JPH11214011A - Battery electrode forming binder and battery electrode - Google Patents

Battery electrode forming binder and battery electrode

Info

Publication number
JPH11214011A
JPH11214011A JP10030443A JP3044398A JPH11214011A JP H11214011 A JPH11214011 A JP H11214011A JP 10030443 A JP10030443 A JP 10030443A JP 3044398 A JP3044398 A JP 3044398A JP H11214011 A JPH11214011 A JP H11214011A
Authority
JP
Japan
Prior art keywords
weight
parts
battery
battery electrode
organopolysiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10030443A
Other languages
Japanese (ja)
Other versions
JP4178576B2 (en
Inventor
Yoshika Noritake
芳佳 則武
Nobuyuki Ito
信幸 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP03044398A priority Critical patent/JP4178576B2/en
Publication of JPH11214011A publication Critical patent/JPH11214011A/en
Application granted granted Critical
Publication of JP4178576B2 publication Critical patent/JP4178576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve the charging and discharging cycle characteristic, rate characteristic and capacity of a battery, while securing the collecting property and improving the utilizing efficiency by including organopolysiloxane-based polymer obtained by polymerizing a monomer unit having a specified composition in the existence of a specified quantity of organopolysiloxane. SOLUTION: This binder includes organopolysiloxane-based polymer obtained by polymerizing 10-75 wt.% of alkyl (metha)acrylate unit including 1-3C alkyl group 25-90 wt.% of alkyl (metha)acrylate unit including 4-10C alkyl group, a monomer component formed of ethylenic unsaturated carboxylic acid unit and 99-10 pts.wt. (where organopolysiloxane + monomer component = 100 pts.wt.) of other monomer unit copolymerizable with them at need.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、充放電サイクル特
性、レート特性、高容量化、安全性に優れた二次電池電
極、さらに詳しくは、電極活物質が集電材に保持された
電池電極および該電池電極に好適に用いられる電池電極
形成用バインダーに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery electrode excellent in charge / discharge cycle characteristics, rate characteristics, high capacity, and safety. More specifically, the present invention relates to a battery electrode in which an electrode active material is held on a current collector, and The present invention relates to a battery electrode forming binder suitably used for the battery electrode.

【0002】[0002]

【従来の技術】近年、電子機器の小型化軽量化は目ざま
しく、それに伴って電子機器産業における技術進歩は著
しく、電池技術においても高エネルギー密度、安全性等
の要求が大きくなっている。かかる要求を満足するには
従来のニッケルーカドミウム電池では不可能なことか
ら、負極にカドミウムの代わりに水素吸蔵合金を使用す
るニッケル水素電池や、非水系電池であるリチウム二次
電池が注目されている。リチウム二次電池は、エネルギ
ー密度が高い、保存性が高い、小型軽量という特長を有
する。しかし、充放電サイクル後の容量劣化が激しいと
いう問題がある。電池電極用バインダーは、電極活物質
を集電材に固定させる目的で使用される。リチウム二次
電池はリチウムイオンの吸放出のし易さが高容量化、長
寿命化につながり、これを満たすためにバインダーに要
求される性能としては、電極活物質と集電材の結着性
が良好であること、電解液中のイオンをできるだけ抵
抗なく自由に移動させること、電解液や充放電によっ
て体積変化しないこと等があげられる。しかし、従来の
バインダーでは電極活物質に対する影響が著しいため、
上記の条件をすべてを満たすことは困難であった。
2. Description of the Related Art In recent years, the size and weight of electronic devices have been remarkably reduced, and technical progress in the electronic device industry has been remarkable, and demands for high energy density, safety and the like in battery technology have been increasing. Since conventional nickel-cadmium batteries cannot satisfy such demands, nickel-hydrogen batteries that use a hydrogen storage alloy instead of cadmium for the negative electrode and lithium secondary batteries that are non-aqueous batteries have attracted attention. I have. A lithium secondary battery has features of high energy density, high storage stability, and small size and light weight. However, there is a problem that the capacity is significantly deteriorated after the charge / discharge cycle. The battery electrode binder is used for the purpose of fixing the electrode active material to the current collector. In lithium secondary batteries, the ease of absorbing and releasing lithium ions leads to higher capacity and longer life, and the performance required of the binder in order to satisfy this is the binding between the electrode active material and the current collector. Goodness, free movement of ions in the electrolytic solution as little as possible, and no change in volume due to the electrolytic solution or charge / discharge. However, conventional binders have a significant effect on the electrode active material,
It was difficult to satisfy all of the above conditions.

【0003】[0003]

【発明が解決しようとする課題】上記の状況をもとに、
本発明では、主に二次電池において、電極活物質に対す
る影響が少なくかつ、集電性を確保し、その利用効率を
向上させ、電池の充放電サイクル特性、レート特性、高
容量化を達成することが可能な電池電極を提供する。
SUMMARY OF THE INVENTION Based on the above situation,
In the present invention, mainly in a secondary battery, the influence on the electrode active material is small, the current collecting property is secured, the use efficiency is improved, and the charge / discharge cycle characteristics, rate characteristics, and high capacity of the battery are achieved. To provide a battery electrode capable of

【0004】[0004]

【発明を解決するための手段】すなわち本発明は、オル
ガノポリシロキサン1〜90重量部の存在下に、(a−
1)アルキル基の炭素数が1〜3の(メタ)アクリル酸
アルキルエステル10〜75重量%、(a−2)アルキ
ル基の炭素数が4〜10の(メタ)アクリル酸アルキル
エステル単位25〜90重量%、(b)エチレン系不飽
和カルボン酸および必要に応じて(c)これらと共重合
体可能な他の単量体[ただし(a−1)+(a−2)+
(b)+(c)=100重量%]からなる単量体成分9
9〜10重量部[ただし、オルガノポリシロキサン+単
量体成分=100重量部]を重合することによって得ら
れるポリオルガノシロキサン系重合体(以下、特定重合
体という)を含有することを特徴とする電池電極形成用
バインダー、および該電池電極形成用バインダーを用い
ることを特徴とする電池電極を提供するものである。
That is, the present invention relates to a method for preparing (a-
1) 10 to 75% by weight of (meth) acrylic acid alkyl ester having 1 to 3 carbon atoms in the alkyl group, and 25 to 25% of (a-2) (meth) acrylic acid alkyl ester unit having 4 to 10 carbon atoms in the alkyl group. 90% by weight, (b) an ethylenically unsaturated carboxylic acid and, if necessary, (c) another monomer copolymerizable therewith (provided that (a-1) + (a-2) +
(B) + (c) = 100% by weight]
It is characterized by containing a polyorganosiloxane-based polymer (hereinafter, referred to as a specific polymer) obtained by polymerizing 9 to 10 parts by weight [organopolysiloxane + monomer component = 100 parts by weight]. It is intended to provide a binder for forming a battery electrode and a battery electrode using the binder for forming a battery electrode.

【0005】[0005]

【発明の実施の形態】以下に本発明を詳細に説明する。オルガノポリシロキサン 本発明に使用されるオルガノポリシロキサンは、オルガ
ノシロキサンを縮合することにより得られる。オルガノ
シロキサンとしては、直鎖状構造、分岐状構造、環状構
造を有するものを使用することができるが、特に環状構
造を有するものが好ましく、特に下記一般式(1)で表
される化合物が好ましい。 R1 m SiO(4-m)/2 ・・・(1) (式中、R1 は置換または非置換の1価のアルキル基、
ビニル基またはフェニル基であり、mは0〜3の整数を
示す。) 前記一般式(1)において、R1 としては、例えばメチ
ル基、エチル基、プロピル基、ビニル基、フェニル基、
およびそれらをハロゲン原子またはシアノ基で置換した
基などを挙げることができる。一般式(1)で表される
オルガノシロキサンの具体例としては、ヘキサメチルシ
クロトリシロキサン、オクタメチルシクロテトラシロキ
サン、デカメチルシクロペンタシロキサン、ドデカメチ
ルシクロヘクサシロキサン、トリメチルトリフェニルシ
クロトリシロキサンなどを挙げることができる。なお、
このオルガノシロキサンは、予め縮合(重縮合)され
た、例えばポリスチレン換算の重量平均分子量が500
〜100,000程度のポリオルガノシロキサンであっ
ても良い。また、オルガノシロキサンが予め縮合されて
ポリオルガノシロキサンである場合、その分子鎖末端
は、例えば、水酸基、アルコキシ基、トリメチルシリル
基、ジメチルビニルシリル基、メチルフェニルビニルシ
リル基、メチルジフェニルシリル基などで封鎖されてい
ても良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. Organopolysiloxane The organopolysiloxane used in the present invention is obtained by condensing an organosiloxane. As the organosiloxane, those having a linear structure, a branched structure, and a cyclic structure can be used, but those having a cyclic structure are particularly preferable, and compounds represented by the following general formula (1) are particularly preferable. . R 1 m SiO (4-m) / 2 (1) (wherein, R 1 is a substituted or unsubstituted monovalent alkyl group,
A vinyl group or a phenyl group, and m represents an integer of 0 to 3. In the general formula (1), R 1 represents, for example, a methyl group, an ethyl group, a propyl group, a vinyl group, a phenyl group,
And groups obtained by substituting them with a halogen atom or a cyano group. Specific examples of the organosiloxane represented by the general formula (1) include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, and trimethyltriphenylcyclotrisiloxane. be able to. In addition,
This organosiloxane has been condensed (polycondensed) in advance, and has a polystyrene equivalent weight average molecular weight of 500, for example.
Polyorganosiloxane of about 100,000 may be used. When the organosiloxane is condensed in advance and is a polyorganosiloxane, the molecular chain ends thereof are blocked with, for example, a hydroxyl group, an alkoxy group, a trimethylsilyl group, a dimethylvinylsilyl group, a methylphenylvinylsilyl group, a methyldiphenylsilyl group, or the like. It may be.

【0006】本発明において、オルガノポリシロキサン
は、前記オルガノシロキサンと共にグラフト交叉剤を共
縮合していることが好ましい。グラフト交叉剤を用いる
ことによりグラフト率の高い重合体が得られ、本発明の
目的とする特性に一段と優れた電池電極用バインダーが
得られる。グラフト交叉剤としては、以下の〜で示
される化合物を挙げることができる。 下記式(2−1)で表される不飽和基と、アルコキ
シシリル基とを合わせ持つ化合物。 H2 =C(R2 )−(CH2 n −Ar ・・・(2−1) (式中、R2 は水素原子または炭素数1〜6のアルキル
基、Arはフェニル基、nは0〜12の整数を示す。) 下記式(2−2)で表される化合物。 R3 p SiO(3-P)/2 ・・・(2−2) (式中、R3 はビニル基またはアリル基、pは0〜2の
整数を示す。) 下記式(2−3)で表される化合物。 HSR4 SiR5 q (3-q)/2 ・・・(2−3) (式中、R4 は炭素数1〜18の2価または3価の脂肪
族飽和炭化水素基、R5は脂肪族不飽和基を含有しない
炭素数1〜6の1価の炭化水素基であり、qは0〜2の
整数を示す。) 下記式(2−4)で表される化合物。 CH2 =C(CH3 )−COO−(CH2 r SiR6 s (3 s)/2 ・・・(2−4) (式中、R6 は水素原子、メチル基、エチル基、プロピ
ル基またはフェニル基であり、rは0〜6の整数、sは
0〜2の整数を示す。)
In the present invention, it is preferable that the organopolysiloxane is co-condensed with the above-mentioned organosiloxane with a graft crosslinking agent. By using the graft crossing agent, a polymer having a high graft ratio can be obtained, and a binder for a battery electrode which is more excellent in the properties aimed at by the present invention can be obtained. Examples of the graft-crosslinking agent include the following compounds. A compound having both an unsaturated group represented by the following formula (2-1) and an alkoxysilyl group. H 2 = C (R 2) - (CH 2) n -Ar ··· (2-1) ( wherein, R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, Ar is a phenyl group, n represents It represents an integer of 0 to 12.) A compound represented by the following formula (2-2). R 3 p SiO (3-P ) / 2 ··· (2-2) ( wherein, R 3 is a vinyl group or allyl group, p is an integer of 0 to 2.) The following formula (2-3) A compound represented by the formula: HSR 4 SiR 5 q O (3-q) / 2 (2-3) (wherein, R 4 is a divalent or trivalent aliphatic saturated hydrocarbon group having 1 to 18 carbon atoms, and R 5 is It is a monovalent hydrocarbon group having 1 to 6 carbon atoms which does not contain an aliphatic unsaturated group, and q represents an integer of 0 to 2.) A compound represented by the following formula (2-4). CH 2 = C (CH 3) -COO- (CH 2) r SiR 6 s O (3 over s) / 2 ··· (2-4) ( wherein, R 6 is a hydrogen atom, a methyl group, an ethyl group , A propyl group or a phenyl group, r represents an integer of 0 to 6, and s represents an integer of 0 to 2.)

【0007】前記式(2−1)におけるR2 としては、
水素原子または炭素数1〜6のアルキル基が挙げられる
が、水素原子または炭素数1〜2のアルキル基が好まし
く、さらに水素原子またはメチル基であることが好まし
い。また、nは0〜12の整数であり、より好ましくは
0である。前記で示される化合物としては、p−ビニ
ルフェニルメチルジメトキシシラン、2−(m−ビニル
フェニル)エチルメチルジメトキシシラン、1−(m−
ビニルフェニル)メチルジメチルイソプロポキシシラ
ン、2−(p−ビニルフェニル)エチルメチルジメトキ
シシラン、3−(p−ビニルフェノキシ)プロピルメチ
ルジメトキシシラン、3−(p−ビニルベンゾイロキ
シ)プロピルメチルジメトキシシラン、1−(O−ビニ
ルフェニル)−1,1,2−トリメチル−2,2,−ジ
メトキシジシラン、1−(P−ビニルフェニル)−1,
1,−ジフェニル−3−エチル−3,3,−ジエトキシ
ジシラン、m−ビニルフェニル−[3−(トリエトキシ
シリル)プロピル]ジフェニルシラン、[3−(p−イ
ソプロペニルベンゾイルアミノ)プロピル]フェニルジ
プロポキシシランなどの化合物およびこれらの混合物を
挙げることができる。これらの中でも、p−ビニルフェ
ニルメチルジメトキシシラン、2−(p−ビニルフェニ
ル)エチルメチルジメトキシシラン、3−(p−ビニル
ベンゾイロキシ)プロピルメチルジメトキシシランの使
用が好ましく、特にp−ビニルフェニルメチルジメトキ
シシランの使用が好ましい。前記で示される化合物と
しては、ビニルメチルジメトキシシラン、テトラビニル
テトラメチルシクロテトラシロキサン、アリルメチルジ
メトキシシランなどを挙げることができる。前記で示
される化合物としては、3−メルカプトプロピルメチル
ジメトキシシランなどを挙げることができる。前記で
示される化合物としては、3−メタクリロキシルプロピ
ルメチルジメトキシシランなどを挙げることができる。
これらのグラフト交叉剤のうちで特に好ましいものは、
前記で示される化合物である。これらのグラフト交叉
剤の使用割合は、前記オルガノシロキサン成分との合計
量に対して、20重量%以下、好ましくは、0.1〜1
0重量%、さらに好ましくは0.5〜5重量%である。
グラフト交叉剤の割合が20重量%を超えると、グラフ
ト率は増大するが、グラフト交叉剤の割合の増加ととも
に重合体が低分子量となり、その結果充分なバインダ−
性能が得られない場合がある。
In the above formula (2-1), R 2 is
A hydrogen atom or an alkyl group having 1 to 6 carbon atoms is mentioned, but a hydrogen atom or an alkyl group having 1 to 2 carbon atoms is preferable, and a hydrogen atom or a methyl group is more preferable. Further, n is an integer of 0 to 12, and more preferably 0. As the compounds shown above, p-vinylphenylmethyldimethoxysilane, 2- (m-vinylphenyl) ethylmethyldimethoxysilane, 1- (m-
(Vinylphenyl) methyldimethylisopropoxysilane, 2- (p-vinylphenyl) ethylmethyldimethoxysilane, 3- (p-vinylphenoxy) propylmethyldimethoxysilane, 3- (p-vinylbenzoyloxy) propylmethyldimethoxysilane, 1- (O-vinylphenyl) -1,1,2-trimethyl-2,2, -dimethoxydisilane, 1- (P-vinylphenyl) -1,
1, -diphenyl-3-ethyl-3,3, -diethoxydisilane, m-vinylphenyl- [3- (triethoxysilyl) propyl] diphenylsilane, [3- (p-isopropenylbenzoylamino) propyl] phenyl Compounds such as dipropoxysilane and mixtures thereof can be mentioned. Of these, p-vinylphenylmethyldimethoxysilane, 2- (p-vinylphenyl) ethylmethyldimethoxysilane, and 3- (p-vinylbenzoyloxy) propylmethyldimethoxysilane are preferred, and p-vinylphenylmethyl is particularly preferred. The use of dimethoxysilane is preferred. Examples of the compounds shown above include vinylmethyldimethoxysilane, tetravinyltetramethylcyclotetrasiloxane, and allylmethyldimethoxysilane. Examples of the compounds shown above include 3-mercaptopropylmethyldimethoxysilane. Examples of the compounds shown above include 3-methacryloxylpropylmethyldimethoxysilane.
Among these grafting agents, particularly preferred are:
These are the compounds shown above. The proportion of these grafting agents used is 20% by weight or less, preferably 0.1 to 1%, based on the total amount of the above-mentioned organosiloxane components.
0% by weight, more preferably 0.5 to 5% by weight.
When the proportion of the graft-linking agent exceeds 20% by weight, the graft ratio increases, but as the proportion of the graft-linking agent increases, the polymer becomes low in molecular weight, and as a result, a sufficient binder can be obtained.
Performance may not be obtained.

【0008】本発明に用いられるオルガノポリシロキサ
ンは、前記オルガノシロキサンと必要に応じてグラフト
交叉剤とを、乳化剤(界面活性剤)および水の存在化に
ホモミキサーなどを用いてせん断混合し、重縮合させる
ことによって製造することができる。本発明において
は、オルガノポリシロキサンは水分散体として使用す
る。ここで乳化剤は、オルガノシロキサンの乳化剤とし
て作用する他に、縮合開始剤として機能する。本発明に
おいて使用することのできる乳化剤としては、不飽和脂
肪族スルホン酸、水酸化脂肪族スルホン酸、脂肪族置換
ベンゼンスルホン酸、脂肪族水素サルフェート類などの
アニオン系界面活性剤を挙げることができ、具体的に
は、テトラデセンスルホン酸、ヒドロキシテトラデカン
ンスルホン酸、ヘキシルベンゼンスルホン酸、オクチル
ベンゼンスルホン酸、ドデシルベンゼンスルホン酸、セ
チルベンゼンスルホン酸、オクチルサルフェート、ラウ
リルサルフェート、オレルサルフェート、セチルサルフ
ェートなどを挙げることができる。さらに本発明におい
ては、他のアニオン系界面活性剤やノニオン系界面活性
剤を、本発明の目的を損なわない範囲で、上記アニオン
系界面活性剤と乳化重合前もしくは乳化重合後に併用し
てもよい。オルガノポリシロキサンの合成における乳化
剤の使用量は、オルガノシロキサンおよびグラフト交叉
剤の合計量に対して、通常0.1〜5重量%、好ましく
は0.3〜3重量%である。また、水の使用量は、オル
ガノシロキサンおよびグラフト交叉剤成分の合計量10
0部に対して、通常100〜500重量部とし、特に2
00〜400重量部が好ましく、縮合温度は、5〜10
0℃とすることが好ましい。本発明で用いられるオルガ
ノポリシロキサンのポリスチレン換算の重量平均分子量
は、好ましくは30,000〜1,000,000、よ
り好ましくは50、000〜300,000である。ポ
リスチレン換算の重量平均分子量が30,000未満で
は、得られる塗膜の強度が不充分である場合があり、一
方1,000,000を超えると塗膜の密着性が低下す
る場合がある。
The organopolysiloxane used in the present invention is obtained by shear-mixing the above-mentioned organosiloxane and, if necessary, a graft-linking agent with a homomixer or the like in the presence of an emulsifier (surfactant) and water. It can be produced by condensation. In the present invention, the organopolysiloxane is used as an aqueous dispersion. Here, the emulsifier functions not only as an emulsifier for the organosiloxane but also as a condensation initiator. Examples of the emulsifier that can be used in the present invention include anionic surfactants such as unsaturated aliphatic sulfonic acids, hydroxylated aliphatic sulfonic acids, aliphatic substituted benzenesulfonic acids, and aliphatic hydrogen sulfates. Specifically, tetradecenesulfonic acid, hydroxytetradecanesulfonic acid, hexylbenzenesulfonic acid, octylbenzenesulfonic acid, dodecylbenzenesulfonic acid, cetylbenzenesulfonic acid, octyl sulfate, lauryl sulfate, oleyl sulfate, cetyl sulfate, etc. Can be mentioned. Further, in the present invention, other anionic surfactants and nonionic surfactants may be used in combination with the above anionic surfactant before or after emulsion polymerization, as long as the object of the present invention is not impaired. . The amount of the emulsifier used in the synthesis of the organopolysiloxane is usually 0.1 to 5% by weight, preferably 0.3 to 3% by weight, based on the total amount of the organosiloxane and the grafting agent. In addition, the amount of water used is 10% of the total amount of the organosiloxane and the graft crosslinking agent component.
0 parts by weight, usually 100 to 500 parts by weight, especially 2
The content is preferably in the range of 5 to 10 parts by weight.
The temperature is preferably set to 0 ° C. The weight average molecular weight in terms of polystyrene of the organopolysiloxane used in the present invention is preferably 30,000 to 1,000,000, and more preferably 50,000 to 300,000. If the weight average molecular weight in terms of polystyrene is less than 30,000, the strength of the obtained coating film may be insufficient, while if it exceeds 1,000,000, the adhesion of the coating film may decrease.

【0009】単量体成分 特定重合体の合成に用いられる単量体成分には、アルキ
ル基の炭素数の異なる2種以上の(メタ)アクリル酸ア
ルキルエステルが用いられる。アルキル基の炭素数が1
〜3の(メタ)アクリル酸アルキルエステル((a−
1)成分)としては、例えば、(メタ)アクリル酸メチ
ル、(メタ)アクリル酸エチル、(メタ)アクリル酸n
−プロピル、(メタ)アクリル酸i−プロピル、ヒドロ
キシメチル(メタ)アクリレート、ヒドロキシエチル
(メタ)アクリレートなどが挙げられる。これらの化合
物は、1種類単独でも、あるいは2種類以上を併用する
こともできる。アルキル基の炭素数が4〜10の(メ
タ)アクリル酸アルキルエステル((a−2)成分)と
しては、例えば、(メタ)アクリル酸n−ブチル、(メ
タ)アクリル酸i−ブチル、(メタ)アクリル酸n−ア
ミル、(メタ)アクリル酸i−アミル、(メタ)アクリ
ル酸ヘキシル、(メタ)アクリル酸2−ヘキシル、(メ
タ)アクリル酸オクチル、(メタ)アクリル酸i−ノニ
ル、(メタ)アクリル酸デシルなどが挙げられる。これ
らの化合物は、1種類単独でも、あるいは2種類以上を
併用することもできる。 (a−1)アルキル基の炭素数が1〜3の(メタ)アク
リル酸アルキルエステルは、得られる特定重合体の乾燥
塗膜の電解液に対する膨潤率を高め、特定重合体に弾
性、強度、接着力を与えるるために必須の成分であり、
その配合割合は、単量体成分全体に対して10〜75重
量%、好ましくは10〜65重量%、さらに好ましくは
11〜60重量%である。(a−1)成分の配合割合が
10重量%未満では、乾燥塗膜の電解液に対する膨潤率
が低くなり電解液が電極まで染み込まないためイオン導
電性が劣る。一方75重量%を超えると、乾燥塗膜の電
解液に対する膨潤率が高くなりすぎ、塗膜強度、密着性
なども低下して好ましくない。 (a−2)アルキル基の炭素数が4〜10の(メタ)ア
クリル酸アルキルエステルは、得られる特定重合体に弾
性、強度、接着力を与えるために必須の成分であり、そ
の配合割合は、単量体成分全体に対して25〜90重量
%、好ましくは30〜85重量%、さらに好ましくは3
3〜83重量%である。(a−2)成分の配合割合が2
5重量%未満では、乾燥塗膜の密着性、弾性が劣り、一
方90重量%を超えると、重合系の安定性が劣り、乾燥
塗膜がべとつき、また密着性、強度なども低下して好ま
しくない。
Monomer Component As the monomer component used in the synthesis of the specific polymer, two or more alkyl (meth) acrylates having alkyl groups having different carbon numbers are used. The alkyl group has 1 carbon atom
To 3 alkyl (meth) acrylates ((a-
Examples of the 1) component) include methyl (meth) acrylate, ethyl (meth) acrylate, and n- (meth) acrylate.
-Propyl, i-propyl (meth) acrylate, hydroxymethyl (meth) acrylate, hydroxyethyl (meth) acrylate and the like. These compounds can be used alone or in combination of two or more. Examples of the alkyl (meth) acrylate having 4 to 10 carbon atoms in the alkyl group (component (a-2)) include n-butyl (meth) acrylate, i-butyl (meth) acrylate, and (meth) acrylate. ) N-amyl acrylate, i-amyl (meth) acrylate, hexyl (meth) acrylate, 2-hexyl (meth) acrylate, octyl (meth) acrylate, i-nonyl (meth) acrylate, (meth) ) Decyl acrylate and the like. These compounds can be used alone or in combination of two or more. (A-1) The alkyl ester of (meth) acrylic acid having 1 to 3 carbon atoms in the alkyl group increases the swelling ratio of the obtained specific polymer in a dried coating film with respect to the electrolyte, and provides the specific polymer with elasticity, strength, It is an essential component to give adhesion,
The compounding ratio is 10 to 75% by weight, preferably 10 to 65% by weight, and more preferably 11 to 60% by weight, based on the whole monomer components. When the blending ratio of the component (a-1) is less than 10% by weight, the swelling ratio of the dried coating film to the electrolyte is low, and the electrolyte does not penetrate to the electrode, resulting in poor ionic conductivity. On the other hand, if it exceeds 75% by weight, the swelling ratio of the dried coating film to the electrolytic solution becomes too high, and the coating film strength and adhesion are undesirably reduced. (A-2) The alkyl (meth) acrylate having 4 to 10 carbon atoms in the alkyl group is an essential component for imparting elasticity, strength, and adhesion to the specific polymer obtained, and the compounding ratio thereof is as follows. , 25 to 90% by weight, preferably 30 to 85% by weight, more preferably 3 to 90% by weight, based on the whole monomer components.
3 to 83% by weight. (A-2) The mixing ratio of the component is 2
If the amount is less than 5% by weight, the adhesion and elasticity of the dried coating film are poor. On the other hand, if the amount exceeds 90% by weight, the stability of the polymerization system is inferior, the dried film is sticky, and the adhesion, strength, etc. are also reduced. Absent.

【0010】(b)エチレン性不飽和カルボン酸として
は、例えば、アクリル酸、(メタ)アクリル酸、イタコ
ン酸、フマル酸、マレイン酸などが挙げられ、好ましく
は(メタ)アクリル酸である。これらの(b)エチレン
性不飽和カルボン酸は、得られる特定重合体の安定性と
耐水性のバランスを高水準に保つために必須の成分であ
って、1種類単独でも、あるいは2種類以上を併用する
こともできる。(b)成分の配合割合は、単量体成分全
体に対して、通常、0.5〜15重量%、好ましくは2
〜13重量%、さらに好ましくは3〜10重量%であ
る。配合割合が0.5重量%未満では、得られる特定重
合体のバインダー性能および耐薬品性が劣る場合があ
り、一方15重量%を超えると、耐水性および貯蔵安定
性が劣る場合がある。
(B) The ethylenically unsaturated carboxylic acid includes, for example, acrylic acid, (meth) acrylic acid, itaconic acid, fumaric acid, maleic acid and the like, and preferably (meth) acrylic acid. These (b) ethylenically unsaturated carboxylic acids are essential components for maintaining the balance between stability and water resistance of the obtained specific polymer at a high level, and may be used alone or in combination of two or more. They can be used together. The compounding ratio of the component (b) is usually 0.5 to 15% by weight, preferably 2 to 15% by weight, based on the whole monomer components.
To 13% by weight, more preferably 3 to 10% by weight. If the compounding ratio is less than 0.5% by weight, the binder performance and chemical resistance of the obtained specific polymer may be inferior, while if it exceeds 15% by weight, water resistance and storage stability may be inferior.

【0011】さらに、(c)これらと共重合可能な他の
単量体は、例えば、(メタ)アクリロニトリル、α−ク
ロルアクリロニトリルなどのシアン化ビニル系化合物;
1,3−ブタジエン、イソプレン、2−クロルー1,3
−ブタジエンなどの脂肪族共役ジエン;スチレン、α−
メチルスチレン、ビニルトルエンなどの芳香族ビニル化
合物;(メタ)アクリルアミド、N−メチロールアクリ
ルアミドなどのエチレン性不飽和カルボン酸のアルキル
アミド;酢酸ビニル、プロピオン酸ビニルなどのカルボ
ン酸ビニルエステル;エチレン系不飽和ジカルボン酸
の、酸無水物、モノアルキルアステル、モノアミド類;
アミノエチルアクリレート、ジメチルアミノエチルアク
リレート、ブチルアミノエチルアクリレートなどのエチ
レン系不飽和カルボン酸のアミノアルキルエステル;ア
ミノエチルアクリルアミド、ジメチルアミノメチルメタ
クリルアミド、メチルアミノプロピルメタクリルアミド
などのエチレン系不飽和カルボン酸のアミノアルキルア
ミド;グリシジル(メタ)アクリレートなどの不飽和脂
肪族グリシジルエステルなどを挙げることができるが、
好ましくはアクリロニトリル、(メタ)アクリロニトリ
ル、1,3−ブタジエン、スチレン、α−メチルスチレ
ンなどである。これらの(c)共重合可能な他の単量体
は、1種単独でもあるいは2種類以上を併用することも
できる。 (c)共重合可能な他の単量体は、単量体成分中、好ま
しくは60重量%以下の割合で用いられる。60重量%
を超えると、造膜性の低下、成膜後の変色、塗膜の収縮
などの問題があり好ましくない。
Further, (c) other monomers copolymerizable therewith include vinyl cyanide compounds such as (meth) acrylonitrile and α-chloroacrylonitrile;
1,3-butadiene, isoprene, 2-chloro-1,3
An aliphatic conjugated diene such as butadiene; styrene, α-
Aromatic vinyl compounds such as methylstyrene and vinyltoluene; alkylamides of ethylenically unsaturated carboxylic acids such as (meth) acrylamide and N-methylolacrylamide; carboxylic acid vinyl esters such as vinyl acetate and vinyl propionate; ethylenically unsaturated Acid anhydrides, monoalkylesters and monoamides of dicarboxylic acids;
Aminoalkyl esters of ethylenically unsaturated carboxylic acids such as aminoethyl acrylate, dimethylaminoethyl acrylate and butylaminoethyl acrylate; of ethylenically unsaturated carboxylic acids such as aminoethylacrylamide, dimethylaminomethylmethacrylamide and methylaminopropylmethacrylamide Aminoalkyl amides; unsaturated aliphatic glycidyl esters such as glycidyl (meth) acrylate;
Preferred are acrylonitrile, (meth) acrylonitrile, 1,3-butadiene, styrene, α-methylstyrene and the like. These other copolymerizable monomers (c) may be used alone or in combination of two or more. (C) The other copolymerizable monomer is used in a proportion of preferably 60% by weight or less in the monomer component. 60% by weight
If the ratio exceeds the above range, problems such as deterioration of film forming property, discoloration after film formation, shrinkage of the coating film, etc. are not preferred.

【0012】特定重合体の製造 本発明で用いられる特定重合体は、前記オルガノポリシ
ロキサン水分散体の存在下に、単量体成分を乳化重合す
ることにより製造することが好ましい。オルガノポリシ
ロキサンの水性分散体存在下で単量体成分を重合する際
の仕込み組成は、オルガノポリシロキサン成分(固形分
換算)が1〜90重量部、好ましくは3〜50重量部、
さらに好ましくは5〜30重量部であり、単量体成分が
99〜10重量部、好ましくは97〜50重量部、さら
に好ましくは95〜70重量部[ただし、オルガノポリ
シロキサン+単量体成分=100重量部]である。ここ
で、オルガノポリシロキサンが1重量部未満では、得ら
れる電池電極形成用バインダーの充分な密着性、耐水性
が得られず、一方90重合部を超えると、塗膜としての
充分な強度が得られず、また成膜性も悪化する。
Production of Specific Polymer The specific polymer used in the present invention is preferably produced by emulsion polymerization of a monomer component in the presence of the aqueous dispersion of an organopolysiloxane. The charged composition when the monomer component is polymerized in the presence of the aqueous dispersion of the organopolysiloxane is such that the organopolysiloxane component (in terms of solid content) is 1 to 90 parts by weight, preferably 3 to 50 parts by weight,
More preferably, it is 5 to 30 parts by weight, and the monomer component is 99 to 10 parts by weight, preferably 97 to 50 parts by weight, more preferably 95 to 70 parts by weight [however, organopolysiloxane + monomer component = 100 parts by weight]. Here, when the amount of the organopolysiloxane is less than 1 part by weight, sufficient adhesiveness and water resistance of the obtained binder for forming a battery electrode cannot be obtained. On the other hand, when the amount exceeds 90 parts by weight, sufficient strength as a coating film is obtained. And the film formability also deteriorates.

【0013】電池電極形成用バインダー 本発明の電池電極形成用バインダーは、上記のようにし
て得られた特定重合体を水または有機溶剤に分散するこ
とにより使用できる。特定重合体を水に分散させた場合
の分散粒子径は、通常、0.01〜2.0μm、好まし
くは0.1〜0.6μmである。また、特定重合体を分
散して使用することのできる有機溶剤としては、例え
ば、N−メチルピロリドン、1,1−ジクロロエタン、
1,2−ジクロロエタン、1,1,1−トリクロロエタ
ン、1,1,2−トリクロロエタン、1,1,1,2−
テトラクロロエタン、1,1,2,2−テトラクロロエ
タン、ペンタクロロエタン、ヘキサクロロエタン、1,
1−ジクロロエチレン、1,2−ジクロロエチレン、ト
リクロロエチレン、テトラクロロエチレン、クロロベン
ゼン、o−ジクロロベンゼン、m−ジクロロベンゼン、
p−ジクロロベンゼン、1,2,4−トリクロロベンゼ
ン、トリクロロメチルベンゼンなどのハロゲン化炭化水
素系溶剤;ジオキサン、アニソール、テトラヒドロフラ
ン、テトラヒドロピラン、ジエチレングリコールジメチ
ルエーテル、ジエチレングリコールジエチルエーテル、
ジエチレングリコールジプロピルエーテル、ジエチレン
グリコールジブチルエーテル、ジエチレングリコールモ
ノメチルエーテル、ジエチレングリコールモノエチルエ
ーテル、ジエチレングリコールモノプロピルエーテル、
ジエチレングリコールモノブチルエーテル、トリエチレ
ングリコールモノメチルエーテルなどのエーテル系溶
剤;シクロヘキサノン、2−アセチルシクロヘキサノ
ン、2−メチルシクロヘキサノン、3−メチルシクロヘ
キサノン、4−メチルシクロヘキサノン、シクロヘプタ
ノン、1−デカロン、2−デカロン、2,4−ジメチル
−3−ペンタノン、4,4−ジメチル−2−ペンタノ
ン、2−メチル−3−ヘキサノン、5−メチル−2−ヘ
キサノン、2−ヘプタノン、3−ヘプタノン、4−ヘプ
タノン、2−メチル−3−ヘプタノン、5−メチル−3
−ヘプタノン、2,6−ジメチル−4−ヘプタノン、2
−オクタノン、3−オクタノン、2−ノナノン、3−ノ
ナノン、5−ノナノン、2−デカノン、3−デカノン、
4−デカノンなどのケトン系溶剤;ベンゼン、トルエ
ン、キシレン、エチルベンゼン、クメンなどの芳香族炭
化水素系溶剤;N−メチル−2−ピロリドン、N−アセ
チル−2−ピロリドン、N−ベンジル−2−ピロリド
ン、N−メチル−3−ピロリドン、N−アセチル−3−
ピロリドン、N−ベンジル−3−ピロリドン、ホルムア
ミド、N−メチルホルムアミド、N,N−ジメチルホル
ムアミド、N−エチルホルムアミド、N,N−ジエチル
ホルムアミド、アセトアミド、N−メチルアセトアミ
ド、N,N−ジメチルアセトアミド、N−メチルプロピ
オンアミドなどのアミド系溶剤;ジメチルスルホキシド
などの非プロトン性極性溶剤;2−メトキシエチルアセ
テート、2−エトキシエチルアセテート、2−プロポキ
シエチルアセテート、2−ブトキシエチルアセテート、
2−フェノキシエチルアセテート、ジエチレングリコー
ルモノメチルエーテルアセテート、ジエチレングリコー
ルモノエチルエーテルアセテート、ジエチレングリコー
ルモノプロピルエーテルアセテート、ジエチレングリコ
ールモノブチルエーテルアセテートなどのアセテート系
溶剤を挙げることができる。これらの有機溶剤は、単独
でまたは2種以上を混合して使用することができる。さ
らに、本発明の電池電極用バインダーには、必要に応じ
て増粘剤を、特定重合体100重量部に対して1〜20
0重量部用いてもよい。増粘剤としては、カルボキシメ
チルセルロース、メチルセルロース、ヒドロキシメチル
セルロース、エチルセルロース、ポリビニルアルコー
ル、ポリアクリル酸(塩)、酸化スターチ、リン酸化ス
ターチ、カゼインなどが挙げられる。本発明の電池電極
用バインダーの固形分濃度は特に限定するものではない
が、通常20〜65重量%、好ましくは35〜60重量
%である。また、本発明の電池電極形成用バインダーを
用いて膜厚0.5mmのフィルムを作成し、JIS K
6301−3に準じた引っ張り試験によるフィルムの最
大伸び率は、好ましくは150〜1000%、さらに好
ましくは250〜700%である。フィルム伸びが15
0%未満の場合は電極の接着強度および柔軟性に欠ける
場合があり、1000%を越えると電極を形成し加熱乾
燥するときにポリマーフローが生じて活物質を過渡に覆
いやすく、過電圧が上昇し使用できなくなる場合があ
る。フィルム伸びの調整には、特定重合体製造時の重合
温度の調整、重合開始剤量の調整、重合転化率の調整、
連鎖移動剤量の調整、ガラス転移点の調整などの一般的
な方法が用いられる。
Binder for Forming Battery Electrode The binder for forming a battery electrode of the present invention can be used by dispersing the specific polymer obtained as described above in water or an organic solvent. When the specific polymer is dispersed in water, the particle diameter of the dispersion is usually 0.01 to 2.0 μm, preferably 0.1 to 0.6 μm. Examples of the organic solvent that can be used by dispersing the specific polymer include, for example, N-methylpyrrolidone, 1,1-dichloroethane,
1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,1,2-
Tetrachloroethane, 1,1,2,2-tetrachloroethane, pentachloroethane, hexachloroethane, 1,
1-dichloroethylene, 1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, chlorobenzene, o-dichlorobenzene, m-dichlorobenzene,
halogenated hydrocarbon solvents such as p-dichlorobenzene, 1,2,4-trichlorobenzene and trichloromethylbenzene; dioxane, anisole, tetrahydrofuran, tetrahydropyran, diethylene glycol dimethyl ether, diethylene glycol diethyl ether,
Diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether,
Ether solvents such as diethylene glycol monobutyl ether and triethylene glycol monomethyl ether; cyclohexanone, 2-acetylcyclohexanone, 2-methylcyclohexanone, 3-methylcyclohexanone, 4-methylcyclohexanone, cycloheptanone, 1-decalone, 2-decalone, , 4-dimethyl-3-pentanone, 4,4-dimethyl-2-pentanone, 2-methyl-3-hexanone, 5-methyl-2-hexanone, 2-heptanone, 3-heptanone, 4-heptanone, 2-methyl -3-heptanone, 5-methyl-3
-Heptanone, 2,6-dimethyl-4-heptanone, 2
-Octanone, 3-octanone, 2-nonanone, 3-nonanone, 5-nonanone, 2-decanone, 3-decanone,
Ketone solvents such as 4-decanone; aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, cumene; N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N-benzyl-2-pyrrolidone , N-methyl-3-pyrrolidone, N-acetyl-3-
Pyrrolidone, N-benzyl-3-pyrrolidone, formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, Amide solvents such as N-methylpropionamide; aprotic polar solvents such as dimethyl sulfoxide; 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-propoxyethyl acetate, 2-butoxyethyl acetate;
Acetate solvents such as 2-phenoxyethyl acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monopropyl ether acetate, and diethylene glycol monobutyl ether acetate can be exemplified. These organic solvents can be used alone or in combination of two or more. The binder for a battery electrode of the present invention may further contain a thickener, if necessary, in an amount of 1 to 20 parts by weight based on 100 parts by weight of the specific polymer.
0 parts by weight may be used. Examples of the thickener include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, and casein. The solid content concentration of the battery electrode binder of the present invention is not particularly limited, but is usually 20 to 65% by weight, preferably 35 to 60% by weight. Further, a film having a thickness of 0.5 mm was prepared using the binder for forming a battery electrode of the present invention, and was subjected to JIS K
The maximum elongation of the film by a tensile test according to 6301-3 is preferably 150 to 1000%, more preferably 250 to 700%. Film elongation is 15
If the amount is less than 0%, the adhesive strength and flexibility of the electrode may be lacking. If the amount exceeds 1000%, polymer flow occurs when the electrode is formed and heated and dried, so that the active material is easily covered transiently, and the overvoltage increases. You may not be able to use it. To adjust the film elongation, adjust the polymerization temperature during production of the specific polymer, adjust the amount of polymerization initiator, adjust the polymerization conversion,
General methods such as adjusting the amount of the chain transfer agent and adjusting the glass transition point are used.

【0014】電池電極 本発明の電池電極形成用バインダーは、電極活物質など
の電極材料に配合して電池電極用組成物とすることがで
きる。電池電極を形成する場合には、該電池電極用組成
物を集電材と共に成形しても良いし、またはアルミ箔、
銅箔などを集電材とし、これに電池電極用組成物を塗布
して用いることもできる。好ましくは、スラリー状にし
た電池電極用組成物を、集電材に塗布し、加熱し、乾燥
することによって得られる。電池電極用組成物の塗布方
法としては、スリットコーター法、リバースロール法、
コンマバー法、グラビヤ法、エアーナイフ法など任意の
方法を用いることができ、乾燥方法としては放置乾燥、
送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱
機などが使用できる。乾燥温度は、通常130℃〜20
0℃で行うのが好ましい。本発明の電池電極形成用バイ
ンダーは、電極活物質100重量部に対して固形分で
0.1〜20重量部、好ましくは0.5〜10重量部配
合される。バインダーの配合量が0.1重量部未満では
良好な接着力が得られず、20重量部を超えると過電圧
が著しく上昇し電池特性に悪影響をおよぼす。
Battery Electrode The binder for forming a battery electrode of the present invention can be mixed with an electrode material such as an electrode active material to form a composition for a battery electrode. When forming a battery electrode, the composition for a battery electrode may be molded together with a current collector, or an aluminum foil,
It is also possible to use a copper foil or the like as a current collector, to which a composition for a battery electrode is applied. Preferably, the composition is obtained by applying a slurry-like composition for a battery electrode to a current collector, heating and drying. As a method of applying the composition for a battery electrode, a slit coater method, a reverse roll method,
Any method such as a comma bar method, a gravure method, and an air knife method can be used.
An air dryer, a warm air dryer, an infrared heater, a far infrared heater, or the like can be used. The drying temperature is usually 130 ° C to 20 ° C.
It is preferably performed at 0 ° C. The binder for forming a battery electrode of the present invention is compounded in a solid content of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the electrode active material. If the amount of the binder is less than 0.1 part by weight, good adhesive strength cannot be obtained, and if it exceeds 20 parts by weight, the overvoltage increases significantly and adversely affects the battery characteristics.

【0015】非水系電池の電池電極用組成物に用いられ
る電極活物質としては、特に限定されるものではない
が、正極用活物質としては、例えば、Lix CoO2
LixNiO2 、Lix MnO2 、Lix Coy Ni
(1-y) 2 、Lix Coy Fe(1-y) 2 、Lix Co
y (1-y) 2 、Lix Coy Mn(1-y) 2 、Lix
Mn2 4 、Lix Co(2-z) Mnz 4 、Lix Ni
(2-z) Mnz 4 、Lix(2-z) Mnz 4 、Lix
Fe(2-z) Mnz 4 、MnO2 、MoO3 、V
25 、V6 13、Fe2 3 、Fe3 4 、Ti
2 、TiS3 、MoS3 、FeS2 、CuF2 、Ni
2 などの無機化合物が挙げられる。特にLix CoO
2 、Lix NiO2 、Lix Mn2 4 、Lix Coy
Snz 2 、Lix Co(1-x) Niy 2 などのリチウ
ムイオン含有複合酸化物を用いた場合、エネルギー密度
の高い電池を得ることができる。また、導電性付与のた
めに、アセチレンブラック、ケッチェンブラックなどの
導電性カーボンを、前記活物質と一緒に配合してもよ
い。また、用いる負極用活物質としては特に限定される
ものではないが、例えば、フッ化カーボン、グラファイ
ト、気相成長炭素繊維および/またはその粉砕物、PA
N系炭素繊維および/またはその粉砕物、ピッチ系炭素
繊維および/またはその粉砕物などの炭素材料、ポリア
セチレン、ポリ−p−フェニレン等の導電性高分子、ス
ズ酸化物やフッ素などの化合物からなるアモルファス化
合物などが挙げられる。特に、黒鉛化度の高い天然黒鉛
や人造黒鉛、黒鉛化メソフェーズカーボンなどの黒鉛質
材料を用いた場合、充放電サイクル特性が良く、容量が
高い電池を得ることができる。また、用いる負極用活物
質の炭素質材料の平均粒径は、電流効率の低下、スラリ
ーの安定性の低下、また得られる電極の塗膜内での粒子
間抵抗の増大などの問題により、0.1〜50μ、好ま
しくは3〜25μ、さらに好ましくは5〜15μの範囲
であることが好適である。
The electrode active material used in the composition for a battery electrode of a non-aqueous battery is not particularly limited. Examples of the positive electrode active material include Li x CoO 2 ,
Li x NiO 2 , Li x MnO 2 , Li x Co y Ni
(1-y) O 2 , Li x Co y Fe (1-y) O 2 , Li x Co
y V (1-y) O 2 , Li x Co y Mn (1-y) O 2 , Li x
Mn 2 O 4 , Li x Co (2-z) Mn z O 4 , Li x Ni
(2-z) Mn z O 4, Li x V (2-z) Mn z O 4, Li x
Fe (2-z) Mn z O 4 , MnO 2 , MoO 3 , V
2 O 5 , V 6 O 13 , Fe 2 O 3 , Fe 3 O 4 , Ti
S 2 , TiS 3 , MoS 3 , FeS 2 , CuF 2 , Ni
Inorganic compounds such as F 2 and the like. Especially Li x CoO
2, Li x NiO 2, Li x Mn 2 O 4, Li x Co y
When a lithium ion-containing composite oxide such as Sn z O 2 or Li x Co (1-x) Ni y O 2 is used, a battery having a high energy density can be obtained. Further, conductive carbon such as acetylene black and Ketjen black may be blended together with the active material for imparting conductivity. The active material for a negative electrode to be used is not particularly limited, and examples thereof include carbon fluoride, graphite, vapor-grown carbon fiber and / or a crushed product thereof, and PA.
It is composed of carbon materials such as N-based carbon fibers and / or crushed products thereof, pitch-based carbon fibers and / or crushed products thereof, conductive polymers such as polyacetylene and poly-p-phenylene, and compounds such as tin oxide and fluorine. An amorphous compound may be used. In particular, when a graphite material such as natural graphite, artificial graphite, or graphitized mesophase carbon having a high degree of graphitization is used, a battery having good charge / discharge cycle characteristics and high capacity can be obtained. In addition, the average particle size of the carbonaceous material of the negative electrode active material to be used is 0% due to problems such as a decrease in current efficiency, a decrease in slurry stability, and an increase in interparticle resistance in the obtained electrode coating film. It is preferably in the range of 0.1 to 50μ, preferably 3 to 25μ, more preferably 5 to 15μ.

【0016】さらに、電池電極用組成物には、必要に応
じて、ヘキサメタリン酸ソーダ、トリポリリン酸ソー
ダ、ピロリン酸ソーダ、ポリアクリル酸ソーダなどの分
散剤、さらにラテックスの安定化剤としてのノニオン
性、アニオン性界面活性剤などの添加剤を加えてもよ
い。
The composition for a battery electrode may further include, if necessary, a dispersant such as sodium hexametaphosphate, sodium tripolyphosphate, sodium pyrophosphate, and sodium polyacrylate, and a nonionic property as a latex stabilizer. An additive such as an anionic surfactant may be added.

【0017】本発明の電池電極を用いて、非水系電池を
組み立てる場合、非水系電解液の電解質としては特に限
定されないが、アルカリ二次電池での例を示せば、Li
ClO4 、LiBF4 、LiAsF6 、CF3 SO3
i、LiPF6 、LiI、LiAlCl4 、NaClO
4 、NaBF4 、NaI、(n−Bu)4 NClO4
(n−Bu)4 NBF4 、KPF6 などが挙げられる。
また用いられる電解液の有機溶媒としては、例えばエー
テル類、ケトン類、ラクトン類、ニトリル類、アミン
類、アミド類、硫黄化合物、塩素化炭化水素類、エステ
ル類、カーボネート類、ニトロ化合物、リン酸エステル
系化合物、スルホラン系化合物などを用いることができ
るが、これらのうちでもエーテル類、ケトン類、ニトリ
ル類、塩素化炭化水素類、カーボネート類、スルホラン
系化合物が好ましい。これらの代表例としては、テトラ
ヒドロフラン、2−メチルテトラヒドロフラン、1,4
−ジオキサン、アニソール、モノグライム、アセトニト
リル、プロピオニトリル、4−メチル−2−ペンタノ
ン、ブチロニトリル、バレロニトリル、ベンゾニトリ
ル、1,2−ジクロロエタン、γ−ブチロラクトン、ジ
メトキシエタン、メチルフオルメイト、プロピレンカー
ボネート、エチレンカーボネート、ジメチルホルムアミ
ド、ジメチルスルホキシド、ジメチルチオホルムアミ
ド、スルホラン、3−メチル−スルホラン、リン酸トリ
メチル、リン酸トリエチルおよびこれらの混合溶媒など
を挙げることができるが、必ずしもこれらに限定される
ものではない。さらに、要すればセパレーター、集電
体、端子、絶縁板などの部品を用いて電池が構成され
る。また、電池の構造としては、特に限定されるもので
はないが、正極、負極、さらに要すればセパレーターを
単層または複層としたペーパー型電池、または正極、負
極、さらに要すればセパレーターをロール状に巻いた円
筒状電池などの形態が一例として挙げられる。
When a non-aqueous battery is assembled using the battery electrode of the present invention, the electrolyte of the non-aqueous electrolyte is not particularly limited.
ClO 4 , LiBF 4 , LiAsF 6 , CF 3 SO 3 L
i, LiPF 6 , LiI, LiAlCl 4 , NaClO
4, NaBF 4, NaI, ( n-Bu) 4 NClO 4,
(N-Bu) 4 NBF 4 , KPF 6 and the like.
Examples of the organic solvent used in the electrolytic solution include ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, chlorinated hydrocarbons, esters, carbonates, nitro compounds, and phosphoric acid. Ester compounds, sulfolane compounds and the like can be used, and among them, ethers, ketones, nitriles, chlorinated hydrocarbons, carbonates, and sulfolane compounds are preferable. Representative examples thereof include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4
-Dioxane, anisole, monoglyme, acetonitrile, propionitrile, 4-methyl-2-pentanone, butyronitrile, valeronitrile, benzonitrile, 1,2-dichloroethane, γ-butyrolactone, dimethoxyethane, methylformate, propylene carbonate, propylene carbonate, Examples include, but are not necessarily limited to, ethylene carbonate, dimethylformamide, dimethylsulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfolane, trimethyl phosphate, triethyl phosphate, and a mixed solvent thereof. . Further, if necessary, a battery is configured using components such as a separator, a current collector, a terminal, and an insulating plate. Further, the structure of the battery is not particularly limited, but a positive electrode, a negative electrode, a paper type battery having a single-layer or multiple-layer separator as needed, or a positive electrode, a negative electrode, and a roll of the separator if necessary. An example is a form of a cylindrical battery wound in a shape.

【0018】[0018]

【実施例】以下に実施例にて本発明をさらに詳しく説明
する。但し、本発明はこれらの実施例に何ら制約される
ものではない。なお、本実施例において特に記載がない
場合、「部」は、重量部を表す。 実施例1 (1)p−ビニルフェニルメチルジメトキシシラン1.
5部およびオクタメチルシクロテトラシロキサン98.
5部を混合し、これをα−オレフィンスルホン酸(RC
H=CH(CH2 n SO3 Na約75重量%、RCH
2 CH(OH)(CH2 )mSO3 Na約25重量%の
混合物)2.0部を溶解した蒸留水300部中に入れ、
ホモミキサーにより3分間撹拌して乳化分散させた。こ
の混合液を、コンデンサー、窒素導入口および撹拌機を
備えたセパラブルフラスコに移し、撹拌混合しながら9
0℃で6時間加熱し、5℃で24時間冷却することによ
って縮合を完結させた。得られたオルガノポリシロキサ
ン水分散体を、炭酸ナトリウム水溶液を用いてpH7に
中和した。 (2)コンデンサー、窒素導入口および撹拌機を備えた
セパラブルフラスコに、100重量部(固形分)のオル
ガノポリシロキサン水分散体、イオン交換水70部およ
び過硫酸アンモニウム0.3部をそれぞれ仕込み、気相
部を15分間窒素ガスで置換し、80℃に昇温した。 (3)一方、別容器でメチルメタクリレート11重量
部、n−ブチルアクリレート82重量部およびメタアク
リル酸5重量部、N−メチロールアクリルアミド2重量
部を混合し、3時間かけて(2)のオルガノポリシロキ
サン水分散体に滴下した。滴下中は、窒素ガスを導入し
ながら80℃で反応を行った。滴下終了後、さらに85
℃で2時間撹拌した後反応を終了させた。その後25℃
まで冷却し、アンモニア水でpH7に調整し、特定重合
体Aの水分散体を得た。
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these embodiments. In this example, unless otherwise specified, “parts” indicates parts by weight. Example 1 (1) p-vinylphenylmethyldimethoxysilane
5 parts and octamethylcyclotetrasiloxane
5 parts were mixed, and this was mixed with α-olefin sulfonic acid (RC
H = CH (CH 2 ) n SO 3 Na about 75% by weight, RCH
2 CH (OH) (CH 2 ) mSO 3 Na (a mixture of about 25% by weight) was placed in 300 parts of distilled water in which 2.0 parts were dissolved.
The mixture was stirred for 3 minutes with a homomixer and emulsified and dispersed. This mixed solution was transferred to a separable flask equipped with a condenser, a nitrogen inlet, and a stirrer.
The condensation was completed by heating at 0 ° C. for 6 hours and cooling at 5 ° C. for 24 hours. The resulting aqueous dispersion of organopolysiloxane was neutralized to pH 7 using an aqueous sodium carbonate solution. (2) 100 parts by weight (solid content) of an organopolysiloxane aqueous dispersion, 70 parts of ion-exchanged water, and 0.3 part of ammonium persulfate were charged into a separable flask equipped with a condenser, a nitrogen inlet, and a stirrer. The gas phase was replaced with nitrogen gas for 15 minutes, and the temperature was raised to 80 ° C. (3) Separately, 11 parts by weight of methyl methacrylate, 82 parts by weight of n-butyl acrylate, 5 parts by weight of methacrylic acid, and 2 parts by weight of N-methylolacrylamide were mixed in a separate container, and the mixture was mixed for 3 hours. It was added dropwise to the aqueous siloxane dispersion. During the dropwise addition, the reaction was carried out at 80 ° C. while introducing nitrogen gas. After dropping, 85
After stirring at 2 ° C. for 2 hours, the reaction was terminated. Then 25 ℃
Then, the pH was adjusted to 7 with aqueous ammonia to obtain an aqueous dispersion of the specific polymer A.

【0019】実施例2〜5 実施例1において、オルガノポリシロキサンの使用量お
よび単量体成分の組成を表1に示すとおりとした以外
は、実施例1と同様にして特定重合体B〜Eの水分散体
を得た。 比較例1 コンデンサー、窒素導入口および撹拌機を備えたセパラ
ブルフラスコに、イオン交換水70部および過硫酸アン
モニウム0.3部をそれぞれ仕込み、気相部を15分間
窒素ガスで置換し、80℃に昇温した。一方、別容器で
表1に示す成分を混合し、3時間かけて前記フラスコに
滴下した。滴下中は、窒素ガスを導入しながら80℃で
反応を行った。滴下終了後、さらに85℃で2時間撹拌
した後反応を終了させた。その後25℃まで冷却し、ア
ンモニア水でpH7に調整し、アクリルエマルジョン
(重合体a)を得た。 比較例2 撹拌機を備えたオートクレーブに、イオン交換水70部
および過硫酸カリウム0.3部をそれぞれ仕込み、気相
部を15分間窒素ガスで置換し、80℃に昇温した。一
方、別容器で表1に示す成分を混合し、15時間かけて
前記オートクレーブに滴下した。滴下中は、80℃で反
応を行った。滴下終了後、さらに85℃で5時間撹拌し
た後反応を終了させた。25℃に冷却後、水酸化カリウ
ムでpHを7に調整し、その後スチームを導入して残留
単量体を除去し、次いで濃縮しスチレン−ブタジエン系
共重合体ラテックス(重合体b)を得た。
Examples 2 to 5 Specific polymers B to E were prepared in the same manner as in Example 1 except that the amount of the organopolysiloxane used and the composition of the monomer components were as shown in Table 1. Was obtained. Comparative Example 1 70 parts of ion-exchanged water and 0.3 parts of ammonium persulfate were charged into a separable flask equipped with a condenser, a nitrogen inlet, and a stirrer, and the gas phase was replaced with nitrogen gas for 15 minutes. The temperature rose. On the other hand, the components shown in Table 1 were mixed in another container, and added dropwise to the flask over 3 hours. During the dropwise addition, the reaction was carried out at 80 ° C. while introducing nitrogen gas. After the completion of the dropwise addition, the mixture was further stirred at 85 ° C. for 2 hours to terminate the reaction. Thereafter, the mixture was cooled to 25 ° C., adjusted to pH 7 with aqueous ammonia, and an acrylic emulsion (polymer a) was obtained. Comparative Example 2 70 parts of ion-exchanged water and 0.3 part of potassium persulfate were charged into an autoclave equipped with a stirrer, the gas phase was replaced with nitrogen gas for 15 minutes, and the temperature was raised to 80 ° C. On the other hand, the components shown in Table 1 were mixed in a separate container and added dropwise to the autoclave over 15 hours. During the dropwise addition, the reaction was carried out at 80 ° C. After the completion of the dropwise addition, the mixture was further stirred at 85 ° C. for 5 hours to terminate the reaction. After cooling to 25 ° C., the pH was adjusted to 7 with potassium hydroxide, and then steam was introduced to remove residual monomers, and then concentrated to obtain a styrene-butadiene copolymer latex (polymer b). .

【0020】[0020]

【表1】 (単位:重量部)なお、表1における単量体の略号は、
次の化合物を示す。 MMA=メタクリル酸メチル((a−1)成分) EMA=メタクリル酸エチル((a−1)成分) BA=アクリル酸ブチル((a−2)成分) MAA=メタクリル酸((b)成分) AA=アクリル酸((b)成分) AN=アクリルニトリル((c)成分) NMAM=N−メチロールアクリルアミド((c)成
分) ST=スチレン((c)成分) BD=ブタジエン((c)成分)
[Table 1] (Unit: parts by weight) The abbreviations of the monomers in Table 1 are as follows:
The following compounds are shown. MMA = methyl methacrylate (component (a-1)) EMA = ethyl methacrylate (component (a-1)) BA = butyl acrylate (component (a-2)) MAA = methacrylic acid (component (b)) AA = Acrylic acid (component (b)) AN = acrylonitrile (component (c)) NMAM = N-methylolacrylamide (component (c)) ST = styrene (component (c)) BD = butadiene (component (c))

【0021】評価例1正極の作製 平均粒径2μmのLiCoO2 85部、アセチレンブラ
ック13部、実施例1で得られた特定重合体Aを固形分
で1.5部および増粘剤としてカルボキシメチルセルロ
ース水溶液を固形分で0.5部をよく混合し、電池電極
用組成物を製造した。厚さ15μmの市販A1箔を基材
として、得られた電池電極用組成物を290g/m2
量で塗布し、120℃で3時間真空乾燥し、さらに13
0℃で5分間プレスし(プレス圧:10kgf・c
2 。以下、同じ。)、厚さ110μmの正極シートを
得た。負極の作製 ニードルコークス粉砕品(平均粒径12μm)100
部、実施例1で得られた特定重合体Aを固形分で1.5
部、増粘剤としてカルボキシメチルセルロース水溶液を
固形分で0.5部、0.5Nアンモニア水0.5部をよ
く混合し、電池電極用組成物を製造した。厚さ50μm
銅箔を基材として、得られた電池電極用組成物を200
g/m2 の量で塗工し、150℃で3時間真空乾燥し、
さらに130℃で5分間プレスし、厚さ60μmの負極
シートを得た。リチウム二次電池の作製および評価 上記で得られた正極シートおよび負極シートを、0.9
cm×5.5cmに切り出して、電解液にLiPF6
エチレンカーボネート/エチルメチルカーボネート=1
0%/30%/60%、セパレーターにガラス繊維不織
布を用い、アルゴン雰囲気中でリチウム二次電池を組み
立てた。この電池を用いて、0.2Cおよび0.4Cの
条件で定電流充放電サイクルテストを行い、500サイ
クル後の容量保存率を測定して定電流充放電特性を評価
した。また、0.2Cの条件で10mVまで定電流充電
を行い、その後8時間まで10mVで定電圧充電を行っ
て、定電圧下で0.2C→2Cまで放電を行い、容量保
存率を測定してレート特性を評価した。
[0021] Evaluation Example 1 LiCoO 2 85 parts of making the average particle size 2μm positive electrode, 13 parts of acetylene black, carboxymethyl cellulose as 1.5 parts of a thickener specific polymer A solid content obtained in Example 1 The aqueous solution was mixed well with 0.5 part by solid content to produce a composition for a battery electrode. Using a commercially available A1 foil having a thickness of 15 μm as a base material, the obtained composition for a battery electrode was applied in an amount of 290 g / m 2 , dried under vacuum at 120 ° C. for 3 hours, and further dried.
Press at 0 ° C for 5 minutes (Press pressure: 10kgf ・ c
m 2 . same as below. ), To obtain a positive electrode sheet having a thickness of 110 μm. Preparation of negative electrode Needle coke pulverized product (average particle size: 12 μm) 100
Parts, specific polymer A obtained in Example 1
Parts, a carboxymethylcellulose aqueous solution as a thickener, and 0.5 part of a solid content of 0.5 part of 0.5N ammonia water were mixed well to prepare a composition for a battery electrode. Thickness 50μm
Using the copper foil as a base material, the obtained composition for a battery electrode was
g / m 2 and vacuum dried at 150 ° C. for 3 hours.
Further pressing was performed at 130 ° C. for 5 minutes to obtain a negative electrode sheet having a thickness of 60 μm. Production and Evaluation of Lithium Secondary Battery The positive electrode sheet and the negative electrode sheet
cm × 5.5 cm, and LiPF 6 /
Ethylene carbonate / ethyl methyl carbonate = 1
A lithium secondary battery was assembled in an argon atmosphere using 0% / 30% / 60% glass fiber nonwoven fabric as a separator. Using this battery, a constant current charge / discharge cycle test was performed under the conditions of 0.2 C and 0.4 C, and the capacity retention after 500 cycles was measured to evaluate the constant current charge / discharge characteristics. In addition, constant-current charging was performed up to 10 mV under the condition of 0.2 C, then constant-voltage charging was performed at 10 mV until 8 hours, discharging was performed at a constant voltage from 0.2 C to 2 C, and the capacity retention was measured. Rate characteristics were evaluated.

【0022】評価例2〜5 正極、負極に用いられる特定重合体を、表2に示す組成
に変更した以外は、評価例1と同様に電池を作製し、評
価例1と同様に、定電流充放電特性およびレート特性を
評価した。 比較評価例1 正極、負極の電池電極用バインダーにポリフッ化ビニリ
デンのN−メチルピロリドン溶液を固形分で5部用い、
プレス条件を170℃で5分間に変更した以外は、評価
例1と同様に電池を作製し、定電流充放電特性およびレ
ート特性を評価した。 比較評価例2 正極の特定重合体の代わりにポリフッ化ビニリデンのN
−メチルピロリドン溶液を固形分で5部、負極の特定重
合体の代わりに比較例1で得られた重合体aを固形分で
1.5部用い、正極のプレス条件を170℃で5分間に
変更した以外は、評価例1と同様に電池を作製し、定電
流充放電特性およびレート特性を評価した。 比較評価例3 正極の特定重合体の代わりにポリフッ化ビニリデンのN
−メチルピロリドン溶液を固形分で5部、負極の特定重
合体の代わりに比較例2で得られた重合体bを固形分で
1.5部用い、正極のプレス条件を170℃で5分間に
変更した以外は、評価例1と同様に電池を作製し、定電
流充放電特性およびレート特性を評価した。
Evaluation Examples 2 to 5 A battery was prepared in the same manner as in Evaluation Example 1 except that the specific polymers used for the positive electrode and the negative electrode were changed to the compositions shown in Table 2. The charge / discharge characteristics and rate characteristics were evaluated. Comparative Evaluation Example 1 As a binder for a battery electrode of a positive electrode and a negative electrode, 5 parts of an N-methylpyrrolidone solution of polyvinylidene fluoride was used as a solid content,
A battery was prepared in the same manner as in Evaluation Example 1 except that the pressing conditions were changed to 170 ° C. for 5 minutes, and the constant current charge / discharge characteristics and the rate characteristics were evaluated. Comparative Evaluation Example 2 Instead of the specific polymer of the positive electrode, N of polyvinylidene fluoride was used.
5 parts by weight of a methylpyrrolidone solution at a solid content, and 1.5 parts by weight of the polymer a obtained in Comparative Example 1 in place of the specific polymer of the negative electrode at a solid content of 5 minutes at 170 ° C. A battery was fabricated in the same manner as in Evaluation Example 1 except for the change, and the constant current charge / discharge characteristics and the rate characteristics were evaluated. Comparative Evaluation Example 3 Instead of the specific polymer of the positive electrode, N of polyvinylidene fluoride was used.
5 parts by weight of a methylpyrrolidone solution at a solid content, and 1.5 parts by weight of the polymer b obtained in Comparative Example 2 instead of the specific polymer of the negative electrode at a solid content of 5 minutes at 170 ° C. A battery was fabricated in the same manner as in Evaluation Example 1 except for the change, and the constant current charge / discharge characteristics and the rate characteristics were evaluated.

【0023】比較評価例4 正極、負極の特定重合体の代わりに、比較例2で得られ
た重合体bを固形分でそれぞれ1.5部用いた以外は、
評価例1と同様に電池を作製し、定電流充放電特性およ
びレート特性を評価した。 比較評価例5 正極の特定重合体の代わりにポリフッ化ビニリデンのN
−メチルピロリドン溶液を固形分で1.5部、負極の特
定重合体の代わりに比較例2で得られた重合体bを固形
分で1.5部用い、正極のプレス条件を170℃で5分
間に変更した以外は、評価例1と同様に電池を作製し、
定電流充放電特性およびレート特性を評価した。
Comparative Evaluation Example 4 A polymer b obtained in Comparative Example 2 was used in place of the specific polymer of the positive electrode and the negative electrode in a solid content of 1.5 parts, respectively.
A battery was prepared in the same manner as in Evaluation Example 1, and the constant current charge / discharge characteristics and the rate characteristics were evaluated. Comparative Evaluation Example 5 Instead of the specific polymer of the positive electrode, N of polyvinylidene fluoride was used.
-1.5 parts by weight of a methylpyrrolidone solution at a solid content and 1.5 parts by weight of the polymer b obtained in Comparative Example 2 in place of the specific polymer of the negative electrode at 170 ° C. A battery was prepared in the same manner as in Evaluation Example 1 except that the battery was changed to
The constant current charge / discharge characteristics and rate characteristics were evaluated.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】表2の評価例1〜5は、本発明の特定重合
体を電池電極用バインダーに用いた電池の定電流充放電
特性およびレート特性の評価結果であり、0.2C、2
C共に容量劣化が少なく、レート特性も優れている。こ
れに対し表3の比較評価例1〜5は、本発明の特定重合
体以外のポリマーを電池電極用バインダーに用いた電池
の評価結果である。比較評価例1は、正極、負極の電池
電極用バインダーにポリフッ化ビニリデン系重合体を用
いた例であり、低レートでの充放電特性が悪く、容量劣
化が激しい。比較評価例2は、正極の電池電極用バイン
ダーにポリフッ化ビニリデン系重合体を負極の電池電極
用バインダーにアクリルエマルジョン用いた例であり、
充放電特性、容量劣化共に悪い。比較評価例3は、正極
の電池電極用バインダーにポリフッ化ビニリデン系重合
体を負極の電池電極用バインダーにステレン−ブタジエ
ン系共重合体ラテックスを用いた例であり、高レートで
の充電不足のため充放電特性に劣る。比較評価例4は、
正極、負極の電池電極用バインダーにステレン−ブタジ
エン系共重合体ラテックスを用いた例であり、容量劣化
が激しく、電池特性が出ない。比較評価例5は、比較例
3の正極電池電極用バインダーのポリフッ化ビニリデン
系重合体を5重量部から1.5重量部に変更し、負極の
電池電極用バインダーにステレン−ブタジエン系共重合
体ラテックスを用いた例であり、初期の容量劣化が激し
く、レート特性が劣る。
Evaluation Examples 1 to 5 in Table 2 show the evaluation results of the constant current charge / discharge characteristics and the rate characteristics of the battery using the specific polymer of the present invention as a binder for a battery electrode.
C has little capacity deterioration and excellent rate characteristics. On the other hand, Comparative Evaluation Examples 1 to 5 in Table 3 are evaluation results of batteries using a polymer other than the specific polymer of the present invention as a binder for battery electrodes. Comparative Evaluation Example 1 is an example in which a polyvinylidene fluoride polymer is used as a binder for a battery electrode of a positive electrode and a negative electrode, and has poor charge / discharge characteristics at a low rate and severe capacity deterioration. Comparative Evaluation Example 2 is an example in which a polyvinylidene fluoride polymer was used as a positive electrode battery electrode binder and an acrylic emulsion was used as a negative electrode battery electrode binder.
Both charge / discharge characteristics and capacity deterioration are poor. Comparative Evaluation Example 3 is an example in which a polyvinylidene fluoride-based polymer was used as a binder for a battery electrode of a positive electrode and a styrene-butadiene-based copolymer latex was used as a binder for a battery electrode of a negative electrode. Poor charge / discharge characteristics. Comparative Evaluation Example 4
This is an example in which a styrene-butadiene-based copolymer latex is used as a binder for a battery electrode of a positive electrode and a negative electrode. In Comparative Evaluation Example 5, the polyvinylidene fluoride-based polymer as the binder for the positive electrode was changed from 5 parts by weight to 1.5 parts by weight, and the styrene-butadiene-based copolymer was used as the binder for the negative electrode. This is an example using latex, in which initial capacity deterioration is severe and rate characteristics are inferior.

【0027】[0027]

【発明の効果】本発明の電池電極形成用バインダーは、
主に二次電池、特にリチウム二次電池において、電極活
物質に対する影響が少なくかつ、集電性を確保し、その
利用効率を向上させる。該電池電極形成用バインダーを
用いて得られる本発明の電池電極は、電池の充放電サイ
クル特性、レート特性、高容量化を達成することができ
る。
The binder for forming a battery electrode of the present invention comprises:
A secondary battery, particularly a lithium secondary battery, has little effect on an electrode active material, secures current collecting properties, and improves its use efficiency. The battery electrode of the present invention obtained by using the binder for forming a battery electrode can achieve charge / discharge cycle characteristics, rate characteristics, and high capacity of the battery.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 オルガノポリシロキサン1〜90重量部
の存在下に、(a−1)アルキル基の炭素数が1〜3の
(メタ)アクリル酸アルキルエステル単位10〜75重
量%、(a−2)アルキル基の炭素数が4〜10の(メ
タ)アクリル酸アルキルエステル単位25〜90重量
%、(b)エチレン系不飽和カルボン酸単位および必要
に応じて(c)これらと共重合体可能な他の単量体単位
[ただし、(a−1)+(a−2)+(b)+(c)=
100重量%]からなる単量体成分99〜10重量部
[ただしオルガノポリシロキサン+単量体成分=100
重量部]を重合することによって得られるポリオルガノ
シロキサン系重合体を含有することを特徴とする電池電
極形成用バインダー。
(1) In the presence of 1 to 90 parts by weight of an organopolysiloxane, (a-1) 10 to 75% by weight of a (meth) acrylic acid alkyl ester unit having 1 to 3 carbon atoms in an alkyl group, 2) 25 to 90% by weight of (meth) acrylic acid alkyl ester units having 4 to 10 carbon atoms in the alkyl group, (b) ethylenically unsaturated carboxylic acid units and (c) copolymerizable with these if necessary Other monomer units [where (a-1) + (a-2) + (b) + (c) =
99 to 10 parts by weight of a monomer component consisting of 100% by weight [organopolysiloxane + monomer component = 100
[Parts by weight], and a polyorganosiloxane-based polymer obtained by polymerizing the same.
【請求項2】 請求項1記載の電池電極形成用バインダ
ーを用いることを特徴とする電池電極。
2. A battery electrode using the binder for forming a battery electrode according to claim 1.
JP03044398A 1998-01-28 1998-01-28 Battery electrode forming binder and battery electrode Expired - Fee Related JP4178576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03044398A JP4178576B2 (en) 1998-01-28 1998-01-28 Battery electrode forming binder and battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03044398A JP4178576B2 (en) 1998-01-28 1998-01-28 Battery electrode forming binder and battery electrode

Publications (2)

Publication Number Publication Date
JPH11214011A true JPH11214011A (en) 1999-08-06
JP4178576B2 JP4178576B2 (en) 2008-11-12

Family

ID=12304078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03044398A Expired - Fee Related JP4178576B2 (en) 1998-01-28 1998-01-28 Battery electrode forming binder and battery electrode

Country Status (1)

Country Link
JP (1) JP4178576B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151085A (en) * 2000-11-07 2002-05-24 Nippon Zeon Co Ltd Binder for nickel hydrogen secondary battery electrode, slurry, and nickel hydrogen secondary battery
JP2007512411A (en) * 2003-11-26 2007-05-17 ダウ・コーニング・コーポレイション Alloy and / or hybrid emulsion compositions containing silicone polymers and organic polymers
JP2007280806A (en) * 2006-04-07 2007-10-25 Nissan Motor Co Ltd Electrode for battery
JP2011040326A (en) * 2009-08-17 2011-02-24 Toyota Industries Corp Negative electrode for non-aqueous secondary battery, and the non-aqueous secondary battery
JP2012119214A (en) * 2010-12-02 2012-06-21 Konica Minolta Holdings Inc Negative electrode material for lithium ion secondary battery, and lithium ion secondary battery using the same
JP2014110195A (en) * 2012-12-04 2014-06-12 Jsr Corp Binder composition for electrode, slurry for electrode, electrode, and power storage device
JP2014146600A (en) * 2007-01-16 2014-08-14 Nippon Zeon Co Ltd Binding agent composition, slurry for electrode use, electrode, and nonaqueous electrolytic secondary battery
JP2015128069A (en) * 2015-01-28 2015-07-09 日立化成株式会社 Binder resin composition, electrode for energy device and energy device
WO2017077940A1 (en) * 2015-11-05 2017-05-11 センカ株式会社 Binder for negative electrodes of lithium ion secondary batteries, slurry composition for negative electrodes, negative electrode, and lithium ion secondary battery
WO2018138865A1 (en) * 2017-01-27 2018-08-02 Nec Corporation Silicone ball containing electrode and lithium ion battery including the same
CN112956052A (en) * 2018-09-06 2021-06-11 新罗纳米技术有限公司 Electrode with conductive intermediate layer and method thereof
EP3818016A4 (en) * 2018-07-03 2022-03-16 3dbatteries Ltd. De-flocculant as slurry and epd bath stabilizer and uses thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151085A (en) * 2000-11-07 2002-05-24 Nippon Zeon Co Ltd Binder for nickel hydrogen secondary battery electrode, slurry, and nickel hydrogen secondary battery
JP2007512411A (en) * 2003-11-26 2007-05-17 ダウ・コーニング・コーポレイション Alloy and / or hybrid emulsion compositions containing silicone polymers and organic polymers
JP2007280806A (en) * 2006-04-07 2007-10-25 Nissan Motor Co Ltd Electrode for battery
JP2014146600A (en) * 2007-01-16 2014-08-14 Nippon Zeon Co Ltd Binding agent composition, slurry for electrode use, electrode, and nonaqueous electrolytic secondary battery
JP2011040326A (en) * 2009-08-17 2011-02-24 Toyota Industries Corp Negative electrode for non-aqueous secondary battery, and the non-aqueous secondary battery
JP2012119214A (en) * 2010-12-02 2012-06-21 Konica Minolta Holdings Inc Negative electrode material for lithium ion secondary battery, and lithium ion secondary battery using the same
JP2014110195A (en) * 2012-12-04 2014-06-12 Jsr Corp Binder composition for electrode, slurry for electrode, electrode, and power storage device
JP2015128069A (en) * 2015-01-28 2015-07-09 日立化成株式会社 Binder resin composition, electrode for energy device and energy device
WO2017077940A1 (en) * 2015-11-05 2017-05-11 センカ株式会社 Binder for negative electrodes of lithium ion secondary batteries, slurry composition for negative electrodes, negative electrode, and lithium ion secondary battery
JPWO2017077940A1 (en) * 2015-11-05 2018-08-30 センカ株式会社 Binder for negative electrode of lithium ion secondary battery, slurry composition for negative electrode and negative electrode, and lithium ion secondary battery
WO2018138865A1 (en) * 2017-01-27 2018-08-02 Nec Corporation Silicone ball containing electrode and lithium ion battery including the same
JP2020505752A (en) * 2017-01-27 2020-02-20 日本電気株式会社 Electrode including silicone ball and lithium ion battery including the same
US11682766B2 (en) 2017-01-27 2023-06-20 Nec Corporation Silicone ball containing electrode and lithium ion battery including the same
EP3818016A4 (en) * 2018-07-03 2022-03-16 3dbatteries Ltd. De-flocculant as slurry and epd bath stabilizer and uses thereof
CN112956052A (en) * 2018-09-06 2021-06-11 新罗纳米技术有限公司 Electrode with conductive intermediate layer and method thereof

Also Published As

Publication number Publication date
JP4178576B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP6168063B2 (en) Lithium ion secondary battery
JP6597303B2 (en) Slurry for lithium ion secondary battery porous membrane, separator for lithium ion secondary battery, and method for producing lithium ion secondary battery
US11046797B2 (en) Binder composition for electrochemical device electrode, slurry composition for electrochemical device electrode, electrochemical device electrode, and electrochemical device
JP6384476B2 (en) Lithium ion secondary battery binder composition, lithium ion secondary battery slurry composition, lithium ion secondary battery electrode, lithium ion secondary battery, and method for producing lithium ion secondary battery binder composition
WO2015129408A1 (en) Binder composition for secondary battery porous membrane, slurry for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery
JP2006260782A (en) Binder composition for secondary battery electrode, slurry for secondary battery electrode and secondary battery electrode
JPWO2014188724A1 (en) Secondary battery binder composition, secondary battery electrode slurry composition, secondary battery negative electrode, and secondary battery
WO2018155281A1 (en) Electrode for electrochemical element, and electrochemical element
JP4178576B2 (en) Battery electrode forming binder and battery electrode
TWI709275B (en) Binder for negative electrode of lithium ion secondary battery, slurry composition for negative electrode and negative electrode, and lithium ion secondary battery
KR20190045209A (en) A nonaqueous secondary battery positive electrode slurry composition, a nonaqueous secondary battery positive electrode, and a nonaqueous secondary battery
WO2019131210A1 (en) Binder composition for secondary battery positive electrodes, slurry composition for secondary battery positive electrodes and method for producing same, positive electrode for secondary batteries, and secondary battery
WO2019150909A1 (en) Additive for electrochemical element, binder composition for electrochemical element, slurry composition for electrochemical element, electrode for electrochemical element, and electrochemical element
JP5978837B2 (en) Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
JPH1069912A (en) Binder for battery electrode forming
WO2020075626A1 (en) Electrically conductive paste for electrode mixture layer, slurry for electrode mixture layer, electrode for electrochemical element, and electrochemical element
JP2015185515A (en) Composition for secondary battery porous films, porous film for secondary batteries, and secondary battery
JP3900656B2 (en) Polymer solid electrolyte and lithium secondary battery using the same
US20220238883A1 (en) Composite particles for electrochemical device and method of producing same, binder composition for electrochemical device functional layer and method of producing same, conductive material paste for electrode mixed material layer and method of producing same, slurry for electrode mixed material layer, electrode for electrochemical device, and electrochemical device
JP4120039B2 (en) Nickel metal hydride battery electrode binder and nickel metal hydride battery electrode
JP6340826B2 (en) Secondary battery porous membrane slurry, manufacturing method, secondary battery porous membrane, and secondary battery
JP2016177910A (en) Composition for forming electricity storage device electrode, electricity storage device electrode, and electricity storage device
US11955641B2 (en) Binder composition for non-aqueous secondary battery and method of producing same, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2014212133A (en) Lithium ion secondary battery
JP5505666B2 (en) Secondary battery electrode slurry and secondary battery electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees