JPH11191922A - Digital ground distance relaying device - Google Patents

Digital ground distance relaying device

Info

Publication number
JPH11191922A
JPH11191922A JP9367028A JP36702897A JPH11191922A JP H11191922 A JPH11191922 A JP H11191922A JP 9367028 A JP9367028 A JP 9367028A JP 36702897 A JP36702897 A JP 36702897A JP H11191922 A JPH11191922 A JP H11191922A
Authority
JP
Japan
Prior art keywords
phase current
zero
phase
ground fault
reactance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9367028A
Other languages
Japanese (ja)
Other versions
JP3630272B2 (en
Inventor
Yasuhiro Kurosawa
保広 黒沢
Hiroshi Saito
浩 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP36702897A priority Critical patent/JP3630272B2/en
Publication of JPH11191922A publication Critical patent/JPH11191922A/en
Application granted granted Critical
Publication of JP3630272B2 publication Critical patent/JP3630272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a digital ground distance relaying device which prevents unnecessary operations by generating overreaching, even if a two-wire ground fault occurs. SOLUTION: This device has a computing circuit 7 (CPU), which discriminates as to whether a digital ground distance relaying device needs to be operated or a breaker command should be outputted by performing a calculating process in a given cycle using the current output of a current transformer 2, provided on a target transmission line 1 and the current output of a voltage transformer 3. Zero-phase current compensating coefficients Kr, Kx are each set for resistance lot and reactance lot to obtain a zero-phase compensating phase current by multiplying each by a zero-phase current and adding the product to a phase current. If it is discriminated that the calculated resistance lot and reactance lot fall within a given range, the device is considered operating. If it is discriminated, on the other hand, that ground faults of two phases or more are occurring, the device acts to prevent the breaker from tripping.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電力系統の地絡事故
点迄のインピーダンスを計測する地絡距離リレーの応動
を制御するディジタル形距離継電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a digital distance relay device for controlling the response of a ground fault distance relay for measuring the impedance of a power system up to a ground fault point.

【0002】[0002]

【従来の技術】従来から電力系統の2線地絡事故をイン
ピーダンスを計測して、所定の地絡事故点迄のインピー
ダンスに入ってるか否かで動作判定する方式が採用され
てる。この時、2線地絡事故で事故点に電圧が残った場
合、進み相 (ab相事故の場合a相)側の計測インピー
ダンスのリアクタンス値が実際の事故点迄のリアクタン
スより小さく(以降オーバリーチと呼称)、事故点を短
く見る傾向が強い。
2. Description of the Related Art Conventionally, a method has been adopted in which the impedance of a two-line ground fault in an electric power system is measured, and the operation is determined based on whether or not the impedance falls within a predetermined ground fault point. At this time, if a voltage remains at the fault point due to the two-wire ground fault, the reactance value of the measured impedance on the leading phase (a phase in the case of ab phase fault) is smaller than the reactance up to the actual fault point (hereinafter, overreach Name), there is a strong tendency to see the accident point short.

【0003】その結果、送電線の自区間事故か否かを検
出する地絡第1段が次区間の事故を短く見て、自区間事
故であると判断して当該送電線の電力を遮断する遮断器
へ誤トリップ指令を出す可能性がある。その対策とし
て、遅れ相の地絡第1段リレーより大きな領域の事故を
検出する地絡第3段リレーが動作したら進み相の地絡第
1段リレーのトリップ指令を阻止する対策を実施してい
る。
[0003] As a result, the first stage of the ground fault detecting whether or not the transmission line is in its own section, looks at the accident in the next section in brief, determines that it is in its section, and cuts off the power of the transmission line. There is a possibility of giving an erroneous trip command to the breaker. As a countermeasure, if the ground fault third-stage relay that detects an accident in a larger area than the lag phase ground fault first-stage relay operates, a countermeasure to prevent the trip command of the advanced phase ground fault first-stage relay is implemented. I have.

【0004】送電線のb,c相2線地絡事故時の電圧、
電流の傾向は図2に示すとおりである。ここに、b、c
相の相電流から零相電流を除いた電流Ib12,Ic1
2と零相電流I0の位相差は略90度近くある。この両
電流の大きさは、送電線の背後インピーダンスの大きさ
に依存し、正相背後インピーダンスが極端に大きい端子
(いわゆる弱電源端子)があるとその端子から流れ込む
正逆相事故電流は小さくなる。
[0004] The voltage at the time of the b, c phase two-wire ground fault of the transmission line,
The tendency of the current is as shown in FIG. Where b, c
Currents Ib12 and Ic1 obtained by removing the zero-phase current from the phase currents of the phases
2 and the zero-phase current I0 have a phase difference of approximately 90 degrees. The magnitude of these two currents depends on the magnitude of the impedance behind the transmission line, and if there is a terminal having an extremely large positive-phase back impedance (a so-called weak power supply terminal), the positive-negative-phase fault current flowing from that terminal becomes small. .

【0005】逆にインピーダンスが小さくなると、その
端子から流れ込む正逆相電流は大きくなり、正相電源の
大きさで正逆相電流と零相電流の大きさの相対比が変わ
り、事故点抵抗による事故点の残り電圧との位相関係が
b、c相で変化する。b,c相線間の事故点抵抗Raと
対地間の抵抗Rgとしたときのb,c相対地事故点残り
電圧VbF,VcFは次式となる。
Conversely, when the impedance decreases, the positive / negative phase current flowing from the terminal increases, and the relative ratio between the positive / negative phase current and the zero-phase current changes depending on the size of the positive-phase power supply. The phase relationship with the remaining voltage at the fault point changes between the b and c phases. The b and c relative ground fault point remaining voltages VbF and VcF when the fault point resistance Ra between the b and c phase lines and the resistance Rg between the ground are represented by the following equations.

【数1】 VbF=Ra・Ib12+Rg・3I0 (VcF=Ra・Ic12+Rg・3I0) ・・・・(1)[Equation 1] VbF = Ra · Ib12 + Rg · 3I0 (VcF = Ra · Ic12 + Rg · 3I0) ··· (1)

【0006】図2(a)はIb12、Ic12>I0の
場合、図2(b)はIb12、Ic12<I0の場合を
示す。更に、事故点抵抗は線間のRaより、対地間抵抗
Rgが一般的に大きいので、共に実抵抗とすれば、b,
c相の事故点残り電圧は零相電流位相に近くなり、b,
c相の零相補償後のb,c相電流Ib,Icは次式で与
えられので、b相の電流に対してb相の残り電圧は遅
れ、c相の電流に対してc相の残り電圧は進みの傾向を
示す。
FIG. 2A shows the case where Ib12, Ic12> I0, and FIG. 2B shows the case where Ib12, Ic12 <I0. Furthermore, since the resistance at the fault point is generally larger than the resistance Ra between the lines, the resistance Rg between the ground and the ground is large.
The residual voltage at the fault point of phase c is close to the zero-phase current phase,
Since the b-phase currents Ib and Ic after the c-phase zero-phase compensation are given by the following equations, the remaining voltage of the b-phase is delayed with respect to the b-phase current, and the remaining c-phase current is reduced with respect to the c-phase current. The voltage shows a leading tendency.

【0007】[0007]

【数2】 Ib=C1・Ib12+k0・(C0・I0)、 Ib=C1・Ic12+k0・(C0・I0) ・・・・(2) (但し、k0=(Z0-Z1)/Z1:零相補償係数、 Z1、Z0:送電線路正相、零相インピーダンス C1、C0:事故点からリレー設置点側に流れる正相、零相
電流の分流比)
[Equation 2] Ib = C1 ・ Ib12 + k0 ・ (C0 ・ I0), Ib = C1 ・ Ic12 + k0 ・ (C0 ・ I0) (2) (However, k0 = (Z0-Z1) / Z1 : Zero-sequence compensation coefficient, Z1, Z0: Positive phase of transmission line, Zero-sequence impedance C1, C0: Shunt ratio of positive-phase and zero-phase current flowing from the fault point to the relay installation point)

【0008】その結果、As a result,

【数3】 ZbF=Im[VbF/Ib]=負のリアクタンス ・・・・オーバリーチ ZcF=Im[VcF/Ic]=正のリアクタンス ・・・・アンダリーチ となる。## EQU00003 ## ZbF = Im [VbF / Ib] = negative reactance... Overreach ZcF = Im [VcF / Ic] = positive reactance...

【0009】従って図3に示す系統において、リレー設
置点Aから事故点Fまでの線路降下インピーダンスZI
ineはb,c相が共に正確に測定できるが、(1)式
の事故点残り電圧の影響が残り、前述の傾向を呈するこ
とになる。そのため、進み相a相の見るインピーダンス
のリアクタンス成分は実際の事故点迄の線路インピーダ
ンスより小さく即ち距離を近く見るオーバリーチ傾向と
なり、b相はその逆にアンダリーチ傾向となる。
Therefore, in the system shown in FIG. 3, the line drop impedance ZI from the relay installation point A to the fault point F is shown.
Ine, both the b and c phases can be accurately measured. However, the influence of the fault voltage remaining in the equation (1) remains, and the above tendency is exhibited. Therefore, the reactance component of the impedance seen in the leading phase a-phase is smaller than the actual line impedance up to the accident point, that is, the overreach tendency is seen when the distance is short, and conversely, the b-phase is underreached.

【0010】この対策として従来から、相手母線より近
く設定されている第1段領域より広く、次区間領域の事
故点までのインピーダンスを見るように設定されている
第3段領域のリレー要素が動作したら、進み相の第1段
領域を保護するリレー要素の遮断器引き外し指令を阻止
する方式が採用されている。
[0010] As a countermeasure, a relay element in a third stage region which is wider than the first stage region set closer to the partner bus and is set so as to see the impedance up to the fault point in the next section region operates. Then, a method is employed in which the breaker trip command of the relay element that protects the first-stage region of the advanced phase is blocked.

【0011】しかし、事故点迄の線路方程式(4)式か
ら直接、線路の正相及び零相の抵抗R1ine12、R
1ine0、インダクタンス値L1ine12、L1i
ne0を算出するアルゴリズム(以降RL算出形と呼
称)を採用した保護リレーの零相補償方法は次式のとお
りである。以下、b相のリレーで説明する。
However, directly from the line equation (4) up to the fault point, the positive-phase and zero-phase resistances R1ine12, R1
1ine0, inductance value L1ine12, L1i
A zero-phase compensation method for a protection relay employing an algorithm for calculating ne0 (hereinafter, referred to as an RL calculation type) is as follows. Hereinafter, a description will be given of the b-phase relay.

【0012】[0012]

【数4】 Vb(t) =R1ine・Ib(t)+LIine・(dIb(t)/dt)+VbF(t) ・・・(4) =R1ine12・C1・Ib12(t)+R1ine0・C0・I0(t) +L1ine12・C1・(dIb12(t)/dt)+L1ine0・C0・(dI0(t)/dt)+VbF(t) =R1ine12・[C1・Ib12(t)+Kr・C0・I0(t)]+LIine12・d[C1・Ib12(t) +Kx・C0・I0(t)]/dt+VbF(t) =R1ine12・Ib12r(t)+L1ine12・dIb12x(t)/dt+VbF(t) ・・・(5) ∴Ib12r(t)=C1・Ib12(t)+Kr・C0・I0(t)、 Ib12x=C1・Ib12(t)+Kx・C0・I0(t) ・・・(6) (∴Kr=R1ine0/R1ine12、Kx=L1ine0/L1ine12) R1ine12={(V(t1)−VbF(t1))・[dIb12x(t)/dt]t=t2−(Vb(t2)−VbF(t2)) ・[dIb12x(t)/dt]t=t1} /{Ib12r(t1)・[dIb12x(t)/dt]t=t2−Ib12r(t2) ・[dIb12x(t)/dt]t=t1} ・・・(7) L1ine12={(Vb(t1)−VbF(t1))・Ib12r(t2)−(Vb(t2)−VbF(t2))・Ib12r(t1)} /{Ib12r(t2)・[dIb12x(t)/dt]t=t1−Ib12r(t1)・[dIb12x(t)/dt]t=t2} ・・・(8)Vb (t) = R1ine · Ib (t) + LIine · (dIb (t) / dt) + VbF (t) (4) = R1ine12 · C1 · Ib12 (t) + R1ine0 · C0 · I0 ( t) + L1ine12 · C1 · (dIb12 (t) / dt) + L1ine0 · C0 · (dI0 (t) / dt) + VbF (t) = R1ine12 · [C1 · Ib12 (t) + Kr · C0 · I0 (t)] + LIine12 D [C1 • Ib12 (t) + Kx • C0 • I0 (t)] / dt + VbF (t) = R1ine12 • Ib12r (t) + L1ine12 • dIb12x (t) / dt + VbF (t)… (5) ∴Ib12r ( t) = C1 · Ib12 (t) + Kr · C0 · I0 (t), Ib12x = C1 · Ib12 (t) + Kx · C0 · I0 (t) (6) (∴Kr = R1ine0 / R1ine12, Kx = L1ine0 / L1ine12) R1ine12 = {(V (t1) −VbF (t1)) ・ [dIb12x (t) / dt] t = t2− (Vb (t2) −VbF (t2)) ・ [dIb12x (t) / dt ] t = t1} / {Ib12r (t1) ・ [dIb12x (t) / dt] t = t2-Ib12r (t2) ・ [dIb12x (t) / dt] t = t1} ・ ・ ・ (7) L1ine12 = { (Vb (t1) −VbF (t1)) · Ib12r (t2) − (Vb (t2) −VbF (t2)) · Ib12r (t1)} / {Ib12r (t2) · [dIb12x (t) / dt] t = t1−Ib12r (t1) · [dIb12x (t) / dt] t = t2} (8)

【0013】上記(7)、(8)式において、VbFは
事故点残り電圧で実際には不知で保護リレーにはVb
(t)しか入ってこないので、次式のアンダーライン部
で示すように事故点残り電圧が誤差となる。
In the above equations (7) and (8), VbF is the residual voltage at the fault point and is not actually known.
Since only (t) enters, the residual voltage at the fault point becomes an error as indicated by the underlined part in the following equation.

【数5】 {Vb(t1)・[dIb12x(t)/dt]t=t2−Vb(t2)・[dIb12x(t)/dt]t=t1} /{Ib12r(t1)・[dIb12x(t)/dt]t=t2−Ib12r(t2)・[dIb12x(t)/dt]t=t1} =R1ine12+{VbF(t1)・[dIb12x(t)/dt]t=t2−VbF(t2)・[dIb12x(t)/dt]t=t1}{Ib12r(t1)・[dIb12x(t)/dt]t=t2−Ib12r(t2)・[dIb12x(t)/dt]t=t1} ・・・(9) {Vb(t1)・Ib12r(t2)−Vb(t2)・Ib12r(t1)} /{Ib12r(t2)・[dIb12x(t)/dt]t=t1−Ib12r(t1)・[dIb12x(t)/dt]t=t2} =L1ine12+{VbF(t1)・Ib12r(t2)−VbF(t2)・Ib12r(t1))}{Ib12r(t2)・[dIb12x(t)/dt]t=t1−Ib12r(t1)・[dIb12x(t)/dt]t=t2} ・・・(10)## EQU00005 ## {Vb (t1). [DIb12x (t) / dt] t = t2-Vb (t2). [DIb12x (t) / dt] t = t1} / {Ib12r (t1). [DIb12x (t ) / dt] t = t2-Ib12r (t2) ・ [dIb12x (t) / dt] t = t1} = R1ine12 + {VbF (t1) ・ [dIb12x (t) / dt] t = t2-VbF (t2) ・[dIb12x (t) / dt] t = t1} / {Ib12r (t1) ・ [dIb12x (t) / dt] t = t2-Ib12r (t2) ・ [dIb12x (t) / dt] t = t1}・ (9) {Vb (t1) ・ Ib12r (t2) −Vb (t2) ・ Ib12r (t1)} / {Ib12r (t2) ・ [dIb12x (t) / dt] t = t1−Ib12r (t1) ・ [ dIb12x (t) / dt] t = t2} = L1ine12 + {VbF (t1) .Ib12r (t2) -VbF (t2) .Ib12r (t1)) / {Ib12r (t2). [dIb12x (t) / dt] t = t1−Ib12r (t1) · [dIb12x (t) / dt] t = t2}・ ・ ・ (10)

【0014】(5)式を基本波成分ベクトル式で表記す
ると(11)式となる。
When the equation (5) is represented by a fundamental wave component vector equation, the equation (11) is obtained.

【数6】 Vb=R1ine・Ib12r+jω・L1ine12・Ib12x+VbF ・・・・(11)Vb = R1ine · Ib12r + jω · L1ine12 · Ib12x + VbF (11)

【0015】本式から、(9)、(10)式相当でR1
ine12、L1ine12を算出すると、
According to this equation, R1 is equivalent to equations (9) and (10).
When ine12 and L1ine12 are calculated,

【数7】 Re{Vb・Ib12x*}/Re{Ib12r・Ib12x*}=R1ine12 +Re{VbF・Ib12x*}/Re{Ib12r・Ib12x*} ・・・(12) Im{Vb・Ib12r*/Im{jIb12x・Ib12r*}=ω・L1ine12 +Im{VbF・Ib12r* Im{jIb12x・Ib12r*} ・・・(13) (∴Re:複素数のreal part,Re{jωIb12x・Ib12x*=jω|Ib12x|2} =0、 Im:複素数のimaginary part,*印:共役複素数) となる。[Expression 7] Re {Vb · Ib12x * } / Re {Ib12r · Ib12x * } = R1ine12 + Re {VbF · Ib12x * } / Re {Ib12r · Ib12x * } (12) Im {Vb · Ib12r * / Im {jIb12x · Ib12r * } = ω · L1ine12 + Im {VbF · Ib12r * / Im {jIb12x · Ib12r * } (13) (∴Re: complex real part, Re {jωIb12x · Ib12x * = jω | Ib12x | 2 } = 0, Im: imaginary part of complex number, * mark: conjugate complex number).

【0016】上記(12)、(13)式の下線部が
(9)、(10)式の下線部に相当する。ここに一般的
に2つのベクトルA、Bの間で、数学的に
The underlined portions of the above formulas (12) and (13) correspond to the underlined portions of the formulas (9) and (10). Where generally between two vectors A and B, mathematically

【数8】 Im{A・B*}=|A|・|B|・sin(θ)、 Re{A・B*}=|A|・|B|・cos(θ) ここで、A=|A|ej(θ+φ), B=|B|ejφである。 (∴ * :共役複素数、θ :ベクトルBに対してベクト
ルAの進み位相)が成立する。
[Expression 8] Im {A · B * } = | A | · | B | · sin (θ), Re {A · B * } = | A | · | B | · cos (θ) where A = | A | ej (θ + φ), B = | B | ejφ. (∴ *: complex conjugate, θ: leading phase of vector A with respect to vector B).

【0017】この数学的な意味を踏まえて、(12)、
(13)式で示される事故点電圧VbFと電流Ib12
r、Ib12xのベクトル関係を示すと図4の関係にな
る。同図の(RF、ω・LF)は事故点で見る同上リレ
ーの至近点インピーダンスである。
Based on this mathematical meaning, (12),
The fault point voltage VbF and the current Ib12 expressed by the equation (13)
FIG. 4 shows a vector relationship between r and Ib12x. (RF, ω · LF) in the same drawing is the closest point impedance of the relay as seen at the fault point.

【数9】 ベクトルOC=[VbF・cos(φV)]/cos(φr)=RF・|Ib12r| べクトルCD=[VbF・sin(φV−φr)]/cos(φr)=ω・LF・|Ib12x|Vector OC = [VbF · cos (φV)] / cos (φr) = RF · | Ib12r | Vector CD = [VbF · sin (φV−φr)] / cos (φr) = ω · LF · | Ib12x |

【0018】又、従来の電気機械形、静止形リレーなど
で適用されてる(以降基本波演算形と呼称)零相電流補
償は、リアクタンス成分のみを考慮し、次式に示す方法
を採用している。
The zero-phase current compensation applied to a conventional electromechanical type, static type relay, and the like (hereinafter referred to as a fundamental wave operation type) employs a method shown in the following equation by considering only the reactance component. I have.

【数10】 Ib12z=Ib12r=Ib12x=C1・Ib12+Kx・(C0・I0) ・・・・(14) (∴ Kr=Kx ) Re{Vb・Ib12z*}/Re{Ib12z・Ib12z*}=RIine12+Re{VbF・Ib12z*}/Re{Ib12z・Ib12z*} =Re{Vb・Ib12z*}/|Ib12z|2=R1ine12+Re{VbF・Ib12z*}/|Ib12z|2 ・・・(15) Im{Vb・Ib12z*}/Im{jlb12z・Ib12z*}=ω・L1ine12+Im{VbF・Ib12z*} /Im{jb12z・Ib12z*} =Im{Vb・Ib12z*}/|Ib12z|2=ω・L1ine12+Im{VbF・Ib12z*}/|Ib12z|2 ・・・(16)Ib12z = Ib12r = Ib12x = C1 · Ib12 + Kx · (C0 · I0) (14) (∴Kr = Kx) Re {Vb · Ib12z * } / Re {Ib12z · Ib12z * } = RIine12 + Re { VbF · Ib12z * } / Re {Ib12z · Ib12z * } = Re {Vb · Ib12z * } / | Ib12z | 2 = R1ine12 + Re {VbF · Ib12z * } / | Ib12z | 2 (15) Im {Vb Ib12z * } / Im {jlb12z ・ Ib12z * } = ω ・ L1ine12 + Im {VbF ・ Ib12z * } / Im {jb12z ・ Ib12z * } = Im {Vb ・ Ib12z * } / | Ib12z | 2 = ω ・ L1ine12 + Im {VbF・ Ib12z * } / | Ib12z | 2・ ・ ・ (16)

【0019】(15)、(16)式の関係を(12)、
(13)式と同様にベクトル図で示すと図5のようにな
る。同図で基準となる電流はIb12zである。事故点
残り電圧WFの電流Ib12zとその90度進み位相成
分への投影分が各々
Equations (15) and (16) can be expressed as (12)
FIG. 5 shows a vector diagram similarly to the expression (13). The reference current in the figure is Ib12z. The current Ib12z of the fault point remaining voltage WF and its projection to the 90-degree advanced phase component are respectively

【数11】 ベクトルOA=VbF・cos(φ)=RF・|Ib12z| ベクトルOB=VbF・sin(φ)=ωLF・|Ib12z| となる。OA = VbF · cos (φ) = RF · | Ib12z | Vector OB = VbF · sin (φ) = ωLF · | Ib12z |

【0020】以上から、RL算出形リレーはbc相2線
地絡時の事故点残り電圧が図6(a)の関係になった
時、b相の見るインピーダンスのリアクタンス成分jω
LFは正、c相の見るインピーダンスのリアクタンス成
分jωLFは負となる状態を示している。それに反し
て、図6(b)は基本波演算形リレーのb相の見るリア
クタンスは負、c相のリアクタンスは正である。従っ
て、b、c相2線地絡時にRL算出形リレーのR、L成
分の零相電流補償係数がKr>Kxの時には、b相の補
償電流Ib12rはIb12xより遅れ位相傾向にな
る。逆にKr<Kxの場合は進み位相となる。
From the above, when the residual voltage at the fault point at the time of the bc phase two-wire ground fault becomes the relation shown in FIG.
LF indicates a positive state, and the reactance component jωLF of the impedance seen in the c-phase becomes negative. On the other hand, in FIG. 6B, the reactance seen by the b-phase of the fundamental wave operation type relay is negative, and the reactance of the c-phase is positive. Therefore, when the zero-phase current compensation coefficient of the R and L components of the RL calculation type relay is Kr> Kx at the time of the b and c phase two-wire ground fault, the b-phase compensation current Ib12r tends to lag behind the Ib12x. Conversely, if Kr <Kx, the phase is advanced.

【0021】[0021]

【発明が解決しようとする課題】架空線路では遅れ位相
傾向が殆どであることから、従来の基本波演算形リレー
でb相がオーバリーチ傾向であっても、RL算出形リレ
ーではアンダリーチ傾向になる場合も生じうる。従って
進み相オーバリーチ対策を実施している従来の対策をR
L算出形リレーにも適用することは出来ない。又事故点
の残り電圧の傾向でも様相が変わりうるので、何らかの
2線地絡事故でのオーバリーチ対策は必要となる。
Since the overhead line tends to have a lagging phase, the conventional RL calculation type relay tends to have an underreach even if the b phase has an overreach tendency in the conventional fundamental wave operation type relay. Can also occur. Therefore, the conventional countermeasure that implements the advanced phase overreach countermeasure is R
It cannot be applied to L calculation type relays. In addition, since the appearance may change depending on the tendency of the remaining voltage at the fault point, it is necessary to take a measure for overreach in the event of a two-wire ground fault.

【0022】本発明は上記事情に鑑みてなされたもので
あり、送電線路の線路方程式から抵抗R,リアクタンス
jωLを直接算出する地絡距離リレーで、零相電流補償
の抵抗分補償係数Krとリアクタンス補償係数Kxの比
を所定値以上に設定して、2線地絡が生じてもオーバリ
ーチが発生して不要な動作をする可能性を防止するディ
ジタル形地絡距離継電装置を提供することを目的として
いる。
The present invention has been made in view of the above circumstances, and is a ground fault distance relay for directly calculating a resistance R and a reactance jωL from a line equation of a transmission line, and includes a resistance compensation coefficient Kr for zero-phase current compensation and a reactance. It is an object of the present invention to provide a digital ground fault distance relay device in which a ratio of a compensation coefficient Kx is set to a predetermined value or more to prevent a possibility of an unnecessary operation due to an overreach even if a two-wire ground fault occurs. The purpose is.

【0023】[0023]

【課題を解決するための手段】本発明の請求項1に係る
ディジタル形地絡距離継電装置は、送電線の線路インピ
ーダンスの抵抗分の零相電流補償係数とリアクタンス分
の零相電流補償係数を各々個別に設定する第1の手段
と、該第1の手段で設定された抵抗分の零相電流補償係
数を零相電流に乗じて相電流と加算した抵抗分補償相電
流とリアクタンス分の零相電流補償係数を零相電流に乗
じて相電流と加算したリアクタンス補償相電流及び当該
相電圧とから抵抗分、リアクタンス分を算出して、当該
送電線の所定領域内で生じた地絡事故点が生じたか否か
を判定する第2の手段と、該送電線に2相以上の地絡事
故が発生したことを検出する第3の手段と、該第3の手
段で2相以上の地絡事故と判定されたら該第2の手段の
検出出力を阻止する第4の手段からなる構成とした。
According to a first aspect of the present invention, there is provided a digital ground fault distance relay device comprising a zero-phase current compensation coefficient corresponding to a resistance of a line impedance of a transmission line and a zero-phase current compensation coefficient corresponding to a reactance. Means for individually setting the resistance phase compensation current and the reactance component obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient of the resistance set by the first means and adding the phase current. A resistance fault and a reactance component are calculated from the reactance compensation phase current obtained by multiplying the zero-phase current compensation coefficient by the zero-phase current and the phase current, and the phase voltage, and a ground fault that occurs in a predetermined area of the transmission line. A second means for determining whether a point has occurred, a third means for detecting the occurrence of a ground fault of two or more phases in the power transmission line, and a ground means having two or more phases by the third means. If it is determined that a fault has occurred, the detection output of the second means is blocked. Configuration and the consisting of four means.

【0024】本発明の請求項2に係るディジタル形地絡
距離継電装置は、送電線の線路インピーダンスの抵抗分
の零相電流補償係数とリアクタンス分の零相電流補償係
数を各々個別に設定する第1の手段と、該第1の手段で
設定された抵抗分の零相電流補償係数を零相電流に乗じ
て相電流と加算した抵抗分補償相電流とリアクタンス分
の零相電流補償係数を零相電流に乗じて相電流と加算し
たリアクタンス補償相電流及び当該相電圧とから抵抗
分、リアクタンス分を算出して、当該送電線の所定領域
内で生じた地絡事故点が生じたか否かを判定する第2の
手段と、該送電線に2相以上の地絡事故が発生したこと
を該第2の手段より広い領域をインピーダンス計測によ
り検出する第3の手段と、該第3の手段で2相以上の地
絡事故と判定されたら該第2の手段の検出出力を阻止す
る第4の手段からなる構成とした。
In a digital ground fault distance relay according to a second aspect of the present invention, the zero-phase current compensation coefficient for the resistance of the line impedance of the transmission line and the zero-phase current compensation coefficient for the reactance are individually set. A first means, a resistance compensation phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient for the resistance set by the first means and adding the phase current, and a zero-phase current compensation coefficient for the reactance; A resistance component and a reactance component are calculated from the reactance compensation phase current multiplied by the zero-phase current and added to the phase current, and the phase voltage to determine whether a ground fault has occurred within a predetermined area of the transmission line. A third means for detecting the occurrence of a ground fault of two or more phases in the transmission line by measuring an impedance in a wider area than the second means, and the third means. Was determined to be a ground fault of two or more phases And a structure in which a fourth means for preventing the detection output of the second means.

【0025】本発明の請求項3に係るディジタル形地絡
距離継電装置は、送電線の線路インピーダンスの抵抗分
の零相電流補償係数とリアクタンス分の零相電流補償係
数を各々個別に設定する第1の手段と、該第1の手段で
設定された抵抗分の零相電流補償係数を零相電流に乗じ
て相電流と加算した抵抗分補償相電流とリアクタンス分
の零相電流補償係数を零相電流に乗じて相電流と加算し
たリアクタンス補償相電流及び当該相電圧とから抵抗
分、リアクタンス分を算出して、当該送電線の所定領域
内で生じた地絡事故点が生じたか否かを判定する第2の
手段と、該送電線に2相以上の地絡事故が発生したこと
を各相の相電圧の大きさが所定値以下になったことで検
出する第3の手段と、該第3の手段で2相以上の地絡事
故と判定されたら該第2の手段の検出出力を阻止する第
4の手段からなる構成とした。
According to a third aspect of the present invention, the zero-phase current compensation coefficient for the resistance of the line impedance of the transmission line and the zero-phase current compensation coefficient for the reactance are individually set. A first means, a resistance compensation phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient for the resistance set by the first means and adding the phase current, and a zero-phase current compensation coefficient for the reactance; A resistance component and a reactance component are calculated from the reactance compensation phase current multiplied by the zero-phase current and added to the phase current, and the phase voltage to determine whether a ground fault has occurred within a predetermined area of the transmission line. A third means for detecting that a ground fault of two or more phases has occurred in the transmission line by detecting that the magnitude of the phase voltage of each phase has become a predetermined value or less; If the third means determines that there is a ground fault of two or more phases, And a structure in which a fourth means for preventing the detection output of the second means.

【0026】本発明の請求項4に係るディジタル形地絡
距離継電装置は、送電線の線路インピーダンスの抵抗分
の零相電流補償係数とリアクタンス分の零相電流補償係
数を各々個別に設定する第1の手段と、該第1の手段で
設定された抵抗分の零相電流補償係数を零相電流に乗じ
て相電流と加算した抵抗分補償相電流とリアクタンス分
の零相電流補償係数を零相電流に乗じて相電流と加算し
たリアクタンス補償相電流及び当該相電圧とから抵抗
分、リアクタンス分を算出して、当該送電線の所定領域
内で生じた地絡事故点が生じたか否かを判定する第2の
手段と、該送電線に2相以上の地絡事故が発生したこと
を各相の相電流の大きさが所定値以上になったことで検
出する第3の手段と、該第3の手段で2相以上の地絡事
故と判定されたら該第2の手段の検出出力を阻止する第
4の手段からなる構成とした。
In the digital ground fault distance relay according to a fourth aspect of the present invention, the zero-phase current compensation coefficient for the resistance of the line impedance of the transmission line and the zero-phase current compensation coefficient for the reactance are individually set. A first means, a resistance compensation phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient for the resistance set by the first means and adding the phase current, and a zero-phase current compensation coefficient for the reactance; A resistance component and a reactance component are calculated from the reactance compensation phase current multiplied by the zero-phase current and added to the phase current, and the phase voltage to determine whether a ground fault has occurred within a predetermined area of the transmission line. A second means for determining whether the ground fault of two or more phases has occurred in the transmission line by detecting that the magnitude of the phase current of each phase has reached a predetermined value or more, If the third means determines that there is a ground fault of two or more phases, And a structure in which a fourth means for preventing the detection output of the second means.

【0027】このようにして、本発明のディジタル形地
絡距離継電装置は、送電線の抵抗分零相補償係数(=零
相インピーダンスの抵抗分と正相インピーダンスの抵抗
分の比)とリアクタンス補償係数(=零相インピーダン
スのリアクタンス分と正相インピーダンスのリアクタン
ス分の比)を個別に設定して、リレー設置点から地絡事
故点迄の送電線のインピーダンスを抵抗、リアクタンス
個別に算出する演算方式を適用したリレーにおいて、2
相以上の地絡事故が生じたら、送電線の所定領域迄の事
故を検出する第1段リレー要素の遮断器引き外し指令を
阻止しようとするものである。
As described above, the digital ground-fault distance relay device of the present invention provides a zero-phase compensation coefficient (= the ratio of the zero-phase impedance resistance to the positive-phase impedance resistance) and the reactance of the transmission line. Computation coefficient (= ratio of reactance of zero-sequence impedance and reactance of positive-sequence impedance) is set individually, and the impedance of transmission line from the relay installation point to the ground fault point is calculated separately for resistance and reactance. In the relay to which the method is applied, 2
When a ground fault of more than one phase occurs, an attempt is made to block a circuit breaker trip command of a first-stage relay element for detecting a fault up to a predetermined area of a transmission line.

【0028】本発明の請求項5に係るディジタル形地絡
距離継電装置は、送電線の線路インピーダンスの抵抗分
の零相電流補償係数とリアクタンス分の零相電流補償係
数を各々個別に設定する第1の手段と、該第1の手段で
設定された抵抗分の零相電流補償係数を零相電流に乗じ
て相電流と加算した抵抗分補償相電流とリアクタンス分
の零相電流補償係数を零相電流に乗じて相電流と加算し
たリアクタンス補償相電流及び当該相電圧とから抵抗
分、リアクタンス分を算出して、当該送電線の所定領域
内で生じた地絡事故点が生じたか否かを判定する第2の
手段と、該送電線に2相以上の地絡事故が発生したこと
を検出する第3の手段と、該第3の手段で2相以上の地
絡事故と判定されたら該第2の手段の検出出力を阻止す
る第4の手段と、遅れ相の地絡事故を検出する第5の手
段と、前記第1の手段で設定された抵抗分の零相電流補
償係数とリアクタンス分の零相電流補償係数の比が所定
値以上になったら、前記第3の手段の機能を活かし、未
満となったら前記第3の手段の出力を阻止して、前記第
5の手段で前記第2の手段の検出出力を阻止する第6の
手段とからなる構成とした。
In the digital ground fault distance relay according to claim 5 of the present invention, the zero-phase current compensation coefficient for the resistance of the line impedance of the transmission line and the zero-phase current compensation coefficient for the reactance are individually set. A first means, a resistance compensation phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient for the resistance set by the first means and adding the phase current, and a zero-phase current compensation coefficient for the reactance; A resistance component and a reactance component are calculated from the reactance compensation phase current multiplied by the zero-phase current and added to the phase current, and the phase voltage to determine whether a ground fault has occurred within a predetermined area of the transmission line. A second means for determining the occurrence of a ground fault of two or more phases in the transmission line, and a third means for determining that a ground fault of two or more phases has occurred in the third means. A fourth means for blocking the detection output of the second means; A fifth means for detecting a phase ground fault, and when the ratio of the zero-phase current compensation coefficient for the resistance and the zero-phase current compensation coefficient for the reactance set by the first means becomes a predetermined value or more, A sixth means for making use of the function of the third means, blocking the output of the third means if less than the above, and blocking the detection output of the second means by the fifth means. The configuration was adopted.

【0029】このようにして、本発明のディジタル形地
絡距離継電装置は、抵抗分の零相電流補償係数とリアク
タンス分の零相電流補償係数の比が所定の値より大きい
場合には、2相以上の地絡事故を検出したら、前記第2
の手段の出力が遮断器引き外し指令を出すのを阻止し、
小さい場合には、遅れ相の地絡事故の検出出力で前記第
2の手段の出力を阻止しようとするものである。
As described above, the digital ground fault distance relay device of the present invention provides a digital ground-fault distance relay device in which the ratio of the zero-phase current compensation coefficient for the resistance to the zero-phase current compensation coefficient for the reactance is larger than a predetermined value. If two or more ground faults are detected, the second
Block the output of the means of issuing a circuit breaker trip command,
If it is smaller, the output of the second means is to be blocked by the detection output of the ground fault accident of the lag phase.

【0030】本発明の請求項6に係るディジタル形地絡
距離継電装置は、送電線の線路インピーダンスの抵抗分
の零相電流補償係数とリアクタンス分の零相電流補償係
数を各々個別に設定する第1の手段と、該第1の手段で
設定された抵抗分の零相電流補償係数を零相電流に乗じ
て相電流と加算した抵抗分補償相電流とリアクタンス分
の零相電流補償係数を零相電流に乗じて相電流と加算し
たリアクタンス補償相電流及び当該相電圧とから抵抗
分、リアクタンス分を算出して、当該送電線の所定領域
内で生じた地絡事故点が生じたか否かを判定する第2の
手段と、該送電線に2相以上の地絡事故が発生したこと
を検出する第3の手段と、該第3の手段で2相以上の地
絡事故と判定されたら該第2の手段の検出出力を阻止す
る第4の手段と、遅れ相の地絡事故を検出する第5の手
段と、前記第1の手段で設定された抵抗分の零相電流補
償係数とリアクタンス分の零相電流補償係数の比が所定
値以上になったら、抵抗分の零相電流補償係数をリアク
タンス分の零相電流補償係数と同一値とし、前記第5の
手段の出力で前記第2の手段の検出出力を阻止する第7
の手段とからなる構成とした。
In the digital ground fault distance relay device according to claim 6 of the present invention, the zero-phase current compensation coefficient for the resistance of the line impedance of the transmission line and the zero-phase current compensation coefficient for the reactance are individually set. A first means, a resistance compensation phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient for the resistance set by the first means and adding the phase current, and a zero-phase current compensation coefficient for the reactance; A resistance component and a reactance component are calculated from the reactance compensation phase current multiplied by the zero-phase current and added to the phase current, and the phase voltage to determine whether a ground fault has occurred within a predetermined area of the transmission line. A second means for determining the occurrence of a ground fault of two or more phases in the transmission line, and a third means for determining that a ground fault of two or more phases has occurred in the third means. A fourth means for blocking the detection output of the second means; A fifth means for detecting a phase ground fault, and when the ratio of the zero-phase current compensation coefficient for the resistance and the zero-phase current compensation coefficient for the reactance set by the first means becomes a predetermined value or more, The zero-phase current compensation coefficient for the resistance has the same value as the zero-phase current compensation coefficient for the reactance, and the output of the fifth means blocks the detection output of the second means.
Means.

【0031】このようにして、本発明のディジタル形地
絡距離継電装置は、抵抗分の零相電流補償係数とリアク
タンス分の零相電流補償係数の比が所定値より大きけれ
ば、両者をリアクタンス分の零相電流補償係数に合わせ
て、従来のアナログ形の基本波演算形リレーと同じ補償
にし、且つ遅れ相の地絡事故検出で前記第2の手段の出
力を阻止しようとするものである。
As described above, the digital ground fault distance relay device of the present invention provides a digital ground-fault distance relay having a reactance zero-phase current compensation coefficient and a reactance zero-phase current compensation coefficient that are larger than a predetermined value. In accordance with the zero-phase current compensation coefficient, the same compensation as that of the conventional analog type fundamental wave operation type relay is performed, and the output of the second means is prevented by detecting a ground fault accident in a lag phase. .

【0032】本発明の請求項7に係るディジタル形地絡
距離継電装置は、電力系統の送電線の電圧、電流を所定
の周期でサンプリングして取り込んで、抵抗、インダク
タンスからなる送電線の線路方程式から抵抗分、インダ
クタンス分を直接算出して地絡事故点を検出するディジ
タル形地絡距離継電装置において、抵抗分の零相電流補
償係数とリアクタンス分の零相電流補償係数を各々個別
に設定する第1の手段と、該第1の手段で設定された抵
抗分の零相電流補償係数を零相電流に乗じて相電流と加
算した抵抗分補償相電流とリアクタンス分の零相電流補
償係数を零相電流に乗じて相電流と加算したリアクタン
ス補償相電流及び当該相電圧とから抵抗分、リアクタン
ス分を算出して、当該送電線の所定領域内で地絡事故点
が生じたか否かを判定する第2の手段と、該第1の手段
で設定された抵抗分の零相電流補償係数を零相電流に乗
じて相電流と加算した抵抗分補償相電流と、前記第1の
手段で設定されたリアクタンス分の零相電流補償係数を
零相電流に乗じて相電流と加算したリアクタンス補償相
電流の位相差を算出して所定値以上になったら、該第2
の手段の検出出力を阻止し、未満となったら遅れ相の地
絡を検出する第5の手段の出力で前記第2の手段の検出
出力を阻止する第8の手段とからなる構成とした。
A digital ground fault distance relay device according to claim 7 of the present invention samples and takes in a voltage and a current of a power transmission line of a power system at a predetermined cycle to obtain a transmission line line composed of a resistance and an inductance. In a digital ground-fault distance relay that directly calculates the resistance and inductance from the equations to detect the ground fault point, the zero-phase current compensation coefficient for the resistance and the zero-phase current compensation coefficient for the reactance are individually calculated. A first means for setting, a zero-phase current compensation coefficient obtained by multiplying a zero-phase current by a zero-phase current compensation coefficient for the resistance set by the first means and adding the resultant to a phase current and a zero-phase current compensation for a reactance A resistance component and a reactance component are calculated from the reactance compensation phase current obtained by multiplying the coefficient by the zero-phase current and the phase current, and the phase voltage, and a ground fault accident point occurs in a predetermined area of the transmission line. To A second means for determining, a resistance-compensating phase current obtained by multiplying a zero-phase current by a zero-phase current compensation coefficient for the resistance set by the first means and adding the resultant to the phase current; The zero-phase current compensation coefficient for the set reactance is multiplied by the zero-phase current and the phase current is added to calculate the phase difference of the reactance compensation phase current.
The output of the fifth means for detecting the output of the fifth means for detecting the ground fault of the lag phase when the value is less than the eighth means for preventing the detection output of the second means.

【0033】このようにして、本発明のディジタル形地
絡距離継電装置は、抵抗分の零相電流補償係数を零相電
流に乗じて相電流と加算した抵抗分補償相電流と、リア
クタンス分の零相電流補償係数を零相電流に乗じて相電
流と加算したリアクタンス補償相電流の位相差を算出し
て、位相差が所定値以上ならば2線地絡と判断し、前記
第2の手段の遮断器引き外し指令を阻止しようとするも
のである。
As described above, the digital ground-fault distance relay device of the present invention provides a resistance-compensated phase current obtained by multiplying a zero-phase current compensation coefficient by a zero-phase current and adding a phase current, and a reactance component current. Multiplying the zero-phase current compensation coefficient by the zero-phase current and adding the phase current to calculate a phase difference of the reactance compensation phase current. If the phase difference is equal to or more than a predetermined value, it is determined that there is a two-line ground fault. It is intended to prevent the means for tripping the circuit breaker.

【0034】[0034]

【発明の実施の形態】図7は本発明に係る送電線用ディ
ジタル形地絡距離継電装置を説明する実施の形態のハー
ドウエアを示す構成図である。図において、1は対象と
なる送電線、2は変流器、3は変成器、4は変流器2の
電流出力と電圧変成器3の電圧出力とを入力して各々適
当なレベルに変換する入力変換器、5は入力変換器の電
流・電圧出力をサンプリングするサンプリング保持回
路、6はサンプリング保持回路5の電流・電圧出力をア
ナログ・ディジタル変換する回路、7は事故前後のデー
タを記憶する回路、8は前記電流・電圧データを用いて
所定の周期で演算処理を実行してディジタル形地絡距離
継電装置の動作判定及び遮断器引き外し指令を出力する
ための判定を行う演算回路(CPU)、9は地絡距離リ
レーの動作判定結果を出力するI/Oインターフェース
回路である。
FIG. 7 is a block diagram showing the hardware of an embodiment for explaining a digital ground fault distance relay device for transmission lines according to the present invention. In the figure, 1 is a target transmission line, 2 is a current transformer, 3 is a transformer, and 4 is a current output of the current transformer 2 and a voltage output of the voltage transformer 3 which are respectively converted to appropriate levels. 5 is a sampling and holding circuit for sampling the current and voltage output of the input converter, 6 is a circuit for converting the current and voltage output of the sampling and holding circuit 5 from analog to digital, and 7 is a memory for storing data before and after the accident. An arithmetic circuit (8) for performing an arithmetic process at a predetermined cycle using the current / voltage data to determine an operation of the digital ground fault distance relay device and a determination for outputting a breaker trip command ( CPU and 9 are I / O interface circuits that output the operation determination result of the ground fault distance relay.

【0035】図1は本発明の第1の実施形態の演算回路
8(図7の演算回路8に相当)で行うディジタル形距離
継電装置の動作判定の内容を示す図である。抵抗分、リ
アクタンス分各々の零相電流補償係数Kr、Kxを設定
し、各々を零相電流に乗じて、相電流に加算して零相補
償相電流を得る。b相の例で示したのが(6)式であ
る。
FIG. 1 is a diagram showing the contents of the operation determination of the digital distance relay device performed by the arithmetic circuit 8 (corresponding to the arithmetic circuit 8 of FIG. 7) according to the first embodiment of the present invention. The zero-phase current compensation coefficients Kr and Kx are set for the resistance and the reactance, respectively, multiplied by the zero-phase current, and added to the phase current to obtain a zero-phase compensation phase current. Equation (6) is shown in the example of the b-phase.

【数12】Ib12r(t)=C1・Ib12(t)+Kr・C0・I0(t)、 Ib12x(t)=C1・Ib12(t)+Kx・C0・I0(t) (∴Kr=R1ine0/R1ine12、 Kx=L1ine0/L1ine12)Ib12r (t) = C1 · Ib12 (t) + Kr · C0 · I0 (t), Ib12x (t) = C1 · Ib12 (t) + Kx · C0 · I0 (t) (∴Kr = R1ine0 / R1ine12) , Kx = L1ine0 / L1ine12)

【0036】この電流と相電圧とから、時刻t1、t2
のデータを適用して、次式に基づいて抵抗、リアクタン
スを算出する。
From the current and the phase voltage, at times t1 and t2
, And calculate the resistance and reactance based on the following equations.

【数13】 抵抗分: {Vb(t1)・[dIb12x(t)/dt]t=t2−V(t2)・[dIb12x(t)/dt]t=t1} /{Ib12r(t1)・[dIb12x(t)/dt]t=t2−Ib12r(t2)・[dIb12x(t)/dt]t=t1} =R1ine12+{VbF(t1)・[dIb12x(t)/dt]t=t2−VbF(t2)・[dIb12x(t)/dt]t=t1} /{Ib12r(t1)・[dIb12x(t)/dt]t=t2−Ib12r(t2)・[dIb12x(t)/dt]t=t1} リアクタンス: {Vb(t1)・Ib12r(t2)−Vb(t2)・Ib12r(t1)} /{Ib12r(t2)・[dIb12×(t)/dt]t=t1−Ib12r(t1)・[dIb12x(t)/dt]t=t2} =L1ine12+{VbF(t1)・Ib12r(t2)−VbF(t2)・Ib12r(t1)} /{Ib12r(t2)・[dIb12x(t)/dt]t=t1−Ib12r(t1)・[dIb12x(t)/dt]t=t2}[Expression 13] Resistance: {Vb (t1) · [dIb12x (t) / dt] t = t2−V (t2) · [dIb12x (t) / dt] t = t1} / {Ib12r (t1) · [ dIb12x (t) / dt] t = t2-Ib12r (t2). [dIb12x (t) / dt] t = t1} = R1ine12 + {VbF (t1). [dIb12x (t) / dt] t = t2-VbF ( t2) ・ [dIb12x (t) / dt] t = t1} / {Ib12r (t1) ・ [dIb12x (t) / dt] t = t2-Ib12r (t2) ・ [dIb12x (t) / dt] t = t1 } Reactance: {Vb (t1) ・ Ib12r (t2) −Vb (t2) ・ Ib12r (t1)} / {Ib12r (t2) ・ [dIb12 × (t) / dt] t = t1-Ib12r (t1) ・ [ dIb12x (t) / dt] t = t2} = L1ine12 + {VbF (t1) .Ib12r (t2) -VbF (t2) .Ib12r (t1)} / {Ib12r (t2). [dIb12x (t) / dt] t = t1−Ib12r (t1) · [dIb12x (t) / dt] t = t2}

【0037】ここで算出された抵抗分、リアクタンス分
が所定の領域内の値か否かを判定し領域内に入ってれば
動作と判定する。但し、この判定結果と2相以上の地絡
事故か否かを判定して2相以上の地絡事故の時は、遮断
器を引き外すのを阻止するように作用する。
It is determined whether or not the calculated resistance and reactance are values within a predetermined area. If the resistance and reactance are within the predetermined area, it is determined that the operation is performed. However, it is determined whether or not there is a ground fault of two or more phases based on the result of the determination, and in the case of a ground fault of two or more phases, the circuit breaker is prevented from being tripped.

【0038】図8は本発明の第2の実施形態の2相以上
の事故を検出する手段として、当該所定領域内にあるこ
とを検出する第2の手段の責務より広い領域を検出する
第3の手段を説明する図である。図9に第2の手段の検
出特性X1と本実施形態の第3の手段に適用する検出特
性例X3を示す。同図で示すように第3の手段の検出領
域の方が広く、且つ2回線送電線において、両回線にま
たがる各々の回線の1線地絡事故の場合も、各回線毎に
確実に当該相の事故を検出することができ、第3の手段
で2相以上の地絡事故と判定されたら第2の手段の検出
出力を阻止する第4の手段の動作により不要に2相動作
を検出することはない。
FIG. 8 shows a third embodiment for detecting an accident of two or more phases according to the second embodiment of the present invention, which detects an area wider than the duty of the second means for detecting that the vehicle is within the predetermined area. It is a figure explaining means of. FIG. 9 shows a detection characteristic X1 of the second means and a detection characteristic example X3 applied to the third means of the present embodiment. As shown in the figure, the detection area of the third means is wider, and even in the case of a single-line ground fault of each line straddling both lines in a two-line transmission line, the corresponding phase is surely determined for each line. Can be detected, and if the third means determines that there is a ground fault of two or more phases, the operation of the fourth means for blocking the detection output of the second means detects unnecessary two-phase operations. Never.

【0039】図10は本発明の第3の実施形態の2相以
上の事故を検出する手段として、回線毎に電圧が所定値
以下になったことで事故と検出する第3の手段を説明す
る図である。この方式では回線間に跨がる各々の回線の
異名相1線地絡事故の場合、回線毎に第3の手段の検出
要素を持たせても、2相事故と見てしまう可能性があ
り、第2の手段の検出出力を阻止する可能性が生じる。
従って、本実施形態では、送電線に2相以上の地絡事故
が発生したことを各相の相電圧の大きさが所定値以下に
なったことで検出する第3の手段を設け、この第3の手
段で2相以上の地絡事故と判定されたら第2の手段の検
出出力を阻止する第4の手段からなるものであり、1回
線送電線にのみ有効な実施形態である。
FIG. 10 illustrates a third means for detecting an accident when two or more phases of an error occur according to the third embodiment of the present invention when the voltage falls below a predetermined value for each line. FIG. In this method, in the case of an anomalous phase 1 line ground fault of each line straddling between lines, even if each line has a detection element of the third means, it may be regarded as a two-phase accident. , There is a possibility that the detection output of the second means is blocked.
Therefore, in the present embodiment, a third means is provided for detecting the occurrence of a ground fault of two or more phases in the transmission line by detecting that the magnitude of the phase voltage of each phase has become equal to or less than a predetermined value. The fourth means comprises a fourth means for blocking the detection output of the second means when it is determined that the ground fault has two or more phases by the means of the third means, and is an embodiment effective only for one line transmission line.

【0040】図11は本発明の第4の実施形態の2相以
上の事故を検出する手段として、回線毎に相電流の大き
さが所定値以上になったことで事故を検出する第3の手
段を説明する図である。送電線に2相以上の地絡事故が
発生したことを各相の相電流の大きさが所定値以上にな
ったことで検出する第3の手段と、該第3の手段で2相
以上の地絡事故と判定されたら第2の手段の検出出力を
阻止する第4の手段から構成する。この方式では回線単
位で相電流の大きさを検出するので、2回線に跨って異
なる相で1線地絡が生じても2相以上の地絡事故と見て
しまうことはない。また、この実施形態では相電流の大
きさとあるが、当然相電流の変化分の大きさを見る構成
にしても実現できることは言うまでもない。
FIG. 11 shows a means for detecting an accident of two or more phases according to the fourth embodiment of the present invention, which detects an accident when the magnitude of the phase current exceeds a predetermined value for each line. It is a figure explaining a means. A third means for detecting the occurrence of a ground fault of two or more phases in the transmission line based on the magnitude of the phase current of each phase having become a predetermined value or more; A fourth means for blocking the detection output of the second means when it is determined that a ground fault has occurred. In this method, since the magnitude of the phase current is detected for each line, even if a single-line ground fault occurs in different phases over two lines, it is not regarded as a ground fault accident of two or more phases. Further, in this embodiment, the magnitude of the phase current is provided, but it is needless to say that the configuration can be realized by observing the magnitude of the change in the phase current.

【0041】図12は本発明の第5の実施形態の第5の
手段と第6の手段の関係を説明する図である。第5の手
段は本発明の着目する相の地絡事故に対して、遅れ相の
地絡事故を検出する第2の手段で検出する領域より広い
領域を、RL算出形の地絡距離リレーで検出するように
構成したものである。更に、第6の手段は抵抗分の零相
電流補償係数Krとリアクタンス分の零相電流補償係数
Kxの大きさの比の大きさが所定値以上か、未満かで前
記した第5の手段と、送電線の2相以上の地絡事故を検
出する第3の手段の何れかを選択して、前記第2の手段
の検出出力を阻止するようにしている。即ち、下記のよ
うに処理するようにしている。
FIG. 12 is a view for explaining the relationship between the fifth means and the sixth means according to the fifth embodiment of the present invention. Fifth means is to use an RL calculation type ground fault distance relay to cover an area wider than the area detected by the second means for detecting the delay phase ground fault in response to the phase ground fault of interest of the present invention. It is configured to detect. Further, the sixth means is characterized in that the magnitude of the ratio of the magnitude of the zero-phase current compensation coefficient Kr for the resistance and the magnitude of the zero-phase current compensation coefficient Kx for the reactance is greater than or less than a predetermined value. Then, any one of the third means for detecting a ground fault of two or more phases of the transmission line is selected, and the detection output of the second means is blocked. That is, the processing is performed as follows.

【0042】[0042]

【数14】Kr/Kx>Kの場合:2相以上の地絡事故
検出がされたら阻止 Kr/Kx<Kの場合:遅れ相の地絡事故検出がされた
ら阻止 このようにして、この実施形態のディジタル形地絡距離
継電装置は、抵抗分の零相電流補償係数とリアクタンス
分の零相電流補償係数の比が所定の値より大きい場合に
は、2相以上の地絡事故を検出したら、前記第2の手段
の出力が遮断器引き外し指令を出すのを阻止し、小さい
場合には、遅れ相の地絡事故の検出出力で前記第2の手
段の出力を阻止しようとするものである。
## EQU14 ## If Kr / Kx> K: Block if ground faults of two or more phases are detected. If Kr / Kx <K: Block if ground faults in the delayed phase are detected. The digital ground fault distance relay device of the form detects a ground fault accident of two or more phases when the ratio of the zero-phase current compensation coefficient for the resistance and the zero-phase current compensation coefficient for the reactance is larger than a predetermined value. Then, the output of the second means is prevented from issuing a circuit breaker tripping command. If the output is small, the output of the second means is to be prevented by the detection output of the ground fault accident in the lag phase. It is.

【0043】図13は本発明の第6の実施形態の第5の
手段と第6手段の関係を説明する図である。第5の手段
は、本実施形態の着目する相の地絡事故に対して、送電
線の所定領域内で地絡事故点が生じたか否かを判定する
第2の手段で検出する領域より広い領域を、RL算出形
の地絡距離リレーで検出するように構成したものであ
る。
FIG. 13 is a diagram for explaining the relationship between the fifth means and the sixth means according to the sixth embodiment of the present invention. The fifth means is wider than the area detected by the second means for determining whether or not a ground fault point has occurred within a predetermined area of the transmission line with respect to the ground fault of the phase of interest of the present embodiment. The area is detected by an RL calculation type ground fault distance relay.

【0044】更に、第7の手段は抵抗分の零相電流補償
係数Krとリアクタンス分の零相電流補償係数Kxの大
きさの比の大きさが所定値以上になったらKrをKxに
等しくするようにして、前記した第5の手段で前記第2
の手段の検出出力を阻止するようにしている。即ち、下
記のように処理するようにしている。
Further, the seventh means makes Kr equal to Kx when the ratio of the magnitude of the zero-phase current compensation coefficient Kr for the resistance and the magnitude of the zero-phase current compensation coefficient Kx for the reactance exceeds a predetermined value. In this manner, the second means is provided by the fifth means.
The detection output of the means is blocked. That is, the processing is performed as follows.

【0045】[0045]

【数15】Kr/Kx>Kの場合:KrをKxと同じ値と
して使用 Kr/Kx<Kの場合:Kr、Kxをそのまま使用 前記第2の手段のRL算出を行い、前記した第5の手段
でこの第2の手段の検出出力を阻止するようにしてる。
In the case of Kr / Kx> K: Kr is used as the same value as Kx. In the case of Kr / Kx <K: Kr and Kx are used as they are. The means is adapted to block the detection output of the second means.

【0046】このようにして、この実施形態のディジタ
ル形地絡距離継電装置は、抵抗分の零相電流補償係数と
リアクタンス分の零相電流補償係数の比が所定値より大
きければ、両者をリアクタンス分の零相電流補償係数に
合わせて、従来のアナログ形の基本波演算形リレーと同
じ補償にし、且つ遅れ相の地絡事故検出で前記第2の手
段の出力を阻止しようとするものである。
As described above, the digital ground fault distance relay device of this embodiment connects the two if the ratio between the zero-phase current compensation coefficient for the resistance and the zero-phase current compensation coefficient for the reactance is larger than a predetermined value. In accordance with the zero-phase current compensation coefficient corresponding to the reactance, the same compensation as that of the conventional analog type fundamental wave operation type relay is performed, and the output of the second means is to be prevented by detecting the ground phase fault of the lag phase. is there.

【0047】図14は本発明の第7の実施形態の第8の
手段と、抵抗分の零相電流補償係数とリアクタンス分の
零相電流補償係数を各々個別に設定する第1の手段、送
電線の所定領域内で地絡事故点が生じたか否かを判定す
る第2の手段の関係を説明している。ここに(6)式で
示す、抵抗分零相補償相電流Ib12rとリアクタンス
分零相補償相電流Ib12xの位相差θを算出手法は種
々ある。例えば下式でも実現できる。
FIG. 14 shows an eighth means according to the seventh embodiment of the present invention, and first means for individually setting a zero-phase current compensation coefficient for the resistance and a zero-phase current compensation coefficient for the reactance. The relationship of the second means for determining whether or not a ground fault has occurred in a predetermined area of the electric wire has been described. Here, there are various methods for calculating the phase difference θ between the zero phase compensation phase current Ib12r for resistance and the zero phase compensation phase current Ib12x for reactance shown by the equation (6). For example, it can also be realized by the following equation.

【0048】[0048]

【数16】 Im[Ib12r・Ib12x*]=Ib12r(t1)・Ib12x(t2)−Ib12r(t2)・Ib12x(t1) =|Ib12r|・|Ib12x|・sin(θ)> K・|Ib12r|・|Ib12x| (K:所定値)[Expression 16] Im [Ib12r · Ib12x * ] = Ib12r (t1) · Ib12x (t2) −Ib12r (t2) · Ib12x (t1) = | Ib12r | · | Ib12x | · sin (θ)> K · | Ib12r |・ | Ib12x | (K: predetermined value)

【0049】この位相差θが所定値以上になったら、2
相以上の地絡事故が発生したものとして、前記第2の手
段の検出出力を阻止するようにし、前記位相差が所定値
以下であれば、遅れ相の地絡事故を検出する第5の手段
の出力で前記第2の手段の検出出力を阻止するようにし
ている。
When the phase difference θ becomes a predetermined value or more, 2
Assuming that a ground fault of more than one phase has occurred, the detection output of the second means is blocked, and if the phase difference is equal to or less than a predetermined value, a fifth means of detecting a ground fault of a delayed phase The detection output of the second means is blocked by the output.

【0050】このようにして、この実施形態のディジタ
ル形地絡距離継電装置は、抵抗分の零相電流補償係数を
零相電流に乗じて相電流と加算した抵抗分補償相電流
と、リアクタンス分の零相電流補償係数を零相電流に乗
じて相電流と加算したリアクタンス補償相電流の位相差
を算出して、位相差が所定値以上ならば2線地絡と判断
し、前記第2の手段の遮断器引き外し指令を阻止しよう
とするものである。
As described above, the digital ground-fault distance relay device according to this embodiment includes a resistance-compensated phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient and adding the phase current, The zero-phase current compensation coefficient is multiplied by the zero-phase current and the phase current is added to calculate a phase difference of the reactance compensation phase current. If the phase difference is equal to or greater than a predetermined value, it is determined that a two-line ground fault has occurred. This is intended to prevent the circuit breaker trip command of the above means.

【0051】[0051]

【発明の効果】以上説明したように、本発明によれば、
抵抗分、リアクタンス分各々の零相電流補償した相電流
と相電圧から、事故点迄の抵抗、リアクタンスを直接算
出するRL算出形を基準にした地絡距離リレーにおい
て、2線地絡時に生じるオーバリーチによる不要な動作
を容易に阻止できるディジタル形地絡距離継電装置を実
現することができる。
As described above, according to the present invention,
Overreach that occurs at the time of a two-wire ground fault in a ground fault distance relay based on the RL calculation type that directly calculates the resistance and reactance to the fault point from the phase current and phase voltage compensated for the zero phase current for the resistance component and the reactance component. A digital ground-fault distance relay device that can easily prevent unnecessary operations due to the above-mentioned problems can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のディジタル形地絡距離継電装置の第1
の実施形態図。
FIG. 1 is a first diagram of a digital ground fault distance relay device of the present invention.
FIG.

【図2】2線地絡時の事故点電圧と電流の傾向図。FIG. 2 is a trend diagram of a fault point voltage and a current at the time of a two-line ground fault.

【図3】本発明の対象となる電力系統図。FIG. 3 is a power system diagram to which the present invention is applied.

【図4】本発明が解決すべき電力系統の現象の説明図。FIG. 4 is an explanatory diagram of a phenomenon of a power system to be solved by the present invention.

【図5】本発明が解決すべき現象に対する、従来の地絡
距離リレーの示す性能を説明する図。
FIG. 5 is a diagram illustrating performance of a conventional ground fault distance relay with respect to a phenomenon to be solved by the present invention.

【図6】本発明が解決すべき現象の説明図。FIG. 6 is an explanatory diagram of a phenomenon to be solved by the present invention.

【図7】本発明のディジタル形地絡距離継電装置のハー
ドウエアを示す構成図。
FIG. 7 is a configuration diagram showing hardware of a digital ground fault distance relay device of the present invention.

【図8】本発明のディジタル形地絡距離継電装置の第2
の実施形態図。
FIG. 8 shows a second embodiment of the digital ground fault distance relay device according to the present invention.
FIG.

【図9】第2手段の検出特性X1と第3手段に適用する
検出特性例X3の特性図。
FIG. 9 is a characteristic diagram of a detection characteristic X1 of the second means and a detection characteristic example X3 applied to the third means.

【図10】本発明のディジタル形地絡距離継電装置の第
3の実施形態図。
FIG. 10 is a diagram showing a third embodiment of the digital ground fault distance relay device of the present invention.

【図11】本発明のディジタル形地絡距離継電装置の第
4の実施形態図。
FIG. 11 is a diagram of a fourth embodiment of the digital ground fault distance relay device according to the present invention.

【図12】本発明のディジタル形地絡距離継電装置の第
5の実施形態図。
FIG. 12 is a diagram showing a fifth embodiment of the digital ground fault distance relay device of the present invention.

【図13】本発明のディジタル形地絡距離継電装置の第
6の実施形態図。
FIG. 13 is a diagram of a sixth embodiment of the digital ground fault distance relay device of the present invention.

【図14】本発明のディジタル形地絡距離継電装置の第
7の実施形態図。
FIG. 14 is a diagram of a seventh embodiment of the digital ground fault distance relay device according to the present invention.

【符号の説明】[Explanation of symbols]

1 送電線 2 変流器 3 変成器 4 入力変換器 5 サンプリング保持回路 6 アナログディジタル変換回路 7 メモリ 8 CPU 9 I/Oインターフェース DESCRIPTION OF SYMBOLS 1 Transmission line 2 Current transformer 3 Transformer 4 Input converter 5 Sampling holding circuit 6 Analog-digital conversion circuit 7 Memory 8 CPU 9 I / O interface

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電力系統の送電線の電圧、電流を所定の
周期でサンプリングして取り込み、抵抗、インダクタン
スからなる送電線の線路方程式から抵抗分、インダクタ
ンス分を直接算出して地絡事故点を検出するディジタル
形地絡距離リレーにおいて、抵抗分の零相電流補償係数
とリアクタンス分の零相電流補償係数を各々個別に設定
する第1の手段と、該第1の手段で設定された抵抗分の
零相電流補償係数を零相電流に乗じて相電流と加算した
抵抗分補償相電流とリアクタンス分の零相電流補償係数
を零相電流に乗じて相電流と加算したリアクタンス補償
相電流及び当該相電圧とから抵抗分、リアクタンス分を
算出して、当該送電線の所定領域内で地絡事故点が生じ
たか否かを判定する第2の手段と、該送電線の2相以上
の地絡事故を検出する第3の手段と、該第3の手段で2
相以上の地絡事故と判定されたら該第2の手段の検出出
力を阻止する第4の手段からなることを特徴とするディ
ジタル形地絡距離継電装置。
1. A power line transmission line voltage and current are sampled and taken at a predetermined period, and a resistance component and an inductance component are directly calculated from a transmission line equation of resistance and inductance to determine a ground fault point. In a digital ground fault distance relay to be detected, a first means for individually setting a zero-phase current compensation coefficient for a resistance and a zero-phase current compensation coefficient for a reactance, and a resistance component set by the first means. The resistance compensation phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient and added to the phase current, and the reactance compensation phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient by reactance and adding the phase current, and A second means for calculating a resistance component and a reactance component from the phase voltage to determine whether a ground fault has occurred in a predetermined area of the transmission line; and a ground fault of two or more phases of the transmission line. Detect accidents Third means, and the third means
A digital ground fault distance relay device, comprising: a fourth means for blocking the detection output of the second means when it is determined that a ground fault has occurred in more than one phase.
【請求項2】 該送電線の2相以上の地絡事故を、抵抗
分、リアクタンス分を算出して、前記第2の手段よりも
広い領域を検出するように構成した第3の手段からなる
ことを特徴とする請求項1記載のディジタル形地絡距離
継電装置。
2. A third means configured to calculate a resistance component and a reactance component in a ground fault of two or more phases of the transmission line to detect a wider area than the second means. 2. The digital ground fault distance relay device according to claim 1, wherein:
【請求項3】 該送電線の2相以上の地絡事故を各相の
相電圧の大きさが所定値以下になったことで検出するよ
うに構成した第3の手段からなることを特徴とする請求
項1記載のディジタル形地絡距離継電装置。
3. A third means configured to detect a ground fault of two or more phases of the transmission line when a magnitude of a phase voltage of each phase becomes less than a predetermined value. The digital ground fault distance relay device according to claim 1.
【請求項4】 該送電線の2相以上の地絡事故を各相の
相電流の大きさが所定値以上になったことで検出するよ
うに構成した第3の手段からなることを特徴とする請求
項1記載のディジタル形地絡距離継電装置。
4. A third means configured to detect a ground fault of two or more phases of the transmission line when a magnitude of a phase current of each phase becomes a predetermined value or more. The digital ground fault distance relay device according to claim 1.
【請求項5】 遅れ相の地絡事故を検出する第5の手段
と、前記第1の手段で設定された抵抗分の零相電流補償
係数とリアクタンス分の零相電流補償係数の比が所定値
以上になったら、前記第3の手段の機能を活かし、未満
となったら前記第3の手段の検出出力を阻止して、前記
第5の手段で前記第2の手段の検出出力を阻止する第6
の手段とからなることを特徴とする請求項1記載のディ
ジタル形地絡距離継電装置。
5. A fifth means for detecting a ground-fault accident in a lag phase, wherein a ratio of a zero-phase current compensation coefficient for the resistance and a zero-phase current compensation coefficient for the reactance set by the first means is a predetermined value. If the value is not less than the value, the function of the third means is utilized, and if the value is less than the value, the detection output of the third means is blocked, and the detection output of the second means is blocked by the fifth means. Sixth
2. The digital ground fault distance relay device according to claim 1, comprising:
【請求項6】 遅れ相の地絡事故を検出する第5の手段
と、前記第1の手段で設定された抵抗分の零相電流補償
係数とリアクタンス分の零相電流補償係数の比が所定値
以上になったら、抵抗分の零相電流補償係数をリアクタ
ンス分の零相電流補償係数と同一値とし、前記第5の手
段の出力で前記第2の手段の検出出力を阻止する第7の
手段とからなることを特徴とする請求項1記載のディジ
タル形地絡距離継電装置。
6. A fifth means for detecting a lag phase ground fault, wherein a ratio of a zero-phase current compensation coefficient for the resistance and a zero-phase current compensation coefficient for the reactance set by the first means is a predetermined value. When the value becomes equal to or greater than the value, the zero-phase current compensation coefficient for the resistance is set to the same value as the zero-phase current compensation coefficient for the reactance, and the output of the fifth means blocks the detection output of the second means. 2. The digital ground fault distance relay device according to claim 1, comprising:
【請求項7】 電力系統の送電線の電圧、電流を所定の
周期でサンプリングして取り込んで、抵抗、インダクタ
ンスからなる送電線の線路方程式から抵抗分、インダク
タンス分を直接算出して地絡事故点を検出するディジタ
ル形地絡距離継電装置において、抵抗分の零相電流補償
係数とリアクタンス分の零相電流補償係数を各々個別に
設定する第1の手段と、該第1の手段で設定された抵抗
分の零相電流補償係数を零相電流に乗じて相電流と加算
した抵抗分補償相電流とリアクタンス分の零相電流補償
係数を零相電流に乗じて相電流と加算したリアクタンス
補償相電流及び当該相電圧とから抵抗分、リアクタンス
分を算出して、当該送電線の所定領域内で地絡事故点が
生じたか否かを判定する第2の手段と、該第1の手段で
設定された抵抗分の零相電流補償係数を零相電流に乗じ
て相電流と加算した抵抗分補償相電流と、前記第1の手
段で設定されたリアクタンス分の零相電流補償係数を零
相電流に乗じて相電流と加算したリアクタンス補償相電
流の位相差を算出して所定値以上になったら、該第2の
手段の検出出力を阻止し、未満となったら遅れ相の地絡
事故を検出する第5の手段の出力で前記第2の手段の検
出出力を阻止する第8の手段とからなることを特徴とす
るディジタル形地絡距離継電装置。
7. A voltage and current of a transmission line of a power system are sampled and taken at a predetermined period, and a resistance and an inductance are directly calculated from a line equation of the transmission line composed of a resistance and an inductance. And a first means for individually setting a zero-phase current compensation coefficient for the resistance and a zero-phase current compensation coefficient for the reactance, respectively. The resistance compensation phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient and added to the phase current, and the reactance compensation phase obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient by the reactance and added to the phase current A second means for calculating a resistance component and a reactance component from the current and the phase voltage to determine whether a ground fault point has occurred in a predetermined area of the transmission line; and setting the first means. Resistance A resistance-compensated phase current obtained by multiplying the zero-phase current compensation coefficient by the zero-phase current and added to the phase current, and a phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient for the reactance set by the first means. Calculating the phase difference of the reactance compensating phase current, which is added to the above, if the value is equal to or more than a predetermined value, the detection output of the second means is blocked; And a eighth means for preventing the detection output of the second means with the output of the digital ground fault distance relay device.
JP36702897A 1997-12-25 1997-12-25 Digital ground fault distance relay Expired - Fee Related JP3630272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36702897A JP3630272B2 (en) 1997-12-25 1997-12-25 Digital ground fault distance relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36702897A JP3630272B2 (en) 1997-12-25 1997-12-25 Digital ground fault distance relay

Publications (2)

Publication Number Publication Date
JPH11191922A true JPH11191922A (en) 1999-07-13
JP3630272B2 JP3630272B2 (en) 2005-03-16

Family

ID=18488287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36702897A Expired - Fee Related JP3630272B2 (en) 1997-12-25 1997-12-25 Digital ground fault distance relay

Country Status (1)

Country Link
JP (1) JP3630272B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100393909B1 (en) * 2001-03-29 2003-08-06 유호전기공업주식회사 Methol of distance relay for protecting transmission line with removal reactance effect
JP2017005868A (en) * 2015-06-10 2017-01-05 三菱電機株式会社 Distance relay device and transmission line protection method
CN109782117A (en) * 2019-03-29 2019-05-21 云南电网有限责任公司电力科学研究院 A kind of ground fault disappearance method of discrimination based on controllable voltage source range-adjusting
CN110470950A (en) * 2019-08-16 2019-11-19 深圳供电局有限公司 Fault positioning method for transmission line

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100393909B1 (en) * 2001-03-29 2003-08-06 유호전기공업주식회사 Methol of distance relay for protecting transmission line with removal reactance effect
JP2017005868A (en) * 2015-06-10 2017-01-05 三菱電機株式会社 Distance relay device and transmission line protection method
CN109782117A (en) * 2019-03-29 2019-05-21 云南电网有限责任公司电力科学研究院 A kind of ground fault disappearance method of discrimination based on controllable voltage source range-adjusting
CN110470950A (en) * 2019-08-16 2019-11-19 深圳供电局有限公司 Fault positioning method for transmission line
CN110470950B (en) * 2019-08-16 2021-07-16 深圳供电局有限公司 Fault location method for power transmission line

Also Published As

Publication number Publication date
JP3630272B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
Roberts et al. Directional element design and evaluation
US5956220A (en) Adaptive distance protection system
EP1982395B1 (en) Method and adaptive distance protection relay for power transmission lines
US6603298B2 (en) System for estimating the frequency of the power signal on a power transmission line
US5390067A (en) Phase selection for ground fault
JP2004080839A (en) Ground direction relay and ground direction relay device
US5576618A (en) Process and apparatus for comparing in real time phase differences between phasors
Calero Rebirth of negative-sequence quantities in protective relaying with microprocessor-based relays
JP3456952B2 (en) Digital type distance relay
EP0076697A1 (en) Protection system for high voltage transmission lines
CN114184843A (en) Method and apparatus for estimating source impedance on one or more transmission lines
JPH11191922A (en) Digital ground distance relaying device
Alexander et al. Ground distance relaying: Problems and principles
JP3575814B2 (en) Power system fault location system
Sidhu et al. Accelerated trip scheme for second-zone distance protection
JP2971329B2 (en) Bus protection relay
JP2002135969A (en) Digital protective relay
US6154687A (en) Modified cosine filters
JP2581061B2 (en) Power system protection device
JP2577364B2 (en) 1-line ground fault detection relay system
JP2597653B2 (en) Fault location device
JP2616285B2 (en) Zero-phase current detector
Kasztenny et al. Application of distance and line current differential relays in breaker-and-a-half configurations
JPH02106126A (en) Method and apparatus for distinguishing types of failures in transmission line
Henville et al. How Low Can you Go?–More on the Limits of Sensitivity

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees