JPH11189153A - On-vehicle cooler - Google Patents

On-vehicle cooler

Info

Publication number
JPH11189153A
JPH11189153A JP9358128A JP35812897A JPH11189153A JP H11189153 A JPH11189153 A JP H11189153A JP 9358128 A JP9358128 A JP 9358128A JP 35812897 A JP35812897 A JP 35812897A JP H11189153 A JPH11189153 A JP H11189153A
Authority
JP
Japan
Prior art keywords
vehicle
cooler
wind
traveling
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9358128A
Other languages
Japanese (ja)
Other versions
JP3877408B2 (en
Inventor
Joji Oshima
丈治 大島
Hiroyuki Kondo
博之 近藤
Yoshitsugu Hasegawa
義次 長谷川
Satoru Koto
悟 古藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP35812897A priority Critical patent/JP3877408B2/en
Publication of JPH11189153A publication Critical patent/JPH11189153A/en
Application granted granted Critical
Publication of JP3877408B2 publication Critical patent/JP3877408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve cooling performance by increasing the passing gas quantity of the cooling pipe group of an on-vehicle cooler. SOLUTION: In an on-vehicle cooler provided with a plurality of U-shaped cooling pipes 9 in a surface perpendicular to a traveling direction and plural rows of cooling pipes 9 in the traveling direction, baffle plates 10a and 10b are arranged to cover the outer periphery of the cooling pipes 9 in the specified length of both ends of the traveling direction. By providing a baffle plate 10 to be divided into the upstream and downstream sides of traveling wind rather than providing it in the center part of the traveling direction of the cooler, the pressure loss of the entire cooler is reduced, the quantity of wind flowing inside is increased and thus cooling performance is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、車両の走行によ
って生じる走行風との熱伝達により冷却を行う車載用冷
却器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-vehicle cooler for cooling by heat transfer with a traveling wind generated by running of a vehicle.

【0002】[0002]

【従来の技術】従来より、車両に搭載された変圧器やリ
アクトル等の電気機器の冷却のために設けられる走行風
を利用した車載用冷却器である車両用冷却器において
は、例えば特公昭57−42203号公報の車載変圧器
用の油冷却器のように、走行方向に対して直角方向の平
面内に複数本配列されたU字型油冷却管群を走行方向に
さらに複数組配するよう構成されている。図20(a)
は前記特許公報に示された従来の車両用油冷却変圧器の
側面図を、図20(b)はその正面図を示している。図
において、100は車両進行方向 、101はU字型に
整形された管状の冷却管、102はヘッダで、このヘッ
ダ102に冷却管101は溶接等により取り付けられて
いる。103は冷却媒体の出入口を形成する流通口で、
同じくヘッダ102に溶接等で取り付けられている。1
04は取り付けられたU字型の冷却管101群の中心に
位置する貫通部である。
2. Description of the Related Art Conventionally, a vehicular cooler that is a vehicular cooler that uses a traveling wind provided for cooling electrical equipment such as a transformer and a reactor mounted on a vehicle is disclosed in, for example, Japanese Patent Publication No. As in the oil cooler for a vehicle-mounted transformer disclosed in Japanese Patent No. 42203, a plurality of sets of U-shaped oil cooling pipes arranged in a plane perpendicular to the traveling direction are further arranged in the traveling direction. Have been. FIG. 20 (a)
FIG. 20B is a side view of a conventional oil cooling transformer for a vehicle shown in the patent publication, and FIG. 20B is a front view thereof. In the drawing, reference numeral 100 denotes a vehicle traveling direction, 101 denotes a U-shaped tubular cooling pipe, 102 denotes a header, and the cooling pipe 101 is attached to the header 102 by welding or the like. 103 is a circulation port which forms an entrance and exit of the cooling medium,
Similarly, it is attached to the header 102 by welding or the like. 1
Reference numeral 04 denotes a through portion located at the center of the group of attached U-shaped cooling pipes 101.

【0003】次に図を用いて冷却媒体の経路を示すと、
車両用変圧器本体から配管を介して送られてきた例えば
油などの冷却媒体は流通口103に入り、ヘッダ102
から冷却管101内を通り再びヘッダ102へ流入す
る。そして流通口103から配管を介して再び車両用変
圧器本体へ戻る。冷却媒体が冷却管101を流通する際
に、冷却管101外表面において自然対流と、走行風が
冷却管101群の表面を通過する際の強制対流とによる
熱伝達により外部空気と熱交換が行われるので冷却媒体
は冷却される。ここで、強制対流熱伝達による冷却効果
を促進するために、前記冷却器101は走行風量の大き
い車両側部に設置されていた。
Next, the route of the cooling medium will be described with reference to the drawings.
The cooling medium such as oil sent from the vehicle transformer main body through the pipe enters the distribution port 103 and
From the cooling pipe 101 and flows into the header 102 again. Then, the flow returns to the vehicle transformer main body from the distribution port 103 via a pipe. When the cooling medium flows through the cooling pipes 101, heat exchange with the external air is performed by heat transfer by natural convection on the outer surface of the cooling pipes 101 and forced convection when the traveling wind passes through the surface of the group of cooling pipes 101. The cooling medium is cooled. Here, in order to promote the cooling effect by forced convection heat transfer, the cooler 101 is installed on the side of the vehicle where the traveling airflow is large.

【0004】また、車両用リアクトルの冷却方式におい
て、同様に走行風を利用した発明に関しては、実開昭5
5−47749号公報があり、その外観図を図21に示
す。図において、105は外周を円筒で覆われた円筒巻
線、106は前記円筒巻線105を支持するための支持
材、107は支持材106を介して円筒巻線105が固
定される車体、108はリアクトルの冷却風出入口の口
径に合わせた大きさを有する漏斗状あるいは一部欠損し
た漏斗状の風ガイド、109は通風方向である。また、
車両107の床下に取り付けられた前記円筒巻線105
は、円筒状に巻回し、水平方向に風を流通させるように
設置されている。
[0004] Further, in the cooling system of the vehicle reactor, the invention utilizing the traveling wind is also disclosed in Japanese Utility Model Application Laid-open No.
Japanese Unexamined Patent Application Publication No. 5-47749 is disclosed in FIG. 21. In the drawing, reference numeral 105 denotes a cylindrical winding whose outer periphery is covered by a cylinder; 106, a support member for supporting the cylindrical winding 105; 107, a vehicle body to which the cylindrical winding 105 is fixed via the support member 106; Is a funnel-shaped or partially-funnel-shaped wind guide having a size corresponding to the diameter of the cooling air inlet / outlet of the reactor, and 109 is a ventilation direction. Also,
The cylindrical winding 105 mounted under the floor of the vehicle 107
Is wound in a cylindrical shape and installed so as to allow the wind to flow in the horizontal direction.

【0005】車両が走行すると、リアクトル近傍には車
両進行方向100とは反対方向に走行風が吹き、その走
行風が漏斗状の風ガイド108によって集められ、円筒
巻線105の内部に導びかれてそこに発生する熱を奪っ
て巻線を冷却する。
When the vehicle travels, a traveling wind blows in the direction opposite to the vehicle traveling direction 100 in the vicinity of the reactor, and the traveling wind is collected by a funnel-shaped wind guide 108 and guided inside the cylindrical winding 105. The heat generated there is taken away and the winding is cooled.

【0006】[0006]

【発明が解決しようとする課題】特公昭57−4220
3号公報に記載された従来の車載変圧器用の油冷却器で
は、以下のような欠点がある。まず、冷却管101によ
り構成された圧力損失の大きな冷却器を圧力損失の存在
しない開放空間に流れる走行風中に曝すため、走行風は
圧力損失の大きな冷却管101群間には流れ難く、上流
端から冷却管101群間に侵入した外部空気の大半は開
放空間に流出することとなり、冷却能力が低下する。さ
らに、走行風を冷却管群間に導くための導風構造を有し
ないため、風取り入れ能力に劣る。また、冷却管が車側
側に露出しているため、飛石や降雪等に対し強度的な問
題があった。
[Problems to be Solved by the Invention] Japanese Patent Publication No. 57-4220
The conventional oil cooler for a vehicle-mounted transformer described in Japanese Patent Publication No. 3 has the following disadvantages. First, since the cooler having a large pressure loss formed by the cooling pipes 101 is exposed to the traveling wind flowing through the open space where there is no pressure loss, the traveling wind hardly flows between the cooling pipes 101 having a large pressure loss. Most of the external air that has entered between the cooling pipes 101 from the end flows out to the open space, and the cooling capacity is reduced. Further, since there is no wind guiding structure for guiding the traveling wind between the cooling pipe groups, the wind intake capacity is poor. In addition, since the cooling pipe is exposed on the vehicle side, there is a problem in terms of strength against stepping stones, snowfall, and the like.

【0007】次に、実開昭55−47749号公報に記
載された従来の車載リアクトルの冷却方式では、走行風
を効率よく取り入れるための風ガイドを有するものの、
被冷却体である円筒巻線の外周が円筒により覆われ通気
性を有しないため、上記特公昭57−42203号公報
に記載された従来の車載変圧器用の油冷却器のような、
冷却体に覆いを設けない露出構造の場合よりも圧力損失
が増大し、風ガイド108による採風効果が相殺されて
かえって冷却体の通過風量が減少して冷却効果が損なわ
れるという問題点がある。
[0007] Next, in the conventional cooling system for a vehicle-mounted reactor described in Japanese Utility Model Laid-Open Publication No. 55-47949, although a wind guide for efficiently taking in the traveling wind is provided,
Since the outer periphery of the cylindrical winding to be cooled is covered by the cylinder and has no air permeability, such as a conventional oil cooler for a vehicle-mounted transformer described in JP-B-57-42203.
There is a problem that the pressure loss increases as compared with the case of the exposed structure in which the cooling body is not provided with a cover, so that the wind collecting effect by the wind guide 108 is canceled out, and the amount of air passing through the cooling body is reduced, thereby impairing the cooling effect.

【0008】この発明は以上のような問題点を解消する
ためになされたもので、熱伝達に有効な走行風の風量を
少しでも多く確保して冷却能力の向上を図ることができ
る車載用冷却器を得ることを目的とする。また、冷却能
力を損なうことなく飛石等による損傷を防止することが
できる車載用冷却器を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has been made in order to improve the cooling capacity by securing a large amount of traveling wind effective for heat transfer. The purpose is to obtain a vessel. It is another object of the present invention to provide a vehicle-mounted cooler capable of preventing damage due to flying stones or the like without impairing the cooling capacity.

【0009】[0009]

【課題を解決するための手段】請求項1に係る車載用冷
却器は、車両の走行方向に所定の長さを有し上記走行方
向と直角に所定の面積を有する空間内に複数本の冷却管
を分布配設してなり、上記冷却管と上記車両の走行によ
って生じる走行風との熱伝達により冷却を行う車載用冷
却器において、上記空間の上記走行方向両端所定長の部
分を、上記面積の外周に沿って覆うように配設された導
風板を備えたものである。
According to a first aspect of the present invention, there is provided a vehicle-mounted cooler having a plurality of cooling units disposed in a space having a predetermined length in a traveling direction of a vehicle and having a predetermined area perpendicular to the traveling direction. In a vehicle-mounted cooler in which pipes are arranged and distributed to perform cooling by heat transfer between the cooling pipe and traveling wind generated by traveling of the vehicle, a portion of the space having a predetermined length at both ends in the traveling direction is defined by the area And a baffle plate arranged to cover along the outer periphery of the air conditioner.

【0010】また、請求項2に係る車載用冷却器は、請
求項1において、その導風板は、その走行方向と直角な
開口面積が、空間の上記走行方向中央寄りから上記走行
方向端部にかけて順次増大するようにしたものである。
According to a second aspect of the present invention, in the vehicle-mounted cooler according to the first aspect, the baffle plate has an opening area perpendicular to the traveling direction, the space being closer to the traveling direction center of the space than the traveling direction end. , And sequentially increases.

【0011】また、請求項3に係る車載用冷却器は、請
求項2において、その導風板は、その走行方向を含む平
面で切断した断面が直線状となるようにしたものであ
る。
According to a third aspect of the present invention, there is provided a vehicle-mounted cooler according to the second aspect, wherein the air guide plate has a straight cross section cut along a plane including the traveling direction.

【0012】また、請求項4に係る車載用冷却器は、請
求項2において、その導風板は、その走行方向を含む平
面で切断した断面が、その走行方向両端では上記走行方
向と平行となるようにしたものである。
According to a fourth aspect of the present invention, in the vehicle-mounted cooler according to the second aspect, the cross section of the air guide plate cut along a plane including the traveling direction is parallel to the traveling direction at both ends in the traveling direction. It is to become.

【0013】また、請求項5に係る車載用冷却器は、請
求項1または2において、その導風板を、走行方向に連
なって配設された複数の導風板片からなるものとし、上
記一の導風板片の上記走行方向一端と該一の導風板片に
隣接する導風板片の上記走行方向他端とが、上記走行方
向と直角な方向に所定の間隔を介して位置するようにし
たものである。
According to a fifth aspect of the present invention, in the vehicle-mounted cooler according to the first or second aspect, the baffle plate comprises a plurality of baffle plate pieces arranged continuously in the traveling direction. The one end in the running direction of one baffle plate piece and the other end in the running direction of the baffle plate piece adjacent to the one baffle plate piece are positioned at a predetermined interval in a direction perpendicular to the running direction. It is something to do.

【0014】また、請求項6に係る車載用冷却器は、請
求項5において、その各導風板片は、空間の走行方向端
部側におけるその走行方向と直角な開口面積が、上記空
間の走行方向端部側から上記走行方向中央寄りにかけて
順次増大するようにしたものである。
According to a sixth aspect of the present invention, in the vehicle-mounted cooler according to the fifth aspect, each of the baffle plates has an opening area at an end portion side of the space in the running direction perpendicular to the running direction of the space. It increases sequentially from the end in the running direction to the center in the running direction.

【0015】また、請求項7に係る車載用冷却器は、請
求項1において、その導風板を熱良導体で構成し、空間
内の最外周に配設された冷却管と上記導風板とを熱的に
接続したものである。
According to a seventh aspect of the present invention, in the vehicle-mounted cooler according to the first aspect, the air guide plate is formed of a good heat conductor, and the cooling pipe disposed on the outermost periphery in the space and the air guide plate are provided. Are thermally connected.

【0016】請求項8に係る車載用冷却器は、その両端
がヘッダに接続された略U字型の冷却管を、車両の走行
方向と直角な面内に複数本、かつ上記走行方向に沿って
複数列配設してなり、上記冷却管と上記車両の走行によ
って生じる走行風との熱伝達により冷却を行う車載用冷
却器において、上記直角な面内の最内周に配設された冷
却管と上記ヘッダとにより形成される風貫通部内に設け
られ、上記走行方向端から上記風貫通部に侵入した走行
風を上記冷却管の配設部分へ導く貫通部導風体を備えた
ものである。
[0016] In the vehicle-mounted cooler according to the present invention, a plurality of substantially U-shaped cooling pipes, both ends of which are connected to a header, are provided in a plane perpendicular to the running direction of the vehicle and along the running direction. The vehicle-mounted cooler, which is arranged in a plurality of rows and performs cooling by heat transfer between the cooling pipe and a traveling wind generated by traveling of the vehicle, wherein the cooling arranged at an innermost circumference in the perpendicular plane. A through-portion air guide is provided in an air passage formed by the pipe and the header, and guides traveling wind that has entered the air passage from the end in the traveling direction to a portion where the cooling pipe is provided. .

【0017】また、請求項9に係る車載用冷却器は、請
求項8において、その貫通部導風体は、走行方向を軸と
し上記走行方向と直角な断面が、風貫通部の上記走行方
向中央から端部へかけて順次減少する柱状体としたもの
である。
According to a ninth aspect of the present invention, in the vehicle-mounted cooler according to the eighth aspect, the through-portion air guide has a cross section perpendicular to the traveling direction with the traveling direction as an axis. It is a columnar body that gradually decreases from the end to the end.

【0018】また、請求項10に係る車載用冷却器は、
請求項8において、その貫通部導風体は、略平行に所定
の間隔を介して配設され風貫通部の走行方向端部側が凸
となる略傘形状の複数の導風体片からなり、上記各導風
体片の上記走行方向と直角な面積が、上記風貫通部の上
記走行方向中央から端部へかけて順次減少するようにし
たものである。
Further, the vehicle-mounted cooler according to claim 10 is:
In claim 8, the through-portion air guide is composed of a plurality of substantially umbrella-shaped air guide pieces that are disposed substantially parallel to each other at a predetermined interval and that has a protruding end portion in the running direction of the air-through portion. The area of the wind guide piece perpendicular to the running direction is gradually reduced from the center to the end of the wind penetration portion in the running direction.

【0019】請求項11に係る車載用冷却器は、車両の
走行方向に所定の長さを有し上記走行方向と直角に所定
の面積を有する空間内に複数本の冷却管を分布配設して
なり、上記冷却管と上記車両の走行によって生じる走行
風との熱伝達により冷却を行う車載用冷却器において、
上記空間の上記走行方向はその全長にわたり、上記面積
の周方向は飛石等障害物の衝突の可能性が高い限定され
た部分にわたり上記空間を覆うように配設された保護カ
バーを備えたものである。
According to the eleventh aspect of the present invention, there is provided an in-vehicle cooler having a plurality of cooling pipes distributed in a space having a predetermined length in a traveling direction of a vehicle and having a predetermined area perpendicular to the traveling direction. In a vehicle-mounted cooler that performs cooling by heat transfer between the cooling pipe and traveling wind generated by traveling of the vehicle,
The traveling direction of the space is over its entire length, and the circumferential direction of the area is provided with a protective cover disposed so as to cover the space over a limited portion having a high possibility of collision of an obstacle such as a stepping stone. is there.

【0020】また、請求項12に係る車載用冷却器は、
請求項11において、その保護カバーの走行方向両端所
定長を除く中央の部分に、障害物の貫通を阻止する大き
さで形成された通風孔を設けたものである。
Further, the vehicle-mounted cooler according to claim 12 is:
In the eleventh aspect, a ventilation hole having a size that prevents an obstacle from penetrating is provided in a central portion of the protective cover except for a predetermined length at both ends in the traveling direction.

【0021】また、請求項13に係る車載用冷却器は、
請求項11において、その保護カバーは、走行方向両端
に向かって開口し上記走行方向中央に対称なルーバー構
造としたものである。
[0021] The vehicle-mounted cooler according to claim 13 is:
In the eleventh aspect, the protective cover has a louver structure that opens toward both ends in the traveling direction and is symmetrical with respect to the center in the traveling direction.

【0022】また、請求項14に係る車載用冷却器は、
請求項1ないし7のいずれかに記載の導風板と請求項8
ないし10のいずれかに記載の貫通部導風体とを備えた
ものである。
[0022] A vehicle-mounted cooler according to claim 14 is
An air guide plate according to any one of claims 1 to 7, and an air guide plate according to claim 8.
Or a through-portion air guide according to any one of (1) to (10).

【0023】また、請求項15に係る車載用冷却器は、
請求項8ないし10のいずれかに記載の貫通部導風体と
請求項11ないし14のいずれかに記載の保護カバーと
を備えたものである。
Further, a vehicle-mounted cooler according to claim 15 is
According to another aspect of the present invention, there is provided a through-portion air guide according to any one of claims 8 to 10 and a protective cover according to any of claims 11 to 14.

【0024】[0024]

【発明の実施の形態】実施の形態1.図1は、本発明の
実施の形態1における走行風を利用した車載用冷却器の
車両への取り付け構造を車両進行方向から示した図であ
る。図中、1は車両床下に設置された変圧器やリアクト
ル等の車載電気機器本体、2は車載電気機器本体1の発
熱を奪った冷却媒体を冷却するための冷却器、3は冷却
媒体を搬送するための駆動源であるポンプ、4はポンプ
3と冷却器2とを結び冷却媒体を通す配管、5は車載電
気機器本体1が取り付けられている車両、6は車輪、7
はレール、8は道床である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a diagram illustrating a mounting structure of a vehicle-mounted cooler to a vehicle using traveling wind according to a first embodiment of the present invention, as viewed from a vehicle traveling direction. In the figure, 1 is a vehicle electrical equipment main body such as a transformer and a reactor installed under the floor of the vehicle, 2 is a cooler for cooling a cooling medium that has taken heat from the vehicle electrical equipment main body 1, and 3 is a cooling medium transporter. 4 is a pipe connecting the pump 3 and the cooler 2 to pass a cooling medium, 5 is a vehicle to which the vehicle-mounted electric device body 1 is attached, 6 is wheels, 7
Is a rail, and 8 is a roadbed.

【0025】車載電気機器本体1より発生する熱は、
水、油等の液体の顕熱変化、フロンガス、代替フロンガ
ス等の圧縮サイクルにおける相変化を利用した潜熱/顕
熱変化により冷却媒体に吸収され、ポンプ3より配管4
を介して側面に設けられた冷却器2に搬送される。通
常、冷却器は鉄、アルミ、銅等の熱伝導率の高い金属管
をU字型に形成し、それらの冷却管を複数本車両の進行
方向と垂直な平面内及び車両の進行方向に配置して構成
されている。配管4を介して冷却器2に送られてきた冷
却媒体は、冷却器2を構成する冷却管内部に導かれた
後、管内対流熱伝達により管内壁に熱を奪われる。管内
壁に移動した熱は、熱伝導により管壁を移動して管外壁
へ至る。管外壁は低温且つ高速の走行風と接しているた
め、管外空気との対流熱伝達により熱は走行風に持ち去
られる。冷却器2を通過することで冷却された冷却媒体
は、再び配管4を介して車載電気機器本体1へ戻り車載
電気機器本体1からの発熱を奪う。このようなサイクル
を繰り返すことにより、走行風を利用して車載電気機器
本体1を冷却することができる。
The heat generated from the on-vehicle electric device body 1 is:
Sensible heat change of liquids such as water and oil, latent heat / sensible heat change utilizing phase change in the compression cycle of fluorocarbon gas, alternative fluorocarbon gas, etc. are absorbed by the cooling medium, and are pumped from pump 3 to pipe 4
Through the cooler 2 provided on the side surface. Usually, a cooler is formed of a metal tube with high thermal conductivity such as iron, aluminum, copper, etc. in a U-shape, and these cooling tubes are arranged in a plane perpendicular to the traveling direction of the vehicle and in the traveling direction of the vehicle. It is configured. The cooling medium sent to the cooler 2 through the pipe 4 is guided to the inside of the cooling pipe constituting the cooler 2, and then heat is taken by the pipe inner wall by convection heat transfer in the pipe. The heat transferred to the inner wall of the pipe moves on the pipe wall by heat conduction and reaches the outer wall of the pipe. Since the outer wall of the pipe is in contact with the low-speed and high-speed traveling wind, heat is removed by the traveling wind by convective heat transfer with the outside air. The cooling medium cooled by passing through the cooler 2 returns to the in-vehicle electric device main body 1 via the pipe 4 again, and deprives the in-vehicle electric device main body 1 of heat. By repeating such a cycle, the in-vehicle electric device main body 1 can be cooled using the traveling wind.

【0026】ところが、走行風を利用した車両用冷却器
2は車両5の床下に設置されるため、冷却器の走行方向
上流側に他の車載電気機器が設置されることも多く、十
分な走行風が冷却器前面に当たらない場合も多い。また
冷却器自体は、外周にカバーを有しない冷却管の集合体
であるため、冷却器前面より管群間に侵入した走行風が
冷却管群間内部を流れる際に、圧力損失の大きい冷却管
群間より外部の開放空間へ急速に漏れだしていき、冷却
器の走行風下流部では熱交換能力が著しく低下する問題
があった。
However, since the vehicle cooler 2 utilizing the traveling wind is installed under the floor of the vehicle 5, other on-vehicle electric devices are often installed upstream of the cooler in the traveling direction, and sufficient traveling is required. In many cases, the wind does not hit the front of the cooler. In addition, since the cooler itself is an aggregate of cooling pipes having no cover on the outer periphery, the cooling pipe having a large pressure loss when traveling wind flowing between the pipe groups from the front of the cooler flows inside the cooling pipe groups. There was a problem that the water rapidly leaked from the group to the outside open space, and the heat exchange capacity was significantly reduced downstream of the cooler in the traveling wind.

【0027】図2(a)は、上記の2つの問題点を解決
するための車載用冷却器の正面図であり、図2(b)は
その側面図である。図において9は鉄、アルミ、銅等の
熱伝導率の高い金属を肉厚の薄いU字型に整形した冷却
管で、その両端は溶接等によりヘッダHに接続されてい
る。10(10a、10b)は冷却器2の走行方向の両
端部から約4列目の冷却管9群の最外周に位置する冷却
管9を取り巻き覆うように設けられた2枚の導風板、1
1は最内周の冷却管9とヘッダHとにより形成される風
貫通部である。なお、この風貫通部11に侵入した走行
風は、冷却のための熱伝達にほとんど寄与することなく
通過してしまうので、この風貫通部11の断面積は極力
小さい方がよいが金属管をU字型に曲げ加工する際の工
作上の制限から冷却管9の最小曲率半径が定まり、これ
に応じて風貫通部11の断面積が決まることになる。1
2は車両走行方向で、図では両方の向き12a、12b
を矢印で示している。13は走行風方向で、その向き1
3a、13bは走行方向の向きと逆となる。14は冷却
器2が車両進行とともに通過していく開放空間、15
(15a、15b)は走行風が流入する風取込口、16
(16a、16b)は2つに分断して設けられた導風板
10a、10bのうち風上側に位置するものの風下端で
ある風出口である。
FIG. 2A is a front view of a vehicle-mounted cooler for solving the above two problems, and FIG. 2B is a side view thereof. In the figure, reference numeral 9 denotes a cooling pipe formed of a metal having high thermal conductivity such as iron, aluminum, copper or the like into a thin U-shape, and both ends thereof are connected to the header H by welding or the like. 10 (10a, 10b) are two air guide plates provided so as to surround and cover the outermost cooling pipes 9 of the cooling pipe 9 group in the fourth row from both ends of the cooler 2 in the running direction; 1
Reference numeral 1 denotes a wind penetration portion formed by the innermost cooling pipe 9 and the header H. Since the traveling wind that has entered the wind penetration portion 11 passes without substantially contributing to heat transfer for cooling, the cross sectional area of the wind penetration portion 11 is preferably as small as possible. The minimum radius of curvature of the cooling pipe 9 is determined from the restriction on the work when bending into a U-shape, and the cross-sectional area of the wind penetration portion 11 is determined accordingly. 1
2 is a vehicle running direction, and both directions 12a and 12b are shown in the figure.
Are indicated by arrows. 13 is a traveling wind direction, its direction 1
3a and 13b are opposite to the running direction. 14 is an open space through which the cooler 2 passes as the vehicle advances, 15
(15a, 15b) is a wind intake into which the traveling wind flows, 16
(16a, 16b) is an air outlet which is a lower wind end of the wind guide plate 10a, 10b which is provided on the windward side of the two divided and provided.

【0028】車両が矢印12aの向きに進行している場
合、冷却器2には矢印13aの向きから走行風が吹く。
この場合、走行風は走行風上流側の導風板10aの風取
込口15aより冷却器2内部に侵入し、走行風上流端の
冷却管9に衝突して冷却管9外壁面から熱を奪いつつさ
らに冷却管9群の内部に侵入する。この際、前面冷却管
9から約4列目の冷却管までの長さに渡って、冷却器2
の最外周の冷却管9を取り囲むように導風板10aが設
置されているため、風取込口15aより侵入した走行風
は、管群間から開放空間14中に流出せず、そのまま矢
印13aの向きに直進しながら熱交換を行う。導風板1
0aに覆われた空間を通過した走行風は、冷却器2中央
部の導風板10の無い空間に至り、通過する際の圧力損
失が大きい冷却管9群間から風貫通部11あるいは開放
空間14に流出する。逆に車両が矢印12bの向きに進
行している場合には、走行風は矢印13bの向きから導
風板10bの風取込口15bを介して冷却器2内部へ侵
入するので、同様の動作が実現する。
When the vehicle is traveling in the direction of the arrow 12a, the traveling wind blows to the cooler 2 from the direction of the arrow 13a.
In this case, the traveling wind enters the inside of the cooler 2 from the air intake 15a of the wind guide plate 10a on the upstream side of the traveling wind, collides with the cooling pipe 9 at the upstream end of the traveling wind, and removes heat from the outer wall surface of the cooling pipe 9. While robbing, it further enters the inside of the cooling pipe 9 group. At this time, the cooler 2 extends over the length from the front cooling pipe 9 to the cooling pipe in the fourth row.
Since the air guide plate 10a is provided so as to surround the cooling pipe 9 on the outermost periphery, the traveling wind that has entered through the wind intake port 15a does not flow out from between the pipe groups into the open space 14, and the arrow 13a as it is. Heat exchange while going straight ahead. Baffle plate 1
The traveling wind that has passed through the space covered by Oa reaches the space without the baffle plate 10 in the center of the cooler 2, and from the group of cooling pipes 9 having a large pressure loss when passing through, to the wind penetration portion 11 or the open space. Outflow to 14. Conversely, when the vehicle is traveling in the direction of the arrow 12b, the traveling wind enters the inside of the cooler 2 from the direction of the arrow 13b through the air intake 15b of the baffle plate 10b. Is realized.

【0029】ここで、従来の冷却器と本発明の冷却器の
内部の風の流れの違いを図を用いて説明する。図3は、
従来の冷却器を走行方向を含む平面で切断して内部の風
の流れを示した側断面図であり、図4は本発明の冷却器
2の同じく内部の風の流れを示した側断面図である。図
中矢印は走行風の流れを示す速度ベクトルで、大きさは
流速の速さを、方向は流れの向きを示す。まず、図3の
従来の冷却器では、大部分の走行風は、矢印13aの向
きから冷却管9群に侵入した直後に、通過する際の圧力
損失が大きい冷却管9群間から圧力損失のない開放空間
14へ流出する。図から明らかなように、冷却器2の走
行風上流側近傍のみで流速が速く、3列目以降急速に流
速が低下し、5列目以降ではほとんど流れが存在しない
ことが分かる。従って、車両走行方向に複数列の冷却管
9を設けた冷却器では、前縁効果によって走行風上流端
の冷却管9で局所熱伝達率が最大となり、その後走行風
が開放空間14に流出して管群間の流速が激減するた
め、対流熱伝達に伴う局所熱伝達率も急激に低下する。
つまり、図3のような従来の冷却器では、走行風が侵入
する走行風上流近傍の数列の冷却管9でしか効率の良い
熱交換が行われないことが分かる。
Here, the difference in the flow of air between the conventional cooler and the cooler of the present invention will be described with reference to the drawings. FIG.
FIG. 4 is a side sectional view showing a flow of the internal wind when the conventional cooler is cut along a plane including the traveling direction, and FIG. 4 is a side sectional view showing the flow of the internal wind of the cooler 2 of the present invention. It is. The arrow in the figure is a velocity vector indicating the flow of the traveling wind, the magnitude indicates the speed of the flow velocity, and the direction indicates the direction of the flow. First, in the conventional cooler of FIG. 3, most of the traveling wind enters the cooling pipe 9 group from the direction of the arrow 13a, and immediately after passing through the cooling pipe 9 group having a large pressure loss when passing therethrough. Out into the open space 14. As is clear from the figure, the flow velocity is high only in the vicinity of the upstream side of the traveling wind of the cooler 2, the flow velocity rapidly decreases in the third and subsequent rows, and almost no flow exists in the fifth and subsequent rows. Therefore, in the cooler provided with a plurality of rows of cooling pipes 9 in the vehicle running direction, the local heat transfer coefficient is maximized in the cooling pipe 9 at the upstream end of the running wind due to the leading edge effect, and then the running wind flows out to the open space 14. Therefore, the local heat transfer rate accompanying the convective heat transfer sharply decreases because the flow velocity between the tube groups decreases sharply.
That is, in the conventional cooler as shown in FIG. 3, it can be understood that efficient heat exchange is performed only in the several rows of cooling pipes 9 near the upstream of the traveling wind into which the traveling wind enters.

【0030】一方、本発明の冷却器2を示した図4で
は、冷却器2の走行風上流側から侵入した走行風は、導
風板10aが存在するため走行風上流の冷却管2列を通
過直後に解放空間14へ流出することができない。導風
板10aに囲まれた冷却管9群間を導風板10aと平行
に直進する走行風は、若干風貫通部11へ流出するもの
の、ほとんどその流量を減少させることなく冷却管9群
の外表面から熱を奪う。導風板10aに囲まれた領域を
通過した走行風は、開放空間14と連通するため、冷却
管9群間から開放空間14へ流出する。このような流れ
場を有する冷却器2では、走行風が侵入する走行風の最
上流端冷却管9で前縁効果により局所熱伝達率が最大と
なり、導風板10aに覆われている部分では流量がほと
んど変化しないため、対流熱伝達により大きな熱伝達率
が維持される。走行方向中央の導風板10aに覆われて
いない部分では、開放空間14へ走行風が流出するもの
の、従来の冷却器と比べて冷却管9群間で大きな通過流
速があり、充分な局所熱伝達率が得られる。
On the other hand, in FIG. 4 showing the cooler 2 of the present invention, the traveling wind entering from the upstream of the traveling wind of the cooler 2 passes through the two rows of cooling pipes upstream of the traveling wind due to the presence of the baffle plate 10a. Immediately after passing through, it cannot flow out to the open space 14. The traveling wind that travels straight between the groups of cooling tubes 9 surrounded by the air guide plates 10a in parallel to the air guide plates 10a slightly flows out to the wind penetration portion 11, but the flow of the cooling tubes 9 group is hardly reduced. Take heat away from the outer surface. The traveling wind that has passed through the region surrounded by the air guide plate 10 a communicates with the open space 14, and flows out of the group of cooling pipes 9 into the open space 14. In the cooler 2 having such a flow field, the local heat transfer coefficient is maximized by the leading edge effect in the uppermost end cooling pipe 9 of the traveling wind in which the traveling wind enters, and in the portion covered by the baffle plate 10a, Since the flow rate hardly changes, a large heat transfer coefficient is maintained by convective heat transfer. In a portion not covered by the air guide plate 10a at the center in the traveling direction, although the traveling wind flows out into the open space 14, there is a larger passing flow velocity between the cooling pipes 9 compared with the conventional cooler, and sufficient local heat is generated. The transmission rate is obtained.

【0031】ここで、冷却器2の走行方向中央部に導風
板10を設けていない理由を述べる。冷却器2の全面が
導風板10で覆われている場合には、風取込口15から
冷却器内部に侵入した走行風は外部に流出できないため
圧力損失が大きくなり、流入量は激減する。勿論、冷却
器2の熱交換能力も低下する。そこで、冷却器2の走行
方向中央部に導風板10を設けず導風板10を走行風の
上流側と下流側に2分して設けることで、冷却器2全体
の圧力損失を低減し、内部への風の流入量を増大させて
冷却性能を向上させることができる。
Here, the reason why the air guide plate 10 is not provided at the center of the cooler 2 in the running direction will be described. When the entire surface of the cooler 2 is covered with the wind guide plate 10, the traveling wind that has entered the inside of the cooler through the air inlet 15 cannot flow out to the outside, so that the pressure loss increases and the amount of inflow decreases drastically. . Of course, the heat exchange capacity of the cooler 2 also decreases. Therefore, the pressure loss of the entire cooler 2 is reduced by providing the air guide plate 10 in two parts on the upstream side and the downstream side of the traveling wind without providing the wind guide plate 10 at the center of the cooler 2 in the traveling direction. The cooling performance can be improved by increasing the amount of wind flowing into the inside.

【0032】また、車両が駅に停車した場合を想定する
と、車載電気機器本体1の発生損失は十分低い値になる
が、停車中の冷却器2の冷却能力が極端に低下するとそ
れまでの蓄熱容量のために冷却媒体の温度が上昇するこ
とが考えられる。この場合、この発明のように、冷却器
2の中央には導風板10が設けられていないので、停車
中で走行風が存在しなくても、この中央部分に自然対流
による上昇気流が発生し、これが導風板10a、10b
内の空気を引き込むので、冷却器2の冷却能力の極端な
低下が防止され、冷却媒体の温度の上昇を防ぐという利
点もある。
Further, assuming that the vehicle stops at the station, the generated loss of the on-vehicle electric equipment body 1 becomes a sufficiently low value. However, when the cooling capacity of the cooler 2 during the stop is extremely reduced, the heat storage until that time is stopped. It is possible that the temperature of the cooling medium increases due to the capacity. In this case, as in the present invention, since the air guide plate 10 is not provided at the center of the cooler 2, even when the vehicle is stopped and no traveling wind is present, an updraft due to natural convection is generated in this central portion. And this is the baffle plate 10a, 10b
Since the inside air is drawn in, there is an advantage that an extreme decrease in the cooling capacity of the cooler 2 is prevented and an increase in the temperature of the cooling medium is prevented.

【0033】以上のように構成されているため、冷却器
は大流量の走行風を冷却器の走行方向中央部まで保持し
つつ、その冷却性能を向上させることができる。
With the above configuration, the cooler can improve the cooling performance of the cooler while maintaining a large flow of the traveling wind up to the center of the cooler in the traveling direction.

【0034】なお、本実施の形態では、導風板10a、
10bは冷却器2の走行方向の両端から4列目までを覆
うように設けられていたが、覆うべき長さ(列数)は冷
却器2の置かれる外環境によりその最適長さは若干変わ
るものであり、少なくとも走行方向の両端から1列目以
上を覆い、走行方向中央部には設けないものであればよ
い。
In this embodiment, the air guide plate 10a,
10b was provided so as to cover the fourth row from both ends of the cooler 2 in the running direction, but the optimum length (the number of rows) to be covered slightly varies depending on the external environment where the cooler 2 is placed. What is necessary is just to cover at least the first row from both ends in the running direction and not to be provided at the center in the running direction.

【0035】実施の形態2.次に、風取込口15の開口
面積を増大させて採風量を増大させる発明について述べ
る。図5(a)は本発明の実施の形態2における車載用
冷却器の正面図、図5(b)はその側面図である。図に
おいて導風板10a、10bは冷却器2の走行方向両端
部から4列目までの冷却管9の最外周を取り囲むように
設けられている。さらに、風取込口15a、15bの開
口面積は導風板10a、10bの中央側に位置する風出
口16a、16bの開口面積よりも大きく、その間を直
線状に結ぶよう薄板によって導風板10a、10bが設
けられている。
Embodiment 2 Next, a description will be given of an invention in which the opening area of the wind intake port 15 is increased to increase the amount of collected air. FIG. 5 (a) is a front view of a vehicle-mounted cooler according to Embodiment 2 of the present invention, and FIG. 5 (b) is a side view thereof. In the figure, the air guide plates 10a and 10b are provided so as to surround the outermost periphery of the cooling pipes 9 in the fourth row from both ends in the running direction of the cooler 2. Further, the opening areas of the wind intake ports 15a, 15b are larger than the opening areas of the wind outlets 16a, 16b located at the center side of the wind guide plates 10a, 10b, and the thin plate guides the wind guide plates 10a so as to connect them linearly. , 10b are provided.

【0036】車両が矢印12aの向きに走行している場
合、走行風は矢印13aの向きに吹く。一般に車両用の
冷却器は床下等の車体に近接した部位に設置される。従
って、より多くの走行風を冷却器2内部に取り入れるた
めには、車体近傍に発達した走行風の境界層の外側に冷
却器2を設置すべきである。ところが、寸法上、車両に
は安全上の問題から車両限界と呼ばれる機器取り付けの
突出量制限が存在する。そのため、冷却器2は境界層内
部にしか取り付けられないことになり、冷却器2には車
両走行速度よりも低い流速の風が当たる。そこで、より
効率的に走行風を取り込むために、図に示したような開
口面積を増大させた風取込口15a、15bを設ける。
図2の導風板と比較して、より多くの走行風を冷却器内
部に導入することができ、延いては風量増加に伴い冷却
性能が飛躍的に向上することは明らかである。
When the vehicle is traveling in the direction of arrow 12a, the traveling wind blows in the direction of arrow 13a. Generally, a vehicle cooler is installed at a location close to a vehicle body such as under the floor. Therefore, in order to take in more traveling wind into the cooler 2, the cooler 2 should be installed outside the boundary layer of the traveling wind developed near the vehicle body. However, in terms of size, vehicles have a protruding amount limit for device attachment called a vehicle limit due to safety issues. Therefore, the cooler 2 can be mounted only inside the boundary layer, and the cooler 2 is blown by a wind having a flow velocity lower than the vehicle traveling speed. Therefore, in order to take in the traveling wind more efficiently, the wind intake ports 15a and 15b having the increased opening area as shown in the figure are provided.
It is clear that more traveling air can be introduced into the inside of the cooler as compared with the air guide plate of FIG. 2, and that the cooling performance is dramatically improved as the air flow increases.

【0037】従って、風取込口15a、15bの開口面
積を風出口16a、16bの開口面積よりも大きくする
ことにより、冷却器2通過風量を増大させ、冷却性能を
向上させることができる。
Therefore, by making the opening areas of the air intakes 15a, 15b larger than the opening areas of the air outlets 16a, 16b, the amount of air passing through the cooler 2 can be increased, and the cooling performance can be improved.

【0038】さらに、導風板の曲面形状を最適化するこ
とにより、より多くの走行風を冷却器2に導入すること
ができる。即ち、図6(a)は導風板の形状を最適化し
た冷却器2の正面図、図6(b)はその側面図である。
図において、導風板10a、10bは風取込口15a、
15bの開口面積を風出口16a、16bの開口面積よ
りも大きくし、かつ、車両走行方向を含む平面で切断し
た断面形状が、風取込口15a、15bと風出口16
a、16bにおいて極値をとり換言すれば走行方向と平
行の水平となり、両端からの中央で変極点となるような
3次曲線により構成されている。このような断面形状が
3次曲線となるような構成とすることにより、風取込口
15a、15bより取り入れられた走行風は、導風板1
0a、10bの内壁に沿って滑らかに縮流されるため、
その壁面上で剥離が生じず、縮流に伴う圧力損失を抑制
することができる。
Further, by optimizing the curved shape of the air guide plate, more traveling wind can be introduced into the cooler 2. That is, FIG. 6A is a front view of the cooler 2 in which the shape of the air guide plate is optimized, and FIG. 6B is a side view thereof.
In the figure, baffle plates 10a and 10b are provided with wind intakes 15a,
The opening area of the opening 15b is larger than the opening area of the air outlets 16a and 16b, and the cross-sectional shape cut by a plane including the vehicle traveling direction is the air intake ports 15a and 15b and the air outlet 16
In other words, the extremum is a horizontal line parallel to the running direction, and is formed by a cubic curve that becomes an inflection point at the center from both ends. By adopting a configuration in which such a cross-sectional shape becomes a cubic curve, the traveling wind introduced from the wind intake ports 15a and 15b allows the wind guide plate 1
Because it is smoothly contracted along the inner walls of 0a and 10b,
Separation does not occur on the wall surface, and pressure loss due to contraction can be suppressed.

【0039】従って、このような3次曲線の断面形状を
有する導風板を設けることにより、より多くの走行風を
冷却器に導入し、その冷却効率を向上させることができ
る。
Accordingly, by providing the air guide plate having such a cubic curved cross-sectional shape, more traveling wind can be introduced into the cooler, and its cooling efficiency can be improved.

【0040】本実施の形態では、導風板10a、10b
は冷却器2の走行方向両端から4列目までを覆うように
設けられていたが、覆うべき長さ(列数)は冷却器2の
置かれる外環境によりその最適長さは若干変わるもので
あり、少なくとも冷却器2の走行方向両端から1列目以
上を覆い、走行方向中央部には設けないものであればよ
い。
In this embodiment, the air guide plates 10a, 10b
Was provided so as to cover the fourth row from both ends of the cooler 2 in the running direction, but the optimum length (the number of rows) to be covered varies slightly depending on the external environment where the cooler 2 is placed. It is sufficient if at least the first row or more is covered from both ends in the running direction of the cooler 2 and not provided at the center in the running direction.

【0041】実施の形態3.実施の形態1ないし2にお
いては、導風板10a、10bは冷却器2の走行風上流
側と下流側の2つの部分に分け、それぞれ一枚の板材を
加工変形して構成されていた。ここで、導風板10a、
10bはそれぞれ複数の板材より構成されていてもよ
く、例えば図7(a)は本発明の実施の形態3における
もので、導風板10a、10bをそれぞれ4枚の導風板
片10A〜10Dより構成した場合の冷却器2の正面図
であり、図7(b)はその側面図である。図において導
風板10aを構成する複数の導風板片10A〜10D
は、冷却器2の最外周の冷却管9を取り囲むように設け
られ、それぞれ風取込口15A〜15Dと風出口16A
〜16Dとそれらを直線的に結ぶ板材とにより成ってお
り、各導風板片10A〜10Dの風取込口15A〜15
Dの開口面積は風出口16A〜16Dの開口面積よりも
大きくなるように漏斗状に形成されている。また、各導
風板片10A〜10Dの風取込口15A〜15Dの開口
面積は、冷却器2の走行方向端部に位置するものほど小
さくなるように構成されている。なお、導風板10bに
ついては説明を省略するが、走行方向中央に対して対称
に同じく4枚の導風板片で構成されている。
Embodiment 3 In the first and second embodiments, the baffle plates 10a and 10b are divided into two portions on the upstream and downstream sides of the traveling wind of the cooler 2, and each is formed by processing and deforming one plate material. Here, the air guide plate 10a,
10b may be composed of a plurality of plate members, for example, FIG. 7 (a) shows the third embodiment of the present invention, in which the baffle plates 10a and 10b are each made up of four baffle plate pieces 10A to 10D. FIG. 7B is a front view of the cooler 2 in the case of the above configuration, and FIG. 7B is a side view thereof. In the figure, a plurality of air guide plate pieces 10A to 10D constituting the air guide plate 10a
Are provided so as to surround the outermost cooling pipe 9 of the cooler 2, and each of the wind inlets 15 </ b> A to 15 </ b> D and the wind outlet 16 </ b> A
-16D and a plate material connecting them linearly, and the air intakes 15A-15 of each of the air guide plate pieces 10A-10D.
The opening area of D is formed in a funnel shape so as to be larger than the opening areas of the air outlets 16A to 16D. In addition, the opening areas of the air intakes 15A to 15D of the respective air guide plate pieces 10A to 10D are configured to be smaller as they are located at the ends of the cooler 2 in the traveling direction. Although the description of the air guide plate 10b is omitted, the air guide plate 10b is similarly formed of four air guide plate pieces symmetrically with respect to the center in the traveling direction.

【0042】次に動作について説明する。本実施の形態
においても、冷却器2の走行方向中央には導風板を設け
ないため、冷却管9群間を通り抜ける際の圧力損失が小
さく、冷却器2内部へ流入する走行風の量を増大させる
ことができる。さらに、導風板10が複数の採風効果を
有する漏斗状の導風板片10A〜10Dにより構成さ
れ、各導風板片10A〜10Dの風取込口15A〜15
Dの開口面積が走行風上流側に隣接する導風板片のそれ
よりも大きくなるよう形成されているため、走行風上流
より供給される走行風を風上側導風板片の風取り込みに
よって阻害されることなく風下に至るまで冷却器2内部
に取り込むことができる。また、それぞれの導風板片1
0A〜10Dが走行風上流から下流に向かってその断面
積を減少させるように構成されているため、冷却器2内
部へ侵入した走行風は、導風板片10A〜10Dに沿っ
た冷却管9群内部へ向かうベクトル成分を与えられるた
め、冷却器2内部の通過流速を増大させる。
Next, the operation will be described. Also in this embodiment, since the air guide plate is not provided at the center of the cooler 2 in the traveling direction, the pressure loss when passing through the group of cooling pipes 9 is small, and the amount of the traveling wind flowing into the inside of the cooler 2 is reduced. Can be increased. Furthermore, the baffle plate 10 is constituted by a plurality of funnel-shaped baffle plate pieces 10A to 10D having a wind collecting effect, and the air intake ports 15A to 15A of each baffle plate piece 10A to 10D.
Since the opening area of D is formed so as to be larger than that of the baffle plate adjacent to the upstream side of the traveling wind, the traveling wind supplied from the upstream of the traveling wind is hindered by the wind intake by the windward baffle plate piece. It can be taken into the inside of the cooler 2 to the leeward without being performed. In addition, each air guide plate piece 1
Since the cross-sectional area of the cooling air 0A to 10D decreases from the upstream to the downstream of the traveling wind, the traveling wind that has entered the inside of the cooler 2 is cooled by the cooling pipes 9 along the air guide plate pieces 10A to 10D. Since the vector component toward the inside of the group is given, the flow velocity inside the cooler 2 is increased.

【0043】以上のように、より多くの走行風を冷却器
2に導入し、冷却効率を向上させることができる。更
に、車両が停車中の場合、先述した通り、導風板10が
存在しない走行方向中央部分は自然対流による熱伝達が
行われるが、導風板10が存在する部分も、各導風板片
10A〜10Dの間隙を通って気流の上昇が可能とな
り、その分停車中の冷却器2の冷却能力が増大するとい
う利点もある。
As described above, more traveling air can be introduced into the cooler 2 to improve the cooling efficiency. Furthermore, when the vehicle is stopped, as described above, heat transfer by natural convection is performed in the central portion in the traveling direction where the baffle plate 10 does not exist. There is also an advantage that the airflow can be increased through the gap of 10A to 10D, and the cooling capacity of the cooler 2 during the stop increases accordingly.

【0044】なお、図7では各導風板片10A〜10D
は、その開口面積が直線状に変化するものとしたが、曲
線状に変化する例えば円弧翼状のものとすれば、風の流
れがより円滑となって流入風量も増大し、その分冷却器
2の冷却能力が増大する。
In FIG. 7, each of the air guide plate pieces 10A to 10D
The opening area changes linearly. However, if the opening area changes in a curved shape, for example, in the shape of an arc wing, the flow of the wind becomes smoother and the inflow air volume increases. Cooling capacity is increased.

【0045】本実施の形態では、導風板10は冷却器2
の走行方向の両端部から4列目までの冷却管9の最外周
を覆うように設けられていたが、覆うべき長さ(列数)
は冷却器2の置かれる外環境によりその最適長さは若干
変わるものであり、少なくとも冷却器2の走行方向両端
から1列目以上を覆い、走行方向中央部には設けないも
のであればよい。
In the present embodiment, the baffle plate 10 is
Is provided so as to cover the outermost periphery of the cooling pipes 9 from the both ends in the running direction to the fourth row, but the length to be covered (the number of rows)
The optimum length slightly varies depending on the external environment in which the cooler 2 is placed, and it is sufficient that the cooler 2 covers at least the first row from both ends in the running direction and is not provided at the center in the running direction. .

【0046】実施の形態4.実施の形態1ないし3にお
いて、導風板10は最外周の冷却管9を取り囲むように
設けられており、最外周の冷却管9とは接しなくてもそ
の性能を発揮することができた。ここでは、前記導風板
10を最外周の冷却管9と接するように配置することに
より、冷却効率をさらに向上させる発明につき述べる。
図8(a)は、本発明の実施の形態4における車載用冷
却器の正面図であり、図8(b)はその側面図である。
図において導風板10(10a、10b)は最外周に位
置する冷却管9の外周側壁面に溶接されて固定されてい
る。
Embodiment 4 FIG. In the first to third embodiments, the air guide plate 10 is provided so as to surround the outermost cooling pipe 9, and its performance can be exhibited without contacting the outermost cooling pipe 9. Here, a description will be given of an invention for further improving the cooling efficiency by arranging the air guide plate 10 so as to be in contact with the outermost cooling pipe 9.
FIG. 8 (a) is a front view of a vehicle-mounted cooler according to Embodiment 4 of the present invention, and FIG. 8 (b) is a side view thereof.
In the figure, the air guide plates 10 (10a, 10b) are welded and fixed to the outer peripheral side wall surface of the cooling pipe 9 located at the outermost periphery.

【0047】導風板10は鉄、アルミ、銅、或いはその
他の合金のように高い熱伝導率を有し、且つ堅牢な素材
により成っており、同様に熱伝導率の高い金属により構
成された冷却管9に溶接接続されることにより、最外周
の冷却管9から溶接部を介して導風板10に対して接触
熱抵抗を発生せず効率的に熱が伝導する。この場合、導
風板10は採風作用を有するばかりでなく、放熱フィン
として作用し、冷却器全体の伝熱面積を増大させるた
め、冷却効率を大幅に向上させることができる。
The air guide plate 10 is made of a robust material having high thermal conductivity such as iron, aluminum, copper, or other alloys, and is also made of a metal having high thermal conductivity. By being welded to the cooling pipe 9, heat is efficiently conducted from the outermost cooling pipe 9 to the air guide plate 10 via the welded portion without generating contact thermal resistance. In this case, the air guide plate 10 not only has a function of collecting air, but also acts as a radiation fin, and increases the heat transfer area of the entire cooler, so that the cooling efficiency can be significantly improved.

【0048】以上のように、導風板10を最外周の冷却
管9に溶接接続させることにより、より多くの走行風を
冷却器2に導入し、且つ伝熱面積を増大させて冷却効率
を向上させることができる。なお、本実施の形態では導
風板10と最外周の冷却管9を溶接により接続する例に
ついて示したが、導風板10と冷却管9を接続し接触熱
抵抗を低減できるものであればどのような接続方法を用
いても同様の効果が得られる。
As described above, by connecting the air guide plate 10 to the outermost cooling pipe 9 by welding, more traveling wind is introduced into the cooler 2 and the heat transfer area is increased to improve the cooling efficiency. Can be improved. In the present embodiment, an example in which the air guide plate 10 and the outermost cooling pipe 9 are connected by welding has been described. However, as long as the air guide plate 10 and the cooling pipe 9 are connected and the contact thermal resistance can be reduced. The same effect can be obtained by using any connection method.

【0049】本実施の形態では、導風板10は冷却器2
の走行方向両端部から4列目までの冷却管9の最外周を
覆うように設けられていたが、覆うべき長さ(列数)は
冷却器2の置かれる外環境によりその最適長さは若干変
わるものであり、少なくとも冷却器の走行方向両端から
1列目以上を覆い、走行方向中央部には設けないもので
あればよい。
In the present embodiment, the baffle plate 10 is
Is provided so as to cover the outermost periphery of the cooling pipes 9 in the fourth row from both ends in the traveling direction, but the length to be covered (the number of rows) depends on the external environment in which the cooler 2 is placed. It may be slightly different, as long as it covers at least the first row from both ends in the running direction of the cooler and is not provided at the center in the running direction.

【0050】なお、以上の各実施の形態では、U字型の
冷却管9を使用し、これを走行風がその径方向から当た
るように配列した冷却器2に適用した場合について説明
したが、この発明はこれに限らず、例えば、その軸方向
が走行方向と一致する部分を含む形で冷却管が配列され
た冷却器であっても、要は、走行方向に所定の長さを有
し走行方向と直角に所定の面積を有する空間内に複数本
の冷却管を分布配設してなる冷却器には同様に適用する
ことができ同等の効果を奏する。
In each of the above embodiments, the case where the U-shaped cooling pipe 9 is used and applied to the cooler 2 arranged so that the traveling wind hits from the radial direction has been described. The present invention is not limited to this. For example, even in a cooler in which cooling pipes are arranged so as to include a portion whose axial direction coincides with the running direction, the point is that the cooler has a predetermined length in the running direction. The present invention can be similarly applied to a cooler in which a plurality of cooling pipes are distributed and arranged in a space having a predetermined area perpendicular to the traveling direction, and have the same effect.

【0051】実施の形態5.U字型冷却管9を複数集積
して形成された冷却器2では、既述した通り、金属管の
曲げ加工の限界に起因する工作上の問題によりその曲げ
の半径に下限が存在するため冷却管2群の内側に風貫通
部11が生じる。図20に示した従来の車載用冷却器で
は、図3に示した冷却器2内部の流れの様子から分かる
ように、風貫通部11の走行方向両端部に到達した走行
風は、流体抵抗がごく僅かしか存在しない風貫通部11
を流量を減少させることなく通過する。しかしながら、
このような高速の流れが存在する前記風貫通部11に隣
接する冷却管9は最内周に位置するものに限られるた
め、風貫通部11を通り抜ける大部分の走行風は熱交換
に寄与せず冷却器2を通過する。以下は、この点の不具
合を解消するものである。
Embodiment 5 FIG. In the cooler 2 formed by integrating a plurality of U-shaped cooling pipes 9, as described above, since there is a lower limit in the radius of the metal pipe due to a machining problem due to the limit of the bending process, the cooling is performed. A wind penetration 11 is formed inside the second group of tubes. In the conventional vehicle-mounted cooler shown in FIG. 20, as can be seen from the flow inside the cooler 2 shown in FIG. Very few wind penetrations 11
Pass without reducing the flow rate. However,
Since the cooling pipe 9 adjacent to the wind penetration portion 11 where such a high-speed flow exists is limited to the one located at the innermost periphery, most of the traveling wind passing through the wind penetration portion 11 contributes to heat exchange. Pass through the cooler 2. The following is a solution to this problem.

【0052】図9(a)は本発明の実施の形態5におけ
る車載用冷却器の正面図を示す。また、図9(b)はそ
の側面図である。図において、17は最内周のU字型冷
却管9の外表面に接することなく風貫通部11内に設置
された貫通部導風体であり、前記貫通部導風体17は冷
却器2の走行方向に対して両端あるいはその途中より中
央に向かって徐々に走行方向に垂直方向の断面積を増大
させ、冷却器2の中心において最大断面積を有し、その
断面積は最大でも最内周冷却管9の外表面に接触せず、
できるかぎり前記最内周冷却管9群の形状に沿うよう構
成されている。例えば図9においては、貫通部導風体1
7は6面体部17Aと中心軸を通る平面で2分割した2
つの円錐体部17Bを合わせた柱状を有しており、最内
周側の冷却管9に接することなくその最内周包絡面とほ
ぼ相似の表面形状を備えたものとなっている。
FIG. 9A is a front view of a vehicle-mounted cooler according to Embodiment 5 of the present invention. FIG. 9B is a side view thereof. In the drawing, reference numeral 17 denotes a through-portion air guide provided in the air-through portion 11 without contacting the outer surface of the U-shaped cooling pipe 9 at the innermost periphery. The cross-sectional area in the direction perpendicular to the running direction is gradually increased toward the center from both ends or halfway in the direction, and has a maximum cross-sectional area at the center of the cooler 2, and the cross-sectional area is at most the innermost cooling. Without contacting the outer surface of the tube 9,
It is configured to conform to the shape of the innermost cooling pipe 9 group as much as possible. For example, in FIG.
7 is divided into two by a hexahedral part 17A and a plane passing through the central axis.
It has a columnar shape in which the two conical portions 17B are combined, and has a surface shape substantially similar to the innermost peripheral envelope surface without contacting the innermost peripheral cooling pipe 9.

【0053】次に前記冷却器2内部の流れ場の様子を明
らかにする。図10は、紙面右から左方向に車両が進行
した場合の図9に示した車両走行風によって冷却器2内
部に生じる空気の流れ場を図示したものである。図にお
いて、走行風は矢印13aの向きに冷却管9群間及び風
貫通部11に侵入する。冷却管9群間の走行風は、管群
間を通過する際に流体損失を受けるため、より損失の少
ない開放空間14へ徐々に流出する。一方、風貫通部1
1へ侵入した走行風は、風貫通部11に設けられた、上
述した形状の貫通部導風体17によってその流路が徐々
に狭められるため、走行風下流に向かって徐々に冷却管
9群間側へ導かれ、冷却器2の走行方向中央部に至るま
でにほぼ全流量が冷却管9群間へ流入する。従って、冷
却管9群間には風貫通部11を通る走行風が走行方向中
央部に至るまで徐々に流入することにより、ほぼ全域に
渡って高速の流れが形成される。勿論、貫通部導風板1
7の走行方向に垂直な断面積が減少する風貫通部11の
後半領域では、図に示すような剥離領域18が形成され
てこの渦に接する管壁における対流熱伝達率を減少させ
るが、走行風上流における冷却管9群間の流速増大によ
る局所熱伝達率の顕著な増大が、上記対流熱伝達率減少
分を充分に補い全体として冷却効率は大幅に向上する。
Next, the state of the flow field inside the cooler 2 will be clarified. FIG. 10 illustrates a flow field of the air generated inside the cooler 2 by the vehicle traveling wind illustrated in FIG. 9 when the vehicle travels from the right to the left in the drawing. In the drawing, traveling wind enters between the cooling pipe 9 groups and the wind penetration portion 11 in the direction of the arrow 13a. The traveling wind between the groups of cooling pipes 9 receives a fluid loss when passing between the groups of pipes, and thus gradually flows into the open space 14 where the loss is smaller. On the other hand, the wind penetration part 1
1 is gradually narrowed in the flow path by the through-portion wind guide 17 having the above-described shape provided in the wind-through portion 11, so that the cooling air flow between the groups of cooling pipes 9 is gradually reduced toward the downstream of the running wind. Almost the entire flow rate flows into the cooling pipes 9 before reaching the center of the cooler 2 in the running direction. Accordingly, the traveling wind passing through the wind penetration portion 11 gradually flows between the groups of cooling pipes 9 until reaching the central portion in the traveling direction, whereby a high-speed flow is formed over almost the entire area. Of course, the penetration guide plate 1
In the second half region of the wind penetration portion 11 where the cross-sectional area perpendicular to the running direction of the airflow 7 decreases, a separation region 18 as shown in the figure is formed to reduce the convective heat transfer coefficient in the pipe wall in contact with the vortex. The remarkable increase in the local heat transfer coefficient due to the increase in the flow velocity between the groups of cooling pipes 9 upstream of the wind sufficiently compensates for the above-described decrease in the convective heat transfer coefficient, thereby greatly improving the cooling efficiency as a whole.

【0054】以上のように、風貫通部11に貫通部導風
板17を設けたので、風貫通部11への走行風の流れを
冷却管9群間に導入して冷却効率を大幅に向上させるこ
とができる。
As described above, since the penetrating portion air guide plate 17 is provided in the wind penetrating portion 11, the flow of the traveling wind to the wind penetrating portion 11 is introduced between the cooling pipes 9 to greatly improve the cooling efficiency. Can be done.

【0055】ここで、貫通部導風体17の形状は、前記
風貫通部11の流路が徐々に減少するよう、その断面積
を、冷却器2の走行方向両端あるいはその途中から走行
方向中央へかけて徐々に増大させ、冷却器2の走行方向
中央において最大断面積を有し、その断面積は最大でも
最内周冷却管9の外表面に接触せず、できるかぎり前記
最内周冷却管9群の形状に沿うよう構成されていれば如
何なる形状でもよい。例えば、図11に示した貫通部導
風体17は、図8のものの6面体部17Aの両端の梁の
高さを減少させ、走行方向に垂直な断面積が冷却器2の
走行方向中央に向かって増大するよう構成されたもので
ある。また、図12に示した貫通部導風体17は、6面
体部17Aと2つの四面体部17Cとを組み合わせた形
状を有している。図13の貫通部導風体17は、図12
のものの両端の梁の高さを減少させ、その断面積が中心
に向かって滑らかに増大するよう構成したものである。
Here, the shape of the through-portion air guide 17 is set such that the cross-sectional area thereof is changed from both ends in the running direction of the cooler 2 or from the middle thereof to the center in the running direction so that the flow path of the wind through portion 11 gradually decreases. And has a maximum cross-sectional area at the center in the traveling direction of the cooler 2, the cross-sectional area of which does not contact the outer surface of the innermost cooling pipe 9 at most, and the innermost cooling pipe as much as possible Any shape may be used as long as it is configured to conform to the shapes of the nine groups. For example, the through-portion wind guide 17 shown in FIG. 11 reduces the height of the beams at both ends of the hexahedral portion 17A of FIG. 8 so that the cross-sectional area perpendicular to the running direction is directed toward the center of the cooler 2 in the running direction. It is configured to increase. Further, the through-portion wind guide 17 shown in FIG. 12 has a shape in which a hexahedral portion 17A and two tetrahedral portions 17C are combined. The through-portion air guide 17 of FIG.
The height of the beams at both ends is reduced and the cross-sectional area increases smoothly toward the center.

【0056】これらの貫通部導風体17においても、風
貫通部11の走行風流路が走行方向中央に向かって徐々
に狭まり、風貫通部11に流入した走行風を冷却管9群
間に導入することができるので、同様の効果を奏するこ
とは言うまでもない。
In these through-portion air guides 17 as well, the traveling air flow path of the wind-through portion 11 gradually narrows toward the center in the traveling direction, and the traveling air flowing into the air-through portion 11 is introduced between the cooling pipes 9. It is needless to say that the same effect can be obtained.

【0057】実施の形態6.図14(a)はこの発明の
実施の形態6における車載用冷却器の正面図、図14
(b)はその側面図である。ここでは、貫通部導風体1
7を略平行に所定の間隔を介して配設された複数の導風
体片17A〜17Dで構成している。そして、図に示す
ように、各導風体片17A〜17Dは、走行方向端部側
が凸となる略傘形状をしており、風貫通部11に流入し
た走行風が円滑に冷却管9群側へ導かれるようにしてい
る。更に、その全体としての包絡外形が先の形態例で説
明した柱状体の貫通部導風体17と同等となるよう、走
行方向から見た各導風体片17A〜17Dの面積は、走
行方向中央から端部へかけて順次減少させている。勿
論、各導風体片17A〜17Dは走行方向中央に対して
対称に構成されている。
Embodiment 6 FIG. FIG. 14A is a front view of a vehicle-mounted cooler according to Embodiment 6 of the present invention.
(B) is a side view thereof. Here, the through-portion air guide 1
7 comprises a plurality of air guide pieces 17A to 17D arranged substantially in parallel at predetermined intervals. As shown in the figure, each of the air guide pieces 17A to 17D has a substantially umbrella shape having a convex end portion in the traveling direction, and the traveling wind flowing into the wind penetration portion 11 smoothly flows into the cooling pipe 9 group side. To be led to. Furthermore, the area of each of the air guide pieces 17A to 17D as viewed from the running direction is from the center of the running direction so that the overall envelope outer shape becomes equivalent to the columnar through-portion wind guide 17 described in the above embodiment. It gradually decreases toward the end. Of course, each of the air guide pieces 17A to 17D is configured symmetrically with respect to the center in the traveling direction.

【0058】以上のように、ここでは、貫通部導風体1
7が一定の間隔を介して配設された複数の導風体片17
A〜17Dにより構成されているので、車両の走行中
は、先の実施の形態5で説明したと同様、風貫通部11
に侵入した走行風をこの貫通部導風体17が冷却管群へ
導き全体として冷却器2の冷却能力が増大することは勿
論、車両の停車中は、各導風体片17A〜17Dの間隙
を経て自然対流による上昇気流を流し得るので、貫通部
導風体17を設けたことによる車両停車中の自冷能力の
低下がなくなるという利点がある。
As described above, here, the penetrating portion air guide 1 is used.
7 are a plurality of air guide pieces 17 arranged at regular intervals.
A through 17D, while the vehicle is running, the wind penetration portion 11 is similar to that described in the fifth embodiment.
The penetrating portion wind guide 17 guides the traveling wind that has penetrated into the cooling pipe group, so that the cooling capacity of the cooler 2 is increased as a whole, and when the vehicle is stopped, it passes through the gaps of the respective wind guide pieces 17A to 17D. Since the updraft due to natural convection can flow, there is an advantage that the provision of the through-portion wind guide 17 does not reduce the self-cooling capacity during stopping of the vehicle.

【0059】実施の形態7.以上に示した実施の形態に
おいて、U字型に形成された冷却管9を複数本集積し、
その最外周の冷却管9を覆うように中間部が断絶した導
風板10を設けたり、または風貫通部11の走行風流路
を走行方向中央に向かって走行方向両端から徐々に狭め
るように貫通部導風体17を設けた。本実施の形態で
は、前記導風板10と貫通部導風体17を同時に備えた
場合の冷却器2について説明する。図15(a)は、本
発明の実施の形態7における冷却器2の正面図であり、
図15(b)はその側面図、図15(c)はその上面図
である。
Embodiment 7 FIG. In the embodiment described above, a plurality of cooling pipes 9 formed in a U-shape are integrated,
An air guide plate 10 whose middle portion is cut off is provided so as to cover the outermost cooling pipe 9, or the running air flow path of the wind through portion 11 is penetrated so as to gradually narrow from both ends in the running direction toward the center in the running direction. A partial wind guide 17 was provided. In the present embodiment, a description will be given of the cooler 2 provided with the wind guide plate 10 and the through-portion wind guide 17 at the same time. FIG. 15A is a front view of a cooler 2 according to Embodiment 7 of the present invention,
FIG. 15B is a side view thereof, and FIG. 15C is a top view thereof.

【0060】図16は、本冷却器の内部の走行風の流れ
状況を示す、車両走行方向中央における垂直断面図であ
る。車両が紙面右から左の方向に走行する場合、走行風
は矢印13aの向きから冷却器2の内部に侵入する。走
行風は、走行風上流側の導風板10aの滑らかな絞り覆
い形状により増速されながら管群間へ侵入する上、導風
板10の働きによって開放空間14への流出が阻害され
る。一方、風貫通部11へ流入した走行風は、貫通部導
風体17によりその流路が徐々に狭められるに従い、強
制的に管群間へ導入される。従って、風貫通部11を流
れる走行風の流量分だけ管群間の流速が増大し、且つ開
放空間14への流出が抑制されつつ高効率の熱交換が行
われる。ここで、導風板10と貫通部導風体17を設置
することにより、冷却器2全体の圧力損失が増大して、
通過風量が減少することが危惧されるが、導風板10が
冷却器2の走行方向中央に設けられていないので、走行
風の流出経路が確保され、圧力損失の増大は微量に留ま
る。
FIG. 16 is a vertical sectional view at the center of the traveling direction of the vehicle, showing the flow of the traveling wind inside the cooler. When the vehicle travels from right to left on the page, traveling wind enters the inside of the cooler 2 from the direction of arrow 13a. The traveling wind enters between the tube groups while being accelerated by the smooth throttle cover shape of the wind guide plate 10a on the upstream side of the traveling wind, and the flow of the air into the open space 14 is inhibited by the action of the wind guide plate 10. On the other hand, the traveling wind that has flowed into the wind penetration portion 11 is forcibly introduced between the tube groups as the passage is gradually narrowed by the penetration portion wind guide 17. Accordingly, the flow velocity between the tube groups is increased by the flow rate of the traveling wind flowing through the wind penetration portion 11, and high-efficiency heat exchange is performed while the outflow to the open space 14 is suppressed. Here, by installing the wind guide plate 10 and the through-portion wind guide 17, the pressure loss of the entire cooler 2 increases,
Although it is feared that the amount of passing air is reduced, since the baffle plate 10 is not provided at the center of the cooler 2 in the running direction, an outflow path of the running wind is secured, and the increase in pressure loss is only slight.

【0061】このように、冷却器2に導風板10と貫通
部導風体17とを共に設けたので、一度冷却管9群間へ
流入した走行風の冷却管9群間から開放空間14への流
出を抑制しつつ、風貫通部11の走行風を冷却管9群間
へ導入し、管群間の流速を増大させて冷却効率を大幅に
増大させることができる。
As described above, since both the air guide plate 10 and the through-portion air guide 17 are provided in the cooler 2, the traveling wind once flowing between the groups of cooling pipes 9 from the group of cooling pipes 9 to the open space 14. The running wind of the wind penetration portion 11 is introduced between the cooling pipes 9 while suppressing the outflow of water, and the flow velocity between the pipe groups is increased, so that the cooling efficiency can be greatly increased.

【0062】さらに、導風板10及び貫通部導風体17
の組み合わせは、図に示したものだけではなく、実施の
形態1ないし実施の形態6までに詳述した何れの形態を
有するものの組み合わせでも同様の効果を奏する。
Further, the air guide plate 10 and the through-portion air guide 17
The same effect can be obtained not only by the combination shown in the drawings, but also by a combination of any of the embodiments described in the first to sixth embodiments.

【0063】実施の形態8.北海道や東北地方のような
寒冷地を走行する車両に、走行風を利用した冷却器を装
着する場合、ホーム側壁と道床とより成る角部に雪が吹
き溜まって堅牢な雪塊に成長し、車両床下に取り付けら
れた前記冷却器に衝突してこれを破損させる恐れがあ
る。このような問題を解決するために、従来では網状の
金属性保護カバーを冷却管9の周囲に設けた例もある
が、前述のように採風構造を有していなかったため、冷
却器全面にわたって高効率の熱交換をすることは不可能
であった。
Embodiment 8 FIG. When installing a cooler using traveling wind on a vehicle traveling in a cold region such as Hokkaido or the Tohoku region, snow drips at the corners consisting of the side wall of the platform and the roadbed, growing into a solid snow mass, There is a danger that the cooler mounted below the floor may collide with and break the cooler. In order to solve such a problem, there is an example in which a net-like metallic protective cover is provided around the cooling pipe 9 in the past. Efficient heat exchange was not possible.

【0064】そこで、採風構造を有しつつ、構造強度を
増大させるための発明につき、図を用いて説明する。図
17(a)は本発明の実施の形態8を示す車載用冷却器
の正面図であり、図17(b)はその側面図である。図
において、19は採風効果と構造強化効果とを有した保
護カバーである。この保護カバー19は、最外周の冷却
管9を冷却器2の走行方向全長に渡り、かつ、冷却管9
の車両方向には車側側の飛石や雪塊等の障害物が衝突す
ると考えられる一部に限定して覆うようになっている。
前記保護カバー19は、導風板10と同様に冷却管9群
間に流入した走行風の開放空間14への流出を防止す
る。ここで、保護カバー19は最外周の冷却管9を完全
に覆うように設けられてはいないので、冷却器2全体の
圧力損失は微量しか増大せず、通過風量を減少させな
い。さらに、板状の保護カバーを設けることにより、飛
石や雪塊等の衝突に対しても、冷却管9が破損すること
を防止することができる。
The invention for increasing the structural strength while having a ventilation structure will now be described with reference to the drawings. FIG. 17A is a front view of a vehicle-mounted cooler according to Embodiment 8 of the present invention, and FIG. 17B is a side view thereof. In the figure, reference numeral 19 denotes a protective cover having a wind collecting effect and a structure reinforcing effect. The protective cover 19 extends the outermost cooling pipe 9 over the entire length of the cooler 2 in the traveling direction, and
In the vehicle direction, an obstacle such as a stepping stone or a snow lump on the vehicle side is limited to cover only a part that is considered to collide.
The protection cover 19 prevents the traveling wind flowing between the groups of cooling pipes 9 from flowing out to the open space 14 similarly to the air guide plate 10. Here, since the protective cover 19 is not provided so as to completely cover the outermost cooling pipe 9, the pressure loss of the entire cooler 2 increases only by a small amount, and the amount of passing air does not decrease. Further, by providing the plate-shaped protective cover, it is possible to prevent the cooling pipe 9 from being damaged even when a stepping stone or a snow lump collide.

【0065】このように、冷却器2に保護カバー19を
設けたので、冷却器2の通過風量を増大させて冷却効率
を増大させ、且つ飛石や雪塊等の衝突に対する保護機能
を有することができる。
As described above, since the protective cover 19 is provided on the cooler 2, it is possible to increase the cooling air efficiency by increasing the amount of air passing through the cooler 2 and to have a function of protecting against collision of flying stones and snow blocks. it can.

【0066】また、ここでは導風板10は車両進行方向
と平行な形状となっていたが、走行方向両端の開口面積
を走行方向中央の断面積よりも大きくなるように直線或
いは先の実施の形態2の導風板10の説明で触れた3次
曲線等のような滑らかな曲線となるよう構成すると、同
様の効果に加えて採風効果による冷却効率の向上を図る
ことができることは言うまでもなく、さらに風貫通部1
1に貫通部導風体17を設けることにより、より一層冷
却効率を向上させることができる。
Although the baffle plate 10 has a shape parallel to the traveling direction of the vehicle, the opening area at both ends in the traveling direction is linear or is set so as to be larger than the cross-sectional area at the center in the traveling direction. It is needless to say that the cooling efficiency can be improved by the wind collecting effect in addition to the same effect when the air guide plate 10 is configured to have a smooth curve such as the cubic curve mentioned in the description of the second embodiment. Furthermore, wind penetration part 1
By providing the through-portion air guide 17 in 1, the cooling efficiency can be further improved.

【0067】実施の形態9.実施の形態8では、保護カ
バー19は板状の部材により形成されていたため、保護
カバー19に覆われている管群間を通過する際の圧力損
失が、他の部位と比較して若干大きくなるため、保護カ
バー19の無い管群間あるいは風貫通部11への走行風
の流出が発生する。そこで、保護カバー19を通気性を
有するよう加工することにより、保護カバー19に覆わ
れた部位の圧力損失を低減して冷却器2の通過風量を増
大させることができる。図18(a)は、本発明の実施
の形態9における、通気性を保持した保護カバー19を
設けた車載用冷却器の正面図であり、図18(b)はそ
の側面図である。図において、20は保護カバー19の
走行方向両端所定長を除く走行方向中央付近に保護カバ
ー19を貫通するように複数個設けられた通風孔であ
る。
Embodiment 9 In the eighth embodiment, since the protective cover 19 is formed of a plate-like member, the pressure loss when passing between the tube groups covered by the protective cover 19 is slightly larger than other parts. Therefore, the outflow of the traveling wind between the tube groups without the protective cover 19 or the wind penetration portion 11 occurs. Therefore, by processing the protective cover 19 so as to have air permeability, it is possible to reduce the pressure loss of the portion covered by the protective cover 19 and increase the amount of air passing through the cooler 2. FIG. 18 (a) is a front view of a vehicle-mounted cooler provided with a protective cover 19 having air permeability according to Embodiment 9 of the present invention, and FIG. 18 (b) is a side view thereof. In the figure, reference numeral 20 denotes a plurality of ventilation holes provided in the vicinity of the center of the protective cover 19 in the traveling direction excluding a predetermined length at both ends in the traveling direction so as to penetrate the protective cover 19.

【0068】この場合、保護カバー19は、走行風の入
口部には通風孔20を有しないため、冷却器2の最も局
所熱伝達率の高い、走行方向両端の走行風入口近傍の流
れを開放空間14へ流出させること無く冷却管9群間に
保持する効果を有し、さらにその下流中央部には複数の
通風孔20を有するので、それらの通風孔20より冷却
管9群間の走行風を開放空間14へ漏洩させて冷却器2
全体の圧力損失が著しく増大することを抑制する働きを
有する。ここで、通風孔20は冷却器2の全体構造に依
存した最適な位置に配置すべきであり、少なくとも保護
カバー19の走行方向両端には設けないよう配置すれば
よい。また、通風孔20の径は、障害物が貫通しない大
きさで、その形状は、丸型、楕円型、四角型、菱形、ス
リット等何れのものでもよく、少なくとも飛石或いは雪
塊等の障害物の衝突に対し強度を維持できるよう設けら
れなければならない。
In this case, since the protective cover 19 does not have the ventilation hole 20 at the entrance of the traveling wind, the flow near the traveling air inlet at both ends in the traveling direction of the cooler 2, which has the highest local heat transfer coefficient, is opened. This has the effect of holding the cooling pipes between the groups of cooling pipes without flowing them out to the space, and has a plurality of ventilation holes 20 at the downstream central portion. Leaks into the open space 14 and cooler 2
It has a function of suppressing a significant increase in the entire pressure loss. Here, the ventilation holes 20 should be arranged at optimal positions depending on the overall structure of the cooler 2, and may be arranged so as not to be provided at least at both ends in the traveling direction of the protective cover 19. The diameter of the ventilation hole 20 is a size that does not allow an obstacle to penetrate, and the shape may be any of a round shape, an elliptical shape, a square shape, a diamond shape, a slit, and the like. Must be provided to maintain strength against collisions.

【0069】以上のように、保護カバー19に通風孔2
0を設けることにより、衝突に対する強度を向上させつ
つ、且つ採風量を増大させて冷却効率を向上させること
ができる。
As described above, the ventilation holes 2 are
By providing 0, the cooling efficiency can be improved by improving the strength against collisions and increasing the amount of collected air.

【0070】さらに、図19(a)は、保護カバー19
の代わりにルーバー構造の板材である複数の保護ルーバ
ー21を設置した冷却器2の正面図であり、図19
(b)はその側面図である。図において、各保護ルーバ
ー21は、冷却器の走行方向両端方向に向かって開口す
るよう走行方向中央を対称面として設置されており、車
両が何れの方向に進行しても、採風能力を発揮できるよ
う構成されている。また、飛石或いは雪塊等の衝突に耐
え得るようできる限り冷却管9が露出しないよう各保護
ルーバー20を走行方向に重ねるか或いは保護ルーバー
20の走行方向長さと同一ピッチで設置するものであ
る。ここで、図では各冷却管9につき1つの保護ルーバ
ーが覆うよう構成されているが、保護ルーバー21の長
手方向長さは最大、冷却器2の走行方向長さの1/2以
下であれば如何なる長さであってもよい。
FIG. 19A shows the protective cover 19.
FIG. 19 is a front view of the cooler 2 in which a plurality of protective louvers 21 which are plate members having a louver structure are installed instead of the louver structure shown in FIG.
(B) is a side view thereof. In the figure, each protection louver 21 is installed with the center in the running direction as a plane of symmetry so as to open toward both ends in the running direction of the cooler, and can exhibit the air collecting ability even when the vehicle advances in any direction. It is configured as follows. Further, the protection louvers 20 are overlapped in the traveling direction so that the cooling pipe 9 is not exposed as much as possible so as to be able to withstand a collision with a flying stone or a snow lump or the like, or are installed at the same pitch as the length of the protection louvers 20 in the traveling direction. Here, in the figure, one protection louver is configured to cover each cooling pipe 9. However, if the length of the protection louver 21 in the longitudinal direction is maximum, and is not more than 1 / of the length of the cooler 2 in the running direction. It can be of any length.

【0071】以上のように衝突に対する強度を向上させ
つつ、且つ採風量を増大させて冷却効率を向上させるこ
とができる。また、車両の停車時には、自然対流による
上昇気流がこれら保護ルーバー21間を通過することが
できるので、その分、停車時の冷却能力の低下が緩和さ
れる。なお、実施の形態8、9で説明した保護カバー1
9と、実施の形態5、6で説明した貫通部導風体17と
を併設するようにしてもよい。この場合、飛来物に対す
る機械的強度が向上するとともに、走行風の冷却管群へ
の導入量が増大して冷却器の冷却能力も一層向上する。
As described above, the cooling efficiency can be improved by improving the strength against collision and increasing the amount of air taken. Further, when the vehicle stops, the ascending airflow due to natural convection can pass between these protection louvers 21, and accordingly, a decrease in the cooling capacity at the time of stopping the vehicle is reduced. The protective cover 1 described in the eighth and ninth embodiments
9 and the through-portion air guide 17 described in the fifth and sixth embodiments may be provided side by side. In this case, the mechanical strength against flying objects is improved, and the amount of traveling wind introduced into the cooling pipe group is increased, so that the cooling capacity of the cooler is further improved.

【0072】また、以上の各実施の形態では、車両の床
下に取り付けられる変圧器またはリアクトルを冷却する
ための冷却器に適用した場合について説明したが、この
発明はこれらに限られるものではなく、車両に搭載され
その走行によって生じる走行風との熱伝達により冷却を
行う冷却管を備えた車載用冷却器に広く適用することが
でき同等の効果を奏する。
In each of the embodiments described above, the case where the present invention is applied to a transformer mounted under the floor of a vehicle or a cooler for cooling a reactor has been described. However, the present invention is not limited to these. The present invention can be widely applied to an in-vehicle cooler having a cooling pipe that is mounted on a vehicle and that performs cooling by heat transfer with traveling wind generated by traveling of the vehicle, and has the same effect.

【0073】[0073]

【発明の効果】以上のように請求項1に係る車載用冷却
器は、車両の走行方向に所定の長さを有し上記走行方向
と直角に所定の面積を有する空間内に複数本の冷却管を
分布配設してなり、上記冷却管と上記車両の走行によっ
て生じる走行風との熱伝達により冷却を行う車載用冷却
器において、上記空間の上記走行方向両端所定長の部分
を、上記面積の外周に沿って覆うように配設された導風
板を備えたので、この導風板が冷却管群に侵入した走行
風を冷却器の走行方向中央部まで保持し、冷却性能が増
大する。
As described above, the on-vehicle cooler according to the first aspect of the present invention provides a plurality of cooling devices in a space having a predetermined length in the traveling direction of the vehicle and having a predetermined area perpendicular to the traveling direction. In a vehicle-mounted cooler in which pipes are arranged and distributed to perform cooling by heat transfer between the cooling pipe and traveling wind generated by traveling of the vehicle, a portion of the space having a predetermined length at both ends in the traveling direction is defined by the area The air guide plate is provided so as to cover along the outer circumference of the cooling pipe, so that the air guide plate holds the traveling wind that has entered the cooling pipe group up to the center in the traveling direction of the cooler, thereby increasing the cooling performance. .

【0074】また、請求項2に係る車載用冷却器の導風
板は、その走行方向と直角な開口面積が、空間の上記走
行方向中央寄りから上記走行方向端部にかけて順次増大
するようにしたので、冷却器の通過風量が増大して冷却
性能が更に向上する。
In the air guide plate of the vehicle-mounted cooler according to the second aspect, the opening area perpendicular to the running direction is gradually increased from the center of the space in the running direction to the end in the running direction. Therefore, the amount of air passing through the cooler is increased, and the cooling performance is further improved.

【0075】また、請求項3に係る車載用冷却器の導風
板は、その走行方向を含む平面で切断した断面が直線状
となるようにしたので、導風板の構造が簡便で安価とな
る。
Further, in the air guide plate of the vehicle-mounted cooler according to the third aspect, since the cross section cut by a plane including the traveling direction is linear, the structure of the air guide plate is simple and inexpensive. Become.

【0076】また、請求項4に係る車載用冷却器の導風
板は、その走行方向を含む平面で切断した断面が、その
走行方向両端では上記走行方向と平行となるようにした
ので、導風板に取り込まれる走行風の流れが滑らかにな
り結果として風量が増大して冷却性能が向上する。
Further, in the air guide plate of the vehicle-mounted cooler according to the fourth aspect, the cross section cut by a plane including the traveling direction is parallel to the traveling direction at both ends in the traveling direction. The flow of the traveling wind taken into the wind plate becomes smooth, and as a result, the air volume increases, thereby improving the cooling performance.

【0077】また、請求項5に係る車載用冷却器は、そ
の導風板を、走行方向に連なって配設された複数の導風
板片からなるものとし、上記一の導風板片の上記走行方
向一端と該一の導風板片に隣接する導風板片の上記走行
方向他端とが、上記走行方向と直角な方向に所定の間隔
を介して位置するようにしたので、これら導風板片が走
行風に方向性を与え、冷却管群への導入風量が増大して
冷却性能が向上するとともに、車両停車時の冷却能力の
低下を緩和する。
According to a fifth aspect of the present invention, in the vehicle-mounted cooler, the air guide plate comprises a plurality of air guide plate pieces arranged in a running direction. Since one end in the running direction and the other end in the running direction of the baffle plate piece adjacent to the one baffle plate piece are located at a predetermined interval in a direction perpendicular to the running direction, these The air guide plate piece gives directionality to the traveling wind, the amount of air introduced into the cooling pipe group is increased, the cooling performance is improved, and the decrease in the cooling capacity when the vehicle is stopped is alleviated.

【0078】また、請求項6に係る車載用冷却器の各導
風板片は、空間の走行方向端部側におけるその走行方向
と直角な開口面積が、上記空間の走行方向端部側から上
記走行方向中央寄りにかけて順次増大するようにしたの
で、冷却管群の下流側への走行風の供給が増大して冷却
性能が向上する。
Each of the air guide plate pieces of the vehicle-mounted cooler according to claim 6 has an opening area perpendicular to the running direction at the end of the space in the running direction, the opening area being perpendicular to the running direction of the space. Since the flow rate is gradually increased toward the center in the traveling direction, the supply of traveling wind to the downstream side of the cooling pipe group is increased, and the cooling performance is improved.

【0079】また、請求項7に係る車載用冷却器は、そ
の導風板を熱良導体で構成し、空間内の最外周に配設さ
れた冷却管と上記導風板とを熱的に接続したので、冷却
器の熱伝達面積が増大し、冷却性能が一層向上する。
According to a seventh aspect of the present invention, in the vehicle-mounted cooler, the air guide plate is formed of a good heat conductor, and the cooling pipe disposed at the outermost periphery in the space is thermally connected to the air guide plate. Therefore, the heat transfer area of the cooler increases, and the cooling performance further improves.

【0080】請求項8に係る車載用冷却器は、その両端
がヘッダに接続された略U字型の冷却管を、車両の走行
方向と直角な面内に複数本、かつ上記走行方向に沿って
複数列配設してなり、上記冷却管と上記車両の走行によ
って生じる走行風との熱伝達により冷却を行う車載用冷
却器において、上記直角な面内の最内周に配設された冷
却管と上記ヘッダとにより形成される風貫通部内に設け
られ、上記走行方向端から上記風貫通部に侵入した走行
風を上記冷却管の配設部分へ導く貫通部導風体を備えた
ので、風貫通部への走行風の流れが冷却管群へ流入し冷
却性能が大幅に向上する。
In the vehicle-mounted cooler according to the present invention, a plurality of substantially U-shaped cooling pipes, both ends of which are connected to a header, are provided in a plane perpendicular to the running direction of the vehicle and along the running direction. The vehicle-mounted cooler, which is arranged in a plurality of rows and performs cooling by heat transfer between the cooling pipe and a traveling wind generated by traveling of the vehicle, wherein the cooling arranged at an innermost circumference in the perpendicular plane. A wind-through portion is provided in the wind-through portion formed by the pipe and the header and guides the traveling wind that has entered the wind-through portion from the end in the traveling direction to the portion where the cooling pipe is provided. The flow of the traveling wind to the penetrating portion flows into the cooling pipe group, and the cooling performance is greatly improved.

【0081】また、請求項9に係る車載用冷却器の貫通
部導風体は、走行方向を軸とし上記走行方向と直角な断
面が、風貫通部の上記走行方向中央から端部へかけて順
次減少する柱状体としたので、走行風の風貫通部から冷
却管群への流れが滑らかになり、結果としてその風量が
増大して冷却性能が向上する。
According to a ninth aspect of the present invention, there is provided a through-portion wind guide for a vehicle-mounted cooler, wherein a section perpendicular to the running direction with the running direction as an axis is sequentially formed from the center to the end of the wind-through portion in the running direction. Since the number of pillars is reduced, the flow of the traveling wind from the wind penetration portion to the cooling pipe group becomes smooth, and as a result, the air volume increases, thereby improving the cooling performance.

【0082】また、請求項10に係る車載用冷却器の貫
通部導風体は、略平行に所定の間隔を介して配設され風
貫通部の走行方向端部側が凸となる略傘形状の複数の導
風体片からなり、上記各導風体片の上記走行方向と直角
な面積が、上記風貫通部の上記走行方向中央から端部へ
かけて順次減少するようにしたので、風貫通部への走行
風の流れが冷却管群への流入して、冷却性能が増大する
とともに、車両停車時の冷却能力の低下が緩和される。
According to a tenth aspect of the present invention, the through-portion air guide of the vehicle-mounted cooler has a plurality of substantially umbrella-shaped ridges which are disposed substantially in parallel with a predetermined interval therebetween and whose end portions in the running direction of the wind-through portion are convex. Since the area perpendicular to the running direction of each of the wind guide pieces is configured to gradually decrease from the center in the running direction to the end of the wind penetration section, The flow of the traveling wind flows into the cooling pipe group, so that the cooling performance is increased and the decrease in the cooling capacity when the vehicle is stopped is reduced.

【0083】請求項11に係る車載用冷却器は、車両の
走行方向に所定の長さを有し上記走行方向と直角に所定
の面積を有する空間内に複数本の冷却管を分布配設して
なり、上記冷却管と上記車両の走行によって生じる走行
風との熱伝達により冷却を行う車載用冷却器において、
上記空間の上記走行方向はその全長にわたり、上記面積
の周方向は飛石等障害物の衝突の可能性が高い限定され
た部分にわたり上記空間を覆うように配設された保護カ
バーを備えたので、飛石等の障害物に対する機械的保護
が強化されるとともに、冷却管群の通過風量が増大して
冷却性能が向上する。
According to an eleventh aspect of the present invention, there is provided an on-vehicle cooler having a plurality of cooling pipes distributed in a space having a predetermined length in a running direction of a vehicle and having a predetermined area perpendicular to the running direction. In a vehicle-mounted cooler that performs cooling by heat transfer between the cooling pipe and traveling wind generated by traveling of the vehicle,
Since the traveling direction of the space is over its entire length, and the circumferential direction of the area is provided with a protective cover arranged to cover the space over a limited portion where there is a high possibility of collision of obstacles such as stepping stones, The mechanical protection against obstacles such as stepping stones is strengthened, and the amount of air passing through the cooling pipe group is increased, thereby improving the cooling performance.

【0084】また、請求項12に係る車載用冷却器は、
その保護カバーの走行方向両端所定長を除く中央の部分
に、障害物の貫通を阻止する大きさで形成された通風孔
を設けたので、走行風に対する圧力損失が低減して通過
風量が増大し冷却性能が向上する。
Further, the vehicle-mounted cooler according to claim 12 is:
At the center portion of the protective cover except for a predetermined length at both ends in the running direction, a ventilation hole formed in a size to prevent the penetration of an obstacle is provided, so that a pressure loss against the running wind is reduced and a passing air volume is increased. Cooling performance is improved.

【0085】また、請求項13に係る車載用冷却器の保
護カバーは、走行方向両端に向かって開口し上記走行方
向中央に対称なルーバー構造としたので、走行風の冷却
管群内への導入風量が増大して冷却性能が向上するとと
もに、車両停車時の冷却能力の低下が緩和される。
The protective cover of the vehicle-mounted cooler according to the thirteenth aspect has a louver structure which opens toward both ends in the traveling direction and is symmetrical with respect to the center in the traveling direction, so that traveling wind is introduced into the cooling pipe group. As the air flow increases, the cooling performance improves, and the decrease in the cooling capacity when the vehicle stops is alleviated.

【0086】また、請求項14に係る車載用冷却器は、
請求項1ないし7のいずれかに記載の導風板と請求項8
ないし10のいずれかに記載の貫通部導風体とを備えた
ので、冷却管群の通過風量が一層増大して冷却性能が大
幅に向上する。
Further, the vehicle-mounted cooler according to claim 14 is
An air guide plate according to any one of claims 1 to 7, and an air guide plate according to claim 8.
The through-portion air guide according to any one of (1) to (10) is provided, so that the amount of air passing through the cooling pipe group is further increased, and the cooling performance is greatly improved.

【0087】また、請求項15に係る車載用冷却器は、
請求項8ないし10のいずれかに記載の貫通部導風体と
請求項11ないし14のいずれかに記載の保護カバーと
を備えたので、飛石等の障害物に対する機械的保護が強
化されるとともに、冷却管群の通過風量が一層増大して
冷却性能が大幅に向上する。
Further, the vehicle-mounted cooler according to claim 15 is:
The provision of the penetrating portion wind guide according to any one of claims 8 to 10 and the protective cover according to any one of claims 11 to 14 enhances mechanical protection against obstacles such as flying stones, The amount of air flowing through the cooling pipe group is further increased, and the cooling performance is greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 車載用冷却器の車両への取り付け構造を示す
図である。
FIG. 1 is a diagram showing a mounting structure of a vehicle-mounted cooler to a vehicle.

【図2】 この発明の実施の形態1における車載用冷却
器を示す図である。
FIG. 2 is a diagram showing a vehicle-mounted cooler according to Embodiment 1 of the present invention.

【図3】 従来の冷却器における走行風の流れの様子を
示す図である。
FIG. 3 is a diagram showing a state of a flow of traveling wind in a conventional cooler.

【図4】 この発明の実施の形態1の車載用冷却器にお
ける走行風の流れの様子を示す図である。
FIG. 4 is a diagram showing a flow of traveling wind in the vehicle-mounted cooler according to the first embodiment of the present invention.

【図5】 この発明の実施の形態2における車載用冷却
器を示す図である。
FIG. 5 is a diagram showing a vehicle-mounted cooler according to a second embodiment of the present invention.

【図6】 図5の車載用冷却器の変形例を示す図であ
る。
FIG. 6 is a view showing a modification of the vehicle-mounted cooler of FIG. 5;

【図7】 この発明の実施の形態3における車載用冷却
器を示す図である。
FIG. 7 is a diagram showing a vehicle-mounted cooler according to a third embodiment of the present invention.

【図8】 この発明の実施の形態4における車載用冷却
器を示す図である。
FIG. 8 is a diagram showing a vehicle-mounted cooler according to a fourth embodiment of the present invention.

【図9】 この発明の実施の形態5における車載用冷却
器を示す図である。
FIG. 9 is a diagram showing a vehicle-mounted cooler according to a fifth embodiment of the present invention.

【図10】 この発明の実施の形態5の車載用冷却器に
おける走行風の流れの様子を示す図である。
FIG. 10 is a diagram showing a flow of a traveling wind in a vehicle-mounted cooler according to a fifth embodiment of the present invention.

【図11】 図9の車載用冷却器の変形例を示す図であ
る。
FIG. 11 is a view showing a modification of the vehicle-mounted cooler of FIG. 9;

【図12】 図9の車載用冷却器の更に他の変形例を示
す図である。
FIG. 12 is a view showing still another modified example of the vehicle-mounted cooler of FIG. 9;

【図13】 図9の車載用冷却器の更に他の変形例を示
す図である。
FIG. 13 is a view showing still another modification of the vehicle-mounted cooler of FIG. 9;

【図14】 この発明の実施の形態6における車載用冷
却器を示す図である。
FIG. 14 is a diagram showing a vehicle-mounted cooler according to a sixth embodiment of the present invention.

【図15】 この発明の実施の形態7における車載用冷
却器を示す図である。
FIG. 15 is a diagram showing a vehicle-mounted cooler according to a seventh embodiment of the present invention.

【図16】 この発明の実施の形態7の車載用冷却器に
おける走行風の流れの様子を示す図である。
FIG. 16 is a diagram showing a state of a flow of traveling wind in a vehicle-mounted cooler according to a seventh embodiment of the present invention.

【図17】 この発明の実施の形態8における車載用冷
却器を示す図である。
FIG. 17 is a diagram showing a vehicle-mounted cooler according to an eighth embodiment of the present invention.

【図18】 この発明の実施の形態9における車載用冷
却器を示す図である。
FIG. 18 is a diagram showing a vehicle-mounted cooler according to a ninth embodiment of the present invention.

【図19】 図18の車載用冷却器の変形例を示す図で
ある。
FIG. 19 is a view showing a modification of the vehicle-mounted cooler of FIG. 18.

【図20】 従来の車載用冷却器を示す図である。FIG. 20 is a view showing a conventional in-vehicle cooler.

【図21】 従来の図20とは異なる車載用冷却器を示
す図である。
FIG. 21 is a view showing a vehicle-mounted cooler different from the conventional cooler shown in FIG. 20;

【符号の説明】[Explanation of symbols]

1 車載電気機器本体、2 冷却器、5 車両、9 冷
却管、10,10a,10b 導風板、10A〜10D
導風板片、11 風貫通部、12(12a、12b)
車両走行方向、14 開放空間、17 貫通部導風
体、17A〜17D 導風体片、19 保護カバー、2
0 通風孔、21 保護ルーバー。
DESCRIPTION OF SYMBOLS 1 Onboard electric equipment main body, 2 cooler, 5 vehicle, 9 cooling pipe, 10, 10a, 10b air guide plate, 10A-10D
Wind guide plate piece, 11 Wind penetration part, 12 (12a, 12b)
Vehicle running direction, 14 open space, 17 penetrating part air guide, 17A to 17D air guide piece, 19 protective cover, 2
0 ventilation holes, 21 protective louvers.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古藤 悟 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Satoru Koto 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 車両の走行方向に所定の長さを有し上記
走行方向と直角に所定の面積を有する空間内に複数本の
冷却管を分布配設してなり、上記冷却管と上記車両の走
行によって生じる走行風との熱伝達により冷却を行う車
載用冷却器において、 上記空間の上記走行方向両端所定長の部分を、上記面積
の外周に沿って覆うように配設された導風板を備えたこ
とを特徴とする車載用冷却器。
1. A plurality of cooling pipes are distributed and arranged in a space having a predetermined length in a traveling direction of a vehicle and having a predetermined area perpendicular to the traveling direction. In a vehicle-mounted cooler that performs cooling by heat transfer with traveling wind generated by traveling of the vehicle, a wind guide plate disposed so as to cover a predetermined length of both ends in the traveling direction of the space along an outer periphery of the area. A vehicle-mounted cooler comprising:
【請求項2】 導風板は、その走行方向と直角な開口面
積が、空間の上記走行方向中央寄りから上記走行方向端
部にかけて順次増大するようにしたことを特徴とする請
求項1記載の車載用冷却器。
2. The air guide plate according to claim 1, wherein an opening area perpendicular to the running direction of the air guide plate is gradually increased from a position near a center of the space in the running direction to an end in the running direction. In-vehicle cooler.
【請求項3】 導風板は、その走行方向を含む平面で切
断した断面が直線状となるようにしたことを特徴とする
請求項2記載の車載用冷却器。
3. The in-vehicle cooler according to claim 2, wherein the air guide plate has a straight cross section cut along a plane including the traveling direction.
【請求項4】 導風板は、その走行方向を含む平面で切
断した断面が、その走行方向両端では上記走行方向と平
行となるようにしたことを特徴とする請求項2記載の車
載用冷却器。
4. The vehicle-mounted cooling device according to claim 2, wherein the air guide plate has a cross section cut along a plane including the traveling direction, and both ends in the traveling direction are parallel to the traveling direction. vessel.
【請求項5】 導風板を、走行方向に連なって配設され
た複数の導風板片からなるものとし、上記一の導風板片
の上記走行方向一端と該一の導風板片に隣接する導風板
片の上記走行方向他端とが、上記走行方向と直角な方向
に所定の間隔を介して位置するようにしたことを特徴と
する請求項1または2記載の車載用冷却器。
5. The air guide plate comprises a plurality of air guide plate pieces arranged in the running direction, and one end of the one air guide plate piece in the running direction and the one air guide plate piece. The on-vehicle cooling device according to claim 1 or 2, wherein the other end in the traveling direction of the air guide plate piece adjacent to the vehicle is located at a predetermined interval in a direction perpendicular to the traveling direction. vessel.
【請求項6】 各導風板片は、空間の走行方向端部側に
おけるその走行方向と直角な開口面積が、上記空間の走
行方向端部側から上記走行方向中央寄りにかけて順次増
大するようにしたことを特徴とする請求項5記載の車載
用冷却器。
6. Each of the air guide plate pieces has an opening area perpendicular to the running direction at the end in the running direction of the space so as to gradually increase from the running direction end of the space toward the center in the running direction. 6. The on-vehicle cooler according to claim 5, wherein:
【請求項7】 導風板を熱良導体で構成し、空間内の最
外周に配設された冷却管と上記導風板とを熱的に接続し
たことを特徴とする請求項1記載の車載用冷却器。
7. The on-vehicle vehicle according to claim 1, wherein the air guide plate is made of a good heat conductor, and the cooling pipe arranged at the outermost periphery in the space is thermally connected to the air guide plate. Cooler.
【請求項8】 その両端がヘッダに接続された略U字型
の冷却管を、車両の走行方向と直角な面内に複数本、か
つ上記走行方向に沿って複数列配設してなり、上記冷却
管と上記車両の走行によって生じる走行風との熱伝達に
より冷却を行う車載用冷却器において、 上記直角な面内の最内周に配設された冷却管と上記ヘッ
ダとにより形成される風貫通部内に設けられ、上記走行
方向端から上記風貫通部に侵入した走行風を上記冷却管
の配設部分へ導く貫通部導風体を備えたことを特徴とす
る車載用冷却器。
8. A plurality of substantially U-shaped cooling pipes, both ends of which are connected to a header, are arranged in a plane perpendicular to the traveling direction of the vehicle, and are arranged in a plurality of rows along the traveling direction. An in-vehicle cooler that performs cooling by heat transfer between the cooling pipe and traveling wind generated by traveling of the vehicle, wherein the cooling pipe is formed by a cooling pipe disposed on an innermost circumference in the right angle plane and the header. An in-vehicle cooler, comprising: a through-portion air guide provided in the wind-through portion to guide traveling wind entering the wind-through portion from the traveling direction end to a portion where the cooling pipe is provided.
【請求項9】 貫通部導風体は、走行方向を軸とし上記
走行方向と直角な断面が、風貫通部の上記走行方向中央
から端部へかけて順次減少する柱状体としたことを特徴
とする請求項8記載の車載用冷却器。
9. The through-portion wind guide is characterized in that a cross section perpendicular to the running direction with the running direction as an axis is a columnar body whose diameter gradually decreases from the center of the running direction to the end in the running direction. The vehicle-mounted cooler according to claim 8, wherein
【請求項10】 貫通部導風体は、略平行に所定の間隔
を介して配設され風貫通部の走行方向端部側が凸となる
略傘形状の複数の導風体片からなり、上記各導風体片の
上記走行方向と直角な面積が、上記風貫通部の上記走行
方向中央から端部へかけて順次減少するようにしたこと
を特徴とする請求項8記載の車載用冷却器。
10. The through-portion air guide is composed of a plurality of substantially umbrella-shaped air guide pieces that are disposed substantially in parallel at predetermined intervals and that are protruding at the ends of the wind-through portion in the running direction. 9. The in-vehicle cooler according to claim 8, wherein an area of the wind piece perpendicular to the running direction is gradually reduced from a center of the running direction to an end of the wind penetration portion.
【請求項11】 車両の走行方向に所定の長さを有し上
記走行方向と直角に所定の面積を有する空間内に複数本
の冷却管を分布配設してなり、上記冷却管と上記車両の
走行によって生じる走行風との熱伝達により冷却を行う
車載用冷却器において、 上記空間の上記走行方向はその全長にわたり、上記面積
の周方向は飛石等障害物の衝突の可能性が高い限定され
た部分にわたり上記空間を覆うように配設された保護カ
バーを備えたことを特徴とする車載用冷却器。
11. A cooling system comprising: a plurality of cooling pipes distributed in a space having a predetermined length in a traveling direction of a vehicle and having a predetermined area perpendicular to the traveling direction; In a vehicle-mounted cooler that performs cooling by heat transfer with traveling wind generated by traveling of the vehicle, the traveling direction of the space extends over its entire length, and the circumferential direction of the area has a high possibility of collision with an obstacle such as a stepping stone. A vehicle-mounted cooler comprising a protective cover disposed so as to cover the space over a part of the vehicle.
【請求項12】 保護カバーの走行方向両端所定長を除
く中央の部分に、障害物の貫通を阻止する大きさで形成
された通風孔を設けたことを特徴とする請求項11記載
の車載用冷却器。
12. The vehicle-mounted vehicle according to claim 11, wherein a ventilation hole having a size to prevent an obstacle from penetrating is provided in a central portion of the protection cover except for a predetermined length at both ends in the traveling direction. Cooler.
【請求項13】 保護カバーは、走行方向両端に向かっ
て開口し上記走行方向中央に対称なルーバー構造とした
ことを特徴とする請求項11記載の車載用冷却器。
13. The on-vehicle cooler according to claim 11, wherein the protective cover has a louver structure that opens toward both ends in the traveling direction and is symmetrical about the center in the traveling direction.
【請求項14】 請求項1ないし7のいずれかに記載の
導風板と請求項8ないし10のいずれかに記載の貫通部
導風体とを備えたことを特徴とする車載用冷却器。
14. A vehicle-mounted cooler comprising the air guide plate according to any one of claims 1 to 7 and the through-portion wind guide according to any one of claims 8 to 10.
【請求項15】 請求項8ないし10のいずれかに記載
の貫通部導風体と請求項11ないし14のいずれかに記
載の保護カバーとを備えたことを特徴とする車載用冷却
器。
15. A vehicle-mounted cooler comprising the through-portion air guide according to any one of claims 8 to 10 and the protective cover according to any one of claims 11 to 14.
JP35812897A 1997-12-25 1997-12-25 Automotive cooler Expired - Fee Related JP3877408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35812897A JP3877408B2 (en) 1997-12-25 1997-12-25 Automotive cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35812897A JP3877408B2 (en) 1997-12-25 1997-12-25 Automotive cooler

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006078008A Division JP4012230B2 (en) 2006-03-22 2006-03-22 Automotive cooler

Publications (2)

Publication Number Publication Date
JPH11189153A true JPH11189153A (en) 1999-07-13
JP3877408B2 JP3877408B2 (en) 2007-02-07

Family

ID=18457696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35812897A Expired - Fee Related JP3877408B2 (en) 1997-12-25 1997-12-25 Automotive cooler

Country Status (1)

Country Link
JP (1) JP3877408B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005271646A (en) * 2004-03-23 2005-10-06 East Japan Railway Co Travel wind cooling device for rolling stock
CN102460615A (en) * 2009-06-23 2012-05-16 三菱电机株式会社 Transformer
WO2013084729A1 (en) 2011-12-09 2013-06-13 三菱電機株式会社 Cooling device for under-floor device for vehicle
WO2014091652A1 (en) 2012-12-11 2014-06-19 三菱電機株式会社 In-vehicle cooling device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093377A (en) * 1973-12-19 1975-07-25
JPS549814A (en) * 1977-06-24 1979-01-25 Mitsubishi Electric Corp Cooler of electric apparatus for car
JPS5447217A (en) * 1977-09-21 1979-04-13 Hitachi Ltd Self-cooling ventilation system for vehicle radiator
JPS5465909A (en) * 1977-11-05 1979-05-28 Hitachi Ltd Apparatus for cooling vehicle control device
JPS5660765A (en) * 1979-10-24 1981-05-25 Mitsubishi Electric Corp Cooler for electrical machinery and apparatus for car
JPS5742203A (en) * 1980-07-09 1982-03-09 Efu Koramu Jieemuzu Antenna
JPS5742203B2 (en) * 1977-02-14 1982-09-07
JPS5873430A (en) * 1981-10-27 1983-05-02 Nissan Motor Co Ltd Construction of undercover in engine compartment
JPS6023423U (en) * 1983-07-26 1985-02-18 富士重工業株式会社 Engine room under guard
JPH0177518U (en) * 1987-11-13 1989-05-25
JPH0326618U (en) * 1989-07-26 1991-03-18
JPH0537539U (en) * 1991-10-30 1993-05-21 いすゞ自動車株式会社 Rear engine type vehicle cooling system
JPH11176650A (en) * 1997-12-16 1999-07-02 Mitsubishi Electric Corp On-vehicle cooling device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093377A (en) * 1973-12-19 1975-07-25
JPS5742203B2 (en) * 1977-02-14 1982-09-07
JPS549814A (en) * 1977-06-24 1979-01-25 Mitsubishi Electric Corp Cooler of electric apparatus for car
JPS5447217A (en) * 1977-09-21 1979-04-13 Hitachi Ltd Self-cooling ventilation system for vehicle radiator
JPS5465909A (en) * 1977-11-05 1979-05-28 Hitachi Ltd Apparatus for cooling vehicle control device
JPS5660765A (en) * 1979-10-24 1981-05-25 Mitsubishi Electric Corp Cooler for electrical machinery and apparatus for car
JPS5742203A (en) * 1980-07-09 1982-03-09 Efu Koramu Jieemuzu Antenna
JPS5873430A (en) * 1981-10-27 1983-05-02 Nissan Motor Co Ltd Construction of undercover in engine compartment
JPS6023423U (en) * 1983-07-26 1985-02-18 富士重工業株式会社 Engine room under guard
JPH0177518U (en) * 1987-11-13 1989-05-25
JPH0326618U (en) * 1989-07-26 1991-03-18
JPH0537539U (en) * 1991-10-30 1993-05-21 いすゞ自動車株式会社 Rear engine type vehicle cooling system
JPH11176650A (en) * 1997-12-16 1999-07-02 Mitsubishi Electric Corp On-vehicle cooling device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005271646A (en) * 2004-03-23 2005-10-06 East Japan Railway Co Travel wind cooling device for rolling stock
CN102460615A (en) * 2009-06-23 2012-05-16 三菱电机株式会社 Transformer
JP5351263B2 (en) * 2009-06-23 2013-11-27 三菱電機株式会社 Transformer
US8614613B2 (en) 2009-06-23 2013-12-24 Mitsubishi Electronic Corporation Transformer
WO2013084729A1 (en) 2011-12-09 2013-06-13 三菱電機株式会社 Cooling device for under-floor device for vehicle
JP5474265B2 (en) * 2011-12-09 2014-04-16 三菱電機株式会社 Cooling device for vehicle underfloor device
KR20140089421A (en) 2011-12-09 2014-07-14 미쓰비시덴키 가부시키가이샤 Cooling device for under-floor device for vehicle
EP2789518A4 (en) * 2011-12-09 2015-09-02 Mitsubishi Electric Corp Cooling device for under-floor device for vehicle
US9863302B2 (en) 2011-12-09 2018-01-09 Mitsubishi Electric Corporation Cooling device for under-floor device for vehicle
WO2014091652A1 (en) 2012-12-11 2014-06-19 三菱電機株式会社 In-vehicle cooling device
US10011154B2 (en) 2012-12-11 2018-07-03 Mitsubishi Electric Corporation In-vehicle cooling device

Also Published As

Publication number Publication date
JP3877408B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
US5564497A (en) Corrugated fin type head exchanger
JP4622962B2 (en) Intercooler inlet / outlet piping structure
JP4544575B2 (en) EGR gas cooling device
US20070062679A1 (en) Heat exchanger with modified diffuser surface
KR20150043388A (en) Heat exchanger insert
JP4012230B2 (en) Automotive cooler
EP3029407A1 (en) Grooved baffle for a heat exchanger
JP2010531408A (en) Aircraft turbojet engine
US20080173436A1 (en) Plastic intercooler
JP2000308311A (en) Rotating electric machine
JP5946651B2 (en) Heat exchanger
JP6180684B1 (en) Transformer for vehicle
JP6494384B2 (en) Transformer for vehicle
CN102497040B (en) Vent segment, ventilating duct using vent segment and motor using ventilating duct
JPH11189153A (en) On-vehicle cooler
JP2000158938A (en) On-vehicle cooling device
US20030094260A1 (en) Heat exchanger tube with stone protection appendage
JP6051641B2 (en) Intercooler for vehicle
WO2021187371A1 (en) Intercooler
WO2014091652A1 (en) In-vehicle cooling device
JP2017036868A (en) Heat exchanger
WO2014010675A1 (en) Vehicle intercooler
US20030047365A1 (en) Fluid inlet grille with novel aerodynamic grill bars
US6237680B1 (en) Laminar flow radiator for motor vehicle
EP3367398A1 (en) Vehicle-use transformer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees