ここで使用する水の量は特
に限定されない。次にこの均一スラリーを50℃以上の
温度で乾燥し、粉末状原料組成物を得る。乾燥温度につ
いて、その上限は特に限定されないが、水分が沸騰しな
い温度範囲が好ましく、その温度での平衡水分量になる
まで均一に乾燥する。乾燥温度が50℃未満では粉末状
原料組成物の水分量が高くなり、結晶性が低下する恐れ
がある。また、均一スラリーを乾燥する方法は特に限定
されないが、原料混合物の水性スラリーを撹拌下で乾燥
することが好ましい。
These raw materials are sufficiently mixed in the presence of water to form a uniform slurry. The amount of water used here is not particularly limited. Next, this uniform slurry is dried at a temperature of 50 ° C. or higher to obtain a powdery raw material composition. The upper limit of the drying temperature is not particularly limited, but is preferably a temperature range in which moisture does not boil, and drying is performed uniformly until the equilibrium moisture content at that temperature is reached. When the drying temperature is lower than 50 ° C., the water content of the powdery raw material composition increases, and the crystallinity may decrease. The method for drying the uniform slurry is not particularly limited, but the aqueous slurry of the raw material mixture is preferably dried under stirring.

【0030】得られた粉末状原料組成物の化学組成は酸
化物のモル比で表して SiO2/Al23=10〜1000 M2O/SiO2=0〜0.4 TEA2O/SiO2=0.1〜1.0 である(ここでMはアルカリ金属、TEAはテトラエチ
ルアンモニウムを表す)。更に好ましくは SiO2/Al23=20〜600 M2O/SiO2=0〜0.1 TEA2O/SiO2=0.15〜0.25 である。
The chemical composition of the obtained powdery raw material composition is represented by a molar ratio of oxides: SiO 2 / Al 2 O 3 = 10 to 1000 M 2 O / SiO 2 = 0 to 0.4 TEA 2 O / SiO 2 = 0.1 to 1.0 (where M represents an alkali metal and TEA represents tetraethylammonium). More preferably a SiO 2 / Al 2 O 3 = 20~600 M 2 O / SiO 2 = 0~0.1 TEA 2 O / SiO 2 = 0.15~0.25.

【0031】この粉末状原料組成物を密閉容器に入れ、
液相の水と直接接触させることなく、但し所定の温度で
自生する水蒸気と接触させて結晶化させる。
This powdery raw material composition is placed in a closed container,
Crystallization is performed without direct contact with water in the liquid phase, but at a predetermined temperature with steam generated naturally.

【0032】結晶化する温度は80〜200℃の範囲が
好ましい。80℃未満では結晶化速度が非常に遅く、長
時間の結晶化時間を要するため、経済性に欠ける。ま
た、200℃より高い温度ではテトラエチルアンモニウ
ムイオンの分解が激しくなり、結晶性の高いβ型ゼオラ
イトが得られない恐れがある。
The crystallization temperature is preferably in the range of 80 to 200 ° C. If the temperature is lower than 80 ° C., the crystallization speed is extremely slow, and a long crystallization time is required, so that it is not economical. If the temperature is higher than 200 ° C., the decomposition of tetraethylammonium ions becomes severe, and there is a possibility that β-zeolite having high crystallinity may not be obtained.

【0033】上記方法で製造されたβ型ゼオライトは、
そのか焼品が用いられる。合成されたゼオライトのか焼
は、合成時にゼオライト中に含有されたテトラエチルア
ンモニウムイオンを除去するために行うものであり、テ
トラエチルアンモニウムイオンが十分に除去される条件
で処理できる。一般に550〜1000℃の温度、0.
5〜10時間の焼成時間で処理することができ、また焼
成雰囲気も空気、窒素、酸化性ガスを含んだ空気又は窒
素のいずれであっても良い。β型ゼオライト中のNa等
のイオンをアンモニウム塩あるいは鉱酸等で処理し、H
型あるいはNH4型として用いることもできる。
The β-type zeolite produced by the above method is
The calcined product is used. The calcination of the synthesized zeolite is performed to remove the tetraethylammonium ion contained in the zeolite at the time of the synthesis, and the treatment can be performed under the condition that the tetraethylammonium ion is sufficiently removed. Generally at a temperature of 550-1000 ° C.
The treatment can be performed for a baking time of 5 to 10 hours, and the baking atmosphere may be any of air, nitrogen, air containing an oxidizing gas, or nitrogen. Ion such as Na in β-type zeolite is treated with ammonium salt or mineral acid,
Type or NH 4 type.

【0034】本発明の吸着剤は、上記β型ゼオライトに
遷移金属を含有させてもよく、それにより炭化水素の吸
着性能をより発揮させることができる。遷移金属を含有
させる場合、遷移金属に特に制限はなく、例えば周期律
表のIIIa,IVa,Va,VIa,VIIa,VI
II,Ib,IIb族の元素があげられ、これら遷移金
属の少なくとも一種以上が含有されていればよい。遷移
金属として好ましくはCu及び/又はAgがよい。遷移
金属を含有させる方法としては、特に限定されず、公知
の方法を適宜採用することができる。例えばイオン交換
法、含浸担持法、蒸発乾固法、浸漬法、固相交換法など
を採用することができる。遷移金属の含有に用いる塩と
しては、特に限定されるものではなく、硝酸塩、硫酸
塩、酢酸塩、シュウ酸塩あるいはアンミン錯塩などの塩
でよい。2種類以上の遷移金属を含有させる場合、遷移
金属を順次含有させてもよく、同時に含有させてもよ
い。
In the adsorbent of the present invention, a transition metal may be contained in the β-type zeolite, whereby the adsorption performance of hydrocarbons can be further exhibited. When a transition metal is contained, there is no particular limitation on the transition metal. For example, IIIa, IVa, Va, VIa, VIIa, VI of the periodic table
Elements of Group II, Ib and IIb are mentioned, as long as they contain at least one or more of these transition metals. Preferably, the transition metal is Cu and / or Ag. The method for incorporating the transition metal is not particularly limited, and a known method can be appropriately employed. For example, an ion exchange method, an impregnation support method, an evaporation to dryness method, an immersion method, a solid phase exchange method, and the like can be employed. The salt used to contain the transition metal is not particularly limited, and may be a salt such as a nitrate, a sulfate, an acetate, an oxalate, or an ammine complex salt. When two or more transition metals are contained, the transition metals may be contained sequentially or simultaneously.

【0035】上記方法により調製した吸着剤に含まれる
遷移金属の含有量は、炭化水素の吸着性能を十分に発揮
させるためには、遷移金属及びβ型ゼオライトの合計量
に対して0.1〜20重量%の範囲であることが好まし
い。さらに好ましくは0.2〜10重量%である。
The content of the transition metal contained in the adsorbent prepared by the above method is 0.1 to 0.1% with respect to the total amount of the transition metal and the β-type zeolite in order to sufficiently exhibit the adsorption performance of hydrocarbons. Preferably it is in the range of 20% by weight. More preferably, it is 0.2 to 10% by weight.

【0036】以上のようにして本発明に係る炭化水素吸
着剤を製造することができる。
As described above, the hydrocarbon adsorbent according to the present invention can be produced.

【0037】本発明の吸着剤は、シリカ、アルミナ及び
粘土鉱物等のバインダーと混合し成形して使用すること
もできる。成形する際に用いられる粘土鉱物としては、
カオリン、アタパルガイト、モンモリロナイト、ベント
ナイト、アロフェン、セピオライト等の粘土鉱物であ
る。また、コージェライト製あるいは金属製のハニカム
状基材に本発明の炭化水素吸着剤をウォッシュコートし
て使用することもできる。
The adsorbent of the present invention can be used by mixing with a binder such as silica, alumina and clay mineral and molding. As a clay mineral used for molding,
Clay minerals such as kaolin, attapulgite, montmorillonite, bentonite, allophane and sepiolite. Further, the hydrocarbon adsorbent of the present invention can be wash-coated on a cordierite or metal honeycomb substrate and used.

【0038】本発明の吸着剤と気相とを接触させること
により、気相中の炭化水素の吸着除去を行うことができ
る。この気相には特に限定はなく、例えば大気、排気ガ
スなど炭化水素を含んでいる気相に対して適用できる。
また炭化水素以外に、一酸化炭素、二酸化炭素、水素、
酸素、窒素、窒素酸化物、硫黄酸化物、水が含まれてい
る場合にも有効である。
By bringing the adsorbent of the present invention into contact with the gas phase, it is possible to adsorb and remove hydrocarbons in the gas phase. The gaseous phase is not particularly limited, and can be applied to a gaseous phase containing a hydrocarbon such as air and exhaust gas.
In addition to hydrocarbons, carbon monoxide, carbon dioxide, hydrogen,
It is also effective when oxygen, nitrogen, nitrogen oxides, sulfur oxides, and water are contained.

【0039】吸着剤に吸着される炭化水素の種類は、エ
チレン、プロピレン、ブテン、1−ヘキサデセンなどの
不飽和炭化水素(オレフィン)やメタン、エタン、プロ
パン、n−デカン、n−ヘキサデカンなどの飽和炭化水
素(パラフィン)及びベンゼン、トルエン、ナフタレ
ン、アントラセンなどの芳香族炭化水素、2−メチルプ
ロパン、イソプロピルベンゼンなどの分枝状炭化水素な
どがあげられ、また上記炭化水素の誘導体であるケト
ン、アルデヒドなどの含酸素有機化合物、アミンなどの
含窒素有機化合物も吸着される。すなわち、本発明の吸
着剤が対象としている気相は、これらの炭化水素を少な
くとも一種以上含んだ物である。吸着される炭化水素と
しては、好ましくは炭素数7以上の直鎖状のパラフィ
ン、炭素数7以上の直鎖状オレフィン及び/又は多環芳
香族化合物であり、更に好ましくは炭素数10から18
の直鎖状パラフィン、又は炭素数10から18の直鎖状
オレフィンである。
The types of hydrocarbons adsorbed on the adsorbent include unsaturated hydrocarbons (olefins) such as ethylene, propylene, butene and 1-hexadecene and saturated hydrocarbons such as methane, ethane, propane, n-decane and n-hexadecane. Hydrocarbons (paraffins), aromatic hydrocarbons such as benzene, toluene, naphthalene and anthracene; and branched hydrocarbons such as 2-methylpropane and isopropylbenzene. Ketones and aldehydes which are derivatives of the above hydrocarbons And nitrogen-containing organic compounds such as amines. That is, the gas phase targeted by the adsorbent of the present invention is a substance containing at least one or more of these hydrocarbons. The hydrocarbon to be adsorbed is preferably a linear paraffin having 7 or more carbon atoms, a linear olefin having 7 or more carbon atoms and / or a polycyclic aromatic compound, more preferably 10 to 18 carbon atoms.
Or a linear olefin having 10 to 18 carbon atoms.

【0040】気相中の炭化水素の濃度は特に限定されな
いが、メタン換算で0.001〜5vol%が好まし
く、より好ましくは0.005〜3vol%である。炭
化水素以外の各成分の濃度についても特に限定されない
が、例えばCO=0〜1vol%、CO2=0〜10v
ol%、O2=0〜20vol%、窒素酸化物=0〜1
vol%、硫黄酸化物=0〜0.05vol%、H2
=0〜15vol%が好ましい。
The concentration of the hydrocarbon in the gas phase is not particularly limited, but is preferably 0.001 to 5 vol%, more preferably 0.005 to 3 vol% in terms of methane. The concentration of each component other than the hydrocarbon is not particularly limited. For example, CO = 0 to 1 vol%, CO 2 = 0 to 10 v
ol%, O 2 = 0 to 20 vol%, nitrogen oxides = 0 to 1
vol%, sulfur oxides = 0~0.05vol%, H 2 O
= 0 to 15 vol% is preferred.

【0041】炭化水素を吸着除去する際の空間速度、温
度は特に限定されないが、空間速度:100〜5000
00hr-1、温度:−30〜250℃であることが好ま
しい。
The space velocity and temperature at which the hydrocarbon is adsorbed and removed are not particularly limited, but the space velocity: 100 to 5000
It is preferable that the temperature is 00 hr -1 and the temperature is -30 to 250 ° C.

【0042】本発明の排ガス浄化触媒は、本発明の炭化
水素の吸着剤成分と窒素酸化物の除去触媒成分から構成
される。
The exhaust gas purifying catalyst of the present invention comprises the hydrocarbon adsorbent component and the nitrogen oxide removing catalyst component of the present invention.

【0043】本発明の排ガス浄化触媒を構成する窒素酸
化物の除去触媒について説明する。本発明に係る窒素酸
化物除去触媒は、窒素酸化物の除去活性を有し、活性金
属を多孔性担体に含有させた触媒であり、更に酸素過剰
の排ガスに対しても活性を示すものが好ましい。活性金
属として、Pt,Pd,Ir,Rhの貴金属から選ばれ
る1種類以上を多孔性担体に含有させ、かつその貴金属
の平均粒径が10nm以上である触媒が好ましい。貴金
属の平均粒径が10nm以上であれば、排ガス中の炭化
水素及び吸着剤より供給される炭化水素を有効に利用す
ることができ、窒素酸化物の除去活性が向上する。この
理由については明確でないが、窒素酸化物の還元除去反
応と炭化水素の完全燃焼反応が適当にバランスされてい
ること、特殊な活性サイトが形成されること等により、
炭化水素による窒素酸化物の還元除去活性が高くなると
思われる。また、貴金属粒子が10nm以上であると貴
金属粒子が安定化され熱安定性も向上することが推察さ
れる。貴金属は、活性、熱安定性の点からPtが好適に
用いられる。
The catalyst for removing nitrogen oxides constituting the exhaust gas purifying catalyst of the present invention will be described. The nitrogen oxide removing catalyst according to the present invention has a nitrogen oxide removing activity, is a catalyst in which an active metal is contained in a porous carrier, and further preferably has an activity even for an oxygen-excess exhaust gas. . As the active metal, a catalyst in which at least one selected from noble metals of Pt, Pd, Ir, and Rh is contained in the porous carrier, and the average particle size of the noble metal is preferably 10 nm or more. When the average particle size of the noble metal is 10 nm or more, hydrocarbons in the exhaust gas and hydrocarbons supplied from the adsorbent can be effectively used, and the activity of removing nitrogen oxides is improved. Although the reason for this is not clear, the reduction and removal reaction of nitrogen oxides and the complete combustion reaction of hydrocarbons are appropriately balanced, and special active sites are formed.
It is thought that the activity of reducing and removing nitrogen oxides by hydrocarbons is increased. In addition, when the noble metal particles are 10 nm or more, it is presumed that the noble metal particles are stabilized and the thermal stability is improved. Pt is preferably used as the noble metal from the viewpoints of activity and thermal stability.

【0044】多孔性担体は特に限定されず、例えばアル
ミナ、シリカ、ジルコニア、チタニア等の酸化物やシリ
カアルミナ、シリカジルコニア、シリカチタニア等の複
合酸化物及びゼオライトを使用することができる。その
中でも活性、耐久性の点でアルミナ、ゼオライトが好適
に用いられる。
The porous carrier is not particularly limited, and for example, oxides such as alumina, silica, zirconia, titania, composite oxides such as silica alumina, silica zirconia, silica titania and zeolite can be used. Among them, alumina and zeolite are preferably used in view of activity and durability.

【0045】多孔性担体への活性金属の含有方法は特に
限定されず、含浸担持法、蒸発乾固法、物理混合法、イ
オン交換法等の公知の方法を採用することができる。活
性金属の含有の際に用いられる化合物も特に制限はな
く、硝酸塩、硫酸塩、塩化物やアンミン錯塩等を用いる
ことができる。多孔性担体に含有される活性金属の量は
特に限定されないが、十分な脱硝活性を得るためには、
多孔性担体に対して0.5重量%以上であることが好ま
しい。また、添加量に見合う効果が得られる範囲であれ
ば製造コストの点から、貴金属は多孔性担体に対して1
0重量%以下であることが好ましい。
The method for containing the active metal in the porous carrier is not particularly limited, and known methods such as an impregnation-supporting method, an evaporation to dryness method, a physical mixing method, and an ion exchange method can be adopted. The compound used when the active metal is contained is not particularly limited, and nitrates, sulfates, chlorides, ammine complex salts and the like can be used. The amount of the active metal contained in the porous carrier is not particularly limited, but in order to obtain a sufficient denitration activity,
It is preferably at least 0.5% by weight based on the porous carrier. In addition, as long as the effect corresponding to the added amount can be obtained, the noble metal is added to the porous carrier by 1% from the viewpoint of production cost.
It is preferably 0% by weight or less.

【0046】活性金属を含有させた多孔性担体は、活性
金属を安定化するために、熱処理することが好ましい。
活性金属を10nm以上で安定化させるためには400
〜900℃の温度で処理することが好ましい。熱処理す
る際の雰囲気は特に限定されず、空気、窒素、水素又は
水素を含むガス等で処理することができる。
The porous carrier containing the active metal is preferably heat-treated in order to stabilize the active metal.
400 to stabilize the active metal above 10 nm
Preferably, the treatment is performed at a temperature of 900 ° C. The atmosphere for the heat treatment is not particularly limited, and the heat treatment can be performed with air, nitrogen, hydrogen, a gas containing hydrogen, or the like.

【0047】以上のようにして、本発明に係る窒素酸化
物の除去触媒を製造することができる。
As described above, the catalyst for removing nitrogen oxides according to the present invention can be produced.

【0048】本発明の排ガス浄化触媒を構成する炭化水
素吸着剤と窒素酸化物の除去触媒は、シリカ、アルミナ
及び粘土鉱物等のバインダーと混合し成形して使用する
こともできる。成形する際に用いられる粘土鉱物として
は、カオリン、アタパルガイト、モンモリロナイト、ベ
ントナイト、アロフェン、セピオライト等の粘土鉱物で
ある。また、コージェライト製あるいは金属製のハニカ
ム状基材に本発明の炭化水素吸着剤と窒素酸化物除去触
媒をウォッシュコートして使用することもできる。
The hydrocarbon adsorbent and the catalyst for removing nitrogen oxides constituting the exhaust gas purifying catalyst of the present invention can be used after being mixed with a binder such as silica, alumina and clay mineral and molded. Examples of the clay mineral used for molding include kaolin, attapulgite, montmorillonite, bentonite, allophane, sepiolite and the like. Further, the hydrocarbon adsorbent and the nitrogen oxide removing catalyst of the present invention can be wash-coated on a cordierite or metal honeycomb substrate and used.

【0049】排ガス浄化触媒を構成する際の複合化は特
に限定されないが、β型ゼオライトに炭化水素が吸着さ
れ、次に吸着剤から脱離する炭化水素を脱硝反応に有効
に利用するためには、β型ゼオライトから脱離する炭化
水素が効率よく窒素酸化物の除去触媒に供給され、更に
炭化水素の脱離温度と窒素酸化物の除去触媒の作動温度
が一致することが好ましい。このような状態を得るため
には、β型ゼオライトからの炭化水素の脱離温度に合わ
せて窒素酸化物除去触媒を選択することも可能である
が、随時適当な配置を用いることによりその効果を得る
ことが可能である。例えば成形体やハニカム状基材にウ
ォッシュコートして本触媒を使用する際に、排ガスの上
流側にβ型ゼオライトを配置し、その下流側に窒素酸化
物除去触媒を配置する方法、β型ゼオライト層と窒素酸
化物除去触媒層を積層して用いる方法、又はβ型ゼオラ
イトと窒素酸化物除去触媒を粉末や成形した状態で混合
して用いる方法などが挙げられる。
The complexing of the exhaust gas purifying catalyst is not particularly limited. However, in order to effectively utilize the hydrocarbon adsorbed on the β-zeolite and then released from the adsorbent for the denitration reaction, Preferably, the hydrocarbon desorbed from the β-type zeolite is efficiently supplied to the nitrogen oxide removal catalyst, and the hydrocarbon desorption temperature and the operating temperature of the nitrogen oxide removal catalyst are preferably the same. In order to obtain such a state, it is possible to select a nitrogen oxide removal catalyst in accordance with the desorption temperature of hydrocarbons from β-zeolite, but the effect can be reduced by using an appropriate arrangement as needed. It is possible to get. For example, when the present catalyst is used by wash-coating a formed body or a honeycomb substrate, a β-type zeolite is arranged on the upstream side of the exhaust gas, and a nitrogen oxide removal catalyst is arranged on the downstream side of the zeolite. And a method in which the β-type zeolite and the nitrogen oxide removing catalyst are mixed in a powdered or molded state and used.

【0050】以上のように、炭化水素の吸着剤と窒素酸
化物除去触媒を複合化し、本発明の排ガス浄化触媒を製
造することができる。
As described above, the exhaust gas purifying catalyst of the present invention can be produced by combining the hydrocarbon adsorbent with the nitrogen oxide removing catalyst.

【0051】排ガスからの窒素酸化物の除去は、上記排
ガス浄化触媒と該排ガスを接触させることにより行うこ
とができ、特に酸素過剰の排ガスに対しても有効であ
る。該排ガスは窒素酸化物及び炭化水素が含まれてい
る。酸素過剰の排ガスとは、排ガス中に含まれる一酸化
炭素、水素、炭化水素を完全に酸化するのに必要な酸素
量よりも過剰な酸素が含まれている排ガスを指し、この
ような排ガスとしては、例えばディーゼルエンジン等の
内燃機関から排出される排ガス、特に空燃比が大きい状
態で燃焼された排ガスが具体的に例示される。更に、上
記排ガスに炭化水素、一酸化炭素、二酸化炭素、水素、
窒素、硫黄酸化物、水が含まれていても良い。
The removal of nitrogen oxides from the exhaust gas can be performed by bringing the exhaust gas into contact with the exhaust gas purifying catalyst, and is particularly effective for exhaust gas containing excess oxygen. The exhaust gas contains nitrogen oxides and hydrocarbons. Oxygen-excessive exhaust gas refers to exhaust gas containing an excess amount of oxygen that is necessary to completely oxidize carbon monoxide, hydrogen, and hydrocarbons contained in the exhaust gas. Is specifically exemplified by exhaust gas discharged from an internal combustion engine such as a diesel engine, in particular, exhaust gas burned in a state where the air-fuel ratio is large. Furthermore, hydrocarbons, carbon monoxide, carbon dioxide, hydrogen,
It may contain nitrogen, sulfur oxides, and water.

【0052】本発明で処理される排ガスに含まれる炭化
水素の種類は特に限定されず、パラフィン、オレフィ
ン、芳香族化合物及びそれらの混合物が例示できる。具
体的には、パラフィン、オレフィンとしては炭素数で1
0〜20の炭素数の炭化水素が使用でき、芳香族として
はベンゼン、ナフタレン及びそれらの誘導体が使用でき
る。また、上記オレフィン、パラフィン、芳香族化合物
から選ばれる2種類以上の炭化水素を混合して使用する
こともできるし、軽油、灯油、ガソリン等も使用でき
る。排ガス中の各成分の濃度は特に限定されないが、通
常、窒素酸化物が50〜2000ppm、炭化水素が1
0〜10000ppmC(炭素基準)、酸素が0.1〜
20%が好ましい。また、窒素酸化物の除去活性を更に
高めるためには、上記の適当な炭化水素を排ガス中に添
加しても良い。
The type of hydrocarbon contained in the exhaust gas to be treated in the present invention is not particularly limited, and examples thereof include paraffin, olefin, aromatic compound, and a mixture thereof. Specifically, paraffins and olefins have a carbon number of 1
Hydrocarbons having 0 to 20 carbon atoms can be used, and benzene, naphthalene and derivatives thereof can be used as aromatics. Further, two or more kinds of hydrocarbons selected from the above-mentioned olefins, paraffins and aromatic compounds can be used as a mixture, and gas oil, kerosene, gasoline and the like can also be used. Although the concentration of each component in the exhaust gas is not particularly limited, usually, nitrogen oxides are 50 to 2000 ppm, and hydrocarbons are 1 to 1 ppm.
0-10000 ppmC (based on carbon), oxygen is 0.1-
20% is preferred. In order to further enhance the activity of removing nitrogen oxides, the above-mentioned appropriate hydrocarbon may be added to the exhaust gas.

【0053】処理される排ガスの空間速度及び温度は特
に限定されないが、好ましくは空間速度(体積基準):
500〜500000hr-1、温度:100〜800℃
更に好ましくは空間速度:2000〜300000hr
-1、温度100〜600℃である。
The space velocity and temperature of the exhaust gas to be treated are not particularly limited, but are preferably space velocity (based on volume):
500 to 500,000 hr −1 , temperature: 100 to 800 ° C.
More preferably, space velocity: 2000 to 300,000 hr
-1 and a temperature of 100 to 600 ° C.

【0054】[0054]

【実施例】以下、実施例において本発明を更に詳細に説
明する。しかし、本発明はこれらの実施例に何ら限定さ
れるものではない。
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

【0055】<実施例1>排ガス浄化触媒1の調製 SiO2/Al23モル比が26の東ソー製β型ゼオラ
イト(商品名:HSZ−930NHA)を空気流通下、
600℃で2時間焼成して、β型ゼオライトに含有する
テトラエチルアンモニウムイオンを除去した。その後、
焼成したβ型ゼオライト:20gをNH4Cl:5.6
gを純水180gに溶解した塩化アンモニウム水溶液中
に添加し、60℃で20時間のイオン交換操作を行っ
た。このイオン交換操作を2回繰り返した後、固液分離
し、Clイオンが検出できなくなるまで純水で洗浄し、
110℃で20時間乾燥して、炭化水素吸着剤1を得
た。炭化水素吸着剤1の化学組成をICP発光分析によ
り分析したところ、無水の酸化物ベースで 0.01Na2O・Al23・26.1SiO2 の組成を有していた。
Example 1 Preparation of Exhaust Gas Purifying Catalyst 1 A β-zeolite (trade name: HSZ-930NHA) manufactured by Tosoh having a SiO 2 / Al 2 O 3 molar ratio of 26 was passed through an air stream.
The mixture was calcined at 600 ° C. for 2 hours to remove tetraethylammonium ions contained in the β-zeolite. afterwards,
20 g of calcined β-type zeolite is converted to NH 4 Cl: 5.6
g was added to an aqueous solution of ammonium chloride dissolved in 180 g of pure water, and an ion exchange operation was performed at 60 ° C. for 20 hours. After this ion exchange operation is repeated twice, solid-liquid separation is performed, and the resultant is washed with pure water until Cl ions cannot be detected.
After drying at 110 ° C. for 20 hours, hydrocarbon adsorbent 1 was obtained. The chemical composition of hydrocarbon adsorbent 1 was analyzed by ICP emission analysis, it had a composition of 0.01Na 2 O · Al 2 O 3 · 26.1SiO 2 oxide-based anhydrous.

【0056】また、炭化水素吸着剤1の結晶性をX線粉
末回折(CuKα)で評価したところ、炭化水素吸着剤
1のd=1.15及び0.396の回折強度の和は、触
媒学会参照触媒JRC−Z−HM−20(3)のd=
0.346の回折強度に対して、95%であった。
When the crystallinity of the hydrocarbon adsorbent 1 was evaluated by X-ray powder diffraction (CuKα), the sum of the diffraction intensities of d = 1.15 and 0.396 of the hydrocarbon adsorbent 1 was determined by the Catalysis Society of Japan. D of reference catalyst JRC-Z-HM-20 (3)
For a diffraction intensity of 0.346, it was 95%.

【0057】触媒化成製のアルミナ(商品名:ACP−
1):10gにテトラアンミンジクロロ白金:0.31
gを含浸担持した後、110℃、20時間乾燥させた。
その後、空気流通下で800℃、1時間焼成して窒素酸
化物除去触媒1を得た。化学組成分析から窒素酸化物除
去触媒1のPt含有量は1.7重量%であった。この窒
素酸化物除去触媒1をX線粉末回折(CuKα)で評価
したところ、Scherrerの式より算出したPt粒
子の平均粒径は18nmであった。
Alumina manufactured by Catalyst Chemicals (trade name: ACP-
1): 10 g of tetraamminedichloroplatinum: 0.31
g was impregnated and then dried at 110 ° C. for 20 hours.
Thereafter, the mixture was calcined for 1 hour at 800 ° C. in an air flow to obtain a nitrogen oxide removing catalyst 1. From the chemical composition analysis, the Pt content of the nitrogen oxide removing catalyst 1 was 1.7% by weight. When this nitrogen oxide removing catalyst 1 was evaluated by X-ray powder diffraction (CuKα), the average particle size of the Pt particles calculated from the Scherrer's formula was 18 nm.

【0058】炭化水素吸着剤1:3gと窒素酸化物除去
触媒1:3gを乳鉢で混合し、プレス成形した後、粉砕
して12〜20メッシュに整粒し、排ガス浄化触媒1を
得た。
The hydrocarbon adsorbent (1: 3 g) and the nitrogen oxide removing catalyst (1: 3 g) were mixed in a mortar, press-molded, pulverized and sized to 12 to 20 mesh to obtain an exhaust gas purifying catalyst 1.

【0059】<実施例2>排ガス浄化触媒2の調製 SiO2/Al23モル比が224の東ソー製モルデナ
イト(商品名:HSZ−690HOA)10gをテトラ
アンミンジクロロ白金:0.29gを含む100mL水
溶液中に添加した後、アンモニア水によりpH=7に調
整し、30℃で2時間撹拌した後、濾過、洗浄を行い、
更に110℃で20時間乾燥させた。その後、空気流通
下、500℃で1時間焼成して窒素酸化物除去触媒2を
得た。化学組成分析から窒素酸化物除去触媒2のPt含
有量は1.7重量%であった。この窒素酸化物除去触媒
2をX線粉末回折(CuKα)で評価したところ、Sc
herrerの式より算出したPt粒子の平均粒径は1
9nmであった。
Example 2 Preparation of Exhaust Gas Purification Catalyst 2 10 g of Tosoh mordenite (trade name: HSZ-690HOA) having a SiO 2 / Al 2 O 3 molar ratio of 224 was added to a 100 mL aqueous solution containing 0.29 g of tetraamminedichloroplatinum. After the addition, the mixture was adjusted to pH = 7 with aqueous ammonia, stirred at 30 ° C. for 2 hours, filtered and washed,
Further drying was performed at 110 ° C. for 20 hours. Thereafter, the mixture was calcined at 500 ° C. for 1 hour in an air flow to obtain a nitrogen oxide removing catalyst 2. From the chemical composition analysis, the Pt content of the nitrogen oxide removing catalyst 2 was 1.7% by weight. When this nitrogen oxide removing catalyst 2 was evaluated by X-ray powder diffraction (CuKα), Sc
The average particle size of the Pt particles calculated from the Herrer's formula is 1
It was 9 nm.

【0060】実施例1で得られた炭化水素吸着剤1:3
gと窒素酸化物除去触媒2:3gを乳鉢で混合し、プレ
ス成形した後、粉砕して12〜20メッシュに整粒し、
排ガス浄化触媒2を得た。
The hydrocarbon adsorbent obtained in Example 1 1: 3
g and the nitrogen oxide removal catalyst 2: 3 g were mixed in a mortar, press-molded, crushed and sized to 12 to 20 mesh,
Exhaust gas purification catalyst 2 was obtained.

【0061】<実施例3>排ガス浄化触媒3の調製 10gのコロイダルシリカ(SiO2,30重量%)に
4モルの水酸化ナトリウム水溶液0.9mLと13.6
gのテトラエチルアンモニウムヒドロキシド水溶液(濃
度20%)を撹拌しながら加えた。その後、この混合ス
ラリーに、10mLの水に0.34gの硫酸アルミニウ
ムを溶解した水溶液を添加した。この水性原料混合物を
1時間攪拌した後、80℃の温度に保ちながら、水分が
平衡量になるまで撹拌、乾燥して原料組成物を得た。こ
の原料組成物の化学組成は無水換算で 1.80Na2O・Al23・50.1SiO2・9.3
TEA2O であった。
Example 3 Preparation of Exhaust Gas Purification Catalyst 3 10 mL of colloidal silica (SiO 2 , 30% by weight) was mixed with 0.9 mL of a 4 mol aqueous sodium hydroxide solution and 13.6.
g of an aqueous solution of tetraethylammonium hydroxide (concentration: 20%) was added with stirring. Thereafter, an aqueous solution in which 0.34 g of aluminum sulfate was dissolved in 10 mL of water was added to the mixed slurry. After stirring the aqueous raw material mixture for one hour, the raw material composition was obtained by stirring and drying until the water reached an equilibrium amount while maintaining the temperature at 80 ° C. The chemical composition of this raw material composition was 1.80 Na 2 O.Al 2 O 3 .50.1 SiO 2 .9.3 in terms of anhydrous content.
TEA 2 O.

【0062】この原料組成物を粉砕して、粉末状原料組
成物を得た。得られた粉末状組成物を液相の水と接触し
ないように密閉容器内の支持板上に置き、容器の底部に
水を入れ、180℃で120時間加熱した。生成物を純
水で洗浄した後に、80℃で乾燥した。生成物をCuK
αを線元に用いたX線回折で調べたところ、β型ゼオラ
イトであることを確認した。
This raw material composition was pulverized to obtain a powdery raw material composition. The obtained powdery composition was placed on a support plate in a closed container so as not to come in contact with water in a liquid phase, water was added to the bottom of the container, and the container was heated at 180 ° C. for 120 hours. After washing the product with pure water, it was dried at 80 ° C. The product is CuK
When α was examined by X-ray diffraction using a source, it was confirmed that the zeolite was β-type zeolite.

【0063】このβ型ゼオライトを、空気流通下、60
0℃で2時間焼成することにより、テトラエチルアンモ
ニウムヒドロキシドを除去した。その後、β型ゼオライ
ト:20gをNH4Cl:5.6gを純水180gに溶
解した塩化アンモニウム水溶液中に添加し、60℃で2
0時間のイオン交換操作を行った。このイオン交換操作
を2回繰り返した後、固液分離し、Clイオンが検出で
きなくなるまで純水で洗浄し、110℃で20時間乾燥
して、炭化水素吸着剤2を得た。炭化水素吸着剤2の化
学組成をICP発光分析により分析したところ、無水換
算で 0.01Na2O・Al23・51.1SiO2 の組成を有していた。
This β-type zeolite is subjected to 60
By baking at 0 ° C. for 2 hours, tetraethylammonium hydroxide was removed. After that, 20 g of β-type zeolite was added to an aqueous solution of ammonium chloride in which 5.6 g of NH 4 Cl was dissolved in 180 g of pure water.
An ion exchange operation for 0 hours was performed. After repeating this ion exchange operation twice, solid-liquid separation was performed, and the solid was washed with pure water until Cl ions could not be detected, and dried at 110 ° C. for 20 hours to obtain a hydrocarbon adsorbent 2. The chemical composition of hydrocarbon adsorbent 2 was analyzed by ICP emission analysis, it had a composition of 0.01Na 2 O · Al 2 O 3 · 51.1SiO 2 in anhydrous basis.

【0064】また、炭化水素吸着剤2の結晶性をX線粉
末回折(CuKα)で評価したところ、d=1.15及
び0.394の回折強度の和は、触媒学会参照触媒JR
C−Z−HM−20(3)のd=0.346の回折強度
に対して、124%であった。
When the crystallinity of the hydrocarbon adsorbent 2 was evaluated by X-ray powder diffraction (CuKα), the sum of the diffraction intensities at d = 1.15 and 0.394 was found to be the reference catalyst JR
It was 124% with respect to the diffraction intensity of d = 0.346 of CZ-HM-20 (3).

【0065】炭化水素吸着剤2:3gと窒素酸化物除去
触媒1:3gを乳鉢で混合し、プレス成形した後、粉砕
して12〜20メッシュに整粒し、排ガス浄化触媒3を
得た。
A hydrocarbon adsorbent 2: 3 g and a nitrogen oxide removal catalyst 1: 3 g were mixed in a mortar, press-molded, pulverized and sized to 12 to 20 mesh to obtain an exhaust gas purifying catalyst 3.

【0066】<実施例4>排ガス浄化触媒4の調製 実施例1で得られた炭化水素吸着剤1と窒素酸化物除去
触媒1の各々をプレス成形した後、粉砕して12〜20
メッシュに整粒し、それらの1ccを用いて、炭化水素
吸着剤1が反応ガス入口側、窒素酸化物除去触媒1が反
応ガス出口側になるように常圧固定床流通式反応管に配
置し、排ガス浄化触媒4とした。
Example 4 Preparation of Exhaust Gas Purifying Catalyst 4 Each of the hydrocarbon adsorbent 1 and the nitrogen oxide removing catalyst 1 obtained in Example 1 was press-molded and then pulverized to 12 to 20.
Using a 1 cc portion of the sized mesh, the hydrocarbon adsorbent 1 is placed in a reaction tube at normal pressure and the catalyst 1 for removing nitrogen oxides is placed in a reaction tube at normal pressure so as to be on the reaction gas inlet side. And an exhaust gas purifying catalyst 4.

【0067】<比較例1>比較触媒1の調製 β型ゼオライトの代わりに、SiO2/Al23モル比
が26の東ソー製モルデナイト(商品名:HSZ−66
0HOA)を用いたこと以外は、実施例2と同様な操作
を行って、比較触媒1を得た。
<Comparative Example 1> Preparation of Comparative Catalyst 1 Instead of β-type zeolite, a mordenite manufactured by Tosoh (trade name: HSZ-66) having a SiO 2 / Al 2 O 3 molar ratio of 26 was used.
Comparative catalyst 1 was obtained by performing the same operation as in Example 2 except that 0HOA) was used.

【0068】<比較例2>比較触媒2の調製 β型ゼオライトの代わりに、SiO2/Al23モル比
が29の東ソー製Y型ゼオライト(商品名:HSZ−3
70HOA)を用いたこと以外は、実施例2と同様な操
作を行って、比較触媒2を得た。
Comparative Example 2 Preparation of Comparative Catalyst 2 Instead of β-type zeolite, Tosoh Y-type zeolite having a SiO 2 / Al 2 O 3 molar ratio of 29 (trade name: HSZ-3)
Comparative catalyst 2 was obtained in the same manner as in Example 2, except that 70HOA) was used.

【0069】<比較例3>比較触媒3の調製 β型ゼオライトの代わりに、SiO2/Al23モル比
が2100の東ソー製ZSM−5(商品名:HSZ−8
90HOA)を用いたこと以外は、実施例2と同様な操
作を行って、比較触媒3を得た。
<Comparative Example 3> Preparation of Comparative Catalyst 3 Instead of β-type zeolite, ZSM-5 (trade name: HSZ-8, manufactured by Tosoh Corporation) having a SiO 2 / Al 2 O 3 molar ratio of 2100 was used.
Comparative catalyst 3 was obtained by performing the same operation as in Example 2 except that 90HOA) was used.

【0070】<比較例4>比較触媒4の調製 実施例3における炭化水素吸着剤2と同様の原料を用い
て、 3.09Na2O・Al23・31SiO2・1.71T
EA2O・465H2O の組成の水性原料組成物を調製した。
<Comparative Example 4> Preparation of Comparative Catalyst 4 Using the same raw material as the hydrocarbon adsorbent 2 in Example 3, 3.09Na 2 O.Al 2 O 3 .31SiO 2 .1.71T
An aqueous raw material composition having a composition of EA 2 O · 465H 2 O was prepared.

【0071】この水性原料スラリー;600mLを容積
1Lのオートクレーブに入れ、水性原料の1重量%のβ
型ゼオライトを種晶として添加した後に、撹拌しながら
150℃で72時間の水熱合成行った。生成物を純水で
洗浄し、乾燥した後、CuKαを線元に用いたX線粉末
回折で調べたところ、β型ゼオライトであることを確認
した。
600 mL of this aqueous raw material slurry was placed in an autoclave having a volume of 1 L, and β of 1% by weight of the aqueous raw material was added.
After adding the zeolite as a seed crystal, hydrothermal synthesis was performed at 150 ° C. for 72 hours with stirring. The product was washed with pure water and dried, and then examined by X-ray powder diffraction using CuKα as a source. As a result, it was confirmed that the product was β-type zeolite.

【0072】得られたβ型ゼオライトを、実施例3と同
様な空気流通下での焼成、塩化アンモニウム水溶液中で
のイオン交換を行い、純水洗浄、乾燥し、比較吸着剤1
を得た。比較吸着剤1の化学組成をICP発光分析によ
り分析したところ、無水換算の酸化物ベースで 0.01Na2O・Al23・21.4SiO2 の組成を有していた。また、比較吸着剤1の結晶性をX
線粉末回折(CuKα)で評価したところ、比較吸着剤
1のd=1.15及び0.397の回折強度の和は、触
媒学会参照触媒JRC−Z−HM−20(3)のd=
0.346の回折強度に対して、87%であった。
The obtained β-zeolite was calcined in the same air flow as in Example 3, ion-exchanged in an ammonium chloride aqueous solution, washed with pure water, dried, and dried.
I got The chemical composition of comparative adsorbent 1 was analyzed by ICP emission analysis, it had a composition of 0.01Na 2 O · Al 2 O 3 · 21.4SiO 2 oxide-based anhydrous basis. Further, the crystallinity of the comparative adsorbent 1 is expressed as X
When evaluated by linear powder diffraction (CuKα), the sum of the diffraction intensities of d = 1.15 and 0.397 of the comparative adsorbent 1 was calculated as d = of the reference catalyst JRC-Z-HM-20 (3) of the Catalyst Society of Japan.
For a diffraction intensity of 0.346, it was 87%.

【0073】炭化水素吸着剤1の代わりに、比較吸着剤
1を用いたこと以外は実施例2と同様にして、比較触媒
4を得た。
A comparative catalyst 4 was obtained in the same manner as in Example 2 except that the comparative adsorbent 1 was used instead of the hydrocarbon adsorbent 1.

【0074】<比較例5>比較触媒5の調製 実施例1で得られた窒素酸化物除去触媒1をプレス成形
した後、粉砕して12〜20メッシュに整粒し、比較触
媒5とした。
<Comparative Example 5> Preparation of Comparative Catalyst 5 The catalyst 1 for removing nitrogen oxides obtained in Example 1 was press-molded, crushed and sized to 12 to 20 mesh to obtain Comparative Catalyst 5.

【0075】<比較例6>比較触媒6の調製 SiO2/Al23モル比が26の東ソー製β型ゼオラ
イト(商品名:HSZ−930NHA)を実施例1と同
様な焼成、塩化アンモニウム水溶液中でのイオン交換を
行って、アンモニウム交換β型ゼオライトを得た。その
アンモニウム交換β型ゼオライト:10gをテトラアン
ミンジクロロ白金:0.29gを含む100mL水溶液
中に添加した後、アンモニア水によりpH=7に調整
し、30℃で2時間撹拌した後、濾過、洗浄を行い、更
に110℃で20時間乾燥させた。その後、空気流通
下、500℃で1時間焼成してPt含有β型ゼオライト
を得た。化学組成分析からPt含有量は1.7重量%で
あった。また、Pt含有β型ゼオライトをX線粉末回折
(CuKα)で評価したところ、Scherrerの式
より算出したPt粒子の平均粒径は9nmであった。
Comparative Example 6 Preparation of Comparative Catalyst 6 β-zeolite (trade name: HSZ-930NHA) manufactured by Tosoh having a SiO 2 / Al 2 O 3 molar ratio of 26 was calcined in the same manner as in Example 1, and an aqueous ammonium chloride solution was used. By performing ion exchange in the solution, ammonium-exchanged β-type zeolite was obtained. After adding 10 g of the ammonium-exchanged β-type zeolite to a 100 mL aqueous solution containing 0.29 g of tetraamminedichloroplatinum, adjusting the pH to 7 with aqueous ammonia, stirring at 30 ° C. for 2 hours, and performing filtration and washing. And further dried at 110 ° C. for 20 hours. Thereafter, the mixture was calcined at 500 ° C. for 1 hour under a flow of air to obtain a Pt-containing β-type zeolite. From the chemical composition analysis, the Pt content was 1.7% by weight. When the Pt-containing β-zeolite was evaluated by X-ray powder diffraction (CuKα), the average particle size of the Pt particles calculated from the Scherrer's formula was 9 nm.

【0076】そのPt含有β型ゼオライトをプレス成形
した後、粉砕して12〜20メッシュに整粒し、比較触
媒6とした。
After press-molding the Pt-containing β-type zeolite, it was pulverized and sized to 12 to 20 mesh to obtain Comparative Catalyst 6.

【0077】<触媒活性試験>排ガス浄化触媒1〜4と
比較触媒1〜6の各触媒2ccを常圧固定床流通式反応
管に充填し、評価を行った。ディーゼルエンジンの排ガ
スを模擬した表2の組成のガスを4L/minで流通さ
せ、550℃で30分間前処理した。その後、100℃
に降温し1時間保持した後、500℃まで10℃/mi
nで昇温しながら脱硝活性を測定した。この時の各温度
でのNOx除去率を表3に示した。NOx除去率は次式
で表される。
<Catalyst Activity Test> 2 cc of each of the exhaust gas purifying catalysts 1 to 4 and the comparative catalysts 1 to 6 were filled in a normal-pressure fixed-bed flow-type reaction tube and evaluated. A gas having the composition shown in Table 2 simulating exhaust gas from a diesel engine was flowed at 4 L / min and pretreated at 550 ° C. for 30 minutes. Then 100 ° C
To 500 ° C, 10 ° C / mi
The denitration activity was measured while raising the temperature at n. Table 3 shows the NOx removal rate at each temperature at this time. The NOx removal rate is expressed by the following equation.

【0078】XNOx={([NOx]in−[NO
x]out)/[NOx]in}×100 XNOx :NOx除去率 [NOx]in :入口ガスのNOx濃度 [NOx]out:出口ガスのNOx濃度
[0078] X NOx = {([NOx] in - [NO
x] out ) / [NOx] in } × 100 X NOx : NOx removal rate [NOx] in : NOx concentration of inlet gas [NOx] out : NOx concentration of outlet gas

【0079】[0079]

【表2】 [Table 2]

【0080】[0080]

【表3】 [Table 3]

【0081】<触媒耐久試験>排ガス浄化触媒1〜4及
び比較触媒1〜6について耐久試験を行った。耐久処理
は、各触媒2ccを常圧固定床流通式反応管に充填し、
600℃で50時間、SO2=25ppm,H2O=10
vol%を含む空気を200mL/minで流通させて
処理した。耐久処理を施した各触媒は<触媒活性試験>
と同様な条件でNOx除去率を測定した。この時の各温
度でのNOx除去率を表4に示した。
<Catalyst endurance test> Endurance tests were performed on the exhaust gas purifying catalysts 1 to 4 and the comparative catalysts 1 to 6. The endurance treatment is as follows: 2 cc of each catalyst is filled into a normal pressure fixed bed flow type reaction tube,
SO 2 = 25 ppm, H 2 O = 10 at 600 ° C. for 50 hours
Air containing vol% was processed by flowing at 200 mL / min. Each of the catalysts that have been subjected to the durability treatment is <catalytic activity test>
The NOx removal rate was measured under the same conditions as described above. Table 4 shows the NOx removal ratio at each temperature at this time.

【0082】[0082]

【表4】 [Table 4]

【0083】表3及び表4から明らかなように、本発明
の排ガス浄化触媒は窒素酸化物の除去活性が高く、更に
触媒が高温に晒された後でも窒素酸化物の除去活性が高
い。即ち本発明の触媒を用いることにより、排ガスから
効率よく窒素酸化物を除去することができる。
As is clear from Tables 3 and 4, the exhaust gas purifying catalyst of the present invention has a high activity of removing nitrogen oxides, and has a high activity of removing nitrogen oxides even after the catalyst is exposed to high temperatures. That is, by using the catalyst of the present invention, nitrogen oxides can be efficiently removed from exhaust gas.

【0084】<実施例5>炭化水素吸着剤3の調製 実施例3と同様の原料を用いて水性原料混合物を調製
し、続いて80℃で撹拌、乾燥、粉砕して、 5.00Na2O・Al23・100SiO2・18.5
TEA2O の組成の粉末状原料組成物を得た。
<Example 5> Preparation of hydrocarbon adsorbent 3 An aqueous raw material mixture was prepared using the same raw materials as in Example 3, followed by stirring, drying and pulverization at 80 ° C to give 5.00 Na 2 O.・ Al 2 O 3・ 100SiO 2・ 18.5
A powdered raw material composition having a composition of TEA 2 O was obtained.

【0085】これを実施例3と同等な方法で180℃で
72時間加熱した。生成物を純水で洗浄、乾燥した後、
CuKαを用いたX線回折で調べたところ、β型ゼオラ
イトであることを確認した。
This was heated at 180 ° C. for 72 hours in the same manner as in Example 3. After washing the product with pure water and drying,
When examined by X-ray diffraction using CuKα, it was confirmed to be β-type zeolite.

【0086】この得られたβ型ゼオライトを、実施例3
と同様な空気流通下での焼成、塩化アンモニウム水溶液
中でのイオン交換を行い、純水洗浄、乾燥し、炭化水素
吸着剤3を得た。炭化水素吸着剤3の化学組成をICP
発光分析により分析したところ、無水換算で 0.01Na2O・Al23・84.2SiO2 の組成を有していた。
The obtained β-zeolite was used in Example 3
In the same manner as described above, calcination was performed in an air flow, ion exchange was performed in an ammonium chloride aqueous solution, and the resultant was washed with pure water and dried to obtain a hydrocarbon adsorbent 3. ICP for chemical composition of hydrocarbon adsorbent 3
Was analyzed by emission spectroscopy, it had a composition of 0.01Na 2 O · Al 2 O 3 · 84.2SiO 2 in anhydrous basis.

【0087】炭化水素吸着剤3の結晶性をX線回折(C
uKα)で評価したところ、炭化水素吸着剤3のd=
1.14及び0.393の回折強度の和は、触媒学会参
照触媒JRC−Z−HM−20(3)のd=0.346
の回折強度に対して99%であった。
The crystallinity of the hydrocarbon adsorbent 3 was measured by X-ray diffraction (C
uKα), the d =
The sum of the diffraction intensities of 1.14 and 0.393 is d = 0.346 of the reference catalyst JRC-Z-HM-20 (3) of the Catalysis Society of Japan.
Was 99% of the diffraction intensity.

【0088】<実施例6>炭化水素吸着剤4の調製 実施例3と同様の原料を用いて水性原料混合物を調製
し、続いて80℃で撹拌、乾燥、粉砕して、 12.9Na2O・Al23・400SiO2・75.8
TEA2O の組成の粉末状原料組成物を得た。
<Example 6> Preparation of hydrocarbon adsorbent 4 An aqueous raw material mixture was prepared using the same raw materials as in Example 3, followed by stirring, drying and pulverizing at 80 ° C to obtain 12.9 Na 2 O.・ Al 2 O 3・ 400SiO 2・ 75.8
A powdered raw material composition having a composition of TEA 2 O was obtained.

【0089】これを実施例3と同等な方法で180℃で
72時間加熱した。生成物を純水で洗浄、乾燥した後、
CuKαを用いたX線回折で調べたところ、β型ゼオラ
イトであることを確認した。
This was heated at 180 ° C. for 72 hours in the same manner as in Example 3. After washing the product with pure water and drying,
When examined by X-ray diffraction using CuKα, it was confirmed to be β-type zeolite.

【0090】この得られたβ型ゼオライトを、実施例3
と同様な空気流通下での焼成、塩化アンモニウム水溶液
中でのイオン交換を行い、純水洗浄、乾燥し、炭化水素
吸着剤4を得た。炭化水素吸着剤4の化学組成をICP
発光分析により分析したところ、無水換算で 0.01Na2O・Al23・204SiO2 の組成を有していた。
The obtained β-type zeolite was used in Example 3
In the same manner as described above, calcination was performed in an air flow, ion exchange was performed in an ammonium chloride aqueous solution, and the resultant was washed with pure water and dried to obtain a hydrocarbon adsorbent 4. ICP for chemical composition of hydrocarbon adsorbent 4
Was analyzed by emission spectroscopy, it had a composition of 0.01Na 2 O · Al 2 O 3 · 204SiO 2 in anhydrous basis.

【0091】炭化水素吸着剤4の結晶性をX線回折(C
uKα)で評価したところ、炭化水素吸着剤4のd=
1.14及び0.395の回折強度の和は、触媒学会参
照触媒JRC−Z−HM−20(3)のd=0.346
の回折強度に対して92%であった。
The crystallinity of the hydrocarbon adsorbent 4 was determined by X-ray diffraction (C
uKα), the d =
The sum of the diffraction intensities of 1.14 and 0.395 is d = 0.346 of the reference catalyst JRC-Z-HM-20 (3) of the Catalysis Society of Japan.
Was 92% of the diffraction intensity.

【0092】<実施例7>炭化水素吸着剤5の調製 炭化水素吸着剤1:10gを、酢酸銅・1水和物:1.
20gを純水100gに溶解した酢酸銅水溶液に添加
し、30℃で20時間のイオン交換操作を行った。その
後固液分離し、純水で洗浄し、110℃で20時間乾燥
して、炭化水素吸着剤5を得た。炭化水素吸着剤5の化
学組成をICP発光分析により分析したところ、無水換
算で 0.48Cu・Al23・26SiO2 の組成を有しており、Cuの含有量は1.8重量%であ
った。炭化水素吸着剤5の結晶性をX線回折(CuK
α)で評価したところ、炭化水素吸着剤5のd=1.1
5及び0.396の回折強度の和は、触媒学会参照触媒
JRC−Z−HM−20(3)のd=0.346の回折
強度に対して、95%であった。
<Example 7> Preparation of hydrocarbon adsorbent 5 1:10 g of hydrocarbon adsorbent was added to copper acetate monohydrate: 1.
20 g was added to an aqueous solution of copper acetate dissolved in 100 g of pure water, and an ion exchange operation was performed at 30 ° C. for 20 hours. Thereafter, the mixture was separated into solid and liquid, washed with pure water, and dried at 110 ° C. for 20 hours to obtain a hydrocarbon adsorbent 5. When the chemical composition of the hydrocarbon adsorbent 5 was analyzed by ICP emission spectroscopy, it had a composition of 0.48 Cu · Al 2 O 3 · 26SiO 2 in terms of anhydrous, and the Cu content was 1.8% by weight. there were. The crystallinity of the hydrocarbon adsorbent 5 was measured by X-ray diffraction (CuK
α), d = 1.1 of the hydrocarbon adsorbent 5
The sum of the diffraction intensities of 5 and 0.396 was 95% with respect to the diffraction intensity of d = 0.346 of the reference catalyst JRC-Z-HM-20 (3) of the Catalysis Society of Japan.

【0093】<実施例8>炭化水素吸着剤6の調製 炭化水素吸着剤2:10gを用いて、実施例7と同様の
イオン交換操作を行って、Cuを含有させ、炭化水素吸
着剤6を得た。炭化水素吸着剤6の化学組成をICP発
光分析により分析したところ、無水換算で 0.95Cu・Al23・51.1SiO2 の組成を有しており、Cuの含有量は1.9重量%であ
った。炭化水素吸着剤6の結晶性をX線回折(CuK
α)で評価したところ、炭化水素吸着剤6のd=1.1
5及び0.394の回折強度の和は、触媒学会参照触媒
JRC−Z−HM−20(3)のd=0.346の回折
強度に対して、120%であった。
<Example 8> Preparation of hydrocarbon adsorbent 6 The same ion exchange operation as in Example 7 was carried out using 2:10 g of hydrocarbon adsorbent to contain Cu, and Obtained. The chemical composition of hydrocarbon adsorbent 6 was analyzed by ICP emission analysis, it had a composition of 0.95Cu · Al 2 O 3 · 51.1SiO 2 in anhydrous basis, the content of Cu is 1.9 wt %Met. X-ray diffraction (CuK
α), d = 1.1 of the hydrocarbon adsorbent 6
The sum of the diffraction intensities of 5 and 0.394 was 120% with respect to the diffraction intensity of d = 0.346 of the reference catalyst JRC-Z-HM-20 (3) of the Catalysis Society of Japan.

【0094】<実施例9>炭化水素吸着剤7の調製 炭化水素吸着剤1:10gを、酢酸銅・1水和物:3.
0gを100gの純水に溶解した酢酸銅水溶液中に添加
し、直ちに所定量の7%−アンモニウム水溶液を加えて
pHを10.5に調整したこと以外は、実施例7と同様
の操作を行って、炭化水素吸着剤7を得た。炭化水素吸
着剤7の化学組成をICP発光分析により分析したとこ
ろ、無水換算で 2.05Cu・Al23・26SiO2 の組成を有しており、Cuの含有量は7.2重量%であ
った。炭化水素吸着剤7の結晶性をX線回折(CuK
α)で評価したところ、炭化水素吸着剤7のd=1.1
5及び0.396の回折強度の和は、触媒学会参照触媒
JRC−Z−HM−20(3)のd=0.346の回折
強度に対して、94%であった。
<Example 9> Preparation of hydrocarbon adsorbent 7: 1:10 g of the hydrocarbon adsorbent was added to copper acetate monohydrate: 3.
The same operation as in Example 7 was performed except that 0 g was added to an aqueous solution of copper acetate dissolved in 100 g of pure water, and a predetermined amount of a 7% -ammonium aqueous solution was immediately added to adjust the pH to 10.5. Thus, a hydrocarbon adsorbent 7 was obtained. The chemical composition of hydrocarbon adsorbent 7 was analyzed by ICP emission analysis, it had a composition of 2.05Cu · Al 2 O 3 · 26SiO 2 in anhydrous basis, the content of Cu is 7.2 wt% there were. The crystallinity of the hydrocarbon adsorbent 7 was measured by X-ray diffraction (CuK
α), d = 1.1 of the hydrocarbon adsorbent 7
The sum of the diffraction intensities of 5 and 0.396 was 94% with respect to the diffraction intensity of d = 0.346 of the reference catalyst JRC-Z-HM-20 (3) of the Catalysis Society of Japan.

【0095】<実施例10>炭化水素吸着剤8の調製 炭化水素吸着剤1:10gを、硝酸銀:0.84gを1
00gの純水に溶解した硝酸銀水溶液中に添加したこと
以外は、実施例7と同様の操作を行って、炭化水素吸着
剤8を得た。炭化水素吸着剤8の化学組成をICP発光
分析により分析したところ、無水換算で 0.34Ag・Al23・26SiO2 の組成を有しており、Agの含有量は2.2重量%であ
った。炭化水素吸着剤8の結晶性をX線回折(CuK
α)で評価したところ、炭化水素吸着剤8のd=1.1
5及び0.396の回折強度の和は、触媒学会参照触媒
JRC−Z−HM−20(3)のd=0.346の回折
強度に対して、93%であった。
<Example 10> Preparation of hydrocarbon adsorbent 8 1:10 g of hydrocarbon adsorbent and 0.84 g of silver nitrate in 1
A hydrocarbon adsorbent 8 was obtained in the same manner as in Example 7, except that the mixture was added to an aqueous silver nitrate solution dissolved in 00 g of pure water. The chemical composition of hydrocarbon adsorbent 8 was analyzed by ICP emission analysis, it had a composition of 0.34Ag · Al 2 O 3 · 26SiO 2 in anhydrous basis, the content of Ag is 2.2 wt% there were. The crystallinity of the hydrocarbon adsorbent 8 was determined by X-ray diffraction (CuK
α), d = 1.1 of the hydrocarbon adsorbent 8
The sum of the diffraction intensities of 5 and 0.396 was 93% with respect to the diffraction intensity of d = 0.346 of the reference catalyst JRC-Z-HM-20 (3) of the Catalysis Society of Japan.

【0096】<実施例11>炭化水素吸着剤9の調製 炭化水素吸着剤1:10gを、硝酸銀:4.09gを1
00gの純水に溶解した硝酸銀水溶液中に添加したこと
以外は、実施例7と同様の操作を行って、炭化水素吸着
剤9を得た。炭化水素吸着剤9の化学組成をICP発光
分析により分析したところ、無水換算で 1.48Ag・Al23・26SiO2 の組成を有しており、Agの含有量は8.4重量%であ
った。炭化水素吸着剤9の結晶性をX線回折(CuK
α)で評価したところ、炭化水素吸着剤9のd=1.1
5及び0.396の回折強度の和は、触媒学会参照触媒
JRC−Z−HM−20(3)のd=0.346の回折
強度に対して、91%であった。
<Example 11> Preparation of hydrocarbon adsorbent 9 1:10 g of hydrocarbon adsorbent and 4.09 g of silver nitrate in 1
A hydrocarbon adsorbent 9 was obtained in the same manner as in Example 7, except that the mixture was added to an aqueous silver nitrate solution dissolved in 00 g of pure water. The chemical composition of hydrocarbon adsorbent 9 was analyzed by an ICP emission analysis, it had a composition of 1.48Ag · Al 2 O 3 · 26SiO 2 in anhydrous basis, the content of Ag is 8.4 wt% there were. The crystallinity of the hydrocarbon adsorbent 9 was measured by X-ray diffraction (CuK
α), d = 1.1 of the hydrocarbon adsorbent 9
The sum of the diffraction intensities of 5 and 0.396 was 91% with respect to the diffraction intensity of d = 0.346 of the reference catalyst JRC-Z-HM-20 (3) of the Catalysis Society of Japan.

【0097】<実施例12>炭化水素吸着剤10の調製 炭化水素吸着剤1:10gを、酢酸銅:1.20gと硝
酸銀:0.84gを100gの純水に溶解した酢酸銅と
硝酸銀の混合水溶液中に添加したこと以外は、実施例7
と同様の操作を行って、炭化水素吸着剤10を得た。炭
化水素吸着剤10の化学組成をICP発光分析により分
析したところ、無水換算で 0.35Cu・0.31Ag・Al23・26SiO2 の組成を有しており、Cu及びAgの含有量はそれぞれ
1.3及び1.9重量%であった。炭化水素吸着剤10
の結晶性をX線回折(CuKα)で評価したところ、炭
化水素吸着剤10のd=1.15及び0.396の回折
強度の和は、触媒学会参照触媒JRC−Z−HM−20
(3)のd=0.346の回折強度に対して、92%で
あった。
<Example 12> Preparation of hydrocarbon adsorbent 10 A mixture of copper acetate and silver nitrate in which 1:10 g of a hydrocarbon adsorbent was dissolved in 1.20 g of copper acetate and 0.84 g of silver nitrate in 100 g of pure water. Example 7 except that it was added to the aqueous solution.
The same operation as described above was performed to obtain a hydrocarbon adsorbent 10. When the chemical composition of the hydrocarbon adsorbent 10 was analyzed by ICP emission spectroscopy, it had a composition of 0.35Cu · 0.31Ag · Al 2 O 3 · 26SiO 2 in anhydrous conversion, and the content of Cu and Ag was They were 1.3 and 1.9% by weight, respectively. Hydrocarbon adsorbent 10
Was evaluated by X-ray diffraction (CuKα). The sum of the diffraction intensities of d = 1.15 and 0.396 of the hydrocarbon adsorbent 10 was found to be the reference catalyst JRC-Z-HM-20 of the Catalysis Society of Japan.
It was 92% with respect to the diffraction intensity of d = 0.346 of (3).

【0098】<比較例7>比較吸着剤2の調製 SiO2/Al23モル比が224の東ソー製のモルデ
ナイト構造のゼオライト(商品名:HSZ−690HO
A)40gを、NH4Cl:8.4gを純水400gに
溶解した塩化アンモニウム水溶液中に添加し、60℃で
20時間のイオン交換操作を行った。このイオン交換操
作を2回繰り返した後、固液分離し、Clイオンが検出
できなくなるまで純水で洗浄し、110℃で20時間乾
燥して、比較吸着剤2を得た。
Comparative Example 7 Preparation of Comparative Adsorbent 2 Zeolite having a mordenite structure (trade name: HSZ-690HO, manufactured by Tosoh Corporation) having a SiO 2 / Al 2 O 3 molar ratio of 224
A) 40 g was added to an ammonium chloride aqueous solution in which 8.4 g of NH 4 Cl was dissolved in 400 g of pure water, and an ion exchange operation was performed at 60 ° C. for 20 hours. After this ion exchange operation was repeated twice, solid-liquid separation was performed, and the resultant was washed with pure water until Cl ions could not be detected, and dried at 110 ° C. for 20 hours to obtain Comparative Adsorbent 2.

【0099】<比較例8>比較吸着剤3の調製 SiO2/Al23モル比が640の東ソー製のY型ゼ
オライト(商品名:HSZ−390HOA)40gを、
NH4Cl:8.4gを純水400gに溶解した塩化ア
ンモニウム水溶液中に添加し、60℃で20時間のイオ
ン交換操作を行った。このイオン交換操作を2回繰り返
した後、固液分離し、Clイオンが検出できなくなるま
で純水で洗浄し、110℃で20時間乾燥して、比較吸
着剤3を得た。
Comparative Example 8 Preparation of Comparative Adsorbent 3 40 g of a Tosoh Y-type zeolite (trade name: HSZ-390HOA) having a SiO 2 / Al 2 O 3 molar ratio of 640 was prepared.
NH 4 Cl: 8.4 g was added to an aqueous solution of ammonium chloride dissolved in 400 g of pure water, and an ion exchange operation was performed at 60 ° C. for 20 hours. After repeating this ion exchange operation twice, solid-liquid separation was performed, and the resultant was washed with pure water until Cl ions could not be detected, and dried at 110 ° C. for 20 hours to obtain Comparative Adsorbent 3.

【0100】<比較例9>比較吸着剤4の調製 比較吸着剤1:10gを、酢酸銅:1.20gを100
gの純水に溶解した酢酸銅水溶液中に添加したしたこと
以外は、実施例7と同様の操作を行って、比較吸着剤4
を得た。比較吸着剤4の化学組成をICP発光分析によ
り分析したところ、無水換算で 0.37Cu・Al23・21.4SiO2 の組成を有しており、Cuの含有量は1.7重量%であ
った。比較吸着剤4の結晶性をX線回折(CuKα)で
評価したところ、比較吸着剤4のd=1.15及び0.
397の回折強度の和は、触媒学会参照触媒JRC−Z
−HM−20(3)のd=0.346の回折強度に対し
て85%であった。
Comparative Example 9 Preparation of Comparative Adsorbent 4 Comparative adsorbent 1/10 g and copper acetate 1.20 g were added in 100 parts.
g of pure water, and the same operation as in Example 7 was carried out except that it was added to an aqueous solution of copper acetate dissolved in pure water.
I got Comparing where the chemical composition of the adsorbent 4 was analyzed by ICP emission analysis, it had a composition of 0.37Cu · Al 2 O 3 · 21.4SiO 2 in anhydrous basis, the content of Cu is 1.7 wt% Met. When the crystallinity of the comparative adsorbent 4 was evaluated by X-ray diffraction (CuKα), d of the comparative adsorbent 4 was 1.15 and 0.1.
The sum of the diffraction intensities of 397 is based on the reference catalyst JRC-Z of the Catalysis Society of Japan.
It was 85% for the diffraction intensity of d = 0.346 of -HM-20 (3).

【0101】<比較例10>比較吸着剤5の調製 比較吸着剤1:10gを、硝酸銀:0.84gを100
gの純水に溶解した硝酸銀水溶液中に添加したしたこと
以外は、実施例7と同様の操作を行って、比較吸着剤5
を得た。比較吸着剤5の化学組成をICP発光分析によ
り分析したところ、無水換算で 0.3Ag・Al23・21.4SiO2 の組成を有しており、Agの含有量は2.3重量%であ
った。比較吸着剤5の結晶性をX線回折(CuKα)で
評価したところ、比較吸着剤5のd=1.15及び0.
396の回折強度の和は、触媒学会参照触媒JRC−Z
−HM−20(3)のd=0.346の回折強度に対し
て80%であった。
Comparative Example 10 Preparation of Comparative Adsorbent 5 Comparative adsorbent 1/10 g and silver nitrate 0.84 g 100
g of pure water, the same operation as in Example 7 was carried out, except that it was added to an aqueous solution of silver nitrate dissolved in pure water.
I got When the chemical composition of comparative adsorbent 5 was analyzed by ICP emission analysis, it had a composition of 0.3Ag · Al 2 O 3 · 21.4SiO 2 in anhydrous basis, the content of Ag is 2.3 wt% Met. When the crystallinity of the comparative adsorbent 5 was evaluated by X-ray diffraction (CuKα), d of the comparative adsorbent 5 was 1.15 and 0.1.
The sum of the diffraction intensities of 396 is based on the reference catalyst JRC-Z of the Catalysis Society of Japan.
It was 80% with respect to the diffraction intensity of d = 0.346 of -HM-20 (3).

【0102】<比較例11>比較吸着剤6の調製 SiO2/Al23モル比が24の東ソー製のZSM−
5型ゼオライト(商品名:HSZ−840NHA)40
gを、NH4Cl:8.4gを純水400gに溶解した
塩化アンモニウム水溶液中に添加し、60℃で20時間
のイオン交換操作を行った。このイオン交換操作を2回
繰り返した後、固液分離し、Clイオンが検出できなく
なるまで純水で洗浄し、110℃で20時間乾燥した。
これを10g用いたこと以外は、実施例7と同様の操作
を行って、Cuを含有させた比較吸着剤6を得た。比較
吸着剤6の化学組成をICP発光分析により分析したと
ころ、無水換算で 0.45Cu・Al23・24SiO2 の組成を有しており、Cuの含有量は1.8重量%であ
った。
Comparative Example 11 Preparation of Comparative Adsorbent 6 Tosoh ZSM- having a SiO 2 / Al 2 O 3 molar ratio of 24
Type 5 zeolite (trade name: HSZ-840NHA) 40
g was added to an ammonium chloride aqueous solution in which 8.4 g of NH 4 Cl was dissolved in 400 g of pure water, and ion exchange operation was performed at 60 ° C. for 20 hours. After repeating this ion exchange operation twice, solid-liquid separation was performed, and the resultant was washed with pure water until Cl ions could not be detected, and dried at 110 ° C. for 20 hours.
Except that 10 g of this was used, the same operation as in Example 7 was performed to obtain a comparative adsorbent 6 containing Cu. When the chemical composition of comparative adsorbent 6 was analyzed by ICP emission analysis, it had a composition of 0.45Cu · Al 2 O 3 · 24SiO 2 in anhydrous basis, the content of Cu is met 1.8 wt% Was.

【0103】<比較例12>比較吸着剤7の調製 SiO2/Al23モル比が26の東ソー製のモルデナ
イト構造のゼオライト(商品名:HSZ−660HO
A)40gを、NH4Cl:8.4gを純水400gに
溶解した塩化アンモニウム水溶液中に添加し、60℃で
20時間のイオン交換操作を行った。このイオン交換操
作を2回繰り返した後、固液分離し、Clイオンが検出
できなくなるまで純水で洗浄し、110℃で20時間乾
燥した。これを10g用いたこと以外は、実施例7と同
様の操作を行って、Cuを含有させた比較吸着剤7を得
た。比較吸着剤7の化学組成をICP発光分析により分
析したところ、無水換算で 0.40Cu・Al23・26SiO2 の組成を有しており、Cuの含有量は1.5重量%であ
った。
Comparative Example 12 Preparation of Comparative Adsorbent 7 A zeolite having a mordenite structure (trade name: HSZ-660HO, manufactured by Tosoh Corporation) having a molar ratio of SiO 2 / Al 2 O 3 of 26.
A) 40 g was added to an ammonium chloride aqueous solution in which 8.4 g of NH 4 Cl was dissolved in 400 g of pure water, and an ion exchange operation was performed at 60 ° C. for 20 hours. After repeating this ion exchange operation twice, solid-liquid separation was performed, and the resultant was washed with pure water until Cl ions could not be detected, and dried at 110 ° C. for 20 hours. A comparative adsorbent 7 containing Cu was obtained in the same manner as in Example 7, except that 10 g of this was used. When the chemical composition of comparative adsorbent 7 was analyzed by ICP emission analysis, it had a composition of 0.40Cu · Al 2 O 3 · 26SiO 2 in anhydrous basis, the content of Cu is met 1.5 wt% Was.

【0104】<比較例13>比較吸着剤8の調製 比較吸着剤3:10gを、酢酸銅・1水和物:0.5g
を純水50gに溶解した酢酸銅水溶液に添加し、減圧条
件下で含浸担持操作を行った。その後110℃で20時
間乾燥して、比較吸着剤8を得た。比較吸着剤8の化学
組成をICP発光分析により分析したところ、無水換算
で 9.8Cu・Al23・640SiO2 の組成を有しており、Cuの含有量は1.8重量%であ
った。
Comparative Example 13 Preparation of Comparative Adsorbent 8 Comparative adsorbent 3 was added to copper acetate monohydrate 0.5 g.
Was added to an aqueous solution of copper acetate dissolved in 50 g of pure water, and an impregnation-supporting operation was performed under reduced pressure. Then, it dried at 110 degreeC for 20 hours, and obtained comparative adsorbent 8. When the chemical composition of comparative adsorbent 8 was analyzed by ICP emission analysis, it had a composition of 9.8Cu · Al 2 O 3 · 640SiO 2 in anhydrous basis, the content of Cu is met 1.8 wt% Was.

【0105】<炭化水素の吸着除去試験>炭化水素吸着
剤1〜10及び比較吸着剤1〜8を加圧成型し、12〜
20メッシュに整粒した。整粒した吸着剤1cc(約
0.5g)を石英ガラス製の常圧固定床流通式反応管に
充填し、炭化水素の吸着実験に供した。前処理として、
空気を2L/min流通させながら、20℃/minの
昇温速度で500℃まで加熱し、500℃で1時間保持
した。100℃まで冷却し、N2ガスで完全に置換した
後に、表5の組成のモデル排ガスを100℃でガス流速
2L/minで吸着剤に吸着飽和に達するまで接触させ
た。この時の空間速度(体積基準)は120000hr
-1であった。モデル排ガス中の炭化水素の吸着剤への吸
着が飽和に達したのを確認し、再度N2ガスを吸着剤に
流通し、気相に残存する炭化水素を完全に除去した。続
いて、N2ガスを2L/minで流通させながら、吸着
剤を10℃/minで昇温し、吸着剤から脱離する炭化
水素を水素炎イオン検出器(FID)を備えた炭化水素
計により、連続的に定量分析し、炭化水素の吸着特性を
評価した。表6に炭化水素の吸着量及び脱離ピーク温度
を示す。
<Hydrocarbon Adsorption Removal Test> Hydrocarbon adsorbents 1 to 10 and comparative adsorbents 1 to 8 were molded under pressure, and
It was sized to 20 mesh. 1 cc (approximately 0.5 g) of the sized adsorbent was filled in a quartz glass atmospheric pressure fixed bed flow-type reaction tube, and subjected to a hydrocarbon adsorption experiment. As preprocessing,
While flowing air at 2 L / min, the mixture was heated to 500 ° C. at a rate of 20 ° C./min and kept at 500 ° C. for 1 hour. After cooling to 100 ° C. and completely replacing with N 2 gas, the model exhaust gas having the composition shown in Table 5 was brought into contact with the adsorbent at 100 ° C. at a gas flow rate of 2 L / min until the adsorption saturation was reached. The space velocity (volume basis) at this time is 120,000 hr
It was -1 . After confirming that the adsorption of hydrocarbons in the model exhaust gas to the adsorbent reached saturation, N 2 gas was passed through the adsorbent again to completely remove hydrocarbons remaining in the gas phase. Subsequently, while flowing N 2 gas at 2 L / min, the adsorbent is heated at a rate of 10 ° C./min, and the hydrocarbon desorbed from the adsorbent is measured by a hydrocarbon meter equipped with a flame ion detector (FID). , Quantitative analysis was performed continuously to evaluate the adsorption characteristics of hydrocarbons. Table 6 shows the adsorption amount and desorption peak temperature of hydrocarbons.

【0106】[0106]

【表5】 [Table 5]

【0107】[0107]

【表6】 [Table 6]

【0108】<吸着剤の耐久試験>炭化水素吸着剤1〜
10及び比較吸着剤1〜8を各々加圧成型後、粉砕して
12〜20メッシュに整粒した。整粒した各吸着剤3c
cを石英ガラス製の常圧固定床流通反応管に充填し、耐
久試験に供した。耐久試験は、AirガスにH2Oを体
積換算で10vol%となるように含有させた混合ガス
を流速300cc/minで吸着剤に流通しながら、6
00℃で50時間処理する条件で行った。
<Durability test of adsorbent> Hydrocarbon adsorbent 1
10 and comparative adsorbents 1 to 8 were each press-molded, pulverized and sized to 12 to 20 mesh. Each sized adsorbent 3c
c was filled in a quartz glass normal pressure fixed bed flow reaction tube and subjected to a durability test. The endurance test was carried out by flowing a mixed gas containing 10 vol% of H 2 O in Air gas at a flow rate of 300 cc / min through the adsorbent at a flow rate of 300 cc / min.
The test was performed under the condition of treating at 00 ° C. for 50 hours.

【0109】これら耐久処理を施した吸着剤を<炭化水
素の吸着除去試験>と同様な前処理、評価条件で炭化水
素の吸着特性を評価した。耐久試験後の炭化水素の吸着
特性を表7に示す。
The adsorbents subjected to these durability treatments were evaluated for hydrocarbon adsorption characteristics under the same pretreatment and evaluation conditions as in the <hydrocarbon adsorption removal test>. Table 7 shows the adsorption characteristics of hydrocarbons after the durability test.

【0110】[0110]

【表7】 [Table 7]

【0111】表6,7からも明らかなように、本発明の
炭化水素吸着剤はこれまでに提案されている吸着剤に比
して、炭化水素の吸着量が多い。また、本発明の吸着剤
は、炭化水素が脱離する温度が高く、炭化水素の吸着保
持力が強い。すなわち、三元触媒などに代表される排ガ
ス浄化触媒などが作動する温度域まで炭化水素を吸着せ
しめることができるため、効率的な排ガス浄化が可能と
なる。さらに本発明の吸着剤は、高温にさらされた後で
も炭化水素の吸着性能の変化が小さく、従来の吸着剤に
比べて耐久性が向上している。すなわち、炭化水素を効
率的に除去できる。
As is clear from Tables 6 and 7, the hydrocarbon adsorbent of the present invention has a larger amount of adsorbed hydrocarbons than the adsorbents proposed so far. Further, the adsorbent of the present invention has a high temperature at which hydrocarbons are desorbed, and has a strong ability to retain and retain hydrocarbons. That is, hydrocarbons can be adsorbed up to a temperature range in which an exhaust gas purifying catalyst represented by a three-way catalyst or the like operates, thereby enabling efficient exhaust gas purification. Further, the adsorbent of the present invention has a small change in hydrocarbon adsorption performance even after being exposed to a high temperature, and has improved durability as compared with the conventional adsorbent. That is, hydrocarbons can be efficiently removed.

【0112】[0112]

【発明の効果】本発明の吸着剤は、内燃機関などから排
出される炭化水素を効率的に吸着除去でき、かつ吸着剤
が高温にさらされた後でも炭化水素の吸着除去性能が高
い。また本発明の排ガス浄化触媒は、窒素酸化物除去活
性が高く、触媒が高温にさらされた後でも窒素酸化物の
除去活性が高い。
The adsorbent of the present invention can efficiently adsorb and remove hydrocarbons discharged from an internal combustion engine or the like, and has a high ability to adsorb and remove hydrocarbons even after the adsorbent is exposed to high temperatures. Further, the exhaust gas purifying catalyst of the present invention has a high nitrogen oxide removing activity, and has a high nitrogen oxide removing activity even after the catalyst is exposed to a high temperature.

【0113】[0113]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 23/40 F01N 3/24 E 23/42 3/28 301C C01B 39/46 B01D 53/34 B F01N 3/08 115 3/24 53/36 102A 3/28 301 104A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 23/40 F01N 3/24 E 23/42 3/28 301C C01B 39/46 B01D 53/34 B F01N 3/08 115 3 / 24 53/36 102A 3/28 301 104A

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】X線粉末回折の格子面間隔d=1.15±
0.03nmと0.397±0.01nmのX線回折強
度の和が触媒学会参照触媒JRC−Z−HM−20
(3)のd=0.346±0.01nmの回折強度に対
して90%以上であるか焼されたβ型ゼオライトから構
成されることを特徴とする、炭化水素吸着剤。
1. A lattice spacing d = 1.15 ± for X-ray powder diffraction.
The sum of the X-ray diffraction intensities of 0.03 nm and 0.397 ± 0.01 nm is the reference catalyst of the Catalysis Society of Japan JRC-Z-HM-20
(3) A hydrocarbon adsorbent comprising a calcined β-type zeolite having a diffraction intensity of 90% or more with respect to a diffraction intensity of d = 0.346 ± 0.01 nm.
【請求項2】化学組成が酸化物のモル比で表して SiO2/Al23=10〜1000 M2O/SiO2=0〜0.4 TEA2O/SiO2=0.1〜1.0 (ここでMはアルカリ金属、TEAはテトラエチルアン
モニウムを表す)であり、かつ50℃以上の温度で乾燥
させた粉末状原料組成物を、液相の水と接触させること
なく、但し80から200℃で自生する水蒸気と接触さ
せて製造されるβ型ゼオライトであることを特徴とす
る、請求項1に記載の炭化水素吸着剤。
2. The chemical composition is represented by the molar ratio of oxides: SiO 2 / Al 2 O 3 = 10-1000 M 2 O / SiO 2 = 0-0.4 TEA 2 O / SiO 2 = 0.1- 1.0 (where M represents an alkali metal and TEA represents tetraethylammonium) and dried at a temperature of 50 ° C. or higher without contacting the powdery raw material composition with liquid water, The hydrocarbon adsorbent according to claim 1, which is a β-type zeolite produced by contacting water vapor generated at a temperature of from 200 ° C to 200 ° C.
【請求項3】吸着除去される炭化水素が、炭素数7以上
の直鎖状パラフィン、炭素数7以上の直鎖状オレフィ
ン、及び/又は多環芳香族化合物であることを特徴とす
る、請求項1又は2に記載の炭化水素吸着剤。
3. The hydrocarbon to be adsorbed and removed is a linear paraffin having 7 or more carbon atoms, a linear olefin having 7 or more carbon atoms, and / or a polycyclic aromatic compound. Item 3. The hydrocarbon adsorbent according to Item 1 or 2.
【請求項4】吸着除去される炭化水素が、炭素数10か
ら18の直鎖状パラフィン、又は炭素数10から18の
直鎖状オレフィンであることを特徴とする、請求項1〜
3いずれかに記載の炭化水素吸着剤。
4. The hydrocarbon to be adsorbed and removed is a linear paraffin having 10 to 18 carbon atoms or a linear olefin having 10 to 18 carbon atoms.
3. The hydrocarbon adsorbent according to any one of 3.
【請求項5】β型ゼオライトに遷移金属を含有させたも
のであることを特徴とする請求項1〜4いずれかの項に
記載の炭化水素吸着剤。
5. The hydrocarbon adsorbent according to claim 1, wherein a transition metal is contained in the β-type zeolite.
【請求項6】遷移金属がCu及びAgから選ばれた1種
以上であることを特徴とする請求項5に記載の炭化水素
吸着剤。
6. The hydrocarbon adsorbent according to claim 5, wherein the transition metal is at least one selected from Cu and Ag.
【請求項7】請求項1〜6いずれかに記載の炭化水素吸
着剤を気相と接触させることを特徴とする、気相中の炭
化水素の吸着除去方法。
7. A method for adsorbing and removing hydrocarbons in a gaseous phase, comprising bringing the hydrocarbon adsorbent according to claim 1 into contact with a gaseous phase.
【請求項8】請求項1〜6いずれかに記載の炭化水素吸
着剤と、活性金属を多孔性担体に含有させた窒素酸化物
除去触媒から構成されることを特徴とする排ガス浄化触
媒。
8. An exhaust gas purifying catalyst comprising: the hydrocarbon adsorbent according to claim 1; and a nitrogen oxide removing catalyst containing an active metal in a porous carrier.
【請求項9】窒素酸化物除去触媒が、Pt,Pd,I
r,Rhの貴金属から選ばれる1種類以上の活性金属を
多孔性担体に含有させたものであり、かつその貴金属の
平均粒子径が10nm以上であることを特徴とする請求
項8に記載の排ガス浄化触媒。
9. The catalyst for removing nitrogen oxides is Pt, Pd, I
9. The exhaust gas according to claim 8, wherein the porous carrier contains at least one active metal selected from the precious metals r and Rh, and the precious metal has an average particle diameter of 10 nm or more. Purification catalyst.
【請求項10】請求項8又は9に記載の排ガス浄化触媒
を排ガスに接触させることを特徴とする排ガス浄化方
法。
10. An exhaust gas purifying method comprising contacting the exhaust gas purifying catalyst according to claim 8 with an exhaust gas.
JP15433798A 1997-07-02 1998-06-03 Hydrocarbon adsorbent and exhaust gas purification catalyst Expired - Lifetime JP3918305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15433798A JP3918305B2 (en) 1997-07-02 1998-06-03 Hydrocarbon adsorbent and exhaust gas purification catalyst

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP17730797 1997-07-02
JP17730897 1997-07-02
JP9-177308 1997-11-26
JP9-177307 1997-11-26
JP32428097 1997-11-26
JP9-324280 1997-11-26
JP15433798A JP3918305B2 (en) 1997-07-02 1998-06-03 Hydrocarbon adsorbent and exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH11216358A true JPH11216358A (en) 1999-08-10
JP3918305B2 JP3918305B2 (en) 2007-05-23

Family

ID=27473284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15433798A Expired - Lifetime JP3918305B2 (en) 1997-07-02 1998-06-03 Hydrocarbon adsorbent and exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3918305B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293368A (en) * 2000-04-13 2001-10-23 Tosoh Corp Hydrocarbon adsorbent and method for adsorbing and removing hydrocarbon
JP2002001109A (en) * 2000-06-26 2002-01-08 Mazda Motor Corp Gas component reducing material and hydrocarbon adsorbing material
JP2007523742A (en) * 2004-02-02 2007-08-23 カリフォルニア インスティテュート オブ テクノロジー Molecular sieves for improved hydrocarbon traps
JP2008000704A (en) * 2006-06-23 2008-01-10 Mitsubishi Chemicals Corp Hydrocarbon adsorbent and adsorbing method of hydrocarbon using this adsorbent
JP2008503431A (en) * 2004-06-25 2008-02-07 ポリメーリ エウローパ ソシエタ ペル アチオニ Catalyst and process for the production of alkylated aromatic hydrocarbons
WO2008038422A1 (en) * 2006-09-27 2008-04-03 Tosoh Corporation β-TYPE ZEOLITE FOR SCR CATALYST AND METHOD FOR CONVERTING NITROGEN OXIDE USING THE ZEOLITE
JP2010120008A (en) * 2008-11-21 2010-06-03 Hyundai Motor Co Ltd Diesel oxidation catalyst and exhaust system provided with the same
WO2012131917A1 (en) * 2011-03-29 2012-10-04 イビデン株式会社 Honeycomb structure and method for producing honeycomb structure
JP2017148764A (en) * 2016-02-26 2017-08-31 東洋紡株式会社 Aldehyde removing catalyst composition, manufacturing method therefor and a removing method of aldehyde gas
CN112439448A (en) * 2019-08-30 2021-03-05 大连海事大学 Copper-containing or iron-based SAPO molecular sieve SCR catalyst and preparation method and application thereof
JP2021509086A (en) * 2017-12-29 2021-03-18 ヒョンダイ モーター カンパニー Hydrocarbon adsorbent
CN114797958A (en) * 2022-04-03 2022-07-29 浙江大学 Long-term stable catalyst for eliminating ethylene at low temperature and preparation method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293368A (en) * 2000-04-13 2001-10-23 Tosoh Corp Hydrocarbon adsorbent and method for adsorbing and removing hydrocarbon
JP2002001109A (en) * 2000-06-26 2002-01-08 Mazda Motor Corp Gas component reducing material and hydrocarbon adsorbing material
JP4847876B2 (en) * 2004-02-02 2011-12-28 カリフォルニア インスティテュート オブ テクノロジー Molecular sieves for improved hydrocarbon traps
JP2007523742A (en) * 2004-02-02 2007-08-23 カリフォルニア インスティテュート オブ テクノロジー Molecular sieves for improved hydrocarbon traps
JP2008503431A (en) * 2004-06-25 2008-02-07 ポリメーリ エウローパ ソシエタ ペル アチオニ Catalyst and process for the production of alkylated aromatic hydrocarbons
JP2008000704A (en) * 2006-06-23 2008-01-10 Mitsubishi Chemicals Corp Hydrocarbon adsorbent and adsorbing method of hydrocarbon using this adsorbent
KR101286006B1 (en) * 2006-09-27 2013-07-15 도소 가부시키가이샤 β-TYPE ZEOLITE FOR SCR CATALYST AND METHOD FOR CONVERTING NITROGEN OXIDE USING THE ZEOLITE
US9061241B2 (en) 2006-09-27 2015-06-23 Tosoh Corporation β-Zeolite for SCR catalyst and method for purifying nitrogen oxides using same
JP2008081348A (en) * 2006-09-27 2008-04-10 Tosoh Corp Beta-type zeolite for scr catalyst and method for removing nitrogen oxide by using the same
WO2008038422A1 (en) * 2006-09-27 2008-04-03 Tosoh Corporation β-TYPE ZEOLITE FOR SCR CATALYST AND METHOD FOR CONVERTING NITROGEN OXIDE USING THE ZEOLITE
JP2010120008A (en) * 2008-11-21 2010-06-03 Hyundai Motor Co Ltd Diesel oxidation catalyst and exhaust system provided with the same
WO2012131917A1 (en) * 2011-03-29 2012-10-04 イビデン株式会社 Honeycomb structure and method for producing honeycomb structure
US8932532B2 (en) 2011-03-29 2015-01-13 Ibiden Co., Ltd. Honeycomb structure, method of manufacturing honeycomb structure, and exhaust gas converter
US8992847B1 (en) 2011-03-29 2015-03-31 Ibiden Co., Ltd. Honeycomb structure
JP5746061B2 (en) * 2011-03-29 2015-07-08 イビデン株式会社 Honeycomb structure and method for manufacturing honeycomb structure
JP2017148764A (en) * 2016-02-26 2017-08-31 東洋紡株式会社 Aldehyde removing catalyst composition, manufacturing method therefor and a removing method of aldehyde gas
JP2021509086A (en) * 2017-12-29 2021-03-18 ヒョンダイ モーター カンパニー Hydrocarbon adsorbent
CN112439448A (en) * 2019-08-30 2021-03-05 大连海事大学 Copper-containing or iron-based SAPO molecular sieve SCR catalyst and preparation method and application thereof
CN112439448B (en) * 2019-08-30 2023-11-03 大连海事大学 Copper-containing or iron-based SAPO molecular sieve SCR catalyst, and preparation method and application thereof
CN114797958A (en) * 2022-04-03 2022-07-29 浙江大学 Long-term stable catalyst for eliminating ethylene at low temperature and preparation method thereof

Also Published As

Publication number Publication date
JP3918305B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
EP0888815B1 (en) Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
RU2614411C2 (en) Zeolite catalyst including metal
JP6073298B2 (en) Platinum group (PGM) catalyst for treating exhaust gas
RU2634899C2 (en) Zeolite catalysts containing metals
KR101512263B1 (en) β-TYPE IRON SILICATE COMPOSITION AND METHOD FOR REDUCING NITROGEN OXIDES
US6074973A (en) Catalyzed hydrocarbon trap material and method of making the same
JP5261189B2 (en) Zeolite catalyst with improved NOx selective catalytic reduction efficiency
US6419890B1 (en) SOX tolerant NOX trap catalysts and methods of making and using the same
JP5169779B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
JP4957176B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
KR20180066053A (en) Molecular sieves SSZ-105, its synthesis and use
EP0888808B1 (en) Adsorbent for a hydrocarbon, and exhaust gas-purifying catalyst
JP3918305B2 (en) Hydrocarbon adsorbent and exhaust gas purification catalyst
JP5309936B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
JP2018079428A (en) Hydrocarbon adsorbent, and method of adsorbing and removing hydrocarbon
JP3975557B2 (en) Ethylene adsorption removal method
JPH08173761A (en) Method for removing nitrogen oxide
JP2021161019A (en) Composite material, nitrogen oxide adsorbent, nitrogen oxide adsorbing method, and nitrogen oxide removing device
JP2001293368A (en) Hydrocarbon adsorbent and method for adsorbing and removing hydrocarbon
JP3985301B2 (en) Exhaust gas purification catalyst and purification method using the same
JP5387269B2 (en) Hydrocarbon adsorbent in automobile exhaust gas comprising SUZ-4 zeolite and method for adsorbing and removing hydrocarbons
JP3044622B2 (en) Exhaust gas purification method
JP4352486B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
RU2194573C1 (en) Catalyst and method of removing nitrogen oxides from emission gases (options)
KR20240012454A (en) Synthesis of palladium-containing AFX zeolite catalyst for NOX adsorption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

EXPY Cancellation because of completion of term