JPH11185747A - Positive electrode material for alkaline storage battery - Google Patents

Positive electrode material for alkaline storage battery

Info

Publication number
JPH11185747A
JPH11185747A JP9349799A JP34979997A JPH11185747A JP H11185747 A JPH11185747 A JP H11185747A JP 9349799 A JP9349799 A JP 9349799A JP 34979997 A JP34979997 A JP 34979997A JP H11185747 A JPH11185747 A JP H11185747A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode material
ray diffraction
storage battery
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9349799A
Other languages
Japanese (ja)
Inventor
Akiko Sugimoto
晶子 杉元
Shintaro Ishida
新太郎 石田
Kenzo Hanawa
健三 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP9349799A priority Critical patent/JPH11185747A/en
Publication of JPH11185747A publication Critical patent/JPH11185747A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the utilization ratio to be a maximum level without changing concentration of aluminum by controlling the crystallization determined from an X-ray diffraction pattern, as an aluminum contained nickel hydroxide to be used as a positive electrode material. SOLUTION: An αtype Al substituted Ni(OH)2 represented by a structural formula: (Alx Ni1-x )(OH)2 Y, where 0.15<x<0.3, Y is negative ion, is used as a positive electrode material. Ion sulfate, ion nitrate or ion carbonate is preferably used as the negative ion of Y. The half-value width of (003) peak of the Al substituted α-nickel hydroxide, in an X-ray diffraction pattern may be arbitral. However, it is desirable to be less than 8.2 Å. The crystallization of Al substituted α-nickel hydroxide is improved according to the largeness of the alkali-metal ratio. The crystallization is also improved according to the length of aging time and the highness of temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池用
正極材及び該正極材を用いたアルカリ蓄電池に関するも
のである。
The present invention relates to a cathode material for an alkaline storage battery and an alkaline storage battery using the cathode material.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ニッケ
ル・カドミウム蓄電池やニッケル・金属水素化物蓄電池
等のアルカリ蓄電池に共通的に使用される水酸化ニッケ
ル正極は、電池の高エネルギー密度化の要望が高まる中
で、従来の焼結式に代えて、高容量密度化が可能なペー
スト式が主体となりつつある。このペースト式ニッケル
正極は、95%程度の高い多孔度を有する発泡ニッケル
基板やニッケル繊維基板に、水酸化ニッケル粉末をコバ
ルト化合粉末等と共に、充填、加圧成形して得られてい
る。このような発泡ニッケル基板は、ウレタン等の発泡
プラスチックにニッケルをメッキした後に加熱し、発泡
プラスチックを熱分解して発泡金属を得るものである。
2. Description of the Related Art A nickel hydroxide positive electrode commonly used in alkaline storage batteries such as nickel-cadmium storage batteries and nickel-metal hydride storage batteries is required to have a high energy density. In the course of the increase, the paste type capable of increasing the capacity density has been mainly used instead of the conventional sintered type. The paste-type nickel positive electrode is obtained by filling a nickel foam powder or a nickel fiber substrate having a high porosity of about 95% with a nickel compound powder and a cobalt compound powder and press-forming. Such a foamed nickel substrate is obtained by plating nickel on a foamed plastic such as urethane and then heating it to thermally decompose the foamed plastic to obtain a foamed metal.

【0003】アルカリ蓄電池用正極材である水酸化ニッ
ケルの充放電中の反応は、一般的には、β−Ni(O
H)2とβ−NiOOHの間の反応を利用しており、これ
は一電子反応であるが、最も安定な反応であり、汎用さ
れている。
The reaction during charging and discharging of nickel hydroxide, which is a positive electrode material for an alkaline storage battery, is generally carried out by β-Ni (O
It utilizes the reaction between H) 2 and β-NiOOH, which is a one-electron reaction, but the most stable and widely used.

【0004】これをβ−Ni(OH)2とγ−NiOOH
の間の反応を利用することにより多電子反応とすると、
容量が増加するという利点がある。しかし、β−Ni
(OH)2 とγ−NiOOHの格子定数差により充放電
時の体積変化が大きいという問題がある。
[0004] This is called β-Ni (OH) 2 and γ-NiOOH.
If a multi-electron reaction is obtained by utilizing the reaction between
There is an advantage that capacity is increased. However, β-Ni
There is a problem that the volume change during charging and discharging is large due to the difference in lattice constant between (OH) 2 and γ-NiOOH.

【0005】一方、α−Ni(OH)2とγ−NiOOH
の間の反応を利用すると、これも多電子反応であるので
容量が増加するという利点があり、かつα−Ni(O
H)2とγ−NiOOHでは格子定数差が小さいので充
放電時の体積変化も小さく、好ましいものである。
On the other hand, α-Ni (OH) 2 and γ-NiOOH
Is advantageous in that the capacity is increased because this is also a multi-electron reaction, and α-Ni (O
H) 2 and γ-NiOOH have a small difference in lattice constant, so that the change in volume during charging and discharging is small, which is preferable.

【0006】しかし、α−Ni(OH)2はアルカリ液中
で不安定であり、容易にβ−Ni(OH)2に変化してし
まうという問題があり、実用化できない原因となってい
た。。図1に代表的なα−Ni(OH)2のX線回折図と
そのピークの面指数を示す。
However, α-Ni (OH) 2 is unstable in an alkaline solution and easily changes to β-Ni (OH) 2 . . FIG. 1 shows an X-ray diffraction diagram of a typical α-Ni (OH) 2 and the surface index of the peak.

【0007】このようなα−Ni(OH)2を安定化する
試みとして、Al、Fe、Cr等でNiの一部を置換し
た報告があり、その中でもAlについては、Al濃度と
電池特性(放電電位)の相関についての報告がなされて
いる(特開昭49−109842号公報)。しかし、同
公報においても、同一Al濃度における水酸化ニッケル
の結晶性と電池特性との相関については何等の報告もな
されていない。
As an attempt to stabilize such α-Ni (OH) 2 , there is a report that part of Ni is replaced with Al, Fe, Cr or the like. There is a report on the correlation of the discharge potential (JP-A-49-109842). However, even in this publication, there is no report on the correlation between the crystallinity of nickel hydroxide and the battery characteristics at the same Al concentration.

【0008】従って、本発明の目的は、利用率を向上さ
せたアルカリ蓄電池用正極材及び該正極材を用いたアル
カリ蓄電池を提供することを目的とする。
Accordingly, an object of the present invention is to provide a positive electrode material for an alkaline storage battery with an improved utilization factor and an alkaline storage battery using the positive electrode material.

【0009】[0009]

【課題を解決するための手段】本発明者等は、鋭意検討
の結果、アルカリ蓄電池用正極材として用いられるアル
ミニウムを含有した水酸化ニッケルとして、そのX線回
折図から判断される結晶性を制御することで、アルミニ
ウム濃度を変えずに最大限の利用率を引き出し得ること
を知見した。
Means for Solving the Problems As a result of intensive studies, the present inventors have controlled the crystallinity determined from the X-ray diffraction diagram of aluminum-containing nickel hydroxide used as a cathode material for alkaline storage batteries. By doing so, it was found that the maximum utilization rate can be obtained without changing the aluminum concentration.

【0010】本発明は、上記知見に基づいてなされたも
ので、下記組成式 (Alx Ni1-x )(OH)2Y (但し、0.15<x<0.3、Yは陰イオン)で表さ
れるα型のAl置換Ni(OH)2であって、X線回折図
における(003)のピークの半値全幅が1.5deg
未満であることを特徴とするアルカリ蓄電池用正極材を
提供するものである。
The present invention has been made based on the above findings, and has the following composition formula (Al x Ni 1 -x ) (OH) 2 Y (where 0.15 <x <0.3, Y is an anion) ) represented by α-type Al-substituted Ni (OH) a 2, full width at half maximum of the peak of the X-ray diffraction diagram (003) is 1.5deg
A positive electrode material for an alkaline storage battery, wherein

【0011】また、本発明は、上記正極材を用いたアル
カリ蓄電池を提供するものである。
Further, the present invention provides an alkaline storage battery using the above-mentioned positive electrode material.

【0012】[0012]

【作用】合成条件を適当に設定することで、同一Al濃
度であっても結晶性を向上させ、X線回折図における
(003)のピークの半値全幅が1.5deg未満にな
るようにすると、 (1)c面(001)面の面間隔が狭まる; (2)各c面層のa軸方向が揃ってくる; といったことが起こることが実験的に判っている。容量
の増大はこれらの事象と次の様に関係づけて考えること
ができる。
By appropriately setting the synthesis conditions, the crystallinity can be improved even at the same Al concentration so that the full width at half maximum of the (003) peak in the X-ray diffraction diagram is less than 1.5 deg. It has been experimentally found that (1) the spacing between the c-plane (001) planes is reduced; (2) the a-axis directions of the respective c-plane layers are aligned; The increase in capacity can be considered in relation to these events as follows.

【0013】水酸化物中でNiが2価として存在するの
に対し、Alは3価で取り込まれていると考えられるの
で、その電荷補償のために、c面の層間にNO3 - 、C
3 2 - 等の陰イオンが取り込まれる。しかし現実には、
OH欠陥も多く存在するので、その分の電荷補償のため
にも同様に陰イオンが層間に取り込まれ、Alの電荷補
償に必要な分よりも多量の陰イオンが存在すると考えら
れる。合成条件を変え結晶性が向上するとc面の面間隔
が狭まるのは、OH欠損が減少しこれを補償していた陰
イオンが減ってAlの電荷補償に必要な量に近づいた結
果と考えられる。層間の陰イオンは充放電中のH+ の出
入りの障害となりやすいので、これが減少すれば、電池
の利用率が向上すると考えられる。
[0013] While the present as bivalent Ni is in a hydroxide, it is considered that Al is incorporated by trivalent, because of its charge compensation, NO 3 between the layers of c-plane -, C
O 3 2 - such anions are incorporated. But in reality,
Since there are many OH defects, anions are similarly taken in between layers for charge compensation by that amount, and it is considered that a larger amount of anions is present than necessary for charge compensation of Al. It is considered that the reason why the spacing between the c-planes is reduced when the crystallinity is improved by changing the synthesis conditions is that the OH deficiency is reduced and the anions that compensated for this are reduced and the amount required for Al charge compensation is approached. . Since the anions between the layers are likely to hinder the entry and exit of H + during charging and discharging, it is considered that if the number of ions decreases, the utilization rate of the battery increases.

【0014】また、層間の陰イオンやH2 Oはc面層の
OH基と水素結合していると考えられるが、各層のa軸
方向が揃ってくれば層間の水素結合の分布に規則性が生
じ、充放電中のH+ の移動を妨げにくくなる。
The anions and H 2 O between the layers are considered to be hydrogen-bonded to the OH groups in the c-plane layer. However, if the a-axis direction of each layer becomes uniform, the distribution of hydrogen bonds between the layers becomes regular. Occur, making it difficult to prevent the movement of H + during charge and discharge.

【0015】[0015]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明のアルカリ蓄電池用正極材として用いられる水酸
化ニッケルは、下記組成式 (Alx Ni1-x )(OH)2Y (但し、0.15<x<0.3、Yは陰イオン)で表さ
れるα型のAl置換Ni(OH)2である。ここにおい
て、xが0.15以下では水酸化ニッケルのα相が安定
でなく、0.3以上では充放電に直接関与するニッケル
が減少することによる容量低下が、アルミニウム添加に
よる容量増加を上回ってしまう。また、Yは陰イオンを
示し、硫酸イオン、硝酸イオン、炭酸イオン等である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The nickel hydroxide used as the positive electrode material for an alkaline storage battery of the present invention has the following composition formula (Al x Ni 1 -x ) (OH) 2 Y (0.15 <x <0.3, Y is an anion) Is an α-type Al-substituted Ni (OH) 2 represented by Here, when x is 0.15 or less, the α phase of nickel hydroxide is not stable. When x is 0.3 or more, the capacity decrease due to the decrease in nickel directly involved in charge / discharge exceeds the capacity increase due to the addition of aluminum. I will. Y represents an anion, such as a sulfate ion, a nitrate ion, and a carbonate ion.

【0016】また、上記水酸化ニッケルのX線回折にお
ける(003)のピークの半値全幅が1.5deg未満
であることが必要であり、好ましくは0.5deg未満
である。(003)のピークの半値全幅が1.5deg
以上では十分な利用率が得られない。
Further, the full width at half maximum of the (003) peak in the X-ray diffraction of the above nickel hydroxide needs to be less than 1.5 deg, and preferably less than 0.5 deg. The full width at half maximum of the peak of (003) is 1.5 deg.
With the above, a sufficient utilization rate cannot be obtained.

【0017】更に、上記水酸化ニッケルのX線回折図に
おける(003)のピークのd値は特に制限されず任意
であるが、8.2Å未満であることが好ましい。
Further, the d value of the (003) peak in the X-ray diffraction pattern of the nickel hydroxide is not particularly limited, and is arbitrary, but preferably less than 8.2 °.

【0018】上述したアルミニウム置換α−水酸化ニッ
ケルは、以下の方法によって製造される。先ず、水酸化
ニッケル製造原料としての金属塩水溶液及びアルカリ水
溶液は、硫酸アルミニウム、硝酸アルミニウム、硫酸ニ
ッケル、硝酸ニッケル、水酸化カリウム、水酸化ナトリ
ウム、水酸化リチウム等が通常使用されるが、その他、
塩化アルミニウム、塩化ニッケル、アンモニア等も使用
できる。その中でも、同一合成条件下では硝酸塩と水酸
化リチウムの組み合わせから得られるアルミニウム置換
α−水酸化ニッケルの結晶性が最も良好である。
The above-mentioned aluminum-substituted α-nickel hydroxide is produced by the following method. First, an aqueous metal salt solution and an aqueous alkali solution as a raw material for producing nickel hydroxide include aluminum sulfate, aluminum nitrate, nickel sulfate, nickel nitrate, potassium hydroxide, sodium hydroxide, and lithium hydroxide.
Aluminum chloride, nickel chloride, ammonia and the like can also be used. Among them, the crystallinity of aluminum-substituted α-nickel hydroxide obtained from a combination of nitrate and lithium hydroxide is the best under the same synthesis conditions.

【0019】これらアルミニウム/ニッケルを上記範囲
内で所定割合とした金属塩水溶液とアルカリ水溶液とを
混合する。混合時において、アルカリ/金属比を一定と
し均一に反応させるには、スタティックミキサーを使用
するとよい。その後、熟成、洗浄、濾過、乾燥してアル
ミニウム置換α−水酸化ニッケルを得る。
An aqueous solution of a metal salt and an aqueous solution of an alkali having a predetermined ratio of aluminum / nickel within the above range are mixed. At the time of mixing, a static mixer may be used to keep the alkali / metal ratio constant and to make the reaction uniform. Thereafter, aging, washing, filtration and drying are performed to obtain aluminum-substituted α-nickel hydroxide.

【0020】ここで、(1)アルカリ/金属比は大きい
ほど、得られるアルミニウム置換α−水酸化ニッケルの
結晶性は向上する。(2)熟成時の時間及び温度は、長
いほどまた高いほど、アルミニウム置換α−水酸化ニッ
ケルの結晶性は向上する。しかし、α相の結晶性の向上
過程は、α→β転移反応との競合反応でもあるので、β
転移させずに高結晶なα相を得るためには、上記(1)
及び(2)の範囲に制限があり、それはAl濃度によっ
て異なる。
Here, (1) As the alkali / metal ratio increases, the crystallinity of the obtained aluminum-substituted α-nickel hydroxide improves. (2) The longer and higher the aging time and temperature, the better the crystallinity of the aluminum-substituted α-nickel hydroxide. However, since the process of improving the crystallinity of the α phase is also a competitive reaction with the α → β transition reaction,
In order to obtain a highly crystalline α phase without causing a transition, the above (1)
And the range of (2) is limited, and it depends on the Al concentration.

【0021】すなわち、Al濃度が高いと、アルカリ/
メタル≧2(当量以上)の条件下でも、α相が維持され
結晶化が進む。また、Al濃度が低いと、当量では室温
熟成でもβ化がおこるのでアルカリ/メタル<2に設定
する必要がある。
That is, when the Al concentration is high, the alkali /
Even under the condition of metal ≧ 2 (equivalent or more), the α phase is maintained and crystallization proceeds. Also, if the Al concentration is low, β-formation occurs even at room temperature aging at an equivalent amount, so it is necessary to set alkali / metal <2.

【0022】[0022]

【実施例】以下、実施例等に基づいて本発明を具体的に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments and the like.

【0023】〔試験例1〕α−Ni(OH)2 中に置換
するAl濃度のみを変えて、放電電位を評価した。その
結果を図2に示す。また、利用率を評価した。その結果
を図3に示す。この図2〜3から明らかなように、Al
25%までは濃度の増加に応じて放電中間電位も利用率
も増加することが判る。
Test Example 1 The discharge potential was evaluated by changing only the concentration of Al substituted in α-Ni (OH) 2 . The result is shown in FIG. In addition, the utilization rate was evaluated. The result is shown in FIG. As is apparent from FIGS.
It can be seen that up to 25%, the discharge intermediate potential and the utilization rate increase as the concentration increases.

【0024】ここで利用率は、正極材の単位重量あたり
の放電容量をその材料に含有されるNiが2価から3価
に完全に酸化される時に得られる単位重量あたりの放電
容量で割った値とした。また、放電中間電位とは、3サ
イクル目の容量の半分の時点の電位を示す。
Here, the utilization factor is obtained by dividing the discharge capacity per unit weight of the positive electrode material by the discharge capacity per unit weight obtained when Ni contained in the material is completely oxidized from divalent to trivalent. Value. The discharge intermediate potential indicates a potential at a half point of the capacity in the third cycle.

【0025】〔試験例2〕Al置換Ni(OH)2 の合
成において、熟成温度とアルカリ/金属比を変えた場合
に得られる相の分布を図4に示す。図4において、それ
ぞれ(a)はアルミニウム含有量20モル%(x=0.
2)、(b)はアルミニウム含有量10モル%(x=
0.1)、(c)はアルミニウム含有量5モル%(x=
0.05)である。また、●はα相単相、○はβ相単相
あるいはα+β混合相である。図4から、Al10モル
%及び5モル%では、当量条件ですでにβ相が生成する
のでα相が不安定なことが判る。
Test Example 2 FIG. 4 shows the distribution of phases obtained when the aging temperature and the alkali / metal ratio were changed in the synthesis of Al-substituted Ni (OH) 2 . In FIG. 4, (a) shows an aluminum content of 20 mol% (x = 0.
2) and (b) show an aluminum content of 10 mol% (x =
0.1) and (c) are aluminum content of 5 mol% (x =
0.05). In addition, ● represents an α-phase single phase, and ○ represents a β-phase single phase or an α + β mixed phase. From FIG. 4, it can be seen that, when Al is 10 mol% and 5 mol%, the β phase is already generated under the equivalent conditions, so that the α phase is unstable.

【0026】〔実施例1〕濃度1.5mol/lのNi
SO4 又はNi(NO3)2 +Al2(SO4)3 又はAl
(NO3)3 (但し、Ni:Al=8:2)の混合溶液1
リットルを、NaOH、LiOH又はNH3 の溶液1リ
ットルとスタティックミキサーを用いて混合した。
Example 1 Ni with a concentration of 1.5 mol / l
SO 4 or Ni (NO 3 ) 2 + Al 2 (SO 4 ) 3 or Al
(NO 3 ) 3 (however, Ni: Al = 8: 2) mixed solution 1
One liter was mixed with one liter of a solution of NaOH, LiOH or NH 3 using a static mixer.

【0027】アルカリ/金属比は1〜3、熟成にはオー
トクレーブを使用し、温度は30〜150℃の間でα相
が生成するよう適当に設定した。熟成時間は16時間で
ある。得られた沈殿は純水で洗浄し、濾過し50℃で大
気乾燥した。この粉末を適当な手段で粉砕し、X線回折
を測定した。代表的なサンプル4種のX線回折図を図5
(a)〜(b)及び図6(a)〜(b)に、その合成条
件を表1に示す。なお、図5(a)は表1(a)の化合
物、図5(b)は表1(b)の化合物、図6(a)は表
1(c)の化合物及び図6(b)は表1(d)の化合物
のX線回折図である。
The alkali / metal ratio was 1 to 3, the autoclave was used for aging, and the temperature was appropriately set so that the α phase was formed at a temperature of 30 to 150 ° C. The aging time is 16 hours. The obtained precipitate was washed with pure water, filtered, and air-dried at 50 ° C. This powder was pulverized by an appropriate means, and X-ray diffraction was measured. FIG. 5 shows X-ray diffraction patterns of four representative samples.
Table 1 shows the synthesis conditions for (a)-(b) and FIGS. 6 (a)-(b). 5 (a) is the compound of Table 1 (a), FIG. 5 (b) is the compound of Table 1 (b), FIG. 6 (a) is the compound of Table 1 (c), and FIG. FIG. 2 is an X-ray diffraction diagram of the compound of Table 1 (d).

【0028】[0028]

【表1】 [Table 1]

【0029】電池試験は、これらの水酸化ニッケルを正
極材(正極活物質)として用い、正極材料:Co(O
H)2 :Co:PTFEバインダー=5:2:3:1の
重量比となるように混合した正極合剤を0.1g秤取
し、発泡ニッケルとニッケルメッシュで挟み込んだ構造
とした。対極にはニッケルメッシュを使用した。電解液
は0.1NLiOHを含有した7NKOHとした。充放
電共に0.2Cで行い、充電は7.5時間、放電のカッ
トオフ電位はHg/HgO参照電極に対して0.1Vと
した。
In the battery test, these nickel hydroxides were used as a cathode material (cathode active material), and the cathode material: Co (O
H) A structure was prepared in which 0.1 g of a positive electrode mixture mixed so as to have a weight ratio of 2: 2: 3: 1 with a 2 : Co: PTFE binder was weighed and sandwiched between nickel foam and a nickel mesh. A nickel mesh was used for the counter electrode. The electrolyte was 7 NKOH containing 0.1 N LiOH. Both charging and discharging were performed at 0.2 C, charging was performed for 7.5 hours, and discharge cutoff potential was set at 0.1 V with respect to the Hg / HgO reference electrode.

【0030】この結果、同一条件下で電池試験を行った
標準サンプル(CoとZnを含有し、Ni分は55.8
重量%)の利用率は140%であった。
As a result, a standard sample (containing Co and Zn and having a Ni content of 55.8) subjected to a battery test under the same conditions was used.
%) Was 140%.

【0031】図7にX線回折図における(003)のピ
ークの半値全幅に対する利用率を、図8にX線回折図に
おける(003)のピークのd値に対する放電中間電位
を示す。この実施例1から同一Al濃度でも、結晶性が
向上すれば、Niに対する利用率も上るので、十分にγ
化し多電子反応が起こっていることが判る。また、同一
Al濃度でも、c面の面間隔が狭まれば放電電位が上が
ることが判る。単位重量あたりの放電容量も結晶性が向
上すると増大するが、最もよいものでは標準サンプルに
対し110%となった。
FIG. 7 shows the utilization factor of the (003) peak in the X-ray diffraction diagram with respect to the full width at half maximum, and FIG. 8 shows the discharge intermediate potential with respect to the d value of the (003) peak in the X-ray diffraction diagram. From Example 1, even with the same Al concentration, if the crystallinity is improved, the utilization factor for Ni is also increased.
It turns out that a multi-electron reaction is occurring. It can also be seen that, even at the same Al concentration, the discharge potential increases when the c-plane spacing decreases. The discharge capacity per unit weight also increases as the crystallinity improves, but the best one is 110% of the standard sample.

【0032】図9に表1(d)に示したサンプルと標準
サンプルの充放電図を示す。表1(d)のサンプルでは
Niの充電部分と酸素発生部が明確に分離されているこ
とが分かる。これにより、従来アルカリ蓄電池の正極に
必要不可欠とされていた過充電の必要がなくなり、充電
効率が向上することが期待できる。
FIG. 9 shows a charge / discharge diagram of the sample and the standard sample shown in Table 1 (d). In the sample of Table 1 (d), it can be seen that the charged portion of Ni and the oxygen generating portion are clearly separated. This eliminates the necessity of overcharging, which is conventionally indispensable for the positive electrode of an alkaline storage battery, and can be expected to improve charging efficiency.

【0033】〔比較例1〕濃度1.5mol/lのNi
SO4 +Al2(SO4)3 の混合溶液(Ni/Al=8/
2)1リットルを、アルカリ/メタル=4.36となる
ように調製したNaOH溶液1リットルとスタティック
ミキサーを用いて混合し、オートクレーブ中100℃で
熟成した他は、実施例1と同様にして処理し、実施例1
と同様に電池試験を行った。このアルミニウム含有水酸
化ニッケルのX線回折図を図10に示す。
Comparative Example 1 Ni having a concentration of 1.5 mol / l
SO 4 + Al 2 (SO 4 ) 3 mixed solution (Ni / Al = 8 /
2) 1 liter was mixed with 1 liter of a NaOH solution prepared so that alkali / metal = 4.36 using a static mixer, and aged at 100 ° C. in an autoclave. Example 1
A battery test was performed in the same manner as described above. FIG. 10 shows an X-ray diffraction diagram of this aluminum-containing nickel hydroxide.

【0034】図10からこのサンプルはα相単相でな
く、β相が混入していることが判る。このサンプルのα
相のピークについて注目すると、図5(b)のサンプル
より結晶性が良く、図6(a)に近いにも拘わらず、利
用率は141%と図5(b)のサンプルより21%も低
かった。また放電電位も図5(b)のサンプルよりも低
い。このことは、結晶性の良いα相の方がβ相よりも放
電電位も利用率も大きいと考えると説明がつく。このよ
うに、β−(Al,Ni)(OH)2よりも、α−(Al,
Ni)(OH)2の方が放電電位も高く利用率も大きい。
FIG. 10 shows that this sample is not a single α-phase but a β-phase. Α of this sample
Focusing on the phase peaks, the crystallinity is better than the sample of FIG. 5 (b), and although it is close to FIG. 6 (a), the utilization is 141%, which is 21% lower than the sample of FIG. 5 (b). Was. Also, the discharge potential is lower than that of the sample of FIG. This can be explained by considering that the α phase having better crystallinity has a higher discharge potential and a higher utilization factor than the β phase. Thus, α- (Al, Ni, (OH) 2
Ni) (OH) 2 has a higher discharge potential and a higher utilization factor.

【0035】[0035]

【発明の効果】以上説明したように、本発明のアルカリ
蓄電池用正極材によって、利用率を向上させることがで
きる。
As described above, the utilization factor can be improved by the positive electrode material for an alkaline storage battery of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、代表的なα−Ni(OH)2のX線回折
図。
FIG. 1 is an X-ray diffraction diagram of a typical α-Ni (OH) 2 .

【図2】図2は、試験例1におけるAl濃度と放電中間
電位との関係を示すグラフ。
FIG. 2 is a graph showing a relationship between an Al concentration and a discharge intermediate potential in Test Example 1.

【図3】図3は、試験例1におけるAl濃度と利用率と
の関係を示すグラフ。
FIG. 3 is a graph showing the relationship between Al concentration and utilization in Test Example 1.

【図4】図4は、(Alx Ni1-x )(OH)2の合成にお
いて、熟成温度とアルカリ/メタルを変えた場合に得ら
れる相を示すグラフ。
FIG. 4 is a graph showing phases obtained when the aging temperature and the alkali / metal are changed in the synthesis of (Al x Ni 1-x ) (OH) 2 .

【図5】図5は、実施例1で得られたサンプルの代表例
のX線回折図。
FIG. 5 is an X-ray diffraction diagram of a representative example of a sample obtained in Example 1.

【図6】図6は、実施例1で得られたサンプルの代表例
のX線回折図。
FIG. 6 is an X-ray diffraction diagram of a representative example of a sample obtained in Example 1.

【図7】図7は、実施例1における(003)のピーク
の半値全幅に対する利用率を示すグラフ。
FIG. 7 is a graph showing a utilization rate with respect to a full width at half maximum of a peak of (003) in Example 1.

【図8】図8は、実施例1における(003)のピーク
のd値に対する放電中間電位を示すグラフ。
FIG. 8 is a graph showing the discharge intermediate potential with respect to the d value of the peak of (003) in Example 1.

【図9】図9は、表1に示したサンプル(d)と標準サ
ンプルの充放電図。
FIG. 9 is a charge / discharge diagram of a sample (d) and a standard sample shown in Table 1.

【図10】図10は、比較例1で得られたサンプルのX
線回折図。
FIG. 10 is a graph showing X of the sample obtained in Comparative Example 1.
Line diffraction diagram.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 下記組成式 (Alx Ni1-x )(OH)2Y (但し、0.15<x<0.3、Yは陰イオン)で表さ
れるα型のAl置換Ni(OH)2であって、X線回折図
における(003)のピークの半値全幅が1.5deg
未満であることを特徴とするアルカリ蓄電池用正極材。
An α-type Al-substituted Ni (α) represented by the following composition formula (Al x Ni 1-x ) (OH) 2 Y (where 0.15 <x <0.3, Y is an anion) OH) 2 and the full width at half maximum of the (003) peak in the X-ray diffraction pattern is 1.5 deg.
A positive electrode material for an alkaline storage battery, wherein
【請求項2】 上記X線回折図における(003)のピ
ークの半値全幅が0.5deg未満である請求項1に記
載のアルカリ蓄電池用正極材。
2. The positive electrode material for an alkaline storage battery according to claim 1, wherein the full width at half maximum of the (003) peak in the X-ray diffraction pattern is less than 0.5 deg.
【請求項3】 X線回折図における(003)のピーク
のd値が8.2Å未満である請求項1又は2に記載のア
ルカリ蓄電池用正極材。
3. The positive electrode material for an alkaline storage battery according to claim 1, wherein the d value of the peak of (003) in the X-ray diffraction diagram is less than 8.2 °.
【請求項4】 X線回折図における(003)のピーク
のd値が8.2Å以上である請求項1又は2に記載のア
ルカリ蓄電池用正極材。
4. The positive electrode material for an alkaline storage battery according to claim 1, wherein the d value of the peak of (003) in the X-ray diffraction pattern is 8.2 ° or more.
【請求項5】 請求項1〜4に記載の正極材を用いたア
ルカリ蓄電池。
5. An alkaline storage battery using the positive electrode material according to claim 1.
JP9349799A 1997-12-18 1997-12-18 Positive electrode material for alkaline storage battery Pending JPH11185747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9349799A JPH11185747A (en) 1997-12-18 1997-12-18 Positive electrode material for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9349799A JPH11185747A (en) 1997-12-18 1997-12-18 Positive electrode material for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH11185747A true JPH11185747A (en) 1999-07-09

Family

ID=18406201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9349799A Pending JPH11185747A (en) 1997-12-18 1997-12-18 Positive electrode material for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH11185747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033909A (en) * 2008-07-29 2010-02-12 Gs Yuasa Corporation Alkaline storage battery, and manufacturing method for positive electrode active material of alkaline storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033909A (en) * 2008-07-29 2010-02-12 Gs Yuasa Corporation Alkaline storage battery, and manufacturing method for positive electrode active material of alkaline storage battery

Similar Documents

Publication Publication Date Title
EP0353837B1 (en) A nickel electrode for an alkaline battery
EP0716462B1 (en) Nickel electrode active material; a nickel electrode and a nickel alkali storage cell using such nickel electrode active material; and production methods of such material, electrode and cell
JP3290355B2 (en) Lithium-containing composite oxide for lithium ion secondary battery and method for producing the same
US5702844A (en) Nickel electrode for an alkaline storage cell
JP3884796B2 (en) Method for producing Ni-Co composite hydroxide
JPH09270253A (en) Manufacture of lithium nickelate positive plate and lithium battery
KR100454542B1 (en) Non-Sintered Nickel Electrode For Alkaline Battery
JPH10125318A (en) Positive active material and positive electrode for alkaline storage battery
EP1719195B1 (en) Positive electrode active material for a nickel electrode
EP0932211B1 (en) Positive electrode active material for alkaline storage battery
JP2005050762A (en) Oxy-cobalt hydroxide, its manufacturing method, and alkaline storage battery using it
JP3151340B2 (en) Alkaline storage battery
US7335445B2 (en) Positive electrode active material for alkaline storage battery, positive electrode and alkaline storage battery
KR100640108B1 (en) Active Material for Rechargeable Batteries
JPH11185746A (en) Positive electrode material for alkaline storage battery
JP3324781B2 (en) Alkaline secondary battery
JPH11312519A (en) Compound nickel hydroxide active material containing mn, and preparation thereof
JPH11185747A (en) Positive electrode material for alkaline storage battery
JP3609231B2 (en) Method for producing cobalt-nickel hydroxide for Li-ion secondary battery
US5910296A (en) Method of preparing Ni-M hydroxycarbonate having a high density
KR102028849B1 (en) Positive electrode active material and alkaline battery
JP4908716B2 (en) Alkaline storage battery, nickel electrode for alkaline storage battery, active material powder for nickel electrode.
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP3609196B2 (en) Method for producing cobalt-nickel hydroxide for Li-ion secondary battery
JP3249366B2 (en) Paste nickel electrode for alkaline storage batteries

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040301

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040309

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040506

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

A072 Dismissal of procedure

Effective date: 20040810

Free format text: JAPANESE INTERMEDIATE CODE: A072

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080409

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090409

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100409

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110409

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120409

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130409

LAPS Cancellation because of no payment of annual fees