JPH11201923A - Measuring method for specific heat and differential scanning calorimeter - Google Patents

Measuring method for specific heat and differential scanning calorimeter

Info

Publication number
JPH11201923A
JPH11201923A JP419298A JP419298A JPH11201923A JP H11201923 A JPH11201923 A JP H11201923A JP 419298 A JP419298 A JP 419298A JP 419298 A JP419298 A JP 419298A JP H11201923 A JPH11201923 A JP H11201923A
Authority
JP
Japan
Prior art keywords
sample
heat
flow meter
heat flow
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP419298A
Other languages
Japanese (ja)
Other versions
JP3953170B2 (en
Inventor
Akiichi Maezono
明一 前園
Yoichi Takasaki
洋一 高崎
Yukio Maeda
幸男 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU RIKO KK
Original Assignee
SHINKU RIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU RIKO KK filed Critical SHINKU RIKO KK
Priority to JP00419298A priority Critical patent/JP3953170B2/en
Publication of JPH11201923A publication Critical patent/JPH11201923A/en
Application granted granted Critical
Publication of JP3953170B2 publication Critical patent/JP3953170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a measuring method in which specific heat in a high-temperature region can be measured with high accuracy in the small number of measuring operations even when a temperature around a sample is not uniform. SOLUTION: A heat flux-type differential scanning calorimeter has a structure wherein a second heat flowmeter plate 2 on which two empty cells are arranged in a position No. 3 and a position No. 4 which are symmetric with a sample and a standard sample is installed at the lower part of a first heat flowmeter plate 1 on which the sample and the standard sample are arranged in a position No. 1 and a position No. 2, and the end part of the first heat flowmeter plate 1 and the end part of the second heat flowmeter plate 2 are brought thermally into contact with a soaking container 7 in a state thet the end parts are brought into contact with each other. In a process in which the soaking container 7 is heated at a set temperature change speed, the temperature difference between the sample arranged on the first heat flowmeter plate 1 and a reference sample arranged on the second heat flowmeter plate 2 and the temperature difference between the standard sample arranged on the first hear flowmeter plate 1 and the reference sample arranged on the second heat flowmeter plate 2 are measured simultaneously by using the heat flux-type differential scanning calorimeter. The value of the specific heat of the sample is found on the basis of their measured values and on the basis of the known specific heat value of the standard sample.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料の比熱を高精
度に測定することができる比熱測定方法及び示差走査熱
量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a specific heat measuring method and a differential scanning calorimeter capable of measuring a specific heat of a sample with high accuracy.

【0002】[0002]

【従来の技術】物質の比熱の値を温度の関数として精密
に求めることが、物質の工学的な応用と、物性理論の両
方から要求されている。この物質の比熱を求めるものと
して、従来、図3に示す双子型示差走査熱量計(熱流束
型)が提案されている。
2. Description of the Related Art It is required from both the engineering application of materials and the theory of physical properties to accurately determine the value of the specific heat of a material as a function of temperature. Conventionally, a twin-type differential scanning calorimeter (heat flux type) shown in FIG. 3 has been proposed to determine the specific heat of this substance.

【0003】この示差走査熱量計は、図3に示すよう
に、外周に配置された電気炉(図示しない)により加熱
される均熱容器a内に、両端を均熱容器aに熱的に接触
させて熱流計板である金属薄板bを設け、該金属薄板b
の熱的に対称位置(No.1,No.2)に、試料用セ
ルc1 及び空セルc2 をそれぞれ配置し、金属薄板b
の、該試料用セルc1 及び空セルc2 に対応する位置に
試料温度用熱電対d1 及び空セル用熱電対d2 をそれぞ
れ取り付けた構造を有しており、試料の比熱は、これを
用いて次のような方法によって求める。
As shown in FIG. 3, this differential scanning calorimeter has both ends in thermal contact with a heat equalizing container a in a heat equalizing container a heated by an electric furnace (not shown) arranged on the outer periphery. Then, a metal sheet b, which is a heat flow meter plate, is provided.
The sample cell c 1 and the empty cell c 2 are respectively arranged at the thermally symmetric positions (No. 1 and No. 2) of the metal sheet b.
Of, each have a mounting structure sample temperature thermocouple d 1 and empty cell thermocouple d 2 a at a position corresponding to the sample cell c 1 and the air-cell c 2, the specific heat of the sample, this Is determined by the following method.

【0004】この測定は、2回行なわれる。第1回目の
測定では、熱量計のNo.1の位置に試料、No.2の
位置に空セルc2 を配置する。次に、第2回目の測定で
は、熱量計のNo.1の位置に熱容量が既知の標準試
料、No.2の位置に空セルc2 を配置する。
[0004] This measurement is performed twice. In the first measurement, the calorimeter No. No. 1 at the position of the sample. The empty cell c2 is arranged at the position of No. 2 . Next, in the second measurement, the No. A standard sample having a known heat capacity at the position of No. 1; The empty cell c2 is arranged at the position of No. 2 .

【0005】 第1回目の測定。[0005] First measurement.

【0006】金属薄板bの均熱容器a(熱源)からの熱
流束(Φ)は、熱源温度[Th (Th1、Th2)]と試料
温度測定点の温度[Tm (Tm1、Tm2)]との間の温度
差を熱抵抗(R)で割ったものに等しい。
[0006] heat flux from the soaking vessel a (heat source) of the sheet metal b ([Phi) is a heat source temperature [T h (T h1, T h2)] between the temperature of the sample temperature measuring point [T m (T m1, T m2 )] is equal to the temperature difference divided by the thermal resistance (R).

【0007】 Φ=(Th ーTm )/R …(1) この熱流束により、熱容量がCm (Cm1、Cm2)の試料
温度測定点の部分(試料セルを載せる位置の周辺)、熱
容量がC(C1 、C2 )の空セル、熱容量がCs の試料
は温度上昇し、その昇温速度がdT/dt=φとなる。
No.1のセルc1 については、 (Th1ーTm1)/R1 =φ1 (Cm1+C1 +Cs ) …(2) No.2のセルc2 についても同様に、 (Th2ーTm2)/R2 =φ2 (Cm2+C2 ) …(3) 理想的条件の下では、 Th1=Th21 =R2 =R(1) φ1 =φ2 =φ(1) m1=Cm2=Cm 1 =C2 …(4) この条件の下で、(2)、(3)式より、 (Tm2ーTm1)/R(1) =φ(1) ・Cs …(5) ΔT(1) =Tm2ーTm1=R(1) ・T(1) ・Cs …(5´) ここで、添字の(1)は第1回目の測定を示す。
[0007] [Phi = (T h over T m) / R ... (1 ) The heat flux, portions of the sample temperature measuring point heat capacity C m (C m1, C m2 ) ( near the position to place the sample cell) , empty cell heat capacity C (C 1, C 2) , the sample heat capacity C s temperature rises, the heating rate is dT / dt = φ.
No. No. 1 cell c 1 , ( Th 1 −T m1 ) / R 1 = φ 1 (C m1 + C 1 + C s ) (2) Similarly, the second cell c 2, (T h2 over T m2) / R 2 = Under φ 2 (C m2 + C 2 ) ... (3) ideal conditions, T h1 = T h2 R 1 = R 2 = R (1) φ 1 = φ 2 = φ (1) C m1 = C m2 = C m C 1 = C 2 (4) Under this condition, from the equations (2) and (3), m2 over T m1) / R (1) = φ (1) · C s ... (5) ΔT (1) = T m2 over T m1 = R (1) · T (1) · C s ... (5') Here, the subscript (1) indicates the first measurement.

【0008】 第2回目の測定。[0008] Second measurement.

【0009】No.1のセルc1 に、熱容量が既知の標
準試料を入れ、No.2のセルは空とする。上と同じよ
うに、理想的条件下では、(2)、(3)、(5)式と
同様に、(6)(7)(8)式が成り立つ。標準試料の
熱容量をCr とする。
No. A standard sample having a known heat capacity was placed in the cell c 1 of No. 1; Cell 2 is empty. Similarly to the above, under ideal conditions, the equations (6), (7), and (8) hold as in the equations (2), (3), and (5). Let the heat capacity of the standard sample be Cr.

【0010】 (Th1ーTm1)/R1 =φ1 (Cm1+C1 +Cr ) …(6) (Th2ーTm2)/R2 =φ2 (Cm2+C2 ) …(7) (Tm2ーTm1)/R(2) =φ(2) ・Cr …(8) ΔT(2) =Tm2ーTm1=R(2) ・φ(2) ・Cr …(8´) ここで、添字の(2)は第2回目の測定を示す。[0010] (T h1 over T m1) / R 1 = φ 1 (C m1 + C 1 + C r) ... (6) (T h2 over T m2) / R 2 = φ 2 (C m2 + C 2) ... (7 (T m2 −T m1 ) / R (2) = φ (2) · C r (8) ΔT (2) = T m2 −T m1 = R (2) · φ (2) · C r ( 8 ') Here, the subscript (2) indicates the second measurement.

【0011】 上記の2回の測定結果から、試料の熱
容量が求められる。
From the results of the two measurements, the heat capacity of the sample is determined.

【0012】(5´)と(8´)式より、 ΔT(1) /ΔT(2) ・R(2) /R(1) =φ(1) /φ(2) ・Cs /Cr …(9) 2回の測定で、次の理想的条件を仮定する。From the equations (5 ′) and (8 ′), ΔT (1) / ΔT (2) · R (2) / R (1) = φ (1) / φ (2) · C s / C r (9) The following ideal conditions are assumed in two measurements.

【0013】 R(2) =R(1) φ(1) =φ(2) …(10) したがって、(9)式は、 ΔT(1) /ΔT(2) =Cs /Cr …(11) Cs =Cr ・ΔT(1) /ΔT(2) …(12) ΔT(1) 、ΔT(2) はいずれも測定できる数値であるか
ら、(12)式により試料の熱容量Cs を求めることが
できる。
R (2) = R (1) φ (1) = φ (2) (10) Therefore, the expression (9) is represented by ΔT (1) / ΔT (2) = C s / C r ( 11) C s = C r · ΔT (1) / ΔT (2) (12) Since both ΔT (1) and ΔT (2) are numerical values that can be measured, the heat capacity C s of the sample is obtained by the equation (12). Can be requested.

【0014】(4)式のR1 =R2 の理想条件が満たさ
れない場合がある。この場合は、第3回目の測定を行
う。第3回目の測定は、No.1、No.2の両セルと
も空セルで行う。この測定の場合のNo.1とNo.2
の温度差をΔT(3) とすると、R1 =R2 でない場合に
も次式でCs が求められる。
The ideal condition of R 1 = R 2 in equation (4) may not be satisfied. In this case, the third measurement is performed. In the third measurement, No. 1, No. Both cells 2 are performed with empty cells. No. in this measurement. 1 and No. 2
Is given by ΔT (3) , C s can be obtained by the following equation even when R 1 = R 2 is not satisfied.

【0015】 Cs =Cr ・(ΔT(1) −ΔT(3) )/(ΔT(2) −ΔT(3) ) …(12´) 第3回目の測定は、同一測定条件の場合には省略するこ
とができる。しかし、試料の比熱を求めるには、最低2
回の測定をしなければならない。
C s = C r · (ΔT (1) −ΔT (3) ) / (ΔT (2) −ΔT (3) ) (12 ′) The third measurement is performed under the same measurement conditions. Can be omitted. However, to determine the specific heat of the sample, at least 2
You have to take the measurement several times.

【0016】[0016]

【発明が解決しようとする課題】前述した従来の双子型
示差走査熱量計による比熱測定においては、理想的条件
として示した(4)式の中で、Th1=Th2としたが、こ
れは、No.1とNo.2の位置の温度分布が均一であ
ることを意味する。しかし、実際には、両者の間には、
多少の温度差が生じ、(5)(8)式に誤差を伴うとみ
なければならない。
In the specific heat measurement by the conventional twin type differential scanning calorimeter described above, Th1 = Th2 in the equation (4) shown as an ideal condition. , No. 1 and No. This means that the temperature distribution at the position 2 is uniform. However, in practice,
It is necessary to consider that a slight temperature difference occurs and the equations (5) and (8) involve errors.

【0017】特に、試料温度が高温度になれば、温度制
御の揺らぎと共にこの傾向が増大する。
In particular, when the sample temperature becomes high, this tendency increases with the fluctuation of the temperature control.

【0018】更に、(10)式も実際には誤差を伴う。
試料の測定と標準試料の測定の2回の測定を全く同一の
条件とする(10)式は理想上の仮定で、実際は等しく
なく、誤差を生ずる。
Further, equation (10) actually involves an error.
Equation (10), in which the measurement of the sample and the measurement of the standard sample are performed in exactly the same condition, is an ideal assumption, which is not actually equal and causes an error.

【0019】実際に上記熱量計を用いて比熱を測定する
と、室温付近で±5%、500℃以上では、±8%のば
らつきを生ずる。特に1000℃以上では±10%以上
のばらつきを生ずる。
When the specific heat is actually measured using the above calorimeter, a variation of ± 5% occurs near room temperature, and a variation of ± 8% occurs above 500 ° C. Particularly, at a temperature of 1000 ° C. or more, a variation of ± 10% or more occurs.

【0020】したがって、室温から高温度の広い範囲に
おいて、示差走査熱量計を用いて精密な比熱を測定する
ためには、 a.熱量計の面内の温度分布の存在に対する対応策。
Therefore, in order to accurately measure specific heat using a differential scanning calorimeter in a wide range from room temperature to high temperature, a. Countermeasures for the presence of temperature distribution in the plane of the calorimeter.

【0021】b.2回の測定ではなく、1回の測定で、
試料と標準試料の測定を可能にする方法。
B. One measurement, not two measurements,
A method that allows measurement of samples and standard samples.

【0022】の2つの問題点を解決しなければならな
い。
The two problems must be solved.

【0023】従来、前記bの問題解決の方法が提案され
た。
Conventionally, a method for solving the above problem b has been proposed.

【0024】それは、B.Wunderlichによる
トリプルセル方式の示差走査熱量計[B.Wunder
lich著、J.Thermal Anal.,32,P.
1949-1955 (1987)]である。
It is described in B. Wunderlich triple cell differential scanning calorimeter [B. Wunder
lich, J.L. Thermal Anal. , 32, P.
1949-1955 (1987)].

【0025】図4はその示差走査熱量計の原理図を示
す。
FIG. 4 shows the principle of the differential scanning calorimeter.

【0026】同一面上の熱流束計の上に、3等配の位置
に基準試料、標準試料及び試料を配置して、基準試料ー
試料間の温度差と、基準試料と標準試料間の温度差をそ
れぞれ同時に測定すれば、1回の測定で済む。
A reference sample, a standard sample, and a sample are arranged at three equally distributed positions on a heat flux meter on the same surface, and a temperature difference between the reference sample and the sample, and a temperature difference between the reference sample and the standard sample are measured. If the differences are measured simultaneously, only one measurement is required.

【0027】この熱量計による測定方法について説明す
る。
The measurement method using this calorimeter will be described.

【0028】No.1のセルc1 は空セル(基準試料)
とし、No.2のセルc2 には試料を、No.3のセル
3 には標準試料を入れて、一定速度で加熱する。各セ
ルについて、上記(2)式と同様な式が成り立つ。
No. 1 cell c 1 is an empty cell (reference sample)
No. Samples The second cell c 2, No. A standard sample is placed in the cell c3 of No. 3 and heated at a constant rate. For each cell, a formula similar to the above formula (2) holds.

【0029】 (Th1ーTm1)/R1 =φ1 (Cm1+C) …(13) (Th2ーTm2)/R2 =φ2 (Cm2+C+Cs ) …(14) (Th3ーTm3)/R3 =φ3 (Cm3+C+Cr ) …(15) ここで、Th1=Th2=Th3=Th 1 =R2 =R3
=R φ1 =φ2 =φ3 =φ Cm1=Cm2=Cm3=Cm と理想条件を仮定すると、(14)式ー(13)式及び
(15)式ー(13)式により Tm2ーTm1=R・φ・Cs =ΔT21 …(16) Tm3ーTm1=R・φ・Cr =ΔT31 …(17) (16)(17)式より ΔT21/ΔT31=Cs /Cr (18) したがって、 Cs =Cr ・ΔT21/ΔT31 (19) により、No.2とNo.1の温度差及びNo.3とN
o.1の温度差を測定すれば、試料の熱容量を求めるこ
とができる。
[0029] (T h1 over T m1) / R 1 = φ 1 (C m1 + C) ... (13) (T h2 over T m2) / R 2 = φ 2 (C m2 + C + C s) ... (14) (T h3 over T m3) / R 3 = φ 3 (C m3 + C + C r) ... (15) where, T h1 = T h2 = T h3 = T h R 1 = R 2 = R 3
= R φ 1 = φ 2 = φ 3 = φ C m1 = C m2 = C m3 = C m Assuming the ideal conditions of (14)-(13) and (15)-(13) T m2 −T m1 = R · φ · C s = ΔT 21 (16) T m3 −T m1 = R · φ · C r = ΔT 31 (17) (16) From the expressions (16) and (17), ΔT 21 / ΔT 31 = C s / C r (18) Therefore, C s = C r · ΔT 21 / ΔT 31 (19). 2 and No. No. 1 temperature difference and No. 1 3 and N
o. By measuring the temperature difference of 1, the heat capacity of the sample can be obtained.

【0030】このトリプルセル方法により、ただ1回の
測定で試料の熱容量を求め得たが、上記のa.の問題点
については未解決である。Th1=Th2=Th3の仮定は、
試料周辺の温度の不均一がある場合には成り立たない。
この現象は、特に500℃以上の高温度域では顕著とな
り、測定のばらつきが大きくなり、±3%以内の誤差範
囲の精密な比熱測定は不可能となっている。
According to the triple cell method, the heat capacity of the sample was obtained by only one measurement. The problem of has not been resolved. Assumption of T h1 = T h2 = T h3 is,
This is not feasible when the temperature around the sample is uneven.
This phenomenon is particularly remarkable in a high temperature range of 500 ° C. or more, and the variation of the measurement becomes large, so that precise measurement of specific heat within an error range of ± 3% is impossible.

【0031】このように、従来の技術は、500℃〜6
00℃より高温度では、高精度で試料の比熱を測定する
ことができない。
As described above, the conventional technology is used at 500 ° C. to 6 ° C.
At a temperature higher than 00 ° C., the specific heat of the sample cannot be measured with high accuracy.

【0032】本発明は、上述した従来の問題点に鑑み、
試料周辺の温度が不均一である場合でも、高温度域にお
ける比熱を高精度に測定することができる比熱測定方法
及び示差走査熱量計を提供することを課題とする。
The present invention has been made in view of the above-mentioned conventional problems,
It is an object of the present invention to provide a specific heat measurement method and a differential scanning calorimeter capable of measuring the specific heat in a high temperature range with high accuracy even when the temperature around the sample is not uniform.

【0033】[0033]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の比熱測定方法は、請求項1に記載のよう
に、試料及び標準試料を配置する第1の熱流計板の下方
に、該試料及び標準試料とそれぞれ対称する位置に2個
の基準試料を配置する第2の熱流計板を設け、第1の熱
流計板の端部と第2の熱流計板の端部を互いに接触させ
た状態で熱源に熱的に接触させた構造を有する熱流束型
示差走査熱量計を用い、熱源を一定の温度変化速度で加
熱する過程において、第1の熱流計板に配置した試料と
第2の熱流計板に配置した基準試料の温度差及び第1の
熱流計板に配置した標準試料と第2の熱流計板に配置し
た基準試料の温度差を同時に測定し、これらの測定値と
標準試料の既知の比熱値とから試料の比熱の値を求める
ことを特徴とする。また、本発明の示差走査熱量計は、
請求項2に記載のように、双子型の熱流束型示差走査熱
量計であって、試料用セル及び標準試料用セルを配置し
た第1の熱流計板と、その下方に配設し前記試料用セル
及び標準試料用セルとそれぞれ対称する位置に基準試料
としての2個の空セルを配置した第2の熱流計板と、第
1の熱流計板の、試料用セル及び標準試料用セルにそれ
ぞれ対応する位置に取り付けられた2個の温度センサ
と、第2の熱流計板の、2個の空セルにそれぞれ対応す
る位置に取り付けられた2個の温度センサを具備し、前
記第1の熱流計板の端部と第2の熱流計板の端部を互い
に接触させた状態で熱源に熱的に接触させたことを特徴
とする。
In order to solve the above-mentioned problems, a specific heat measuring method according to the present invention, as described in claim 1, has a structure in which a sample and a standard sample are arranged below a first heat flow meter plate. A second heat flow meter plate for arranging two reference samples at positions symmetrical to the sample and the standard sample respectively, and connecting an end of the first heat flow meter plate and an end of the second heat flow meter plate to each other. In the process of heating the heat source at a constant temperature change rate using a heat flux type differential scanning calorimeter having a structure in which the heat source is in thermal contact with the heat source in a state where the heat source is in contact with each other, the sample placed on the first heat flow meter plate The temperature difference between the reference sample placed on the second heat flow meter and the reference sample placed on the second heat flow meter and the reference sample placed on the second heat flow meter are measured simultaneously. The value of the specific heat of the sample is determined from the value and the known specific heat value of the standard sample. Further, the differential scanning calorimeter of the present invention,
3. A twin heat flux type differential scanning calorimeter according to claim 2, wherein the first heat flow meter plate in which a sample cell and a standard sample cell are disposed, and the sample is disposed below the first heat flow plate. The second heat flow meter plate in which two empty cells as reference samples are arranged at positions symmetrical to the cell for measurement and the cell for standard sample, respectively, the sample cell and the standard sample cell of the first heat flow meter plate The first heat flow meter plate includes two temperature sensors mounted at corresponding positions, and two temperature sensors mounted at positions respectively corresponding to the two empty cells of the second heat flow meter plate, The end of the heat flow meter plate and the end of the second heat flow meter plate are brought into thermal contact with the heat source in a state where they are in contact with each other.

【0034】前記熱流束型示差走査熱量計を用いた比熱
測定方法を、図1を参照して説明すると、先ず、試料を
入れたNo.1のセルについて、上述の(2)式と同様
の式が得られる。
A specific heat measuring method using the heat flux type differential scanning calorimeter will be described with reference to FIG. An expression similar to the above expression (2) is obtained for one cell.

【0035】 (Th1ーTm1)/R1 =φ1 (Cm1+C1 +Cs ) …(20) 符号は、従来の技術の項で説明したのに対応する意味を
有する。
[0035] (T h1 over T m1) / R 1 = φ 1 (C m1 + C 1 + C s) ... (20) code has a corresponding meaning to as described in the background section.

【0036】No.3のセルについても同様に、 (Th3ーTm3)/R3 =φ3 (Cm3+C3 ) …(21) 今、熱量計の面内に温度の不均一があったとしても、T
h1とTh3とは同一位置にあり、熱的に接触しているか
ら、Th1=Th3と考えてよい。
No. Similarly, the third cell, (T h3 over T m3) / R 3 = φ 3 (C m3 + C 3) ... (21) Now, even if nonuniformity of temperature in the plane of the calorimeter, T
Since h1 and Th3 are at the same position and are in thermal contact, it may be considered that Th1 = Th3 .

【0037】上記の(4)式と同様に次の理想的条件を
仮定する。
The following ideal conditions are assumed in the same manner as in the above equation (4).

【0038】 R1 =R3 =R13 φ1 =φ3 =φ13m1=Cm3=Cm13 1 =C3 =C13 …(22) (20)、(21)、(22)式より (Tm3ーTm1)/R13=φ13・Cs …(23) No.2とNo.4のセルについても、同様にR2 =R
4 =R24 φ2 =φ4 =φ24m2=Cm4=Cm242 =C4 =C24 と仮定して (Tm4ーTm2)/R24=φ24・Cr …(24) 理想的条件として、 R13=R24 φ13=φ24 …(25) とすると、(23)(24)(25)式より (Tm3ーTm1)/(Tm4ーTm2)=Cs /Cr …(26) または、 Cs=Cr・(Tm3ーTm1)/(Tm4ーTm2) …(27) 測定により、(Tm3ーTm1)/(Tm4ーTm2)が求めら
れるから、ただ1回の測定だけで、試料の熱容量を決定
することができる。
R 1 = R 3 = R 13 φ 1 = φ 3 = φ 13 C m1 = C m3 = C m13 C 1 = C 3 = C 13 (22) (20), (21), (22) from the formula (T m3 over T m1) / R 13 = φ 13 · C s ... (23) No. 2 and No. Similarly, for the cell No. 4, R 2 = R
4 = R 24 φ 2 = φ 4 = φ 24 C m2 = C m4 = C m24 C 2 = C 4 = C 24 assuming (T m4 over T m2) / R 24 = φ 24 · C r ... ( 24) As an ideal condition, if R 13 = R 24 φ 13 = φ 24 (25), then (T m3 −T m1 ) / (T m4 −T m2 ) from equations (23), (24) and (25). = C s / C r (26) or Cs = Cr · (T m3 −T m1 ) / (T m4 −T m2 ) (27) According to the measurement, (T m3 −T m1 ) / (T m4 − Since T m2 ) is determined, the heat capacity of the sample can be determined with only one measurement.

【0039】また、この方法では、熱量計の面内に温度
の不均一があっても、Th1とTh3は等しいから、結果に
は影響を与えず、高精度の比熱を測定することができ
る。
Further, according to this method, even if the temperature of the calorimeter is non-uniform, Th1 and Th3 are equal, so that the result is not affected and the specific heat can be measured with high accuracy. it can.

【0040】以上の測定方法では、R1 、R2 、R3
4 が等しいと仮定したが、等しくない場合でも比熱を
測定することができる。
In the above measuring method, R 1 , R 2 , R 3 ,
Although it was assumed that R 4 are equal, it is possible to measure the specific heat, even if not equal.

【0041】この場合には、3回の測定が必要である。In this case, three measurements are required.

【0042】第1回目の測定では、すべてのセルを空セ
ルで測定する。(21)式と同様な式の4式を得る。
In the first measurement, all cells are measured with empty cells. The following four equations, which are similar to the equation (21), are obtained.

【0043】 (Th1ーTm1)/R1 =φ1 (Cm +C) …(28) (Th3ーTm3)/R3 =φ3 (Cm +C) …(29) (Th2ーTm2)/R2 =φ2 (Cm +C) …(30) (Th4ーTm4)/R4 =φ4 (Cm +C) …(31) ここで、Th1=Th3h2=Th4であるから、(2
8)(29)式より(28)式−(29)式 Tm3−Tm1=R1 φ1 (Cm +C)−R3 φ3 (Cm
C) φ1 =φ3 =φと仮定する。
[0043] (T h1 over T m1) / R 1 = φ 1 (C m + C) ... (28) (T h3 over T m3) / R 3 = φ 3 (C m + C) ... (29) (T h2 −T m2 ) / R 2 = φ 2 (C m + C) (30) ( Th 4 −T m4 ) / R 4 = φ 4 (C m + C) (31) where Th 1 = Th 3 T Since h2 = Th4 , (2
8) (29) from equation (28) - (29) T m3 -T m1 = R 1 φ 1 (C m + C) -R 3 φ 3 (C m +
C) Assume φ 1 = φ 3 = φ.

【0044】Tm3−Tm1=(R1 −R3 )φ(Cm
C)=(R1 −R3 )/R1 ・R1 ・φ(Cm +C) (28)式より Tm3−Tm1=(R1 −R3 )/R1 ・(Th1ーTm1) Tm3ーTm1=(1ーR3 /R1 )(Th1ーTm1)=ΔT31(1) …(32) ここで、ΔT31(1) は、(Tm3−Tm1)の第1回目の温
度差測定値を示す。
T m3 −T m1 = (R 1 −R 3 ) φ (C m +
C) = (R 1 -R 3 ) / R 1 · R 1 · φ (C m + C) From equation (28), T m3 -T m1 = (R 1 -R 3 ) / R 1 · ( Th 1 -T m1) T m3 over T m1 = (1 over R 3 / R 1) (T h1 over T m1) = ΔT 31 (1 ) ... (32) where, ΔT 31 (1) is, (T m3 -T m1 3) shows the first measured value of the temperature difference.

【0045】(30)(31)式より Tm4ーTm2=(1ーR4 /R2 )(Th2ーTm2)=ΔT42(1) …(33) 第2回目の測定では、No.1のセルに試料を、No.
2のセルに比熱が既知の標準試料を、No.3のセルと
No.4のセルは空セルとして測定すると、(28)〜
(31)式と同様に、(34)〜(37)式が得られ
る。
From equations (30) and (31), T m4 −T m2 = (1−R 4 / R 2 ) ( Th 2 −T m2 ) = ΔT 42 (1) (33) In the second measurement, No. Sample No. 1 was placed in the cell No. 1;
A standard sample having a known specific heat was placed in the cell of No. 2; No. 3 cell and No. 3 When the cell of No. 4 is measured as an empty cell, (28)-
Expressions (34) to (37) are obtained in the same manner as Expression (31).

【0046】 (Th1ーTm1)/R1 =φ1 (Cm +C+Cs ) …(34) (Th3ーTm3)/R3 =φ3 (Cm +C) …(35) (Th2ーTm2)/R2 =φ2 (Cm +C+Cr ) …(36) (Th4ーTm4)/R4 =φ4 (Cm +C) …(37) ここで、Th1=Th3h2=Tm4 であるから、(3
4)(35)式より Tm3ーTm1=(1ーR3 /R1 )(Th1ーTm1)+R3 φ1 s …(38) 同様に、(36)(37)式より Tm4ーTm2=ΔT42(2) =(1ーR4 /R2 )(Th2ーTm2)+R4 φ2 r …(39) (32)(38)式より Tm3ーTm1=ΔT31(2) =ΔT31(1) +R3 φ1 s …(40) (33)(39)式より Tm4ーTm2=ΔT42(2) =ΔT42(1) +R4 φ2 r …(41) (40)(41)式より Cs =Cr ・( ΔT31(2) ーΔT31(1) )/(ΔT42(2) ーΔT42(1) )・ R4 /R3 …(42) R4 /R3 は、No.1のセルとNo.2のセルの両方
に標準試料を入れた測定より求めることができる。ΔT
31とΔT42の第3回目の測定値をΔT31(3) 、ΔT
42(3) とすると、 R4 /R3 =(ΔT42(3) −ΔT42(1) )/(ΔT31(3) −ΔT31(1) ) …(42´) したがって、 Cs =Cr ・(ΔT31(2) ーΔT31(1) )/(ΔT42(2) ーΔT42(1) ) ・(ΔT42(3) −ΔT42(1) )/(ΔT31(3) −ΔT31(1) ) …(42”) になる。
[0046] (T h1 over T m1) / R 1 = φ 1 (C m + C + C s) ... (34) (T h3 over T m3) / R 3 = φ 3 (C m + C) ... (35) (T h2 over T m2) / R 2 = φ 2 (C m + C + C r) ... (36) (T h4 over T m4) / R 4 = φ 4 (C m + C) ... (37) where, T h1 = T because it is h3 T h2 = T m4, ( 3
4) (35) than the T m3 over T m1 = (1 over R 3 / R 1) (T h1 over T m1) + R 3 φ 1 C s ... (38) Similarly, from (36) (37) Equation T m4 −T m2 = ΔT 42 (2) = (1−R 4 / R 2 ) ( Th 2 −T m2 ) + R 4 φ 2 Cr (39) From the equations (32) and (38), T m3 −T m1 = ΔT 31 (2) = ΔT 31 (1) + R 3 φ 1 C s ... (40) (33) (39) T m4 over from the equation T m2 = ΔT 42 (2) = ΔT 42 (1) + R 4 φ 2 C r ... (41) (40) From equation (41), C s = C r · (ΔT 31 (2) -ΔT 31 (1) ) / (ΔT 42 (2) -ΔT 42 (1) ) ・R 4 / R 3 (42) R 4 / R 3 is the No. No. 1 cell and No. 1 It can be determined from a measurement in which a standard sample is put in both cells. ΔT
The third measured values of 31 and ΔT 42 are ΔT 31 (3) , ΔT
When 42 (3), R 4 / R 3 = (ΔT 42 (3) -ΔT 42 (1)) / (ΔT 31 (3) -ΔT 31 (1)) ... (42') Thus, C s = C r · (ΔT 31 (2 ) over ΔT 31 (1)) / ( ΔT 42 (2) over ΔT 42 (1)) · ( ΔT 42 (3) -ΔT 42 (1)) / (ΔT 31 (3 ) −ΔT 31 (1) ) (42 ″).

【0047】この場合にも、熱量計の面内に温度の不均
一があってもTh1とTh3は等しいから、結果には影響を
与えず、高精度の比熱を測定することができる。
Also in this case, even if the temperature of the calorimeter is non-uniform, Th1 and Th3 are equal. Therefore, the result is not affected, and the specific heat can be measured with high accuracy.

【0048】[0048]

【発明の実施の形態】本発明の実施の形態を図面を参照
して説明する。
Embodiments of the present invention will be described with reference to the drawings.

【0049】図1は本発明実施の双子型の熱流束型示差
走査熱量計1例の概略線図を示す。
FIG. 1 is a schematic diagram showing an example of a twin heat flux type differential scanning calorimeter according to the present invention.

【0050】同図において、1及び2は、いずれも熱流
計板(実際は感温板と呼ばれる)である第1及び第2の
金属薄板、3は、第1の金属薄板1上のNo.1の位置
に置かれた試料(比熱が未知)を入れるセル、4は、第
1の金属薄板1上のNo.2の位置に置かれた標準試料
(比熱が既知)を入れるセルであり、5及び6は、いず
れも第2の金属薄板2上のNo.3及びNo.4に置か
れた空セルである。
In the drawing, reference numerals 1 and 2 denote first and second thin metal plates, both of which are heat flow meter plates (actually called temperature sensing plates), and reference numeral 3 denotes No. 1 on the first thin metal plate 1. The cell 4 in which the sample (specific heat is unknown) placed in the position of No. 1 is placed. 2 is a cell in which a standard sample (specific heat is known) placed in the position of No. 2 is provided. 3 and No. 3 4 is an empty cell.

【0051】第1の金属薄板1上のセル3(No.1の
位置)とセル4(No.2の位置)の下方の対称位置
に、空セル5(No.3の位置)と空セル6(No.4
の位置)を第2の金属薄板2上に配置し、第1及び第2
の金属薄板1及び2の両端を均熱容器7に熱的及び電気
的に良好に接触させた構造になっている。第1及び第2
の金属薄板1及び2上のNo.1、No.2、No.
3、及びNo.4の位置は、いずれも均熱容器7との間
の熱抵抗が同じになる位置にある。8は試料温度用熱電
対、9は標準試料温度用熱電対、10及び11は、いず
れも空セル温度用熱電対で、それぞれ第1及び第2の金
属薄板1及び2に取り付けられている。
An empty cell 5 (the position of No. 3) and an empty cell 5 are located symmetrically below the cell 3 (the position of No. 1) and the cell 4 (the position of No. 2) on the first metal sheet 1. 6 (No. 4)
Is positioned on the second metal sheet 2 and the first and second
The structure is such that both ends of the metal thin plates 1 and 2 are brought into good thermal and electrical contact with the heat equalizing vessel 7. First and second
No. on metal sheets 1 and 2 1, No. 2, No.
3, and No. 3 The position 4 is a position where the thermal resistance between the heat equalizing container 7 and the heat equalizing container 7 becomes the same. 8 is a thermocouple for sample temperature, 9 is a thermocouple for standard sample temperature, and 10 and 11 are thermocouples for empty cell temperature, which are attached to the first and second thin metal plates 1 and 2, respectively.

【0052】図面では、均熱容器7の外周に設ける電気
炉や、試料温度用熱電対8、標準試料温度用熱電対9及
び空セル温度用熱電対10、11にそれぞれ接続される
直流増幅器等や、前記試料の比熱を算出するマイクロコ
ンピュータ、表示器等は、いずれも周知のものであるの
で省略した。
In the drawing, an electric furnace provided on the outer periphery of the heat equalizing vessel 7, a DC amplifier connected to the sample temperature thermocouple 8, the standard sample temperature thermocouple 9, and the empty cell temperature thermocouples 10 and 11, etc. Also, a microcomputer for calculating the specific heat of the sample, a display device, and the like are well known and are omitted.

【0053】図2は、前記熱流束計の金属薄板の他例を
図2に示す。
FIG. 2 shows another example of the thin metal plate of the heat flux meter.

【0054】同図において、金属薄板1(2)は、セル
3、4(5,6)を載置する部分がその周囲に明けられ
た孔12により形成されたブリッジ13を介して金属薄
板端部に接続されており、この構成によると、熱抵抗R
が大となり、同じ熱流束に対して温度差を大きくするこ
とができ、換言すると、熱流計板としての感度が向上す
る。
In the figure, the metal sheet 1 (2) is connected to the ends of the metal sheet via bridges 13 formed by holes 12 formed around the cells 3, 4 (5, 6). Section, and according to this configuration, the thermal resistance R
And the temperature difference can be increased for the same heat flux, in other words, the sensitivity as a heat flow meter plate is improved.

【0055】前記の双子型の熱流束型示差走査熱量計を
用いて試料の比熱は次の方法により測定する。
The specific heat of the sample is measured by the following method using the twin-type heat flux type differential scanning calorimeter.

【0056】空セル温度用熱電対10の出力と試料温度
用熱電対8の出力との差値及び空セル温度用熱電対11
の出力と標準試料温度用熱電対9の出力との差値を、マ
イクロコンピュータに入力し、コンピュータによりこれ
らの差値及び標準試料の比熱値を前記(27)式に代入
して試料の比熱を算出する。
The difference between the output of the thermocouple for empty cell temperature 10 and the output of the thermocouple for sample temperature 8 and the thermocouple for empty cell temperature 11
And the difference between the output of the standard sample temperature thermocouple 9 and the output of the standard sample temperature thermocouple 9 are input to a microcomputer. calculate.

【0057】前記の比熱測定方法では、No.1、N
o.2、No.3、及びNo.4の位置は、いずれも均
熱容器7との間の熱抵抗が同じになる位置に設定された
が、熱抵抗が相違する位置に設定してもよく、その場合
には、No.1のセルに試料を、No.2のセルに比熱
が既知の標準試料を、No.3のセル及びNo.4のセ
ルを空セルとした場合と、No.1、No.2、No.
3、及びNo.4のセルのすべてを空セルにした場合
の、それぞれの空セル温度用熱電対10の出力と試料温
度用熱電対8の出力との差値と、空セル温度用熱電対1
1の出力と標準試料温度用熱電対9の出力との差値を求
めると共に、No.1とNo.2の両方のセルに標準試
料を入れ、前記(36)式よりNo.3及びNo.4の
位置と均熱容器7間の熱抵抗R3 、R4 を求め、以上の
差値、R4 /R3 及び標準試料の比熱値を前記(42)
式より代入することにより試料の比熱を算出する。
In the above specific heat measurement method, 1, N
o. 2, No. 3, and No. 3 The position of No. 4 was set at a position where the thermal resistance between the heat equalizing container 7 was the same, but the position of the thermal resistance may be different. Sample No. 1 was placed in the cell No. 1; A standard sample having a known specific heat was placed in the cell of No. 2; 3 and No. 3 cell. No. 4 cell is an empty cell; 1, No. 2, No.
3, and No. 3 In the case where all of the cells 4 are empty cells, the difference between the output of the thermocouple 10 for the empty cell temperature and the output of the thermocouple 8 for the sample temperature, and the thermocouple 1 for the empty cell temperature
1 and the output of the standard sample temperature thermocouple 9, and 1 and No. The reference sample was placed in both cells of No. 2 and No. 2 was obtained from the formula (36). 3 and No. 3 The thermal resistances R 3 and R 4 between the position 4 and the heat equalizing vessel 7 were determined, and the above-mentioned difference value, R 4 / R 3 and the specific heat value of the standard sample were determined in the above (42).
The specific heat of the sample is calculated by substituting from the equation.

【0058】以上の3回の測定は、毎回行う必要はな
い。同一の試料セルを用いて同一測定条件(例えば、加
熱速度、雰囲気、測定温度範囲など)の下で測定すれ
ば、すでにΔT31(1) 、ΔT42(1) 、ΔT31(3) 、ΔT
42(3) は求められているので、ただ1回の測定のみで、
ΔT31(2) 、ΔT42(2) を求めれば、試料の比熱を求め
ることができる。
The above three measurements need not be performed every time. If measurement is performed using the same sample cell under the same measurement conditions (for example, heating rate, atmosphere, measurement temperature range, etc.), ΔT 31 (1) , ΔT 42 (1) , ΔT 31 (3) , ΔT
Since 42 (3) is required, only one measurement is required.
By determining ΔT 31 (2) and ΔT 42 (2) , the specific heat of the sample can be determined.

【0059】尚、本発明の双子型示差走査熱量計は、単
なる熱分析として用いる場合には、2つの試料を同時に
同一条件で測定できるから、試料の熱的同定、比較など
に有効に利用できる。
When the twin-type differential scanning calorimeter of the present invention is used for simple thermal analysis, two samples can be measured simultaneously under the same conditions, and therefore can be effectively used for thermal identification and comparison of the samples. .

【0060】[0060]

【発明の効果】本発明は、試料周辺の温度が不均一であ
る場合でも、高温度域における比熱を高精度に測定する
ことができる。また、従来の測定方法と比較して測定回
数を少なく且つ高温度域における比熱を高精度に測定す
ることもできる。
According to the present invention, the specific heat in a high temperature range can be measured with high accuracy even when the temperature around the sample is not uniform. In addition, the number of measurements can be reduced as compared with the conventional measurement method, and the specific heat in a high temperature range can be measured with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)及び(B)は、本発明実施の示差走査熱
量計の概略構成を示す切断正面図及び切断平面図。
FIGS. 1A and 1B are a cut front view and a cut plan view showing a schematic configuration of a differential scanning calorimeter according to an embodiment of the present invention.

【図2】(A)及び(B)は、本発明実施の示差走査熱
量計に用いる熱流計板の他例の平面図及び断面図。
FIGS. 2A and 2B are a plan view and a cross-sectional view of another example of a heat flow meter plate used for the differential scanning calorimeter according to the present invention.

【図3】(A)及び(B)は、従来の示差走査熱量計の
概略構成を示す切断正面図及び切断平面図。
FIGS. 3A and 3B are a cut front view and a cut plan view showing a schematic configuration of a conventional differential scanning calorimeter.

【図4】 従来の示差走査熱量計の他例の原理説明図。FIG. 4 is a diagram illustrating the principle of another example of a conventional differential scanning calorimeter.

【符号の説明】[Explanation of symbols]

1…第1の熱流計板 2…第2の熱流計板 3〜6…セル 7…均熱容器 8…試料温度用熱電対 9…標準試料温度用熱電
対 10、11…空セル用熱電対
DESCRIPTION OF SYMBOLS 1 ... 1st heat flow meter plate 2 ... 2nd heat flow meter plate 3-6 ... Cell 7 ... Soaking container 8 ... Thermocouple for sample temperature 9 ... Thermocouple for standard sample temperature 10, 11 ... Thermocouple for empty cell

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試料及び標準試料を配置する第1の熱流
計板と、その下方に、該試料及び標準試料とそれぞれ対
称する位置に2個の基準試料を配置する第2の熱流計板
を設け、第1の熱流計板の端部と第2の熱流計板の端部
を互いに接触させた状態で熱源に熱的に接触させた構造
を有する熱流束型示差走査熱量計を用い、熱源を一定の
温度変化速度で加熱する過程において、第1の熱流計板
に配置した試料と第2の熱流計板に配置した基準試料の
温度差及び第1の熱流計板に配置した標準試料と第2の
熱流計板に配置した基準試料の温度差を同時に測定し、
これらの測定値と標準試料の既知の比熱値とから試料の
比熱の値を求めることを特徴とする比熱測定方法。
1. A first heat flow meter plate on which a sample and a standard sample are disposed, and a second heat flow meter plate on which two reference samples are disposed at positions symmetrical to the sample and the standard sample, respectively. A heat flux type differential scanning calorimeter having a structure in which an end of the first heat flow meter plate and an end of the second heat flow meter plate are in contact with each other and in thermal contact with the heat source; In the process of heating at a constant temperature change rate, the temperature difference between the sample placed on the first heat flow meter plate and the reference sample placed on the second heat flow meter plate and the standard sample placed on the first heat flow meter plate Simultaneously measure the temperature difference of the reference sample placed on the second heat flow meter plate,
A specific heat measurement method, wherein a value of a specific heat of the sample is obtained from the measured value and a known specific heat value of the standard sample.
【請求項2】 双子型の熱流束型示差走査熱量計であっ
て、試料用セル及び標準試料用セルを配置した第1の熱
流計板と、その下方に配設し前記試料用セル及び標準試
料用セルとそれぞれ対称する位置に基準試料としての2
個の空セルを配置した第2の熱流計板と、第1の熱流計
板の、試料用セル及び標準試料用セルにそれぞれ対応す
る位置に取り付けられた2個の温度センサと、第2の熱
流計板の、2個の空セルにそれぞれ対応する位置に取り
付けられた2個の温度センサを具備し、前記第1の熱流
計板の端部と第2の熱流計板の端部を互いに接触させた
状態で熱源に熱的に接触させたことを特徴とする示差走
査熱量計。
2. A twin type heat flux type differential scanning calorimeter, comprising: a first heat flow meter plate on which a sample cell and a standard sample cell are arranged; A reference sample is placed at a position symmetrical with the sample cell.
A second heat flow meter plate on which the empty cells are arranged; two temperature sensors mounted on the first heat flow meter plate at positions respectively corresponding to the sample cell and the standard sample cell; and The heat flow meter includes two temperature sensors mounted at positions corresponding to the two empty cells, respectively, wherein an end of the first heat flow meter and an end of the second heat flow meter are connected to each other. A differential scanning calorimeter characterized by being brought into thermal contact with a heat source in the contacted state.
JP00419298A 1998-01-12 1998-01-12 Specific heat measurement method and differential scanning calorimeter Expired - Fee Related JP3953170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00419298A JP3953170B2 (en) 1998-01-12 1998-01-12 Specific heat measurement method and differential scanning calorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00419298A JP3953170B2 (en) 1998-01-12 1998-01-12 Specific heat measurement method and differential scanning calorimeter

Publications (2)

Publication Number Publication Date
JPH11201923A true JPH11201923A (en) 1999-07-30
JP3953170B2 JP3953170B2 (en) 2007-08-08

Family

ID=11577844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00419298A Expired - Fee Related JP3953170B2 (en) 1998-01-12 1998-01-12 Specific heat measurement method and differential scanning calorimeter

Country Status (1)

Country Link
JP (1) JP3953170B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157653A (en) * 2006-12-21 2008-07-10 Sii Nanotechnology Inc Differential scanning calorimeter
KR101070998B1 (en) 2008-12-12 2011-10-07 서울대학교산학협력단 Heat capacity measurement device at high temperature
CN103323487A (en) * 2013-06-07 2013-09-25 山东省计算中心 Wall body local region volumetric specific heat capacity determination system and method
CN103940847A (en) * 2014-04-15 2014-07-23 江苏大学 Anisotropy film heat conductivity testing method and device based on heat flux sensors
CN110736764A (en) * 2019-10-16 2020-01-31 杭州仰仪科技有限公司 lithium battery specific heat capacity measuring method and device based on differential adiabatic tracing
RU2716472C1 (en) * 2019-07-29 2020-03-11 Российская Федерация, от имени которой выступает Федеральное агентство по техническому регулированию и метрологии (Росстандарт) Method of measuring specific heat capacity of materials
CN117451217A (en) * 2023-12-25 2024-01-26 中国空气动力研究与发展中心计算空气动力研究所 Aerospace heat flow sensor and heat flow correction method based on double temperature difference compensation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157653A (en) * 2006-12-21 2008-07-10 Sii Nanotechnology Inc Differential scanning calorimeter
KR101070998B1 (en) 2008-12-12 2011-10-07 서울대학교산학협력단 Heat capacity measurement device at high temperature
CN103323487A (en) * 2013-06-07 2013-09-25 山东省计算中心 Wall body local region volumetric specific heat capacity determination system and method
CN103940847A (en) * 2014-04-15 2014-07-23 江苏大学 Anisotropy film heat conductivity testing method and device based on heat flux sensors
RU2716472C1 (en) * 2019-07-29 2020-03-11 Российская Федерация, от имени которой выступает Федеральное агентство по техническому регулированию и метрологии (Росстандарт) Method of measuring specific heat capacity of materials
CN110736764A (en) * 2019-10-16 2020-01-31 杭州仰仪科技有限公司 lithium battery specific heat capacity measuring method and device based on differential adiabatic tracing
CN110736764B (en) * 2019-10-16 2022-05-17 杭州仰仪科技有限公司 Lithium battery specific heat capacity measuring method and device based on differential adiabatic tracing
CN117451217A (en) * 2023-12-25 2024-01-26 中国空气动力研究与发展中心计算空气动力研究所 Aerospace heat flow sensor and heat flow correction method based on double temperature difference compensation
CN117451217B (en) * 2023-12-25 2024-03-12 中国空气动力研究与发展中心计算空气动力研究所 Aerospace heat flow sensor and heat flow correction method based on double temperature difference compensation

Also Published As

Publication number Publication date
JP3953170B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
EP0159438A2 (en) Multi-layered thin film heat transfer gauge
US5258929A (en) Method for measuring thermal conductivity
US2759354A (en) Isothermal systems for gas analysis
JPH11201923A (en) Measuring method for specific heat and differential scanning calorimeter
CN109738092B (en) Bidirectional thermopile type thin film heat flowmeter and heat flow measuring method
US4155244A (en) Apparatus for determining thermal conductivity of materials
US4107991A (en) Resistance bridge-type flowmeter
Wunderlich Development towards a single-run DSC for heat capacity measurements
US4083243A (en) Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream
JPH0282145A (en) Differential scanning calorimeter
JP3300110B2 (en) Gas detector
SU1165957A1 (en) Method of determining thermal and physical characteristics of material flat specimens and device for effecting same
US3279256A (en) Thermal measuring apparatus
Laubitz The unmatched guard method of measuring thermal conductivity at high temperatures
SU901851A1 (en) Method of determination of thermal converter thermal lag index
JPS5923369B2 (en) Zero-level heat flow meter
SU1545148A1 (en) Device for determining thermophysical characteristics of granular materials
SU949447A1 (en) Method and device for measuring thermal physical characteristics
CN113670978B (en) Temperature calibration method and device for thermal conductivity tester
SU877414A1 (en) Calorometric device
RU2129708C1 (en) Method testing correspondence of signals of thermoelectric temperature transducers to actual values of temperature
RU2722088C1 (en) Method of measuring specific thermal resistance and device for implementation thereof
JP2001083019A (en) Temperature measurement apparatus
JPH04299242A (en) Specific heat measuring apparatus
US3746980A (en) Method and apparatus for measuring characteristics of electric circuits

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees