JPH11209453A - Preparation of thermosetting resin material consisting mainly of polyvalent oxazine compound - Google Patents

Preparation of thermosetting resin material consisting mainly of polyvalent oxazine compound

Info

Publication number
JPH11209453A
JPH11209453A JP3222498A JP3222498A JPH11209453A JP H11209453 A JPH11209453 A JP H11209453A JP 3222498 A JP3222498 A JP 3222498A JP 3222498 A JP3222498 A JP 3222498A JP H11209453 A JPH11209453 A JP H11209453A
Authority
JP
Japan
Prior art keywords
compound
solvent
thermosetting resin
oxazine
resin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3222498A
Other languages
Japanese (ja)
Inventor
Nobuyuki Murai
信之 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Chemicals Corp
Original Assignee
Shikoku Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Chemicals Corp filed Critical Shikoku Chemicals Corp
Priority to JP3222498A priority Critical patent/JPH11209453A/en
Publication of JPH11209453A publication Critical patent/JPH11209453A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve mechanical properties, electrical characteristics and incombustibility by reacting a polyhydric phenol with a formalin compound and a primary amine in a specific ethylene glycol type compound as a solvent. SOLUTION: A polyhydric phenol compound such as bis(4-hydroxyphenyl) methane, 2,2-bis(4-hydroxyphenyl)propane or the like is reacted with a formalin compound and an aliphatic or aromatic primary amine compound such as methylamine, ethylamine, aniline, o-toluidine or the like in a solvent comprising an ethylene glycol type compound of the formula: R1 O(CH2 CH2 O)n R2 (wherein R1-2 are each methyl or ethyl; and n is 1 or 2), if necessary in the presence of a reaction accelerator such as an organic amine or the like or a catalyst, at room temperature or under a heated condition to obtain a thermosetting resin material consisting mainly of a polyhydric oxazine compound. This method provides a thermosetting resin material containing a small quantity of components other than a polyvalent oxazine compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、良好な機械物
性、電気特性並びに難燃性を備えたオキサジン樹脂の原
料である、多価オキサジン化合物を主成分とする熱硬化
性樹脂原料の製法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermosetting resin raw material mainly composed of a polyvalent oxazine compound, which is a raw material of an oxazine resin having good mechanical properties, electrical properties and flame retardancy. It is.

【0002】[0002]

【従来の技術】多価フェノール化合物、ホルマリン化合
物及び第一級アミン化合物を反応させて得られる多価オ
キサジン化合物(1、3−オキシアザシクロテトラリ
ン)は、加熱することにより分子内のオキサジン環の開
裂反応と付加反応が起こり、分子間架橋が発生して高分
子化され、優れた特性を持つ成形材料であるオキサジン
樹脂となることが知られている(特開昭49−4737
8公報)。
2. Description of the Related Art A polyhydric oxazine compound (1,3-oxyazacyclotetralin) obtained by reacting a polyhydric phenol compound, a formalin compound and a primary amine compound is heated to form an oxazine ring in the molecule. It is known that a cleavage reaction and an addition reaction occur, and intermolecular cross-linking occurs to be polymerized to give an oxazine resin which is a molding material having excellent properties (JP-A-49-4737).
8 gazette).

【0003】オキサジン樹脂の原料となる多価オキサジ
ン化合物の合成法としては、ジャーナルオブポリマーサ
イエンス(Journal of Polymer Science)ポリマーケミ
ストリー(Polymer Chemistry )第32巻、1121〜1129頁
(1994)、同: ポリマーヒィジックス(Polymer Physics)
第32巻、 921〜927 頁(1994)などに報告されており、反
応溶媒にジオキサンを用いる製法が知られている。また
国際特許公開第 9531447号明細書には、溶媒を使用しな
い溶融法が開示されている。
A method for synthesizing a polyvalent oxazine compound as a raw material of an oxazine resin is described in Journal of Polymer Science, Polymer Chemistry, Vol. 32, pp. 1121-1129.
(1994), same: Polymer Physics
32, pp. 921-927 (1994), and a production method using dioxane as a reaction solvent is known. International Patent Publication No. WO 9531447 discloses a melting method using no solvent.

【0004】即ち、これらの多価オキサジン化合物の製
法は、多価フェノール化合物、ホルマリン化合物及び第
一級アミン化合物の三種類の化合物を出発物質とし、反
応溶媒にジオキサンを使用するか、あるいは無溶媒下で
反応させることにより反応粗生成物が得られ、これを再
結晶しあるいはジメチルエーテルに溶解して水洗などに
より精製したのち、溶剤の除去を行うことによって製造
されている。
[0004] That is, these polyoxazine compounds are prepared by using three kinds of compounds, a polyhydric phenol compound, a formalin compound and a primary amine compound, as starting materials, using dioxane as a reaction solvent, or using no solvent. The reaction is carried out under the following conditions to obtain a crude reaction product, which is recrystallized or dissolved in dimethyl ether and purified by washing with water or the like, and then the solvent is removed.

【0005】これらの製造方法において、出発物質の組
み合わせを代えることにより、多様な化学構造を持つ多
価オキサジン化合物が合成されており、その代表的な化
合物としては、以下のものが挙げられる。
In these production methods, polyvalent oxazine compounds having various chemical structures have been synthesized by changing the combination of starting materials, and the following compounds are typical examples.

【0006】[0006]

【化2】 Embedded image

【0007】式中、nは1〜4の整数であり、R1 はア
リール基、R2 は下記の化3として示される有機基であ
る。
In the formula, n is an integer of 1 to 4, R 1 is an aryl group, and R 2 is an organic group represented by the following chemical formula 3.

【0008】[0008]

【化3】 Embedded image

【0009】[0009]

【発明が解決しようとする課題】しかしながら、従来の
反応溶媒としてジオキサンを用いる製法によれば、反応
生成物中には主成分である多価オキサジン化合物の他
に、出発物質、副生成物、並びに反応溶媒等が多量に含
まれるため、そのままでは熱硬化性樹脂原料としての使
用に供することができず、再結晶等の精製を余儀なくさ
れ、その際に精製によって製品収率が大幅に低下し、良
好な条件下で合成されたものであっても、その製品収率
は60%から80%の範囲に留まり、工業的生産として
は不向なものであった。
However, according to the conventional production method using dioxane as a reaction solvent, in addition to a polyvalent oxazine compound as a main component, a starting material, a by-product, Since a large amount of the reaction solvent and the like is included, it cannot be used as it is as a thermosetting resin raw material, and purification such as recrystallization is inevitable.At that time, the purification significantly reduces the product yield, Even if synthesized under good conditions, the product yield was in the range of 60% to 80%, which was unsuitable for industrial production.

【0010】[0010]

【課題を解決するための手段】本発明者は、このような
事情に基づき工業的規模の生産に適し、且つ良好な品質
の多価オキサジン化合物が高収率で得られる方法につい
て、種々の検討を行なった。先ず多価フェノール化合
物、ホルマリン化合物、第一級アミン化合物から多価オ
キサジン化合物になる主反応と、その副反応を把握する
ために種々の合成条件とそれによって得られる生成物の
組成変化について調べた。
The present inventor has made various studies on a method for obtaining a polyvalent oxazine compound of good quality in a high yield, which is suitable for industrial-scale production based on such circumstances. Was performed. First, to understand the main reaction from polyhydric phenolic compound, formalin compound and primary amine compound to polyhydric oxazine compound and its side reaction, various synthesis conditions and composition changes of products obtained by the synthesis conditions were investigated. .

【0011】その結果、多価オキサジン化合物(以下P
BZと略す)以外の成分として、多価オキサジン化合物
のオキサジン環の分子間架橋によって生じた重合物(オ
リゴマー成分と略す)、未反応のフェノール化合物(以
下フェノール成分と略す)、ホルマリン3モルと第一級
アミン化合物3モルとの反応で生成した1、3、5−三
置換ヘキサヒドロ−1、3、5−トリアジン化合物(以
下THTと略す)、並びに反応溶媒が含まれていること
が分かった。
As a result, a polyvalent oxazine compound (hereinafter referred to as P
As components other than BZ), a polymer (abbreviated as an oligomer component) formed by intermolecular cross-linking of an oxazine ring of a polyvalent oxazine compound, an unreacted phenol compound (hereinafter abbreviated as a phenol component), 3 mol of formalin and It was found that it contained a 1,3,5-trisubstituted hexahydro-1,3,5-triazine compound (hereinafter abbreviated as THT) formed by the reaction with 3 moles of the primary amine compound, and a reaction solvent.

【0012】オリゴマー成分は、多価オキサジン化合物
を熱硬化する際の中間体と同一構造のものであるため、
成形物の物性には特に悪影響を与えない。しかし、この
オリゴマー成分は含有量が少ない場合には支障がない
が、その含有量が10ないし15%以上になると、熱硬
化性樹脂配合物の溶融粘度が急激に高くなり、成形性を
著しく低下させると共に、いったん生成したPBZがこ
のオリゴマー成分に変化し、これらの好ましからざる反
応は、塩基性の条件下で特に加速されることが分かっ
た。
Since the oligomer component has the same structure as the intermediate when the polyvalent oxazine compound is thermally cured,
The physical properties of the molded product are not adversely affected. However, when the content of the oligomer component is small, there is no problem. However, when the content of the oligomer component is 10 to 15% or more, the melt viscosity of the thermosetting resin compound rapidly increases, and the moldability is significantly reduced. At the same time, the PBZ once formed was converted to this oligomer component, and these undesirable reactions were found to be particularly accelerated under basic conditions.

【0013】フェノール成分は、重合の際に架橋密度の
低下による物性低下や硬化物着色の原因となる。THT
や反応溶剤は熱硬化時に揮発し、発泡等の硬化不良の原
因となる。そしてこの未反応のフェノール成分は、反応
温度が低い場合やTHTなどの副生成物の生成により、
出発物資の組成比が狂ったときに混入し易いことが分か
った。THT成分は、強い塩基性条件やアルコール性水
酸基の存在下で生じ易いものであり、この沸点が200
℃以下であるため原料中に残存すると発泡の原因となる
ことが分かった。
The phenol component causes a decrease in physical properties due to a decrease in crosslink density during polymerization and causes a coloring of a cured product. THT
In addition, the reaction solvent volatilizes during thermal curing and causes curing failure such as foaming. Then, the unreacted phenol component is produced when the reaction temperature is low or by-products such as THT are generated.
It was found that the starting materials were easily mixed when the composition ratio was out of order. The THT component is easily generated under strong basic conditions or in the presence of an alcoholic hydroxyl group.
It has been found that since it is below ℃, if it remains in the raw material, it causes foaming.

【0014】これらの予備検討の結果、オキサジン樹脂
の原料として好ましい熱硬化性樹脂原料は、多価オキサ
ジン化合物を主成分とし、オリゴマー成分の含有量が1
0%ないし15%未満であり、フェノール成分、TH
T、反応溶媒を殆ど含まないものであると認められた。
しかしながら、従来の製造方法、例えばジオキサンを反
応溶媒として用いる場合には、オリゴマー成分が10%
以上で且つTHTを含むものしか得られない。また、固
体溶融法の場合には、オリゴマー成分に加え、フェノー
ル成分を含んでいる。勿論、これらの低純度のもので
も、再結晶等の精製を行えば、高純度なものを得られる
が、その際の収率は低くなってしまう。
As a result of these preliminary investigations, a thermosetting resin raw material preferable as a raw material of an oxazine resin contains a polyvalent oxazine compound as a main component and a content of an oligomer component of 1%.
0% to less than 15%, phenol component, TH
T, it was recognized that the solution contained almost no reaction solvent.
However, in the case of a conventional production method, for example, when dioxane is used as a reaction solvent, the oligomer component is 10%
Thus, only those containing THT can be obtained. In the case of the solid melting method, a phenol component is contained in addition to the oligomer component. Of course, even if these low-purity products are purified by recrystallization or the like, high-purity products can be obtained, but the yield in that case will be low.

【0015】このような事実に基づき、さらに成形性に
優れたオキサジン樹脂用原料を高収率で製造する方法を
探究した結果、反応溶媒として下式で示されるエチレン
グリコール系化合物
On the basis of the above facts, as a result of exploring a method for producing a raw material for an oxazine resin having excellent moldability in high yield, an ethylene glycol compound represented by the following formula was used as a reaction solvent.

【化4】 を用い、多価フェノール、ホルマリン化合物及び第一級
アミン化合物を反応させることによって、所期の目的を
達成することを見い出し、本発明を完成するに至った。
このようなエチレングリコール系の反応溶媒が、他の溶
媒に較べて優れている理由については、以下の点による
ものと考えられる。
Embedded image The present inventors have found that the desired object can be achieved by reacting a polyhydric phenol, a formalin compound and a primary amine compound with the use of the compound of the present invention, and have completed the present invention.
It is considered that the reason why such an ethylene glycol-based reaction solvent is superior to other solvents is as follows.

【0016】第一には、全ての出発物質を均質に溶解で
きることであり、これによって反応液中における濃度分
布がなく、副反応が抑制されることになる。第二には、
沸点が80℃以上であることである。このことにより、
反応液の温度をオキサジン環生成反応が起こる温度以上
にすることができる。それに対して、沸点の低いテトラ
ヒドロフランでは、未反応のフェノール成分の多いもの
しか得られない。第三には、反応が進行して多価オキサ
ジン化合物が生成すると、多価オキサジン化合物を含む
エチレングリコール系溶媒層と水層が分離することであ
る。この現象は、ジオキサン等の他のエーテル系溶剤で
は起こらず、このことによって塩基性触媒、アミンを含
む中間体及び副生成物が水層に溶解するため、エチレン
グリコール系溶媒層に溶解している多価オキサジン化合
物が塩基性条件に晒されず、その結果多価オキサジン化
合物がオリゴマー成分に変化する好ましくない副反応を
防ぐことができる。
First, all the starting materials can be dissolved homogeneously, so that there is no concentration distribution in the reaction solution and side reactions are suppressed. Second,
The boiling point is 80 ° C. or higher. This allows
The temperature of the reaction solution can be higher than the temperature at which the oxazine ring formation reaction occurs. On the other hand, with tetrahydrofuran having a low boiling point, only those having a large amount of unreacted phenol components can be obtained. Third, when a polyvalent oxazine compound is generated by the progress of the reaction, an ethylene glycol-based solvent layer containing the polyvalent oxazine compound is separated from the aqueous layer. This phenomenon does not occur in other ether-based solvents such as dioxane, which dissolves the basic catalyst, intermediates including amines, and by-products in the aqueous layer, and is therefore dissolved in the ethylene glycol-based solvent layer. The polyvalent oxazine compound is not exposed to the basic conditions, and as a result, an undesired side reaction that converts the polyvalent oxazine compound into an oligomer component can be prevented.

【0017】第四には、ジオキサンを溶媒とした場合と
異なり、副生成物のTHTがエチレングリコール系溶媒
に溶解しないため、この副生成物を容易に濾別しうるこ
とであり、これによってTHTの混入が抑制されること
になる。第五には、分子内にアルコール性水酸基がない
ため、エタノールやメタノールを溶剤とした場合〔例え
ば、ジャーナルオブケミカルソサイアティ(J.C.
S)ケミカルコミュケーション(Chem.Com
m.,)1334頁(1984)〕のように大量のTH
Tの生成を伴うことなく、その生成を極く僅かに押さえ
られることである。また、水洗による精製が必要なとき
の溶剤としては、ジエチルエーテルの代わりに塩化メチ
レンを使用することが可能であり、引火等の危険を回避
することができる。
Fourth, unlike the case where dioxane is used as a solvent, the by-product THT does not dissolve in an ethylene glycol-based solvent, so that the by-product can be easily separated by filtration. Is suppressed. Fifth, since there is no alcoholic hydroxyl group in the molecule, when ethanol or methanol is used as a solvent [for example, Journal of Chemical Society (JC.
S) Chemical communication (Chem. Com)
m. ,) 1334 (1984)].
The generation of T is suppressed very slightly without the generation of T. In addition, methylene chloride can be used instead of diethyl ether as a solvent when purification by washing with water is required, and danger such as ignition can be avoided.

【0018】[0018]

【発明の実施の形態】この発明において使用される多価
フェノール化合物の代表的なものとしては、ビス(4−
ヒドロキシフェニル)メタン〔ビスフェノールF〕、
2、2−ビス(4−ヒドロキシフェニル)プロパン〔ビ
スフェノールA〕、ビス(4−ヒドロキシフェニル)ス
ルホン〔ビスフェノールS〕、1、5−ジヒドロキシナ
フタレン〔1、5−DHNa〕、4、4‘−ジヒドロキ
シビフェニル〔4、4’−DHBP〕等が挙げられる。
この発明において使用されるホルマリン化合物の代表的
なものとしては、液状のホルマリン水溶液と固体状のパ
ラホルムが挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical polyhydric phenol compound used in the present invention is bis (4-
Hydroxyphenyl) methane [bisphenol F],
2,2-bis (4-hydroxyphenyl) propane [bisphenol A], bis (4-hydroxyphenyl) sulfone [bisphenol S], 1,5-dihydroxynaphthalene [1,5-DHNa], 4,4′-dihydroxy Biphenyl [4,4'-DHBP] and the like.
Representative examples of the formalin compound used in the present invention include a liquid formalin aqueous solution and solid paraform.

【0019】この発明において使用される第一級アミン
化合物の代表的なものとしては、メチルアミン、エチル
アミン、ブチルアミン、プロピルアミン、シクロヘキシ
ルアミン等の脂肪族アミン類、アニリン、o−トルイジ
ン、m−トルイジン、p−トルイジン等の芳香族アミン
類が挙げられる。この発明において反応溶媒として使用
されるエチレングリコール系化合物の代表的なものとし
ては、エチレングリコールジメチルエーテル(DM
G)、エチレングリコールジエチルエーテル(DM
G)、ジエチレングリコールジメチルエーテル(DMD
G)、ジエチレングリコールジエチルエーテル(DED
G)が挙げられ、これらのうち反応生成物から溶媒の除
去が容易で、且つ最も沸点の低いエチレングリコールジ
メチルエーテルが特に好適である。
Representative examples of the primary amine compound used in the present invention include aliphatic amines such as methylamine, ethylamine, butylamine, propylamine and cyclohexylamine, aniline, o-toluidine, m-toluidine. And aromatic amines such as p-toluidine. A typical ethylene glycol compound used as a reaction solvent in the present invention is ethylene glycol dimethyl ether (DM
G), ethylene glycol diethyl ether (DM
G), diethylene glycol dimethyl ether (DMD
G), diethylene glycol diethyl ether (DED)
G). Of these, ethylene glycol dimethyl ether, which can easily remove the solvent from the reaction product and has the lowest boiling point, is particularly preferable.

【0020】これらの出発物質と反応溶媒を使用し、オ
キサジン樹脂原料を調製するには、通常の有機化合物合
成法に準じて行う。例えば先に挙げた三種類の出発物質
を、順次反応溶媒中に添加し、均一に混合溶解したの
ち、室温または加熱条件下で反応させる。この際、必要
に応じて有機アミン等の反応促進剤や触媒を添加しても
かまわない。そして、反応終了後、反応液中から反応溶
媒を除去したのち、必要に応じて精製操作を行うことに
より、多価オキサジン化合物を主成分とする熱硬化性樹
脂原料を得ることができる。
The preparation of an oxazine resin raw material using these starting materials and a reaction solvent is carried out according to a general organic compound synthesis method. For example, the three kinds of starting materials mentioned above are sequentially added to a reaction solvent, uniformly mixed and dissolved, and then reacted at room temperature or under heating. At this time, a reaction accelerator such as an organic amine or a catalyst may be added as necessary. After completion of the reaction, the reaction solvent is removed from the reaction solution, and a purification operation is performed as necessary, whereby a thermosetting resin raw material containing a polyvalent oxazine compound as a main component can be obtained.

【0021】[0021]

【実施例】以下、実施例により本発明を具体的に説明す
る。なお、実施例及び比較例における数値は重量部とし
て示したものであり、また表中に示した総収率は、出発
物質の多価フェノール化合物を基準とするものである。
この試験において使用した主な原料等は、次のとおりで
ある。 〔ビスフェノールA〕:三井化学(株)製(分子量:2
28) 〔ビスフェノールS〕:日華化学(株)製(分子量:2
50) 〔1、5−ジヒドロキシナフタレン〕:和光純薬(株)
製(分子量:160) 〔4、4‘−ジヒドロキシビフェニル〕:和光純薬
(株)製(分子量:170)
The present invention will be described below in detail with reference to examples. The numerical values in Examples and Comparative Examples are shown as parts by weight, and the total yields shown in the tables are based on the starting material polyhydric phenol compound.
The main raw materials used in this test are as follows. [Bisphenol A]: manufactured by Mitsui Chemicals, Inc. (molecular weight: 2
28) [Bisphenol S]: manufactured by Nichika Chemical Co., Ltd. (molecular weight: 2
50) [1,5-Dihydroxynaphthalene]: Wako Pure Chemical Industries, Ltd.
(Molecular weight: 160) [4,4'-dihydroxybiphenyl]: manufactured by Wako Pure Chemical Industries, Ltd. (molecular weight: 170)

【0022】また、この試験における評価法、成形法等
の手法は以下のとおりである。 <組成分析>試料をクロロホルム−dに均一に溶解し、
約3重量%の溶液を調製して、そのH−NMRを測定
し、プロトン比より組成を計算する。 <成形評価>試料中の多価オキサジン化合物に対し、モ
ル比で0.80のp−シアノフェノールを固体状態で添
加・混合し、微粉砕して熱硬化性樹脂配合物を調製す
る。この配合物5gを20mm径のアルミ箔に取り、1
00℃の温度で溶融し、減圧脱気し、この際、減圧脱気
が行えない場合、さらに温度を上げて行い、実際の脱気
に要した温度を脱気温度として記録する。 脱気終了
後、180℃の温度で30分硬化を行い、硬化後におけ
る成形物の外観から硬化物の均質性を求めた。
The evaluation method, molding method and the like in this test are as follows. <Composition analysis> The sample was uniformly dissolved in chloroform-d,
A solution of about 3% by weight is prepared, its H-NMR is measured, and the composition is calculated from the proton ratio. <Evaluation of molding> To the polyvalent oxazine compound in the sample, p-cyanophenol having a molar ratio of 0.80 is added and mixed in a solid state, and finely pulverized to prepare a thermosetting resin composition. 5 g of this composition is placed on a 20 mm diameter aluminum foil,
Melting is performed at a temperature of 00 ° C. and deaeration is performed under reduced pressure. In this case, if deaeration cannot be performed under reduced pressure, the temperature is further increased and the temperature required for actual deaeration is recorded as a deaeration temperature. After the deaeration, curing was performed at a temperature of 180 ° C. for 30 minutes, and the homogeneity of the cured product was determined from the appearance of the molded product after curing.

【0023】〔実施例1〕セパラブルフラスコに、ビス
フェノールA100部、アニリン90部、エチレングリ
コールジメチルエーテル250部、トリエチルアミン6
部を取り、均一に溶解する。次いで攪拌しながら、37
%ホルマリン水149.5部を滴下して加え滴下が終了
したのち、反応液を加熱し2時間還流させてこれを50
℃位に冷却後、熱濾過により不溶分を除き、二層に別れ
た反応液のうち水層を除き、これを減圧下で加熱して溶
媒を除去する。得られた反応生成物を200部の塩化メ
チレンに溶解し、100部の水で二回洗浄する。しかる
後に減圧乾燥を行い、さらに120℃の温度で1時間減
圧乾燥を行って、200.5部の固体生成物を得た。こ
の生成物の組成及び成形性を評価した結果は、表1に示
したとおりであり、純度及び成形性が共に良好なものと
認められた。
Example 1 In a separable flask, 100 parts of bisphenol A, 90 parts of aniline, 250 parts of ethylene glycol dimethyl ether, and triethylamine 6
Take part and dissolve uniformly. Then, with stirring, 37
149.5 parts of formalin water was added dropwise, and after the addition was completed, the reaction solution was heated and refluxed for 2 hours.
After cooling to about ° C., the insoluble matter is removed by hot filtration, and the aqueous layer is removed from the reaction solution separated into two layers, which is heated under reduced pressure to remove the solvent. The reaction product obtained is dissolved in 200 parts of methylene chloride and washed twice with 100 parts of water. Thereafter, drying under reduced pressure was performed, and further drying was performed at 120 ° C. for 1 hour under reduced pressure to obtain 200.5 parts of a solid product. The results of evaluating the composition and moldability of this product are shown in Table 1, and it was confirmed that both the purity and moldability were good.

【0024】〔実施例2及び比較例1〜3〕実施例1に
おいて、反応溶媒を変更した以外は全く同じような処理
を行い、その生成物の組成及び成形性を評価した。これ
らの試験の結果は表1に示したとおりであり、ジエチレ
ングリコールジメチルエーテル以外の反応溶媒では、実
施例1に比べて劣る結果であった。
Example 2 and Comparative Examples 1 to 3 The same treatment as in Example 1 was carried out except that the reaction solvent was changed, and the composition and moldability of the product were evaluated. The results of these tests are as shown in Table 1, and the results were inferior to those of Example 1 with the reaction solvents other than diethylene glycol dimethyl ether.

【0025】[0025]

【表1】 [Table 1]

【0026】〔比較例4〕セパラブルフラスコ中に、ビ
スフェノールA100部、アニリン90部、パラホルム
58.4部を採り、均一に混合したのち120℃の温度
に設定した二軸押し出し機に、平均滞留時間が10±2
分となるように連続的に供給した。押し出し機から吐出
した固体生成物を、さらに120℃の温度で2時間減圧
乾燥し、得られた固体生成物についてその組成と成形性
を調べた結果は、表2に示したとおりであり、実施例1
に較べて劣るものであった。
Comparative Example 4 100 parts of bisphenol A, 90 parts of aniline, and 58.4 parts of paraform were placed in a separable flask, mixed uniformly, and then averagely retained in a twin-screw extruder set at a temperature of 120 ° C. Time is 10 ± 2
Minutes. The solid product discharged from the extruder was further dried under reduced pressure at a temperature of 120 ° C. for 2 hours, and the composition and moldability of the obtained solid product were examined. Example 1
It was inferior to.

【0027】[0027]

【表2】 [Table 2]

【0028】〔実施例3〕セパラブルフラスコ中に、3
7%ホルマリン水149.5部とエチレングリコールジ
メチルエーテル500部を採り、均一に混合したのち内
温を10℃以下に冷却しながら、40%メチルアミン水
74.8部を滴下した。滴下が終了したのち、ビスフェ
ノールA100部を添加して均一に溶解させたのち、3
時間還流させた。この反応液を実施例1と同様に処理し
て、146.7部の固体生成物を得た。この固体生成物
についてその組成と成形性を調べた結果は、表3に示し
たとおりであった。
Example 3 In a separable flask, 3
149.5 parts of 7% formalin water and 500 parts of ethylene glycol dimethyl ether were taken, mixed uniformly, and 74.8 parts of 40% methylamine water was added dropwise while cooling the internal temperature to 10 ° C. or lower. After dropping was completed, 100 parts of bisphenol A was added and uniformly dissolved.
Reflux for hours. This reaction solution was treated in the same manner as in Example 1 to obtain 146.7 parts of a solid product. The results of examining the composition and moldability of this solid product were as shown in Table 3.

【0029】〔比較例5〜7〕実施例3において、反応
溶媒を変更した以外は、全く同じような方法で処理を行
い、得られた生成物の組成及び成形性を調べた。その結
果は、表3に示したとおりであり、いずれも実施例1の
結果より劣っていた。
[Comparative Examples 5 to 7] The procedure of Example 3 was repeated except that the reaction solvent was changed, and the composition and moldability of the obtained product were examined. The results are as shown in Table 3, and all were inferior to the results of Example 1.

【0030】[0030]

【表3】 [Table 3]

【0031】〔実施例4〜6〕実施例1において、ビス
フェノールAを種々の多価フェノール化合物に代え、相
当する多価オキサジン化合物の合成を行った。これらの
試験においていずれの場合も、還流下で2時間反応させ
たのち、反応液から固体結晶が析出したので、これを濾
過分離しメタノール洗浄をして減圧乾燥した。それらの
出発物質、反応条件及び生成物の組成は、表4に示した
とおりであって、いずれも高純度の多価オキサジン化合
物を主成分とするものであった。
Examples 4 to 6 In Example 1, bisphenol A was replaced with various polyhydric phenol compounds, and corresponding polyhydric oxazine compounds were synthesized. In each of these tests, after reacting for 2 hours under reflux, solid crystals were precipitated from the reaction solution. The crystals were separated by filtration, washed with methanol, and dried under reduced pressure. The starting materials, reaction conditions, and composition of the products were as shown in Table 4, and all contained a high-purity polyvalent oxazine compound as a main component.

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【発明の効果】本発明方法により得られたオキサジン化
合物を主成分とする熱硬化性樹脂原料は、ジオキサンを
反応溶媒とする方法、その他のテトラヒドロフラン等の
エーテル系溶剤を反応溶媒として使用する従来の方法に
較べて、多価オキサジン化合物以外の成分の含有量が少
なく、得られた生成物の成形時における脱気の温度を下
げて行なうことができ、成形された樹脂硬化物の均質性
が高まるなど実施上の効果は顕著である。
The thermosetting resin raw material containing an oxazine compound as a main component obtained by the method of the present invention can be prepared by a conventional method using dioxane as a reaction solvent or other ether solvents such as tetrahydrofuran as a reaction solvent. Compared with the method, the content of components other than the polyvalent oxazine compound is small, and the temperature of degassing at the time of molding of the obtained product can be lowered, and the homogeneity of the molded resin cured product is increased. Such effects in implementation are remarkable.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶媒として下式で示されるエチレングリ
コール系化合物を用い、多価フェノール、ホルマリン化
合物及び第一級アミン化合物を反応させることを特徴と
する多価オキサジン化合物を主成分とする熱硬化性樹脂
原料の製法。 【化1】
1. A thermosetting composition containing as a main component a polyhydric oxazine compound characterized by reacting a polyhydric phenol, a formalin compound and a primary amine compound with an ethylene glycol compound represented by the following formula as a solvent. Production method of raw resin material. Embedded image
JP3222498A 1998-01-28 1998-01-28 Preparation of thermosetting resin material consisting mainly of polyvalent oxazine compound Pending JPH11209453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3222498A JPH11209453A (en) 1998-01-28 1998-01-28 Preparation of thermosetting resin material consisting mainly of polyvalent oxazine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3222498A JPH11209453A (en) 1998-01-28 1998-01-28 Preparation of thermosetting resin material consisting mainly of polyvalent oxazine compound

Publications (1)

Publication Number Publication Date
JPH11209453A true JPH11209453A (en) 1999-08-03

Family

ID=12352997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3222498A Pending JPH11209453A (en) 1998-01-28 1998-01-28 Preparation of thermosetting resin material consisting mainly of polyvalent oxazine compound

Country Status (1)

Country Link
JP (1) JPH11209453A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072655A1 (en) * 2001-03-12 2002-09-19 Hitachi Chemical Co., Ltd. Method for producing benzoxazine resin
KR101238122B1 (en) * 2007-11-08 2013-02-27 코오롱인더스트리 주식회사 Process for producing a benzoxazine resin and benzoxazine resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072655A1 (en) * 2001-03-12 2002-09-19 Hitachi Chemical Co., Ltd. Method for producing benzoxazine resin
US7041772B2 (en) 2001-03-12 2006-05-09 Hitachi Chemical Co., Ltd. Method for producing benzoxazine resin
CN1332993C (en) * 2001-03-12 2007-08-22 日立化成工业株式会社 Method for producing benzoxazine resin
KR101238122B1 (en) * 2007-11-08 2013-02-27 코오롱인더스트리 주식회사 Process for producing a benzoxazine resin and benzoxazine resin

Similar Documents

Publication Publication Date Title
EP3385302B1 (en) Polymeric composition
Agag Preparation and properties of some thermosets derived from allyl‐functional naphthoxazines
EP3401351B1 (en) Phthalonitrile resin
EP3299404B1 (en) Phthalonitrile resin
KR20170036543A (en) Phthalonitrile compound
JPWO2018070535A1 (en) Epoxy resin, epoxy resin composition, epoxy resin cured product and composite material
TWI437013B (en) Benzoxazine-system composition, and thermal cured material and varnish thereof
EP3483200A1 (en) Polymerizable composition
CN112010833B (en) Bisphthalonitrile compound containing acetal structure, polymer, preparation method and application thereof
Hao et al. A naringenin-based benzoxazine with an intramolecular hydrogen bond as both a thermal latent polymerization additive and property modifier for epoxy resins
Lu et al. Facile and eco-friendly synthesis of hydrogen bonding-rich bio-based bisbenzoxazine resins with low surface free energy, strong adhesion strength and high thermal stability
JP2006001968A (en) Polyamic acid and polyimide resin having triptycene skeleton and optical part using the same
EP0284519A1 (en) Bismaleimide siloxanes and process for their preparation
JPH11209453A (en) Preparation of thermosetting resin material consisting mainly of polyvalent oxazine compound
CN104650144B (en) A kind of phenol monomer of phosphorus system four, cyanic acid ester derivant and copolymer and preparation method
EP3546496A2 (en) Compound
Tian et al. Investigation of structure/property relationships of polytriazoles
JP4726172B2 (en) Thermosetting resin composition
KR20180074043A (en) Phthalonitrile resin
CN108863973B (en) Novel amide type benzoxazine resin and one-step preparation method thereof
Relles et al. Dichloromaleimide chemistry. IV. Preparation of poly (maleimide–ethers) from the reaction of bisdichloromaleimides with bisphenols
JP2001019724A (en) Film-forming composition, electronic material, film- forming method and film
JP6950686B2 (en) A method for producing a polycyclic aromatic aminophenol compound and a resin composition, and the polycyclic aromatic aminophenol compound, a resin composition, and a cured product.
JP2000178332A (en) Thermosetting resin composition
JP2006169317A (en) Resin composition and its cured product