JPH11201010A - Ignition timing control device for internal combustion engine - Google Patents

Ignition timing control device for internal combustion engine

Info

Publication number
JPH11201010A
JPH11201010A JP10002042A JP204298A JPH11201010A JP H11201010 A JPH11201010 A JP H11201010A JP 10002042 A JP10002042 A JP 10002042A JP 204298 A JP204298 A JP 204298A JP H11201010 A JPH11201010 A JP H11201010A
Authority
JP
Japan
Prior art keywords
ignition timing
egr
control device
egr rate
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10002042A
Other languages
Japanese (ja)
Inventor
Hisashi Mitsumoto
久司 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10002042A priority Critical patent/JPH11201010A/en
Publication of JPH11201010A publication Critical patent/JPH11201010A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish an ignition timing as requested ever in the case where an EGR rate in a transient condition vavies by estimating a real EGR ratio, and correcting an ignition advance on the basis of the estimated EGR ratio and an intake air rate. SOLUTION: In a stratified engine operated by stratifying mixture, engine rotating speed N and an infection pulse width Ti are read (S22) at the time of stratified combustion (S21), and a basic timing ADV is determined on the basis of a basic ignition timing map. After that, a real EGR ratio is estimated (S24), an ignition advance correction ΔADV is determined (S25) from the estimated real EGR ratio on the basis of an ignition advance corrupting map, and the ignition timing ADV is corrected (S26). It is possible to establish an ignition timing as requested even in the case where the EGR rate in a transient conduction varies, and it is also possible to prevent misfire and deterioration of fuel consumption and exhaust.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 この発明は、内燃機関の点
火時期制御装置に関する。
The present invention relates to an ignition timing control device for an internal combustion engine.

【0002】[0002]

【従来の技術】 従来の内燃機関の点火時期制御装置と
しては、例えば図16に示すようなものがある(特開平
5−240134号公報参照)。図において、101は
エンジン、102はエアフロメータ、103は吸気管圧
センサ、104は排気ガスの還流量を調整するEGRバ
ルブ、105は点火プラグ、106はエンジン回転数を
検知する電磁ピックアップ、107はコントロールユニ
ット、108はスロットルバルブ開度TVOを検出する
アクセル開度センサである。コントロールユニット10
7は、エンジン回転数Nと吸気管圧力Pb を読み込みエ
ンジン回転数Nと吸気管圧力Pb に応じて基本点火時期
を算出する。一方、EGRについてもエンジン回転数N
と吸気管圧力Pb に応じて必要なEGR率を算出し、そ
のEGR率に応じ点火時期を進角補正している(特開平
5−332186号公報参照)。なお、図17は制御フ
ローチャート、図18は点火進角補正ΔADV特性図で
あり、従来技術では、図示のようにEGR率に応じ点火
進角補正ΔADVは進角大としている。これは、EGR
中の不活性ガスが増大することにより燃焼速度が遅くな
ることによる。
2. Description of the Related Art An example of a conventional ignition timing control device for an internal combustion engine is shown in FIG. 16 (see Japanese Patent Application Laid-Open No. 5-240134). In the figure, 101 is an engine, 102 is an air flow meter, 103 is an intake pipe pressure sensor, 104 is an EGR valve for adjusting the recirculation amount of exhaust gas, 105 is a spark plug, 106 is an electromagnetic pickup for detecting the engine speed, 107 is A control unit 108 is an accelerator opening sensor that detects the throttle valve opening TVO. Control unit 10
7, calculates the basic ignition timing in accordance with the loading and engine speed N and the intake pipe pressure P b and the engine rotational speed N intake pipe pressure P b. On the other hand, regarding the EGR, the engine speed N
And calculating a required EGR rate according to the intake pipe pressure P b, are the EGR rate advancing the ignition timing according to the correction (see Japanese Patent Laid-Open No. 5-332186). FIG. 17 is a control flowchart, and FIG. 18 is an ignition advance correction .DELTA.ADV characteristic diagram. In the prior art, the ignition advance correction .DELTA.ADV is increased in accordance with the EGR rate as shown in the figure. This is EGR
This is because the burning rate is reduced due to the increase of the inert gas therein.

【0003】[0003]

【発明が解決しようとする課題】 しかしながら、上述
のような従来の内燃機関の点火時期制御装置を、ガソリ
ンの直接噴射式エンジンに適用する場合、運転状態に応
じて成層燃焼と均質燃焼を切り換えるが、成層燃焼時は
大量のEGRを導入し、リーンの均質燃焼時はEGRの
導入を停止するため、成層燃焼から均質燃焼へ燃焼状態
を切り換えた場合を考えると、点火時期は直ちに均質燃
焼に対応して切り替わるが、吸気通路中の実EGR率は
直ちに零とはならず徐々に減少するため、エンジン回転
数Nと吸気管圧力Pb に応じて求めたEGR率に応じて
点火時期を補正したのでは、こうしたEGR率の遅れが
反映されず、失火や燃費・排気の悪化を招く場合がある
という問題点があった。この発明は、このような従来の
問題点に着目してなされたもので、過渡運転時にEGR
量を推定する手段により点火時期を補正する手段を持た
せることにより上記問題点を解決することを目的として
いる。
However, when the conventional ignition timing control device for an internal combustion engine as described above is applied to a gasoline direct injection type engine, stratified combustion and homogeneous combustion are switched according to the operating state. Considering the case where the combustion state is switched from stratified combustion to homogeneous combustion in order to introduce a large amount of EGR during stratified combustion and stop introducing EGR during lean homogeneous combustion, the ignition timing immediately corresponds to homogeneous combustion. and it is switched to, for gradually decreasing not become actual EGR rate is zero immediately in the intake passage, and correcting the ignition timing according to the engine rotational speed N and the intake pipe pressure P b in the determined EGR rate according to However, there is a problem that such a delay in the EGR rate is not reflected, which may lead to misfiring and deterioration of fuel efficiency and exhaust. The present invention has been made in view of such a conventional problem, and the EGR is performed during a transient operation.
It is an object of the present invention to solve the above problem by providing a means for estimating the amount to correct the ignition timing.

【0004】[0004]

【課題を解決するための手段】 このため、請求項1記
載の発明は、筒内で燃料を噴射し、混合気を成層化し運
転する成層エンジンにおいて、燃料噴射量とエンジン回
転数で基本点火時期を設定し、EGR率を推定する手段
を有し、EGR率と吸入空気量で進角補正する構成とし
た。請求項2記載の発明では、請求項1記載の内燃機関
の点火時期制御装置において、EGR率推定を吸気管圧
力と吸入空気量で行う構成とした。請求項3記載の発明
では、請求項1記載の内燃機関の点火時期制御装置にお
いて、EGR率推定を吸気管圧力とスロットルバルブ開
度で行う構成とした。請求項4記載の発明では、請求項
1記載の内燃機関の点火時期制御装置において、EGR
率推定をEGRバルブの開度で行う構成とした。請求項
5記載の発明では、請求項1記載の内燃機関の点火時期
制御装置において、EGR率推定をEGRバルブの開度
とその前後差圧で行う構成とした。
SUMMARY OF THE INVENTION Therefore, the present invention provides a stratified engine that injects fuel in a cylinder to stratify an air-fuel mixture to operate in a stratified engine based on a fuel injection amount and an engine speed. And a means for estimating the EGR rate is provided, and the advance angle is corrected based on the EGR rate and the intake air amount. According to a second aspect of the present invention, in the ignition timing control device for an internal combustion engine according to the first aspect, the EGR rate is estimated based on the intake pipe pressure and the intake air amount. According to a third aspect of the present invention, in the ignition timing control device for an internal combustion engine according to the first aspect, the EGR rate is estimated based on the intake pipe pressure and the throttle valve opening. According to a fourth aspect of the present invention, in the ignition timing control apparatus for an internal combustion engine according to the first aspect, the EGR
The rate is estimated based on the opening of the EGR valve. According to a fifth aspect of the present invention, in the ignition timing control device for an internal combustion engine according to the first aspect, the EGR rate is estimated based on the opening degree of the EGR valve and the differential pressure across the EGR valve.

【0005】[0005]

【発明の実施の形態】 以下、この発明の実施の形態を
図面に基づいて説明する。 <実施の形態1>図1は、実施の形態1を示す図であ
る。まず構成を説明すると、エンジン1は直接噴射式の
火花点火機関であり、筒内に直接燃料を噴射する燃料噴
射弁9を有する。エンジン1は、運転条件に応じて燃焼
状態を切り換えることが可能であり、低負荷・低回転時
では圧縮行程後半に燃料を噴射して点火プラグ5の近傍
に濃厚な混合気を形成する成層燃焼を行い、成層燃焼の
領域に隣接する高負荷側もしくは高回転側では吸気行程
に燃料を噴射して筒内に均質且つリーンな混合気を形成
する均質リーン燃焼を行い、均質リーン燃焼の領域より
もさらに高負荷側もしくは高回転側では吸気行程に燃料
を噴射して筒内に均質且つストイキの混合気を形成する
均質燃焼を行う。吸気通路11には排気通路12からE
GRを還流するEGR通路11が接続され、EGRバル
ブ4を開閉することにより、吸気中に還流されるEGR
量を制御することが可能である。さらに、吸気通路10
には吸入空気量を検出するエアフロメータ2、吸気管圧
力を検出する吸気圧センサ3、吸入空気量を調整するス
ロットルバルブ13、スロットルバルブ13の開度を検
出するスロットル開度センサ8が設けられている。これ
らエアフローメータ2,吸気圧センサ3,スロットル開
度センサ8の信号は、エンジンの回転速度を検出する電
磁ピックアップ6の信号と共にコントロールユニット7
に入力され、こうした情報をもとにコントロールユニッ
ト7は、吸入空気量、点火時期、EGR量、燃料噴射
量、燃料噴射時期をそれぞれ演算する。
Embodiments of the present invention will be described below with reference to the drawings. <First Embodiment> FIG. 1 is a diagram showing a first embodiment. First, the configuration will be described. The engine 1 is a direct injection type spark ignition engine, and has a fuel injection valve 9 for directly injecting fuel into a cylinder. The engine 1 can switch the combustion state in accordance with the operating conditions, and at low load and low speed, stratified combustion in which fuel is injected in the latter half of the compression stroke to form a rich mixture near the ignition plug 5. On the high load side or high rotation side adjacent to the stratified combustion region, the fuel is injected in the intake stroke to form a homogeneous and lean air-fuel mixture in the cylinder, and the homogeneous lean combustion is performed. Further, on the high-load side or high-speed side, fuel is injected in the intake stroke to perform homogeneous combustion in which a homogeneous and stoichiometric mixture is formed in the cylinder. The intake passage 11 has an E
The EGR passage 11 for returning the GR is connected, and the EGR valve 4 is opened and closed to open and close the EGR during the intake air.
It is possible to control the amount. Further, the intake passage 10
An air flow meter 2 for detecting an intake air amount, an intake pressure sensor 3 for detecting an intake pipe pressure, a throttle valve 13 for adjusting an intake air amount, and a throttle opening sensor 8 for detecting an opening degree of the throttle valve 13 are provided. ing. The signals of the air flow meter 2, the intake pressure sensor 3, and the throttle opening sensor 8 are transmitted to the control unit 7 together with the signal of the electromagnetic pickup 6 for detecting the rotation speed of the engine.
The control unit 7 calculates the intake air amount, the ignition timing, the EGR amount, the fuel injection amount, and the fuel injection timing based on such information.

【0006】図2は成層燃焼時に加速を開始した場合の
時間変化を表わす。t0 で加速するとスロットルバルブ
開度TVOが増大する。一方スロットルバルブ開度TV
Oの増大に伴い要求トルクが増大するため燃焼状態は成
層燃焼から均質リーン燃焼に切り換えられるが、トルク
段差を吸収する必要があるため、まず時間t0 でEGR
をカットし、実EGR率が十分小さくなった時間t1
に均質リーン燃焼に切り換える。従来例では、吸気管圧
力Pb の変化に応じて点火時期を進角補正できるが、E
GRの遅れを補正する手段を有していないため、実際の
要求進角よりも過進角してしまう。
FIG. 2 shows a time change when acceleration is started during stratified combustion. When the vehicle accelerates at t 0 , the throttle valve opening TVO increases. On the other hand, the throttle valve opening TV
Since the required torque increases with the increase of O, the combustion state is switched from stratified combustion to homogeneous lean combustion. However, since it is necessary to absorb the torque step, first the EGR is performed at time t 0 .
At the time t 1 when the actual EGR rate has become sufficiently small, and is switched to homogeneous lean combustion. In the conventional example, although the ignition timing can be the advance correction according to the change of the intake pipe pressure P b, E
Since there is no means for correcting the GR delay, the angle is over-advanced from the actual required advance angle.

【0007】図3にEGR有無の時の要求点火時期を示
す。成層燃焼時は吸入空気量Qa が増加するに従い供給
する燃料の気化量が減るため燃焼が悪化し要求は進角す
る。これは筒内圧、温度が高くなるため燃料の飽和蒸気
濃度が低くなることによる。またEGRが増えると不活
性ガスが増加し、燃焼が悪化するので要求はさらに進角
する。成層燃焼時は燃料噴射弁9から噴射される燃料自
身の噴霧速度や噴射する期間で点火プラグ回りに燃料が
到達するタイミングが決まるため、点火するタイミング
は噴射パルス巾Ti とエンジン回転数Nで決まる。
FIG. 3 shows the required ignition timing with and without EGR. During the stratified combustion to the advance requests combustion is deteriorated because the amount of vaporization decreases of fuel supplied in accordance with the intake air quantity Q a increases. This is because the saturated vapor concentration of the fuel becomes low because the cylinder pressure and the temperature become high. Further, when the EGR increases, the amount of inert gas increases and the combustion deteriorates, so that the demand is further advanced. Because during the stratified combustion timing to reach the fuel to the spark plug about the period of spray rate and the injection of the fuel itself that is injected from the fuel injection valve 9 is determined, the timing of ignition in the injection pulse width T i and the engine speed N Decided.

【0008】すなわち、実施の形態1では、図6の制御
フローチャートに示すように、成層燃焼時には(S2
1)、エンジン回転数Nと噴射パルス幅Tiとを読み込
み(S22)、図4に示す基本点火時期マップに基づい
て基本点火時期ADVを求め、その後、実EGR率は推
定し(S24)、推定した実EGR率から図5に示す点
火進角補正マップに基づいて点火進角補正△ADVを求
め(S25)、点火時期ADVを補正する(S26)。
That is, in the first embodiment, as shown in the control flowchart of FIG.
1) The engine speed N and the injection pulse width Ti are read (S22), the basic ignition timing ADV is obtained based on the basic ignition timing map shown in FIG. 4, and then the actual EGR rate is estimated (S24). An ignition advance correction △ ADV is obtained from the actual EGR rate based on the ignition advance correction map shown in FIG. 5 (S25), and the ignition timing ADV is corrected (S26).

【0009】以上のように、本実施の形態では、エンジ
ン回転数Nと噴射パルス巾Tiとで設定した点火時期A
DVを、実EGR率に基づいて求めた点火進角補正△A
DVにより補正するようにしたため、過渡時にEGR量
が変化する場合も、要求通りの点火時期を設定でき、失
火や燃費・排気の悪化を防ぐことができる。
As described above, in this embodiment, the ignition timing A set by the engine speed N and the injection pulse width Ti is used.
DV is calculated based on the ignition advance correction ΔA obtained based on the actual EGR rate.
Since the correction is made by the DV, even when the EGR amount changes during a transition, the ignition timing as required can be set, and misfire and deterioration of fuel consumption and exhaust can be prevented.

【0010】以下に、他の実施の形態について説明する
が、各実施の形態の基本的構成、すなわち、図1に示す
構成は共通しているため、この説明は省略する。
Hereinafter, other embodiments will be described. However, since the basic configuration of each embodiment, that is, the configuration shown in FIG. 1 is common, the description is omitted.

【0011】<実施の形態2>実施の形態2は、吸気管
圧力Pb と吸入空気量Qa から実EGR率を推定して点
火進角補正△ADVを求めるようにした形態である。す
なわち、この実施の形態2では、図7のフローチャート
に示すように、成層燃焼を行っているときには、基本点
火時期ADVを演算した後、吸気管圧力Pbと吸入空気
量Qa を読み込んで(S34)、吸気管圧力Pb と吸入
空気量Qa から図8に示すマップに基づいて実EGR率
を推定すると共に(S35)、同じく図8に示すマップ
に基づいて実EGR率と吸入空気量Qa から点火進角補
正△ADVを求める(S25)。なお、成層燃焼を行っ
ていないときには、図17に示す従来のフローに進む。
[0011] Embodiment 2 <Embodiment 2> are in a form so as to obtain the intake pipe pressure P b and estimating the actual EGR ratio from the intake air quantity Q a to spark advance correction △ ADV. That is, in the second embodiment, as shown in the flowchart of FIG. 7, when performing stratified charge combustion, after calculating the basic ignition timing ADV, it reads the intake pipe pressure P b and the intake air amount Q a ( S34), thereby estimating the actual EGR ratio on the basis of the intake pipe pressure P b and the intake air quantity Q a to the map shown in FIG. 8 (S35), similarly actual EGR rate and an intake air quantity in accordance with the map shown in FIG. 8 determine the spark advance correction △ ADV from Q a (S25). When stratified charge combustion is not being performed, the flow proceeds to the conventional flow shown in FIG.

【0012】以上のように、本実施の形態では、エンジ
ン回転数Nと噴射パルス巾Tiとで設定した点火時期A
DVを、吸気管圧力Pb と吸入空気量Qa とに基づいて
EGR率を推定して求めた点火進角△ADVにより補正
するようにしたため、過渡時にEGR量が変化する場合
も、要求通りの点火時期を設定でき、失火や燃費・排気
の悪化を防ぐことができる。
As described above, in the present embodiment, the ignition timing A set by the engine speed N and the injection pulse width Ti
The DV, due to be corrected by the ignition advance angle △ ADV determined by estimating the EGR rate on the basis of the intake pipe pressure P b and the intake air quantity Q a, even if the EGR amount is changed during a transient, as requested Ignition timing can be set, and misfire and deterioration of fuel efficiency and exhaust can be prevented.

【0013】<実施の形態3>実施の形態3では、図9
のフローチャートに示すように、吸気管圧力Pb とスロ
ットルバルブ開度TVOを読み込んで(S44)、ま
ず、図10に示すマップに基づいて吸気管圧力Pb とス
ロットルバルブ開度TVOから実EGR率を求め(S4
5)、この推定した実EGR率と吸入空気量Qa を読み
込み(S46)さらに、図11に示すマップに基づいて
推定した実EGR率と吸入空気量Qa から点火進角補正
△ADVを求める(S25)。
<Embodiment 3> In Embodiment 3, FIG.
As shown in the flowchart of FIG. 10, the intake pipe pressure Pb and the throttle valve opening TVO are read (S44). First, the actual EGR rate is calculated from the intake pipe pressure Pb and the throttle valve opening TVO based on the map shown in FIG. (S4
5), the estimated actual EGR rate and reads the intake air amount Q a with (S46) further determines the spark advance correction △ ADV and the actual EGR rate estimated from the intake air quantity Q a in accordance with the map shown in FIG. 11 (S25).

【0014】よって、上述の実施の形態と同様に、過渡
時にEGR量が変化する場合も、要求通りの点火時期を
設定でき、失火や燃費・排気の悪化を防ぐことができ
る。
Therefore, similarly to the above-described embodiment, even when the EGR amount changes during a transition, the ignition timing can be set as required, and misfire and deterioration of fuel consumption and exhaust can be prevented.

【0015】<実施の形態4>実施の形態4では、図1
2のフローチャートに示すように、EGRバルブ開度E
GROを読み込み(S54)、図13のマップに基づい
て実EGR率を推定し(S55)、この推定した実EG
R率と吸入空気量Qa を読み込み(56)実施の形態3
と同様に図11に示すマップに基づいて推定したEGR
率と吸入空気量Qa から点火進角補正△ADVを求める
(S25)。
<Embodiment 4> In Embodiment 4, FIG.
As shown in the flowchart of FIG. 2, the EGR valve opening E
The GRO is read (S54), and the actual EGR rate is estimated based on the map of FIG. 13 (S55).
It reads the R ratio and the intake air amount Q a (56) Embodiment 3
EGR estimated based on the map shown in FIG.
Rate as spark advance correction from the intake air quantity Q a △ seek ADV (S25).

【0016】よって、上述の実施の形態と同様に、過渡
時にEGR量が変化する場合も、要求通りの点火時期を
設定でき、失火や燃費・排気の悪化を防ぐことができ
る。
Therefore, similarly to the above-described embodiment, even when the EGR amount changes during a transition, the ignition timing can be set as required, and misfire and deterioration of fuel consumption and exhaust can be prevented.

【0017】<実施の形態5>実施の形態5では、EG
Rバルブ4の前後差圧を検出する手段を有し、図14の
フローチャートに示すように、EGRバルブ開度EGR
Oと、その前後差圧△Pを読み込み(S64)、図15
のマップに基づいてEGRバルブ開度EGROとその前
後差圧△Pとから実EGR率を推定し(S65)、この
推定した実EGR率と吸入空気量Qa を読み込み(S6
6)、実施の形態3と同様に図11に示すマップに基づ
いてEGR推定値と吸入空気量Qa から点火進角補正△
ADVを求める(S25)。
<Embodiment 5> In Embodiment 5, the EG
A means for detecting the differential pressure across the R valve 4 is provided. As shown in the flowchart of FIG.
O and its differential pressure ΔP are read (S64), and FIG.
Based on the map to estimate the actual EGR rate from the EGR valve opening EGRO and its differential pressure △ P of the (S65), the estimated actual EGR rate and reads the intake air amount Q a with (S6
6) Embodiment 3 Similarly in accordance with the map shown in FIG. 11 EGR estimated value and the spark advance correction from the intake air quantity Q a
ADV is obtained (S25).

【0018】よって、上述の実施の形態と同様に、過渡
時にEGR量が変化する場合も、要求通りの点火時期を
設定でき、失火や燃費・排気の悪化を防ぐことができ
る。
Therefore, similarly to the above-described embodiment, even when the EGR amount changes during a transition, the ignition timing as required can be set, and misfire and deterioration of fuel consumption and exhaust can be prevented.

【0019】[0019]

【発明の効果】 以上説明してきたように、この発明に
よれば、その構成を実EGR率と推定し、この推定した
EGR率と吸入空気量とに基づいて点火進角補正を行う
構成としたため、過渡時のEGR量が変化する場合も要
求通りの点火時期を設定でき、失火や燃費,排気の悪化
を防ぐことができるという効果が得られる。
As described above, according to the present invention, the configuration is estimated as the actual EGR rate, and the ignition advance angle is corrected based on the estimated EGR rate and the intake air amount. In addition, even when the EGR amount changes during the transition, the ignition timing can be set as required, and the effect of preventing misfire, fuel consumption and deterioration of exhaust can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態の内燃機関の点火時期制御装置の構
成を示す構成説明図である。
FIG. 1 is an explanatory diagram illustrating a configuration of an ignition timing control device for an internal combustion engine according to an embodiment.

【図2】成層燃焼時の過渡特性図である。FIG. 2 is a transient characteristic diagram during stratified combustion.

【図3】要求点火時期特性図である。FIG. 3 is a characteristic diagram of a required ignition timing.

【図4】実施の形態1の基本点火時期マップである。FIG. 4 is a basic ignition timing map according to the first embodiment;

【図5】実施の形態1の点火進角補正マップである。FIG. 5 is an ignition advance correction map according to the first embodiment;

【図6】実施の形態1の制御フローチャートである。FIG. 6 is a control flowchart according to the first embodiment.

【図7】実施の形態2の制御フローチャートである。FIG. 7 is a control flowchart according to the second embodiment.

【図8】実施の形態2の点火進角補正マップである。FIG. 8 is an ignition advance correction map according to the second embodiment.

【図9】実施の形態3の制御フローチャートである。FIG. 9 is a control flowchart according to the third embodiment.

【図10】実施の形態3のEGR率マップである。FIG. 10 is an EGR rate map according to the third embodiment.

【図11】実施の形態3の点火進角補正マップである。FIG. 11 is an ignition advance correction map according to the third embodiment.

【図12】実施の形態4の制御フローチャートである。FIG. 12 is a control flowchart according to the fourth embodiment.

【図13】実施の形態4のEGR率マップである。FIG. 13 is an EGR rate map according to the fourth embodiment.

【図14】実施の形態5の制御フローチャートである。FIG. 14 is a control flowchart according to the fifth embodiment.

【図15】実施の形態5のEGR率マップである。FIG. 15 is an EGR rate map according to the fifth embodiment.

【図16】従来の内燃機関の噴射時期制御装置を示す構
成説明図である。
FIG. 16 is a configuration explanatory view showing a conventional injection timing control device for an internal combustion engine.

【図17】従来例の制御フローチャートである。FIG. 17 is a control flowchart of a conventional example.

【図18】EGR率と点火進角補正ΔADVの特性図で
ある。
FIG. 18 is a characteristic diagram of the EGR rate and the ignition advance correction ΔADV.

【符号の説明】[Explanation of symbols]

1 成層エンジン 2 エアフロメータ 3 吸気管圧センサ 4 EGRバルブ 5 点火プラグ 6 電磁ピックアップ 7 コントロールユニット 8 圧力開度センサ 9 噴射弁 101 エンジン 102 エアフロメータ 103 吸気管圧センサ 104 EGR 105 点火プラグ 106 電磁ピックアップ 107 コントロールユニット 108 アクセル開度センサ Reference Signs List 1 stratified engine 2 air flow meter 3 intake pipe pressure sensor 4 EGR valve 5 spark plug 6 electromagnetic pickup 7 control unit 8 pressure opening sensor 9 injection valve 101 engine 102 air flow meter 103 intake pipe pressure sensor 104 EGR 105 ignition plug 106 electromagnetic pickup 107 Control unit 108 Accelerator opening sensor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 筒内で燃料を噴射し、混合気を成層化し
運転する成層エンジンにおいて、燃料噴射量とエンジン
回転数で基本点火時期を設定し、排気ガスの還流率であ
るEGR率を推定する手段を有し、EGR率と吸入空気
量で進角補正することを特徴とする内燃機関の点火時期
制御装置。
In a stratified engine that injects fuel in a cylinder and stratifies an air-fuel mixture to operate, a basic ignition timing is set based on a fuel injection amount and an engine speed, and an EGR rate as an exhaust gas recirculation rate is estimated. An ignition timing control device for an internal combustion engine, wherein the ignition timing control device has an EGR rate and an intake air amount.
【請求項2】 請求項1記載の内燃機関の点火時期制御
装置において、EGR率推定を吸気管圧力と吸入空気量
で行うことを特徴とする内燃機関の点火時期制御装置。
2. The ignition timing control device for an internal combustion engine according to claim 1, wherein the EGR rate is estimated based on an intake pipe pressure and an intake air amount.
【請求項3】 請求項1記載の内燃機関の点火時期制御
装置において、EGR率推定を吸気管圧力とスロットル
バルブ開度で行うことを特徴とする内燃機関の点火時期
制御装置。
3. The ignition timing control device for an internal combustion engine according to claim 1, wherein the EGR rate is estimated based on an intake pipe pressure and a throttle valve opening.
【請求項4】 請求項1記載の内燃機関の点火時期制御
装置において、EGR率推定をEGRバルブの開度で行
うことを特徴とする内燃機関の点火時期制御装置。
4. The ignition timing control device for an internal combustion engine according to claim 1, wherein the EGR rate is estimated based on an opening of the EGR valve.
【請求項5】 請求項1記載の内燃機関の点火時期制御
装置において、EGR率推定をEGRバルブの開度とそ
の前後差圧で行うことを特徴とする内燃機関の点火時期
制御装置。
5. The ignition timing control device for an internal combustion engine according to claim 1, wherein the EGR rate is estimated based on an opening of the EGR valve and a pressure difference between the opening and the rear of the EGR valve.
JP10002042A 1998-01-08 1998-01-08 Ignition timing control device for internal combustion engine Pending JPH11201010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10002042A JPH11201010A (en) 1998-01-08 1998-01-08 Ignition timing control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10002042A JPH11201010A (en) 1998-01-08 1998-01-08 Ignition timing control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH11201010A true JPH11201010A (en) 1999-07-27

Family

ID=11518281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10002042A Pending JPH11201010A (en) 1998-01-08 1998-01-08 Ignition timing control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH11201010A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8256546B2 (en) 2008-12-26 2012-09-04 Toyota Jidosha Kabushiki Kaisha Internal combustion engine apparatus, control method thereof, and hybrid vehicle
KR101406636B1 (en) * 2012-12-13 2014-06-11 기아자동차주식회사 Egr system
US8825344B2 (en) 2009-06-23 2014-09-02 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
JP2015014257A (en) * 2013-07-05 2015-01-22 スズキ株式会社 Ignition timing control device for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8256546B2 (en) 2008-12-26 2012-09-04 Toyota Jidosha Kabushiki Kaisha Internal combustion engine apparatus, control method thereof, and hybrid vehicle
US8825344B2 (en) 2009-06-23 2014-09-02 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
KR101406636B1 (en) * 2012-12-13 2014-06-11 기아자동차주식회사 Egr system
JP2015014257A (en) * 2013-07-05 2015-01-22 スズキ株式会社 Ignition timing control device for internal combustion engine
DE102014211714B4 (en) 2013-07-05 2020-06-18 Suzuki Motor Corporation Control of engine ignition timing during EGR mode transitions

Similar Documents

Publication Publication Date Title
US6024069A (en) Controller for an internal combustion engine
JP3680500B2 (en) Control device for internal combustion engine
JP3508481B2 (en) Control device for internal combustion engine
JP3569120B2 (en) Combustion control device for lean burn internal combustion engine
KR100310432B1 (en) Engine control system and control process
JP2007016685A (en) Internal combustion engine control device
JPH10176568A (en) Fuel control device for internal combustion engine
JP3971004B2 (en) Combustion switching control device for internal combustion engine
WO2019230406A1 (en) Control device of internal combustion engine and control method of internal combustion engine
US7168238B2 (en) Method for heating up a catalyst in combustion engines with direct fuel injection
JP3175601B2 (en) Air intake control system for lean burn engine
JP3654010B2 (en) Control device for internal combustion engine
JP2003013784A (en) Control device of direct injection spark ignition type internal combustion engine
JP3445500B2 (en) Idle rotation learning control device for electronically controlled throttle internal combustion engine
JP3774992B2 (en) Engine intake control device
JPH11201010A (en) Ignition timing control device for internal combustion engine
KR100383533B1 (en) Control apparatus for direct injection type internal combustion engine
JP3823510B2 (en) In-cylinder direct injection internal combustion engine
JP3307306B2 (en) Combustion system control device for internal combustion engine
JP3680528B2 (en) Engine idle rotation learning control device
JP4114201B2 (en) Control device for internal combustion engine
JP3562315B2 (en) Evaporative fuel supply control device for lean burn internal combustion engine
JP2004124899A (en) Engine control equipment
JPH10153146A (en) Step motor type egr control device
JP3617714B2 (en) In-cylinder fuel control system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050105