JP2017148764A - Aldehyde removing catalyst composition, manufacturing method therefor and a removing method of aldehyde gas - Google Patents

Aldehyde removing catalyst composition, manufacturing method therefor and a removing method of aldehyde gas Download PDF

Info

Publication number
JP2017148764A
JP2017148764A JP2016035277A JP2016035277A JP2017148764A JP 2017148764 A JP2017148764 A JP 2017148764A JP 2016035277 A JP2016035277 A JP 2016035277A JP 2016035277 A JP2016035277 A JP 2016035277A JP 2017148764 A JP2017148764 A JP 2017148764A
Authority
JP
Japan
Prior art keywords
metal oxide
aldehyde
catalyst composition
removal
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016035277A
Other languages
Japanese (ja)
Inventor
有希 岡田
Yuki Okada
有希 岡田
小林 真申
Masanobu Kobayashi
真申 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2016035277A priority Critical patent/JP2017148764A/en
Publication of JP2017148764A publication Critical patent/JP2017148764A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a removing catalyst composition high in removing performance of aldehyde gas with the minute amount of noble metals in a low temperature range, a manufacturing method and a removing method.SOLUTION: The above problem is solved by using a catalyst composition synthesized by a physical mixing method and constituted by Pd and a metal oxide, contacting aldehyde gas with the same and decomposition removing them. The metal oxide is preferably contained at 5 to 95 mass% based on total mass of Pd and the metal oxide in the catalyst composition and further is preferably at least one kind of metal oxide selected from CoO, FeO, CeO, TaO, ZrO, FeO, NiO, CuO, FeO and MnO.SELECTED DRAWING: None

Description

本発明は、アルデヒド類除去触媒組成物とその製造方法およびアルデヒド類ガスの除去方法に関するものである。   The present invention relates to an aldehyde removal catalyst composition, a method for producing the same, and a method for removing aldehyde gas.

従来より、建物の室内や自動車の車内等におけるタバコ臭の除去を主目的として、空気清浄機や脱臭剤が広く用いられている。これらは、タバコ臭の主成分であるアセトアルデヒド、あるいは、シックハウスの原因物質であるホルムアルデヒド等の除去を目的とするものであり、多くの除去剤の検討がなされている。その中でも、活性炭は各種有機物質を吸着除去する材料として古くから知られているが、低分子で高極性の有機物(例えば、アセトアルデヒド、ホルムアルデヒド等)は十分吸着除去することができず、上述の用途に用いる場合は、活性炭にアミン類やアスコルビン酸等を担持させて吸着除去能を高めたものが用いられている。   Conventionally, air purifiers and deodorizing agents have been widely used mainly for the purpose of removing tobacco odors in the interior of buildings or in automobiles. These are intended to remove acetaldehyde, which is the main component of tobacco odor, or formaldehyde, which is a causative substance of sick house, and many removal agents have been studied. Among them, activated carbon has long been known as a material for adsorbing and removing various organic substances, but it cannot sufficiently adsorb and remove low-molecular and high-polarity organic substances (for example, acetaldehyde, formaldehyde, etc.). In the case of use in the present invention, an activated carbon having amines, ascorbic acid or the like supported thereon to enhance the adsorption removal ability is used.

このように、アミン類を担持させたものとしては、例えば、アニリンを用いたものや(特許文献1)、エタノール系アミン等を用いたものが開示されている(特許文献2)。   Thus, as what carried amines, the thing using aniline (patent document 1), the thing using ethanol system amine, etc. are disclosed, for example (patent document 2).

しかしながら、アミン類を担持させる技術は、担持アミン類の状態は不安定であることから、熱的および経時的な化学変化による失活が起こりやすく、長期にわたって満足すべき除去性能を発現することが困難であるという問題がある。また、アスコルビン酸においても、吸湿すると空気中で容易に酸化分解され、失活してしまい性能劣化が起こるという問題がある。   However, the technology for supporting amines is unstable in the state of the supported amines, and thus is easily deactivated due to thermal and chemical changes over time, and can exhibit satisfactory removal performance over a long period of time. There is a problem that it is difficult. In addition, ascorbic acid also has a problem that when it absorbs moisture, it is easily oxidized and decomposed in the air and deactivated, resulting in performance deterioration.

一方、アルデヒド類ガスの処理技術として、セリウム・コバルト・銅を含む複合酸化物や(特許文献3、特許文献4)、セリウム・マンガンを含む複合酸化物(特許文献5)などの酸化物を用いてアルデヒド類を分解する処理技術が知られている。しかしながら、これらは低温では活性が低く、100℃より高い温度をかけなければ、十分な除去性能を得られないという問題がある。   On the other hand, oxides such as composite oxides containing cerium / cobalt / copper (Patent Documents 3 and 4) and composite oxides containing cerium / manganese (Patent Document 5) are used as aldehyde gas treatment techniques. Processing techniques for decomposing aldehydes are known. However, these have low activity at low temperatures, and there is a problem that sufficient removal performance cannot be obtained unless a temperature higher than 100 ° C. is applied.

また、白金、パラジウム等の貴金属を触媒に用い、高温でアルデヒド類を燃焼する方法も知られている。しかしながら、この方法では、高い除去性能を得るために多量の貴金属量が必要であり、数千ppm以上のアルデヒド類を含む空気には有効であっても、微量のアルデヒド類を含む空気の処理には、処理コストが高くなって実用的ではない。   Also known is a method of burning aldehydes at a high temperature using a noble metal such as platinum or palladium as a catalyst. However, this method requires a large amount of noble metal to obtain high removal performance, and is effective for air containing several thousand ppm or more of aldehydes, but is effective for treating air containing a small amount of aldehydes. Is not practical due to high processing costs.

上述のとおり、低温領域において除去性能を有し、かつ微量の貴金属量で除去性能の高いアルデヒド類ガスの除去触媒は見当たらないのが現状である。ここで言う低温領域とは、100℃以下のことである。   As described above, there is currently no aldehyde gas removal catalyst having a removal performance in a low temperature region and a high removal performance with a small amount of noble metal. The low temperature region referred to here is 100 ° C. or lower.

特開昭56−53744号公報JP 56-53744 A 特開昭60−202735号公報JP-A-60-202735 特許第5414719号公報Japanese Patent No. 5414719 特許第5422320号公報Japanese Patent No. 5422320 特開2010−58074号公報JP 2010-58074 A

本発明は、低温領域において除去性能を有し、かつ微量の貴金属量でアルデヒド類ガスの除去性能が高い除去触媒と製造方法および除去方法を提供することを目的とする。   An object of the present invention is to provide a removal catalyst, a production method, and a removal method that have a removal performance in a low temperature region and have a high amount of removal of aldehyde gases with a small amount of noble metal.

本発明者らは上記の課題を解決するために、鋭意研究した結果、遂に本発明を完成するに到った。すなわち本発明は、以下の通りである。
1.Pdと金属酸化物を含有する触媒組成物であって、該触媒組成物中に金属酸化物をPdと金属酸化物との合計質量に対して5〜95質量%含有し、さらに該金属酸化物はCo、Fe、CeO、Ta、ZrO、Fe、NiO、CuO、FeO、及びMnからなる群より選ばれる少なくとも一種の金属酸化物であることを特徴とするアルデヒド類除去触媒組成物。
2.100℃以下の低温でアルデヒド類除去性能を有することを特徴とする、1.に記載のアルデヒド類除去触媒組成物。
3.前記Pdの粒子径が250nm以下であることを特徴とする1.または2.に記載のアルデヒド類除去触媒組成物。
4.前記アルデヒド類除去触媒組成物が、Pdと前記金属酸化物の他にアルミナ、ゼオライト、シリカ、及び活性炭からなる群より選ばれる少なくとも一種を含有することを特徴とする、1.〜3.のいずれかに記載のアルデヒド類除去触媒組成物。
5.Pdと前記金属酸化物とを物理混合する工程を含むことを特徴とする、1.〜4.のいずれかに記載のアルデヒド類除去触媒組成物の製造方法。
6.前記1.〜4.のいずれかに記載のアルデヒド類除去触媒組成物を用いて、100℃以下の温度によりアルデヒド類ガスを除去することを特徴とする、アルデヒド類ガスの除去方法。
As a result of intensive studies to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention is as follows.
1. A catalyst composition containing Pd and a metal oxide, wherein the catalyst composition contains 5 to 95% by mass of the metal oxide based on the total mass of Pd and the metal oxide, and the metal oxide Is at least one metal oxide selected from the group consisting of Co 3 O 4 , Fe 2 O 3 , CeO 2 , Ta 2 O 5 , ZrO 2 , Fe 3 O 4 , NiO, CuO, FeO, and Mn 3 O 4 A catalyst composition for removing aldehydes, which is characterized in that
2. It has a performance of removing aldehydes at a low temperature of 100 ° C. or lower. 2. The aldehyde removal catalyst composition described in 1.
3. The particle size of the Pd is 250 nm or less. Or 2. 2. The aldehyde removal catalyst composition described in 1.
4). The aldehyde removal catalyst composition contains at least one selected from the group consisting of alumina, zeolite, silica, and activated carbon in addition to Pd and the metal oxide. ~ 3. The aldehyde removal catalyst composition according to any one of the above.
5. Including a step of physically mixing Pd and the metal oxide. ~ 4. The manufacturing method of the aldehyde removal catalyst composition in any one of these.
6). 1 above. ~ 4. A method for removing aldehyde gas, wherein the aldehyde gas is removed at a temperature of 100 ° C. or lower using the aldehyde removal catalyst composition according to any one of the above.

本発明によるアルデヒド類除去触媒は、Pdと金属酸化物を含有する触媒からなり、触媒中に金属酸化物をPdと金属酸化物との合計質量に対して5〜95質量%含有し、さらに前記金属酸化物はCo、Fe、CeO、Ta、ZrO、Fe、NiO、CuO、FeO、Mnから選ばれる少なくとも一種の金属酸化物であるため、低温領域でも、微量の貴金属量でアルデヒド類ガスの除去性能が高いという利点を有する。 The aldehyde removal catalyst according to the present invention comprises a catalyst containing Pd and a metal oxide, the metal oxide is contained in the catalyst in an amount of 5 to 95% by mass based on the total mass of Pd and the metal oxide, and The metal oxide is at least one metal oxide selected from Co 3 O 4 , Fe 2 O 3 , CeO 2 , Ta 2 O 5 , ZrO 2 , Fe 3 O 4 , NiO, CuO, FeO, and Mn 3 O 4. Therefore, even in a low temperature region, there is an advantage that aldehyde gas removal performance is high with a small amount of noble metal.

実施例1の除去材サンプルのTEM画像である。2 is a TEM image of a removal material sample of Example 1. FIG. 実施例6の除去材サンプルのTEM画像である。10 is a TEM image of a removal material sample of Example 6. 実施例11の除去材サンプルのTEM画像である。10 is a TEM image of a removal material sample of Example 11. 実施例12の除去材サンプルのTEM画像である。It is a TEM image of the removal material sample of Example 12. 実施例13の除去材サンプルのTEM画像である。It is a TEM image of the removal material sample of Example 13. 実施例14の除去材サンプルのTEM画像である。It is a TEM image of the removal material sample of Example 14. 実施例15の除去材サンプルのTEM画像である。18 is a TEM image of a removal material sample of Example 15. 実施例16の除去材サンプルのTEM画像である。18 is a TEM image of a removal material sample of Example 16. 実施例17の除去材サンプルのTEM画像である。It is a TEM image of the removal material sample of Example 17. 実施例18の除去材サンプルのTEM画像である。18 is a TEM image of a removal material sample of Example 18.

以下、本発明を詳細に説明する。
本発明における、アルデヒド類除去触媒組成物は、Pdと金属酸化物から構成されている。金属酸化物は触媒中にPdと金属酸化物との合計質量に対して5〜95質量%含有し、さらにCo、Fe、CeO、Ta、ZrO、Fe、NiO、CuO、FeO、Mnから選ばれる少なくとも一種の金属酸化物を用いることが好ましい。そして、触媒の合成法はPdと金属酸化物とを物理混合する方法が好ましい。物理混合したPdと金属酸化物を含有する触媒をアルデヒド類除去触媒として使用することにより、低温領域でも、微量の貴金属量でアルデヒド類ガスの高い効率で除去できることを見出した。Pdと金属酸化物を含有するアルデヒド類除去触媒組成物が微量のPd量でもアルデヒド類ガスを高い効率で除去できる要因については、次のような3つの機構が推定される。
Hereinafter, the present invention will be described in detail.
In the present invention, the aldehyde removal catalyst composition is composed of Pd and a metal oxide. The metal oxide is contained in the catalyst in an amount of 5 to 95% by mass based on the total mass of Pd and the metal oxide, and further Co 3 O 4 , Fe 2 O 3 , CeO 2 , Ta 2 O 5 , ZrO 2 , Fe It is preferable to use at least one metal oxide selected from 3 O 4 , NiO, CuO, FeO, and Mn 3 O 4 . The catalyst synthesis method is preferably a method in which Pd and a metal oxide are physically mixed. It has been found that by using a catalyst containing physically mixed Pd and a metal oxide as an aldehyde removal catalyst, the aldehyde gas can be removed with high efficiency even with a small amount of noble metal even in a low temperature region. The following three mechanisms are presumed about the factor that the aldehyde removal catalyst composition containing Pd and metal oxide can remove the aldehyde gas with high efficiency even with a small amount of Pd.

まず、第1の機構としては、金属酸化物によるPdの還元が考えられる。物理混合前のPd粒子表面のPd元素は、多くは空気中の酸素により酸化されたPdOリッチの状態として存在している。そのため、PdOリッチなPd粒子表面ではアルデヒド類ガスが近傍に来たとしても活性が低く、高い除去効率は得られない。しかし、上記アルデヒド類除去触媒は、Pdと金属酸化物を物理混合することにより得られるため、混合時、PdOリッチなPd表面と金属酸化物が接触することで、金属酸化物によりPd表面のPdOがPdへと還元される。その結果、本来のPdの活性が引き出され、微量のPd量でもアルデヒド類ガスを高い効率で除去できる。さらに、混合後も、Pd粒子近傍の金属酸化物の存在により、Pd表面はPdリッチな状態を維持し、高い除去効率を維持できると考えられる。   First, as a first mechanism, reduction of Pd by a metal oxide can be considered. Most of the Pd elements on the surface of the Pd particles before physical mixing exist in a PdO rich state oxidized by oxygen in the air. For this reason, even if aldehyde gas comes close to the surface of the PdO-rich Pd particles, the activity is low and high removal efficiency cannot be obtained. However, since the aldehyde removal catalyst is obtained by physically mixing Pd and a metal oxide, the PdO-rich Pd surface and the metal oxide come into contact with each other at the time of mixing. Is reduced to Pd. As a result, the original Pd activity is extracted, and the aldehyde gas can be removed with high efficiency even with a small amount of Pd. Furthermore, even after mixing, the presence of the metal oxide in the vicinity of the Pd particles is considered to maintain the Pd-rich state on the Pd surface and maintain high removal efficiency.

また、第2の機構としては、上記アルデヒド類除去触媒組成物において金属酸化物は担体の効果も担っていると考えられる。金属酸化物は表面に多くの細孔を持ち、Pdと混合されると、細孔表面にPd粒子が入り込むと考えられる。金属酸化物のその細孔はガスを濃縮する作用も持つため、細孔内のPdでガスを分解する際、アルデヒド類ガスと高濃度で接触することが可能であり、高効率で除去できると考えられる。   Further, as a second mechanism, it is considered that the metal oxide also has a support effect in the aldehyde removal catalyst composition. The metal oxide has many pores on the surface, and when mixed with Pd, it is considered that Pd particles enter the pore surface. Since the pores of the metal oxide also have a function of concentrating the gas, when decomposing the gas with Pd in the pores, it is possible to contact the aldehyde gas at a high concentration and to remove it with high efficiency. Conceivable.

さらに、第3の機構としては、Pd上で分解したアルデヒド類ガスの分解生成物が金属酸化物上へ流れるスピルオーバー現象による効果が考えられる。金属酸化物を混合しない場合、Pd表面上にアルデヒド類ガス分解生成物(例えば、カルボン酸等)が付着し、時間と共に被毒が進み、その結果、除去効率が低くなる。しかしながら、Pdと金属酸化物の混合した場合では、分解生成物がPd上に留まらず金属酸化物上に移動するため、その結果、被毒が抑制され、微量のPd量でも高効率で除去ができると考えられる。   Further, as a third mechanism, an effect due to a spillover phenomenon in which a decomposition product of aldehyde gas decomposed on Pd flows onto the metal oxide can be considered. When the metal oxide is not mixed, an aldehyde gas decomposition product (for example, carboxylic acid) adheres to the surface of Pd, and poisoning proceeds with time, resulting in low removal efficiency. However, when Pd and metal oxide are mixed, decomposition products do not stay on Pd but move onto the metal oxide. As a result, poisoning is suppressed, and even a small amount of Pd can be removed with high efficiency. It is considered possible.

アルデヒド類除去触媒組成物の金属酸化物としては、Co、Fe、CeO、Ta、ZrO、Fe、NiO、CuO、FeO、及びMnからなる群より選ばれる少なくとも一種の金属酸化物の使用が好ましい。中でも、Co、Fe、CeO、Ta、ZrOが好ましく、さらに好ましくはCo、Fe、CeOであり、中でも本発明にはCoの使用が最適である。 Examples of the metal oxide of the aldehyde removal catalyst composition include Co 3 O 4 , Fe 2 O 3 , CeO 2 , Ta 2 O 5 , ZrO 2 , Fe 3 O 4 , NiO, CuO, FeO, and Mn 3 O 4. The use of at least one metal oxide selected from the group consisting of Among them, Co 3 O 4, Fe 2 O 3, CeO 2, Ta 2 O 5, ZrO 2 are preferable, more preferably a Co 3 O 4, Fe 2 O 3, CeO 2, among others to the present invention is Co 3 The use of O 4 is optimal.

Pdと金属酸化物を含有する触媒組成物における金属酸化物の含有量は、特に制限されるものではないが、Pd表面のPdOの還元を促進させる観点からPdと金属酸化物との合計質量に対して5〜95質量%が好ましく、より好ましくは15〜91質量%であり、もっとも好ましくは45〜91質量%で含有されることが好ましい。5質量%未満以下であると、金属酸化物が少なすぎるため、十分にPdOが還元されず、結果として十分な除去性能が実現できなくなる。また、95質量%以上を超えるとPd粒子が金属酸化物に被覆され、Pdがアルデヒド類ガスと接触しにくくなり、その結果、十分な除去性能が実現できなくなる。   The content of the metal oxide in the catalyst composition containing Pd and the metal oxide is not particularly limited, but the total mass of Pd and the metal oxide is promoted from the viewpoint of promoting the reduction of PdO on the Pd surface. It is preferably 5 to 95% by mass, more preferably 15 to 91% by mass, and most preferably 45 to 91% by mass. If it is less than 5% by mass, the amount of metal oxide is too small, so that PdO is not sufficiently reduced, and as a result, sufficient removal performance cannot be realized. On the other hand, if it exceeds 95% by mass, the Pd particles are coated with the metal oxide, and it becomes difficult for Pd to come into contact with the aldehyde gas, and as a result, sufficient removal performance cannot be realized.

アルデヒド類除去触媒組成物としては、Pdと金属酸化物の他に分散材としてアルミナ、ゼオライト、シリカ、及び活性炭からなる群より選ばれる少なくとも一種を含有することが好ましい。アルミナ、ゼオライト、シリカ、活性炭は、自身は触媒作用を示さないが、Pdと金属酸化物の混合体を高分散させ、アルデヒド類ガスとの接触効率を高める働きをする。分散材の含有量は、特に制限されるものでないが、Pdと金属酸化物および分散材との合計質量に対して50〜99.9質量%が好ましく、より好ましくは70〜99.9質量%であり、もっとも好ましくは80〜99.9質量%で含有されることが好ましい。50質量%未満以下であると十分にPdと金属酸化物の混合体を高分散することができず、結果として十分な除去性能が実現できなくなる。 The aldehyde removal catalyst composition preferably contains at least one selected from the group consisting of alumina, zeolite, silica, and activated carbon as a dispersing agent in addition to Pd and a metal oxide. Alumina, zeolite, silica, and activated carbon do not exhibit a catalytic action by themselves, but function to highly disperse a mixture of Pd and a metal oxide and improve contact efficiency with an aldehyde gas. The content of the dispersing agent is not particularly limited, but is preferably 50 to 99.9% by mass, more preferably 70 to 99.9% by mass with respect to the total mass of Pd, the metal oxide, and the dispersing agent. Most preferably, it is contained at 80 to 99.9% by mass. If it is less than 50% by mass, the mixture of Pd and metal oxide cannot be sufficiently dispersed, and as a result, sufficient removal performance cannot be realized.

アルデヒド類除去触媒組成物に含まれるPdの粒子径としては、250nm以下であることが好ましい。250nmを超えると、Pd質量あたりのアルデヒド類ガス接触量が減り、Pd質量あたりの除去性能が悪くなる。なおここで言うPd粒子径とは、一次粒子の粒子径ではなく凝集体の粒子径を指す。 The particle diameter of Pd contained in the aldehyde removal catalyst composition is preferably 250 nm or less. When it exceeds 250 nm, the amount of aldehyde gas contact per Pd mass decreases, and the removal performance per Pd mass deteriorates. Here, the Pd particle size refers to the particle size of the aggregate, not the particle size of the primary particles.

本発明におけるアルデヒド類除去触媒組成物の製造方法としては、乳鉢等で機械的に混合する方法が好ましい。手順としては、Pd粒子と金属酸化物を乳鉢で混合した後、分散材を加えさらに混合することにより合成される。混合時間は好ましくは10分〜3時間、より好ましくは30分〜1時間である。   As a manufacturing method of the aldehyde removal catalyst composition in this invention, the method of mixing mechanically with a mortar etc. is preferable. As a procedure, after mixing Pd particles and a metal oxide in a mortar, a dispersion material is added and further mixed. The mixing time is preferably 10 minutes to 3 hours, more preferably 30 minutes to 1 hour.

本発明のアルデヒド類除去触媒組成物を用いて、アルデヒド類ガスを除去する方法としては、アルデヒド類ガスを100℃以下、好ましくは20℃〜100℃で本発明のアルデヒド類除去触媒組成物と接触させればよい。低温でアルデヒド類ガスを除去できることにより家庭用、自動車用のフィルターに使用することが可能で、工場の排ガス処理装置に搭載し低エネルギーでアルデヒド類を分解することも可能である。   As a method for removing aldehyde gas using the aldehyde removal catalyst composition of the present invention, the aldehyde gas is brought into contact with the aldehyde removal catalyst composition of the present invention at 100 ° C. or less, preferably 20 ° C. to 100 ° C. You can do it. Since aldehyde gas can be removed at low temperature, it can be used in household and automobile filters, and it can be installed in a factory exhaust gas treatment device to decompose aldehydes with low energy.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、実施例及び比較例中における分析または評価は、以下のようにして行った。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can of course be implemented with appropriate modifications within a range that can be adapted to the above-described gist. Included in the range. In addition, the analysis or evaluation in an Example and a comparative example was performed as follows.

<ホルムアルデヒド除去性能の測定方法>
5Lのテドラーバッグ中にホルムアルデヒド10ppmを含む温度25℃、湿度50RH%の空気、および、サンプル10mgを封入し、25℃に保たれた室内に静置した。中に入っているサンプルとホルムアルデヒドを含む空気が十分に接触、反応するように、テドラーバッグを適宜振った。30分後のテドラーバッグ内のホルムアルデヒドガス濃度をホルムアルデメータhtV(株式会社ジェイエムエス)を用いて測定し、反応前後のホルムアルデヒドの濃度変化からテドラーバッグ中のホルムアルデヒド残存率[%]を求めた。残存率は、下記式(i);
ホルムアルデヒド残存率(%)={(30分後のテドラーバッグ内のホルムアルデヒド濃度)/(反応前のテドラーバッグ中のホルムアルデヒド濃度(10ppm))}×100・・・・(i)
に基づき算出した。そのため、30分後のテドラーバッグ中のホルムアルデヒド残存率が低いほど性能が高いと言える。
<Method for measuring formaldehyde removal performance>
A 5 L Tedlar bag was filled with 10 mg of air containing 10 ppm of formaldehyde at a temperature of 25 ° C. and a humidity of 50 RH%, and 10 mg of the sample, and left in a room kept at 25 ° C. The Tedlar bag was shaken as appropriate so that the sample contained therein and the air containing formaldehyde sufficiently contacted and reacted. The formaldehyde gas concentration in the Tedlar bag after 30 minutes was measured using a formal demeter htV (JMS Co., Ltd.), and the residual formaldehyde ratio [%] in the Tedlar bag was determined from the change in formaldehyde concentration before and after the reaction. The residual rate is the following formula (i);
Formaldehyde residual rate (%) = {(formaldehyde concentration in Tedlar bag after 30 minutes) / (formaldehyde concentration in Tedlar bag before reaction (10 ppm))} × 100 (i)
Calculated based on Therefore, it can be said that the lower the formaldehyde residual rate in the Tedlar bag after 30 minutes, the higher the performance.

<透過型電子顕微鏡(TEM)観察>
透過型電子顕微鏡(日本電子社製「JEM−2100」)を用いて、得られた触媒組成物を観察した。なお、Pd、Al、その他金属においてはSTEM−EDSにより元素分析を行うことで区別を行った。
<Transmission electron microscope (TEM) observation>
The obtained catalyst composition was observed using a transmission electron microscope (“JEM-2100” manufactured by JEOL Ltd.). Note that Pd, Al 2 O 3 , and other metals were distinguished by elemental analysis using STEM-EDS.

<実施例1>
パラジウム黒(ナカライテスク社製)10mgと酸化コバルト(II,III)(ナカライテスク社製)10mgをメノウ乳鉢でよく混合し、その後、γ‐アルミナ(住友化学社製)190mgをさらに加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。得られた除去材サンプルのTEM画像については図1に示す。
<実施例2>
パラジウム黒(ナカライテスク社製)10mgと酸化コバルト(II,III)(ナカライテスク社製)2.5mgをメノウ乳鉢でよく混合し、その後、γ‐アルミナ(住友化学社製)990mgをさらに加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<実施例3>
パラジウム黒(ナカライテスク社製)10mgと酸化コバルト(II,III)(ナカライテスク社製)10mgをメノウ乳鉢でよく混合し、その後、γ‐アルミナ(住友化学社製)990mgをさらに加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<Example 1>
10 mg of palladium black (manufactured by Nacalai Tesque) and 10 mg of cobalt oxide (II, III) (manufactured by Nacalai Tesque) are mixed well in an agate mortar, and then 190 mg of γ-alumina (manufactured by Sumitomo Chemical) is further added and mixed. A remover sample was obtained. About the obtained removal agent sample, the formaldehyde removal performance was measured. The TEM image of the obtained removal material sample is shown in FIG.
<Example 2>
Palladium black (manufactured by Nacalai Tesque) 10 mg and cobalt oxide (II, III) (manufactured by Nacalai Tesque) 2.5 mg are mixed well in an agate mortar, and then 990 mg of γ-alumina (manufactured by Sumitomo Chemical) is further added and mixed. As a result, a remover sample was obtained. About the obtained removal agent sample, the formaldehyde removal performance was measured.
<Example 3>
10 mg of palladium black (manufactured by Nacalai Tesque) and 10 mg of cobalt oxide (II, III) (manufactured by Nacalai Tesque) are mixed well in an agate mortar, and then 990 mg of γ-alumina (manufactured by Sumitomo Chemical) is further added and mixed. A remover sample was obtained. About the obtained removal agent sample, the formaldehyde removal performance was measured.

<実施例4>
パラジウム黒(ナカライテスク社製)10mgと酸化コバルト(II,III)(ナカライテスク社製)40mgをメノウ乳鉢でよく混合し、その後、γ‐アルミナ(住友化学社製)990mgをさらに加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<実施例5>
パラジウム黒(ナカライテスク社製)10mgと酸化コバルト(II,III)(ナカライテスク社製)100mgをメノウ乳鉢でよく混合し、その後、γ‐アルミナ(住友化学社製)990mgをさらに加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<実施例6>
パラジウム黒(ナカライテスク社製)10mgと酸化鉄(III)(和光純薬工業社製)10mgをメノウ乳鉢でよく混合し、その後、γ‐アルミナ(住友化学社製)190mgをさらに加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。得られた除去材サンプルのTEM画像については図2に示す。
<Example 4>
10 mg of palladium black (manufactured by Nacalai Tesque) and 40 mg of cobalt oxide (II, III) (manufactured by Nacalai Tesque) are mixed well in an agate mortar, and then 990 mg of γ-alumina (manufactured by Sumitomo Chemical) is further added and mixed. A remover sample was obtained. About the obtained removal agent sample, the formaldehyde removal performance was measured.
<Example 5>
10 mg of palladium black (manufactured by Nacalai Tesque) and 100 mg of cobalt oxide (II, III) (manufactured by Nacalai Tesque) are mixed well in an agate mortar, and then 990 mg of γ-alumina (manufactured by Sumitomo Chemical) is further added and mixed. A remover sample was obtained. About the obtained removal agent sample, the formaldehyde removal performance was measured.
<Example 6>
10 mg of palladium black (manufactured by Nacalai Tesque) and 10 mg of iron (III) oxide (manufactured by Wako Pure Chemical Industries, Ltd.) are mixed well in an agate mortar, and then 190 mg of γ-alumina (manufactured by Sumitomo Chemical) is further added and mixed. A remover sample was obtained. About the obtained removal agent sample, the formaldehyde removal performance was measured. The TEM image of the obtained removal material sample is shown in FIG.

<実施例7>
パラジウム黒(ナカライテスク社製)10mgと酸化鉄(III)(和光純薬工業社製)1mgをメノウ乳鉢でよく混合し、その後、γ‐アルミナ(住友化学社製)990mgをさらに加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<実施例8>
パラジウム黒(ナカライテスク社製)10mgと酸化鉄(III)(和光純薬工業社製)2.5mgをメノウ乳鉢でよく混合し、その後、γ‐アルミナ(住友化学社製)990mgをさらに加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<実施例9>
パラジウム黒(ナカライテスク社製)10mgと酸化鉄(III)(和光純薬工業社製)10mgをメノウ乳鉢でよく混合し、その後、γ‐アルミナ(住友化学社製)990mgをさらに加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<Example 7>
Mix 10 mg of palladium black (manufactured by Nacalai Tesque) and 1 mg of iron oxide (III) (manufactured by Wako Pure Chemical Industries) in an agate mortar, and then add and mix 990 mg of γ-alumina (manufactured by Sumitomo Chemical). A remover sample was obtained. About the obtained removal agent sample, the formaldehyde removal performance was measured.
<Example 8>
Palladium black (manufactured by Nacalai Tesque) 10 mg and iron (III) oxide (manufactured by Wako Pure Chemical Industries, Ltd.) 2.5 mg are mixed well in an agate mortar, and then 990 mg of γ-alumina (manufactured by Sumitomo Chemical Co., Ltd.) is further added and mixed. As a result, a remover sample was obtained. About the obtained removal agent sample, the formaldehyde removal performance was measured.
<Example 9>
10 mg of palladium black (manufactured by Nacalai Tesque) and 10 mg of iron (III) oxide (manufactured by Wako Pure Chemical Industries, Ltd.) are mixed well in an agate mortar, and then 990 mg of γ-alumina (manufactured by Sumitomo Chemical) is further added and mixed. A remover sample was obtained. About the obtained removal agent sample, the formaldehyde removal performance was measured.

<実施例10>
パラジウム黒(ナカライテスク社製)10mgと酸化鉄(III)(和光純薬工業社製)100mgをメノウ乳鉢でよく混合し、その後、γ‐アルミナ(住友化学社製)990mgをさらに加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<実施例11>
パラジウム黒(ナカライテスク社製)10mgと酸化セリウム(IV)(ナカライテスク社製)10mgをメノウ乳鉢でよく混合し、その後、γ‐アルミナ(住友化学社製)190mgをさらに加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。得られた除去材サンプルのTEM画像については図3に示す。
<実施例12>
パラジウム黒(ナカライテスク社製)10mgと酸化タンタル(V)(ナカライテスク社製)10mgをメノウ乳鉢でよく混合し、その後、γ‐アルミナ(住友化学社製)190mgをさらに加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。得られた除去材サンプルのTEM画像については図4に示す。
<Example 10>
10 mg of palladium black (manufactured by Nacalai Tesque) and 100 mg of iron oxide (III) (manufactured by Wako Pure Chemical Industries, Ltd.) are mixed well in an agate mortar, and then 990 mg of γ-alumina (manufactured by Sumitomo Chemical) is further added and mixed. A remover sample was obtained. About the obtained removal agent sample, the formaldehyde removal performance was measured.
<Example 11>
Palladium black (manufactured by Nacalai Tesque) 10 mg and cerium oxide (IV) (manufactured by Nacalai Tesque) 10 mg are mixed well in an agate mortar, and then 190 mg of γ-alumina (manufactured by Sumitomo Chemical) is further added and mixed. An agent sample was obtained. About the obtained removal agent sample, the formaldehyde removal performance was measured. The TEM image of the obtained removal material sample is shown in FIG.
<Example 12>
Palladium black (Nacalai Tesque) 10 mg and tantalum oxide (V) (Nacalai Tesque) 10 mg are mixed well in an agate mortar, and then γ-alumina (Sumitomo Chemical) 190 mg is added and mixed. An agent sample was obtained. About the obtained removal agent sample, the formaldehyde removal performance was measured. FIG. 4 shows the TEM image of the obtained removal material sample.

<実施例13>
パラジウム黒(ナカライテスク社製)10mgと酸化ジルコニウム(ナカライテスク社製)10mgをメノウ乳鉢でよく混合し、その後、γ‐アルミナ(住友化学社製)190mgをさらに加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。得られた除去材サンプルのTEM画像については図5に示す。
<実施例14>
パラジウム黒(ナカライテスク社製)10mgと四三酸化鉄(ナカライテスク社製)10mgをメノウ乳鉢でよく混合し、その後、γ‐アルミナ(住友化学社製)190mgをさらに加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。得られた除去材サンプルのTEM画像については図6に示す。
<実施例15>
パラジウム黒(ナカライテスク社製)10mgと酸化ニッケル(II)(ナカライテスク社製)10mgをメノウ乳鉢でよく混合し、その後、γ‐アルミナ(住友化学社製)190mgをさらに加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。得られた除去材サンプルのTEM画像については図7に示す。
<Example 13>
10 mg of palladium black (manufactured by Nacalai Tesque) and 10 mg of zirconium oxide (manufactured by Nacalai Tesque) are mixed well in an agate mortar, and then 190 mg of γ-alumina (manufactured by Sumitomo Chemical Co., Ltd.) is further added and mixed. Obtained. About the obtained removal agent sample, the formaldehyde removal performance was measured. FIG. 5 shows the TEM image of the obtained removal material sample.
<Example 14>
10 mg of palladium black (manufactured by Nacalai Tesque) and 10 mg of iron trioxide (manufactured by Nacalai Tesque) are mixed well in an agate mortar, and then 190 mg of γ-alumina (manufactured by Sumitomo Chemical) is further added and mixed. A sample was obtained. About the obtained removal agent sample, the formaldehyde removal performance was measured. A TEM image of the obtained removal material sample is shown in FIG.
<Example 15>
Palladium black (Nacalai Tesque) 10 mg and nickel oxide (II) (Nacalai Tesque) 10 mg are mixed well in an agate mortar, and then γ-alumina (Sumitomo Chemical) 190 mg is added and mixed to remove. An agent sample was obtained. About the obtained removal agent sample, the formaldehyde removal performance was measured. A TEM image of the obtained removal material sample is shown in FIG.

<実施例16>
パラジウム黒(ナカライテスク社製)10mgと酸化銅(II)(ナカライテスク社製)10mgをメノウ乳鉢でよく混合し、その後、γ‐アルミナ(住友化学社製)190mgをさらに加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。得られた除去材サンプルのTEM画像については図8に示す。
<実施例17>
パラジウム黒(ナカライテスク社製)10mgと酸化鉄(II)(Alfa Aesar社製)10mgをメノウ乳鉢でよく混合し、その後、γ‐アルミナ(住友化学社製)190mgをさらに加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。得られた除去材サンプルのTEM画像については図9に示す。
<実施例18>
パラジウム黒(ナカライテスク社製)10mgと酸化マンガン(II,III)(Sigma Aldrich社製)10mgをメノウ乳鉢でよく混合し、その後、γ‐アルミナ(住友化学社製)190mgをさらに加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。得られた除去材サンプルのTEM画像については図10に示す。
<Example 16>
Palladium black (manufactured by Nacalai Tesque) 10 mg and copper (II) oxide (manufactured by Nacalai Tesque) 10 mg are mixed well in an agate mortar, and then 190 mg of γ-alumina (manufactured by Sumitomo Chemical) is further added and mixed. An agent sample was obtained. About the obtained removal agent sample, the formaldehyde removal performance was measured. A TEM image of the obtained removal material sample is shown in FIG.
<Example 17>
Palladium black (Nacalai Tesque) 10 mg and iron oxide (II) (Alfa Aesar) 10 mg are mixed well in an agate mortar, and then γ-alumina (Sumitomo Chemical) 190 mg is further added and mixed. An agent sample was obtained. About the obtained removal agent sample, the formaldehyde removal performance was measured. FIG. 9 shows a TEM image of the obtained removal material sample.
<Example 18>
10 mg of palladium black (manufactured by Nacalai Tesque) and 10 mg of manganese oxide (II, III) (manufactured by Sigma Aldrich) are mixed well in an agate mortar, and then 190 mg of γ-alumina (manufactured by Sumitomo Chemical) is further added and mixed. A remover sample was obtained. About the obtained removal agent sample, the formaldehyde removal performance was measured. The TEM image of the obtained removal material sample is shown in FIG.

<比較例1>
パラジウム黒(ナカライテスク社製)10mgをメノウ乳鉢でよくすり潰し、その後、γ‐アルミナ(住友化学社製)190mgを加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<比較例2>
パラジウム黒(ナカライテスク社製)10mgをメノウ乳鉢でよくすり潰し、その後、γ‐アルミナ(住友化学社製)990mgを加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<比較例3>
酸化コバルト(II,III)(ナカライテスク社製)10mgをメノウ乳鉢でよくすり潰し、その後、γ‐アルミナ(住友化学社製)190mgを加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<Comparative Example 1>
10 mg of palladium black (manufactured by Nacalai Tesque) was thoroughly ground in an agate mortar, and then 190 mg of γ-alumina (manufactured by Sumitomo Chemical) was added and mixed to obtain a remover sample. About the obtained removal agent sample, the formaldehyde removal performance was measured.
<Comparative example 2>
10 mg of palladium black (manufactured by Nacalai Tesque) was thoroughly ground in an agate mortar, and then 990 mg of γ-alumina (manufactured by Sumitomo Chemical Co., Ltd.) was added and mixed to obtain a remover sample. About the obtained removal agent sample, the formaldehyde removal performance was measured.
<Comparative Example 3>
10 mg of cobalt oxide (II, III) (manufactured by Nacalai Tesque) was thoroughly ground in an agate mortar, and then 190 mg of γ-alumina (manufactured by Sumitomo Chemical) was added and mixed to obtain a remover sample. About the obtained removal agent sample, the formaldehyde removal performance was measured.

<比較例4>
酸化鉄(III)(和光純薬工業社製)10mgをメノウ乳鉢でよくすり潰し、その後、γ‐アルミナ(住友化学社製)190mgを加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<比較例5>
酸化セリウム(IV)(ナカライテスク社製)10mgをメノウ乳鉢でよくすり潰し、その後、γ‐アルミナ(住友化学社製)190mgを加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<比較例6>
酸化タンタル(V)(ナカライテスク社製)10mgをメノウ乳鉢でよくすり潰し、その後、γ‐アルミナ(住友化学社製)190mgを加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<Comparative Example 4>
10 mg of iron (III) oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was thoroughly ground in an agate mortar, and then 190 mg of γ-alumina (manufactured by Sumitomo Chemical) was added and mixed to obtain a remover sample. About the obtained removal agent sample, the formaldehyde removal performance was measured.
<Comparative Example 5>
10 mg of cerium (IV) oxide (manufactured by Nacalai Tesque) was thoroughly ground in an agate mortar, and then 190 mg of γ-alumina (manufactured by Sumitomo Chemical Co., Ltd.) was added and mixed to obtain a remover sample. About the obtained removal agent sample, the formaldehyde removal performance was measured.
<Comparative Example 6>
Ten mg of tantalum oxide (V) (manufactured by Nacalai Tesque) was thoroughly ground in an agate mortar, and then 190 mg of γ-alumina (manufactured by Sumitomo Chemical) was added and mixed to obtain a remover sample. About the obtained removal agent sample, the formaldehyde removal performance was measured.

<比較例7>
酸化ジルコニウム(ナカライテスク社製)10mgをメノウ乳鉢でよくすり潰し、その後、γ‐アルミナ(住友化学社製)190mgを加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<比較例8>
四三酸化鉄(ナカライテスク社製)10mgをメノウ乳鉢でよくすり潰し、その後、γ‐アルミナ(住友化学社製)190mgを加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<比較例9>
酸化ニッケル(II)(ナカライテスク社製)10mgをメノウ乳鉢でよくすり潰し、その後、γ‐アルミナ(住友化学社製)190mgを加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<Comparative Example 7>
10 mg of zirconium oxide (manufactured by Nacalai Tesque) was thoroughly ground in an agate mortar, and then 190 mg of γ-alumina (manufactured by Sumitomo Chemical) was added and mixed to obtain a remover sample. About the obtained removal agent sample, the formaldehyde removal performance was measured.
<Comparative Example 8>
10 mg of iron trioxide (manufactured by Nacalai Tesque) was thoroughly ground in an agate mortar, and then 190 mg of γ-alumina (manufactured by Sumitomo Chemical) was added and mixed to obtain a remover sample. About the obtained removal agent sample, the formaldehyde removal performance was measured.
<Comparative Example 9>
10 mg of nickel (II) oxide (manufactured by Nacalai Tesque) was thoroughly ground in an agate mortar, and then 190 mg of γ-alumina (manufactured by Sumitomo Chemical) was added and mixed to obtain a remover sample. About the obtained removal agent sample, the formaldehyde removal performance was measured.

<比較例10>
酸化銅(II)(ナカライテスク社製)10mgをメノウ乳鉢でよくすり潰し、その後、γ‐アルミナ(住友化学社製)190mgを加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<比較例11>
酸化鉄(II)(Alfa Aesar社製)10mgをメノウ乳鉢でよくすり潰し、その後、γ‐アルミナ(住友化学社製)190mgを加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<比較例12>
酸化マンガン(II,III)(Sigma Aldrich社製)10mgをメノウ乳鉢でよくすり潰し、その後、γ‐アルミナ(住友化学社製)190mgを加え混合することで除去剤サンプルを得た。得られた除去剤サンプルについて、ホルムアルデヒド除去性能を測定した。
<Comparative Example 10>
10 mg of copper (II) oxide (manufactured by Nacalai Tesque) was thoroughly ground in an agate mortar, and then 190 mg of γ-alumina (manufactured by Sumitomo Chemical) was added and mixed to obtain a remover sample. About the obtained removal agent sample, the formaldehyde removal performance was measured.
<Comparative Example 11>
10 mg of iron (II) oxide (Alfa Aesar) was thoroughly ground in an agate mortar, and then 190 mg of γ-alumina (Sumitomo Chemical) was added and mixed to obtain a remover sample. About the obtained removal agent sample, the formaldehyde removal performance was measured.
<Comparative Example 12>
10 mg of manganese oxide (II, III) (manufactured by Sigma Aldrich) was thoroughly ground in an agate mortar, and then 190 mg of γ-alumina (manufactured by Sumitomo Chemical Co., Ltd.) was added and mixed to obtain a remover sample. About the obtained removal agent sample, the formaldehyde removal performance was measured.


なお、表1における「酸化物添加によるホルムアルデヒド残存率の低減効果(1)」は、各実施例の「30分後のホルムアルデヒド残存率(%)」における酸化物を添加しない場合(比較例1又は2)との各実施例の「30分後のホルムアルデヒド残存率(%)」の差異を示す。
サンプル10mgに対するPd量が0.5mgの実施例1、6、11〜18においては、サンプル10mgに対するPd量が同量の比較例1との差異を、サンプル10mgに対するPd量が0.1mgの実施例2〜5、7〜10においてはサンプル10mgに対するPd量が同量の比較例2との差異を示す。
例えば、実施例1においては「酸化物添加によるホルムアルデヒド残存率の低減効果(1)」は、61(%)−0.27(%)=60.73(%)となる。

In addition, the “reduction effect of formaldehyde residual ratio by addition of oxide (1)” in Table 1 is the case where no oxide is added in “formaldehyde residual ratio after 30 minutes (%)” in each example (Comparative Example 1 or 2) shows the difference in “formaldehyde residual rate (%) after 30 minutes” of each example.
In Examples 1, 6, and 11 to 18 in which the amount of Pd with respect to 10 mg of the sample was 0.5 mg, the difference from Comparative Example 1 in which the amount of Pd with respect to 10 mg of the sample was the same amount, and the amount of Pd with respect to 10 mg of the sample was 0.1 mg. In Examples 2 to 5 and 7 to 10, the amount of Pd relative to 10 mg of the sample is different from that of Comparative Example 2 having the same amount.
For example, in Example 1, the “reduction effect of formaldehyde residual ratio by addition of oxide (1)” is 61 (%) − 0.27 (%) = 60.73 (%).

本発明のアルデヒド類除去触媒組成物とその製造方法およびアルデヒド類ガスの除去方法は、低温度領域で満足すべき除去性能を安価に発現することができるため、広い分野で用いることができ、産業界に寄与すること大である。 INDUSTRIAL APPLICABILITY The aldehyde removal catalyst composition of the present invention, a method for producing the same, and a method for removing aldehyde gases can exhibit satisfactory removal performance in a low temperature region at low cost, and can be used in a wide range of fields. It is great to contribute to the world.

Claims (6)

Pdと金属酸化物を含有する触媒組成物であって、該触媒組成物中に金属酸化物をPdと金属酸化物との合計質量に対して5〜95質量%含有し、さらに該金属酸化物はCo、Fe、CeO、Ta、ZrO、Fe、NiO、CuO、FeO、及びMnからなる群より選ばれる少なくとも一種の金属酸化物であることを特徴とするアルデヒド類除去触媒組成物。 A catalyst composition containing Pd and a metal oxide, wherein the catalyst composition contains 5 to 95% by mass of the metal oxide based on the total mass of Pd and the metal oxide, and the metal oxide Is at least one metal oxide selected from the group consisting of Co 3 O 4 , Fe 2 O 3 , CeO 2 , Ta 2 O 5 , ZrO 2 , Fe 3 O 4 , NiO, CuO, FeO, and Mn 3 O 4 A catalyst composition for removing aldehydes, which is characterized in that 100℃以下の低温でアルデヒド類除去性能を有することを特徴とする、請求項1に記載のアルデヒド類除去触媒組成物。   The aldehyde removal catalyst composition according to claim 1, which has an aldehyde removal performance at a low temperature of 100 ° C or lower. 前記Pdの粒子径が250nm以下であることを特徴とする請求項1または2に記載のアルデヒド類除去触媒組成物。   3. The aldehyde removal catalyst composition according to claim 1, wherein a particle diameter of the Pd is 250 nm or less. 前記アルデヒド類除去触媒組成物が、Pdと前記金属酸化物の他にアルミナ、ゼオライト、シリカ、及び活性炭からなる群より選ばれる少なくとも一種を含有することを特徴とする、請求項1〜3のいずれかに記載のアルデヒド類除去触媒組成物。   The aldehyde removal catalyst composition contains at least one selected from the group consisting of alumina, zeolite, silica, and activated carbon in addition to Pd and the metal oxide. An aldehyde removal catalyst composition according to claim 1. Pdと前記金属酸化物とを物理混合する工程を含むことを特徴とする、請求項1〜4のいずれかに記載のアルデヒド類除去触媒組成物の製造方法。   The method for producing an aldehyde-removing catalyst composition according to any one of claims 1 to 4, comprising a step of physically mixing Pd and the metal oxide. 請求項1〜4のいずれかに記載のアルデヒド類除去触媒組成物を用いて、100℃以下の温度によりアルデヒド類ガスを除去することを特徴とする、アルデヒド類ガスの除去方法。 A method for removing aldehyde gas, wherein the aldehyde gas is removed at a temperature of 100 ° C or lower using the aldehyde removal catalyst composition according to any one of claims 1 to 4.
JP2016035277A 2016-02-26 2016-02-26 Aldehyde removing catalyst composition, manufacturing method therefor and a removing method of aldehyde gas Pending JP2017148764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016035277A JP2017148764A (en) 2016-02-26 2016-02-26 Aldehyde removing catalyst composition, manufacturing method therefor and a removing method of aldehyde gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016035277A JP2017148764A (en) 2016-02-26 2016-02-26 Aldehyde removing catalyst composition, manufacturing method therefor and a removing method of aldehyde gas

Publications (1)

Publication Number Publication Date
JP2017148764A true JP2017148764A (en) 2017-08-31

Family

ID=59741485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016035277A Pending JP2017148764A (en) 2016-02-26 2016-02-26 Aldehyde removing catalyst composition, manufacturing method therefor and a removing method of aldehyde gas

Country Status (1)

Country Link
JP (1) JP2017148764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408265A (en) * 2020-04-02 2020-07-14 安徽工业大学 Metallurgical dust modified activated carbon with flue gas desulfurization and denitrification performance and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716461A (en) * 1993-06-28 1995-01-20 Nissan Motor Co Ltd Catalyst for purification of exhaust gas from alcohol fuel engine
JPH11216358A (en) * 1997-07-02 1999-08-10 Tosoh Corp Hydrocarbon adsorbent and catalyst for cleaning waste gas
JP2000210564A (en) * 1999-01-26 2000-08-02 Osaka Gas Co Ltd Catalyst for waste gas cleaning and waste gas cleaning method
JP2000237591A (en) * 1999-02-23 2000-09-05 Kansai Research Institute Organic compound decomposing catalyst and organic compound removing method using the catalyst
JP2001187343A (en) * 1999-03-29 2001-07-10 Toyota Central Res & Dev Lab Inc Cleaning catalyst at normal temperature and utilization thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716461A (en) * 1993-06-28 1995-01-20 Nissan Motor Co Ltd Catalyst for purification of exhaust gas from alcohol fuel engine
JPH11216358A (en) * 1997-07-02 1999-08-10 Tosoh Corp Hydrocarbon adsorbent and catalyst for cleaning waste gas
JP2000210564A (en) * 1999-01-26 2000-08-02 Osaka Gas Co Ltd Catalyst for waste gas cleaning and waste gas cleaning method
JP2000237591A (en) * 1999-02-23 2000-09-05 Kansai Research Institute Organic compound decomposing catalyst and organic compound removing method using the catalyst
JP2001187343A (en) * 1999-03-29 2001-07-10 Toyota Central Res & Dev Lab Inc Cleaning catalyst at normal temperature and utilization thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408265A (en) * 2020-04-02 2020-07-14 安徽工业大学 Metallurgical dust modified activated carbon with flue gas desulfurization and denitrification performance and preparation method thereof
CN111408265B (en) * 2020-04-02 2022-01-25 安徽工业大学 Metallurgical dust modified activated carbon with flue gas desulfurization and denitrification performance and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6486360B2 (en) Carbon monoxide and / or oxidation catalyst for volatile organic compounds
JP4897669B2 (en) Ammonia decomposition method
Tan et al. Preparation and characterization of Fe2O3–SiO2 composite and its effect on elemental mercury removal
JP5486497B2 (en) Deodorizing catalyst, deodorizing method using the same, and regenerating method of the catalyst
CN111889101B (en) Modified composite oxide catalyst for synergistic purification of VOCs and NO and preparation method thereof
JPH05168682A (en) Deodorant and manufacture thereof
CN111054178A (en) Formaldehyde removal purification material and preparation method and application thereof
JP4119974B2 (en) Catalyst composite for removing carbon monoxide and carbon monoxide removing method using the same
JP2001187343A (en) Cleaning catalyst at normal temperature and utilization thereof
KR100722429B1 (en) Preparation method of nano size copper-manganese complex oxide catalyst and the catalyst prepared by the method
Li et al. High-yield synthesis of Ce modified Fe–Mn composite oxides benefitting from catalytic destruction of chlorobenzene
JPH10296087A (en) Deodorizing catalyst and its manufacture
JP4656353B2 (en) Room temperature catalyst
JP5503155B2 (en) Carbon monoxide removal filter
JP2017148764A (en) Aldehyde removing catalyst composition, manufacturing method therefor and a removing method of aldehyde gas
JP2009219980A (en) Catalyst for removing nitrogen oxide and its manufacturing method
JP3546766B2 (en) Deodorizing catalyst
JP5706476B2 (en) Carbon monoxide oxidation catalyst and production method thereof
JP6225807B2 (en) VOC decomposition removal catalyst, method for producing the same, and VOC decomposition removal method using the same
JP2002102700A (en) Normal temperature catalyst
JP2009279522A (en) Oxide catalyst and method for preparing oxide catalyst, as well as deodorant and deodorizing filter
KR101132187B1 (en) Method for preparing a metal oxide catalyst for deodorization
JP2017094309A (en) Aldehyde removal catalyst, method for producing the same, and aldehyde gas removal method
CN115475619B (en) Wet oxidation catalyst and preparation method and application thereof
JPH08332384A (en) Catalyst for decomposition of exhaust gas containing noxious organic compound, and exhaust gas treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200526