JPH11184539A - Driving device and stage device and exposure device using it - Google Patents

Driving device and stage device and exposure device using it

Info

Publication number
JPH11184539A
JPH11184539A JP35501997A JP35501997A JPH11184539A JP H11184539 A JPH11184539 A JP H11184539A JP 35501997 A JP35501997 A JP 35501997A JP 35501997 A JP35501997 A JP 35501997A JP H11184539 A JPH11184539 A JP H11184539A
Authority
JP
Japan
Prior art keywords
temperature
cooling
driving
driving means
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35501997A
Other languages
Japanese (ja)
Inventor
Keiji Emoto
圭司 江本
Shigeto Kamata
重人 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP35501997A priority Critical patent/JPH11184539A/en
Publication of JPH11184539A publication Critical patent/JPH11184539A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Flow Control (AREA)
  • Control Of Temperature (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate bad effects caused by heat generated by a driving means on positioning precision, in order to respond to a further demand of an allowable temperature by cooling divided areas of the driving means respectively. SOLUTION: A demand of an allowable temperature is satisfied by replacing a cooling means with plural cooling means 6a to 6c, dividing a cooling part of a driving means 1a into three division parts A1 and A3 and cooling in accordance with heat generation of respective parts. For instance, when the heat generation of the part A2 of the means 1a is large and the heat generation of the parts A1 , A3 is small, the cooling capacity by the cooling means is increased by increasing the amount of a coolant 3b that is made to flow into the part A2 or reducing its temperature, while the cooling capacity of the cooling means is decreased by reducing the amount of coolants 3a and 3c which are made to flow into the parts A1 to A3 or increasing their temperatures. Thus, optimum cooling is performed in accordance with calorific value of each part, the temperature change of each part is suppressed more than in the conventional practice and also the entire temperature distribution of the means 1a is made uniform.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体露光
装置や形状計測装置の移動テーブル、高精度加工機など
の精密位置決め装置に好適に使用される駆動装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving device suitably used for a precision positioning device such as a moving table of a semiconductor exposure device or a shape measuring device and a high-precision processing machine.

【0002】[0002]

【従来の技術】ナノメートル(nm)オーダーの精密位
置決め精度が要求される超高精度の装置では、例えば1
00mmの低熱膨張材(熱膨張係数1×10-6)が1℃
の温度変化で100nm変形し、また、光干渉式測長計
の光路における空気温度の変化が1℃であっても位置の
測定値が条件によっては100nm変化するため、これ
ら温度変化の防止策として駆動手段から放出される熱を
回収する駆動装置の冷却は必須となっている。また、温
度分布の不均一も、光干渉式測長計の誤差要因である空
気揺らぎの主な原因の一つであるため、駆動装置の温度
不均一を出来るだけ抑える努力がなされている。
2. Description of the Related Art In an ultra-high-precision apparatus requiring a precise positioning accuracy on the order of nanometers (nm), for example, 1
00mm low thermal expansion material (thermal expansion coefficient 1 × 10 -6 ) 1 ℃
Of the air temperature in the optical path of the optical interferometer is 1 ° C., but the measured value at the position changes by 100 nm depending on the conditions. Cooling of the drive to recover the heat released from the means is essential. In addition, since uneven temperature distribution is also one of the main causes of air fluctuation which is an error factor of the optical interference type length measuring device, efforts have been made to minimize the uneven temperature of the driving device.

【0003】駆動手段の発熱が構造体の熱変形や光干渉
式測長計の誤差要因となる空気揺らぎをもたらすため、
精密な位置決め装置においては冷媒、ヒートパイプ、ペ
ルチェ素子等の手段を用いて冷却を行っており、駆動手
段の発熱時に駆動手段や駆動手段が搭載される装置が所
定温度になるように、冷媒の温度や流量、ヒートパイプ
の放熱部温度、ペルチェ素子の駆動電流等を調整してい
る。特に、冷媒を循環させて熱を回収するときには、特
開平7-302124号公報、特開平7-302747号公報のように発
熱源近傍に温度計測手段を設け、これにより得られた温
度をもとに冷媒温度や冷媒流量を調整して駆動装置全体
の冷却を調整している。
The heat generated by the driving means causes thermal deformation of the structure and air fluctuation which causes an error in the optical interference type length measuring device.
In the precise positioning device, cooling is performed using means such as a refrigerant, a heat pipe, and a peltier element.When the driving means generates heat, the driving means and the device on which the driving means is mounted have a predetermined temperature. The temperature and flow rate, the temperature of the heat radiating section of the heat pipe, the drive current of the Peltier element, and the like are adjusted. In particular, when recovering heat by circulating the refrigerant, JP-A-7-302124, a temperature measuring means is provided near the heat source as in JP-A-7-302747, and based on the temperature obtained thereby, The cooling of the entire drive device is adjusted by adjusting the coolant temperature and the coolant flow rate.

【0004】図13はこのような従来の駆動装置の一例
を示す構成図である。同図に示されているように、位置
計測手段12、コントローラ14、およびドライバ15
により位置決め対象10の精密な位置決めを行う駆動装
置では、冷却手段6により冷媒3を循環させて駆動手段
1a,1bからの熱を回収している。このとき流れる冷
媒3の温度や流量は、駆動手段もしくはその近傍に温度
センサ5および温度計測手段2を設け、その温度に基き
冷却量制御手段4が冷却手段6に冷媒3aの温度、又は
流量の設定指令を出している。
FIG. 13 is a block diagram showing an example of such a conventional driving device. As shown in the figure, the position measuring means 12, the controller 14, and the driver 15
In the drive device that performs precise positioning of the positioning target 10 by using the cooling means 6, the cooling medium 6 circulates the refrigerant 3 to recover heat from the driving means 1a and 1b. The temperature and the flow rate of the refrigerant 3 flowing at this time are determined by providing a temperature sensor 5 and a temperature measuring means 2 at or near the driving means, and based on the temperature, the cooling amount control means 4 gives the cooling means 6 the temperature or flow rate of the refrigerant 3a. A setting command has been issued.

【0005】すなわち、駆動手段の発熱が多く温度が上
がるときには冷媒の温度を下げる又は冷媒の流量を多く
して冷却量を増し、反対に発熱が少なく温度が下がると
きには冷媒の温度を上げる又は冷媒の流量を少なくして
冷却量を減らすことにより、駆動装置全体やその近傍の
構造体、雰囲気などの温度が変動しないようにしてい
る。
That is, when the driving means generates a large amount of heat and the temperature rises, the temperature of the refrigerant is decreased or the flow rate of the refrigerant is increased to increase the cooling amount. Conversely, when the heat generation is small and the temperature is decreased, the temperature of the refrigerant is increased or the refrigerant is cooled. By reducing the flow rate and the cooling amount, the temperature of the entire driving device, the structure near the driving device, the atmosphere, and the like does not fluctuate.

【0006】[0006]

【発明が解決しようとする課題】従来以上のさらなる高
精度かつ高速な位置決めの追求には、駆動装置の温度変
化をさらに軽減することはもちろん、レーザー干渉計に
よる長さ計測の安定性をさらに向上させるために駆動装
置の温度均一性の向上も不可欠である。
In pursuit of higher precision and higher speed positioning than before, not only the temperature change of the driving device is further reduced, but also the stability of the length measurement by the laser interferometer is further improved. In order to achieve this, it is essential to improve the temperature uniformity of the driving device.

【0007】しかし上記従来例では、複数の温度センサ
および温度計測手段からの出力温度をもとに、それぞれ
の温度に重み付けを行ったり、それぞれの温度の最大値
を選択するなどして駆動装置の全体的な温度を基準にし
て調整された温度又は流量の冷媒を循環させているが、
駆動手段の発熱分布が変化するに従い駆動装置の温度分
布も変化してしまい、近年の温度均一性に関する要求に
対応できなくなってきた。
However, in the above-mentioned conventional example, the respective temperatures are weighted based on the output temperatures from the plurality of temperature sensors and the temperature measuring means, or the maximum value of each temperature is selected, for example. While circulating a refrigerant at a temperature or flow rate adjusted based on the overall temperature,
As the heat generation distribution of the driving means changes, the temperature distribution of the driving device also changes, and it has become impossible to cope with recent demands regarding temperature uniformity.

【0008】一般に駆動手段の発熱分布が均一でない場
合、発熱していない部分は駆動手段の位置的な温度上昇
割合が少なく、発熱部分は位置的な温度上昇割合が大き
くなるが、発熱部の位置が変化すると温度上昇の小さい
部分と大きい部分の位置が変化するため、駆動装置での
温度分布が変わってくる。また、駆動装置の駆動範囲の
長尺化に対して冷却範囲が広くなってきており、これに
伴って駆動装置の最高温度と最低温度との温度差が大き
くなり、温度許容差に対する要求に応えられなくなって
いる。これらの状況・度合いは発熱分布つまりは駆動パ
ターンによって様々に変化する。そのため位置測定手段
の測定誤差が生じかつ安定せず、また測定誤差を減らす
ための補正も時系列的な温度変化のため難しく、ナノメ
ートルオーダーの精密位置決めの障害になる。
In general, when the heat generation distribution of the driving means is not uniform, the portion where heat is not generated has a small local temperature rise rate of the drive means, and the heat generation portion has a large local temperature rise rate. Changes, the positions of the portion where the temperature rise is small and the portion where the temperature rise is large change, so that the temperature distribution in the driving device changes. In addition, the cooling range has become wider as the driving range of the drive unit has become longer, and the temperature difference between the highest temperature and the lowest temperature of the drive unit has increased accordingly. Is no longer possible. These situations / degrees change variously depending on the heat generation distribution, that is, the driving pattern. For this reason, a measurement error occurs in the position measuring means and the measurement is not stable, and correction for reducing the measurement error is difficult due to a time-series temperature change, which hinders precise positioning on the order of nanometers.

【0009】本発明の目的は、より一層の許容温度の要
求に応えられるように、駆動手段が発する熱に起因する
位置決め精度への悪影響を除去することにある。また、
この駆動装置を用いた優れた位置決め精度を有するステ
ージ装置や露光装置、さらにはデバイス製造方法を提供
することを目的とする。
An object of the present invention is to eliminate the adverse effect on the positioning accuracy due to the heat generated by the driving means so as to meet the demand for a higher allowable temperature. Also,
An object of the present invention is to provide a stage apparatus and an exposure apparatus having excellent positioning accuracy using the driving apparatus, and a device manufacturing method.

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
本発明の駆動装置は、位置決めを行うための駆動力を発
生する駆動手段と、前記駆動手段から生じる熱を冷媒を
用いて回収する冷却手段とを備える駆動装置において、
前記冷却手段が冷却範囲を分割して冷却することを特徴
とするものである。
To achieve this object, a driving device according to the present invention comprises a driving means for generating a driving force for positioning, and a cooling means for recovering heat generated from the driving means by using a refrigerant. And a driving device comprising:
The cooling means is characterized in that cooling is performed by dividing a cooling range.

【0011】これにより、駆動装置、駆動装置周囲の構
造体、雰囲気などの温度変化と温度不均一をなくし、構
造体の熱変形、温度変化・温度不均一に起因する測長誤
差を軽減し、駆動装置の位置決め精度を向上させること
ができる。
This eliminates the temperature change and temperature non-uniformity of the driving device, the structure around the driving device, the atmosphere, etc., and reduces the thermal deformation of the structure, the length measurement error caused by the temperature change and the temperature non-uniformity, The positioning accuracy of the driving device can be improved.

【0012】すなわち、駆動手段の発熱が駆動手段内で
不均一である場合、発熱の高い部分は冷媒の流量を多く
又は温度を下げて冷却量を増し、反対に、発熱が少ない
部分は冷媒の流量を少なく又は温度を上げて冷却量を減
らすことにより、駆動装置全体の温度を一定にし、駆動
パターンの変化による駆動装置の温度分布の変化を軽減
される。また、駆動部を分割して冷却することにより、
各部分に最適な冷却量を供給できるため、冷却効率も上
がり、駆動装置もしくはその近傍の構造体、もしくは雰
囲気などの温度変化も最小限に抑えられる。
In other words, when the heat generated by the driving means is not uniform in the driving means, the high heat generating portion increases the flow rate of the refrigerant or lowers the temperature to increase the cooling amount. By reducing the cooling amount by decreasing the flow rate or increasing the temperature, the temperature of the entire driving device is kept constant, and the change in the temperature distribution of the driving device due to the change in the driving pattern is reduced. Also, by dividing and cooling the drive unit,
Since the optimum cooling amount can be supplied to each part, the cooling efficiency is increased, and the temperature change of the driving device or the structure near the driving device or the atmosphere is minimized.

【0013】また、本発明のより好ましい形態は、前記
駆動手段の発熱部もしくはその近傍の温度を計測する温
度計測手段と、前記温度計測手段により得られた温度に
基づいて前記冷却手段が循環させる冷媒の温度又は流量
を制御する制御手段とを有することを特徴とする。これ
により、駆動パターンの変化により発熱分布が変化した
場合にも適切な冷却量を供給できるようになる。
In a more preferred form of the present invention, a temperature measuring means for measuring a temperature of a heating portion of the driving means or a vicinity thereof, and the cooling means circulating based on a temperature obtained by the temperature measuring means. Control means for controlling the temperature or the flow rate of the refrigerant. Thus, an appropriate cooling amount can be supplied even when the heat generation distribution changes due to a change in the driving pattern.

【0014】また、本発明は上記駆動装置を用いてステ
ージを移動することを特徴とするステージ装置、このス
テージ装置を有することを特徴とする露光装置、この露
光装置を用いてデバイスを製造することを特徴とするデ
バイス製造方法などである。
According to the present invention, there is provided a stage apparatus for moving a stage using the above-described driving apparatus, an exposure apparatus having the stage apparatus, and a device manufactured using the exposure apparatus. And the like.

【0015】[0015]

【発明の実施の形態】<実施例1>図1は本発明の実施
形態に係る駆動装置を示す構成図である。同図におい
て、1a,1bは一対の駆動手段であり、1aは固定側
の駆動手段、1bは図面の左右方向に移動可能な可動側
の駆動手段である。5は駆動手段1aもしくは1bに配
置された温度センサ、2は温度センサ5で測定した温度
データを外部へ出力する温度計測手段、3は駆動手段1
a,1bを冷却する冷媒、4は温度計測手段2から温度
データを受け取り冷媒3の温度を制御するための指令信
号を出力する温度制御手段、6a,6b,6cは冷却量
制御手段4からの指令信号に基づき所定の冷却量の冷媒
を流す冷却手段、10は可動側駆動手段1bに載置され
た位置決め対象、11は可動側駆動手段1bに載置され
た位置決め対象10の位置基準、12は位置決め対象1
0の位置を位置基準11を参照して計測する位置計測手
段、13は位置計測手段12が計測する長さ、14は位
置計測手段12から得た位置決め対象10の位置データ
により駆動手段の駆動量を制御するための指令信号を出
力するコントローラ、15はコントローラ14からの指
令信号に従って駆動手段1a,1bを駆動するドライバ
である。
Embodiment 1 FIG. 1 is a block diagram showing a driving apparatus according to an embodiment of the present invention. In the figure, reference numerals 1a and 1b denote a pair of driving means, 1a denotes a fixed driving means, and 1b denotes a movable driving means which is movable in the left-right direction of the drawing. 5 is a temperature sensor arranged in the driving means 1a or 1b, 2 is a temperature measuring means for outputting temperature data measured by the temperature sensor 5 to the outside, 3 is a driving means 1
a, a coolant for cooling 1b, 4 a temperature control means for receiving a temperature data from the temperature measuring means 2 and outputting a command signal for controlling a temperature of the coolant 3, 6a, 6b, 6c A cooling means for flowing a predetermined amount of cooling medium based on the command signal; 10 a positioning object mounted on the movable driving means 1b; 11 a position reference of the positioning object 10 mounted on the movable driving means 1b; Is the positioning target 1
Position measuring means for measuring the position of 0 with reference to the position reference 11, 13 is the length measured by the position measuring means 12, 14 is the driving amount of the driving means based on the position data of the positioning target 10 obtained from the position measuring means 12. Is a controller that outputs a command signal for controlling the driving means, and 15 is a driver that drives the driving units 1a and 1b in accordance with the command signal from the controller 14.

【0016】固定された駆動手段1aに対して、駆動手
段1bが図面の左右方向に動くことにより位置決め対象
10は同方向に動き、位置決め対象10の位置は位置基
準11を基準として位置計測手段12によって計測され
る。例えば、位置基準11が反射ミラーで位置計測手段
12がレーザ干渉計である場合には長さ13が光路長と
なり、これが位置決め対象10の位置となる。一般に位
置決め対象10と位置基準11はいくらか離れているた
め、かつ位置基準11の位置を位置決め対象12の位置
としているため、この両者間の距離変動は位置決めの誤
差となる。コントローラ14は位置計測手段12の位置
データを用いて位置決め対象10が所定の位置に位置決
めされるようドライバ15に指令を与え、ドライバ15
は駆動手段1a,1bを駆動する。
The positioning object 10 moves in the same direction as the driving means 1b moves in the horizontal direction in the drawing with respect to the fixed driving means 1a, and the position of the positioning object 10 is determined by the position measuring means 12 with reference to the position reference 11. Is measured by For example, when the position reference 11 is a reflection mirror and the position measuring means 12 is a laser interferometer, the length 13 is the optical path length, and this is the position of the positioning target 10. In general, since the positioning target 10 and the position reference 11 are somewhat distant from each other, and the position of the position reference 11 is set as the position of the positioning target 12, a change in the distance between the two results in a positioning error. The controller 14 gives a command to the driver 15 so that the positioning target 10 is positioned at a predetermined position by using the position data of the position measuring means 12, and the driver 15
Drives the driving means 1a and 1b.

【0017】このとき、例えば駆動手段1aに対して1
bが図面の中央付近で主に駆動する場合、駆動手段1b
の駆動方向真ん中の部分A2の発熱が多く、反対に駆動
手段1bの駆動方向両端の部分A1,A3は発熱が少な
い。そのため、図4のように駆動手段1aの真ん中を頂
点とする山形の発熱分布となる。また、同様に駆動手段
1aに対して1bが図面の左側で主に駆動する場合は図
5のような発熱分布、右側で主に駆動する場合は図6の
ような発熱分布になる。
At this time, for example, 1
b mainly drives near the center of the drawing,
Generates heat in the middle portion A2 in the driving direction, and conversely, generates less heat in the portions A1 and A3 at both ends in the driving direction of the driving means 1b. Therefore, as shown in FIG. 4, a heat distribution having a mountain shape having a vertex in the middle of the driving unit 1 a is obtained. Similarly, when the driving means 1a is mainly driven on the left side of the drawing with respect to the driving means 1a, the heat generation distribution is as shown in FIG. 5, and when the driving means 1b is mainly driven on the right side, the heat generation distribution is as shown in FIG.

【0018】従来は、温度計測手段2からの出力をもと
に駆動手段1a,1b全体を一括して冷却しているた
め、駆動手段内で発熱の多い部分は冷媒の流れる方向に
対して急な温度上昇を生じ、反対に発熱の少ない部分は
緩やかな温度上昇を生じるるため、発熱分布によって様
々な温度分布を呈し一定にはならなかった。図7,図
8,図9はそれぞれ図4,図5,図6に対応した駆動手
段の温度分布である。主な発熱部が真ん中、左側、右側
の場合に対して駆動手段内の温度分布は一定ではなく変
化しているのが分かる。
Conventionally, the entire driving means 1a and 1b are collectively cooled on the basis of the output from the temperature measuring means 2, so that a portion of the driving means which generates a large amount of heat is sharp in the direction in which the refrigerant flows. However, since the temperature rises sharply and the portion that generates less heat slowly raises the temperature, the temperature distribution varies depending on the heat generation distribution, and the temperature distribution does not become constant. FIGS. 7, 8, and 9 show temperature distributions of the driving means corresponding to FIGS. 4, 5, and 6, respectively. It can be seen that the temperature distribution in the driving means is not constant but changes in the case where the main heat generating portions are in the middle, left and right sides.

【0019】そこで本実施例では、冷却手段6を複数の
冷却手段6a,6b,6cに置き換えて駆動手段1aの
冷却部分を分割部A1,A2,A3に3分割してそれぞれ
の部分の発熱に合わせて冷却することで許容温度の要求
を満たすようにしている。例えば前例のように駆動手段
のA2部の発熱が大きくA1,A3部の発熱が小さいとき
は、A2部に流す冷媒3bの流量を多くする又は温度を
下げる等をして冷却手段で冷却量を増やし、A1,A3
に流す冷媒3a,3cの流量を少なくする又は温度を上
げる等して冷却手段で冷却量を減らすことにより、各部
の発熱量に応じて最適な冷却を行ない、従来より各部の
温度変化を抑え、且つ駆動手段全体の温度分布を均一に
している。これにより駆動パターンの変化つまり発熱分
布の変化に対しても変わらず図3のような均一な温度分
布にすることが出来る。また分割して冷却することによ
り、冷媒あたりの冷却領域が少なくできるため効率よく
冷却でき、また駆動手段全体の最高温度と最低温度との
温度差ΔT1を、従来の温度差ΔT0a,ΔT0b,ΔT0cに比
べてほとんど無くすことが出来る。
Therefore, in this embodiment, the cooling means 6 is replaced by a plurality of cooling means 6a, 6b, 6c, and the cooling part of the driving means 1a is divided into three parts A 1 , A 2 , A 3 and each part is divided into three parts. Cooling is performed in accordance with the heat generated by the device to satisfy the requirement of the allowable temperature. Such as fever greater A 1 of A 2 parts of the drive means as precedent, when heat generation of the A 3 parts is small, cooling the like lowering or temperature to increase the flow rate of the refrigerant 3b to flow into two parts A means in increasing the cooling amount, a 1, coolant flow through the a 3 parts 3a, in such to cooling means raising or temperature to reduce the flow rate of 3c by reducing the amount of cooling, optimum cooling in accordance with the heating value of each portion Is performed, the temperature change of each part is suppressed, and the temperature distribution of the entire driving means is made uniform. As a result, a uniform temperature distribution as shown in FIG. 3 can be obtained without changing the drive pattern, that is, the change in the heat generation distribution. Further, by dividing and cooling, the cooling area per refrigerant can be reduced, so that the cooling can be efficiently performed. In addition, the temperature difference ΔT 1 between the maximum temperature and the minimum temperature of the entire driving means can be reduced by the conventional temperature difference ΔT 0 a, ΔT 0 b and ΔT 0 c can be almost eliminated.

【0020】駆動手段の駆動パターンがある程度限られ
ている場合は、予め駆動手段の各部の温度が一定になる
ように冷却量をいくつか設定しておき、駆動パターンに
応じて設定を変えることが可能であるが、複数の温度セ
ンサ5と温度計測手段2を設け、これらより得られる各
部分の温度データをもとに冷却量を冷却手段6a,6
b,6cにより変化させることで、駆動パターンが不定
の場合も自動的に駆動手段1aにおける各部分A1
2,A3の温度を一定に保つことができる。すなわち、
温度センサ5および温度計測手段2より得られた駆動手
段1a,1bの各部温度に基づき、設定温度より高い部
分は冷媒の温度を下げる又は流量を多くすることにより
冷却量を増やし、反対に設定温度より低い部分は冷媒の
温度を上げる又は流量を少なくすることにより、各部分
1,A2,A3の発熱量に合わせて冷却を行い駆動手段
1b全体の温度分布を一定にする。
When the driving pattern of the driving means is limited to some extent, it is possible to set some cooling amounts in advance so that the temperature of each part of the driving means is constant, and change the setting according to the driving pattern. Although it is possible, a plurality of temperature sensors 5 and temperature measuring means 2 are provided, and the cooling amounts are determined based on the temperature data of the respective parts obtained from these sensors.
b, 6c, the respective portions A 1 , A 1 ,
The temperature of A 2 and A 3 can be kept constant. That is,
On the basis of the temperature of each part of the driving means 1a and 1b obtained from the temperature sensor 5 and the temperature measuring means 2, a portion higher than the set temperature increases the cooling amount by lowering the coolant temperature or increasing the flow rate. By raising the temperature of the refrigerant or reducing the flow rate of the lower portion, cooling is performed in accordance with the heat generation of each portion A 1 , A 2 , A 3 , and the temperature distribution of the entire driving means 1b is made constant.

【0021】このように、駆動手段1aの温度分布が均
一になると、特に計測する光路13の温度分布の不均一
を防ぐことができ、位置計測手段12の測定値が変動す
ることを回避できるため、従来よりも位置測定の際の誤
差が軽減して位置決め精度を向上させることができる。
また、冷却領域の分割により温度変化が従来よりも抑え
られることに加えて、光路13の温度分布の変化がない
ため位置計測の際の温度補正を精度良く行えるため、従
来よりも安定かつ精度のよい位置計測を実現できる。
As described above, when the temperature distribution of the driving means 1a is uniform, the nonuniform temperature distribution of the optical path 13 to be measured can be particularly prevented, and the fluctuation of the measured value of the position measuring means 12 can be avoided. In addition, errors in position measurement can be reduced as compared with the related art, and positioning accuracy can be improved.
Further, in addition to the fact that the temperature change is suppressed more than before by the division of the cooling region, the temperature correction at the time of position measurement can be performed with high accuracy because there is no change in the temperature distribution of the optical path 13, so that it is more stable and accurate than before. Good position measurement can be realized.

【0022】<実施例2>図2は駆動手段として多極の
リニアモータを用いた別の実施形態を示す構成図であ
り、リニアモータのコイル部分を抽出した図である。
<Embodiment 2> FIG. 2 is a block diagram showing another embodiment in which a multi-pole linear motor is used as a driving means, in which a coil portion of the linear motor is extracted.

【0023】図中、23a,23b,23cはコイル、
5a,5b,5cはそれぞれコイル23a,23b,2
3cに配置された温度センサであり、3a,3b,3c
は各冷却部分A1,A2,A3を冷却する冷媒である。多
極のリニアモータの場合コイルが複数個あるため、図2
のように複数点に温度センサを配置し、温度計測手段2
が測定した複数の温度を基にして各発熱部に最適な各冷
媒の温度又は流量を決定する。このようにすることで、
各コイルの発熱量の違いを各コイルへの冷却量を変える
ことで対応でき、どのコイルも一定温度に保つことが出
来る。
In the figure, 23a, 23b and 23c are coils,
5a, 5b and 5c are coils 23a, 23b and 2 respectively.
3a, 3b, 3c.
Is a refrigerant for cooling the respective cooling portions A 1 , A 2 , A 3 . In the case of a multi-pole linear motor, since there are a plurality of coils, FIG.
Temperature sensors are arranged at a plurality of points as shown in FIG.
Determines the optimum temperature or flow rate of each refrigerant for each heat generating part based on the plurality of measured temperatures. By doing this,
The difference in the amount of heat generated by each coil can be handled by changing the amount of cooling to each coil, and all coils can be maintained at a constant temperature.

【0024】<実施例3>図10は、上記リニアモータ
を用いたステージ装置、及びこのステージ装置を備えた
半導体デバイス製造用の露光装置の構成を示す。
<Embodiment 3> FIG. 10 shows the configuration of a stage apparatus using the above-described linear motor and an exposure apparatus equipped with the stage apparatus for manufacturing a semiconductor device.

【0025】図中、定盤41上にガイド42とリニアモ
ータ43の固定子を固設している。リニアモータ43は
固定子に多相電磁コイルを、可動子に永久磁石群を有し
ている。リニアモータ43の可動子を可動部45及び可
動ガイド44に接続して、リニアモータ43の駆動によ
って可動ガイドを紙面法線方向に移動させる。可動部4
5は定盤41の上面を基準に静圧軸受け49で、ガイド
42の側面を基準に静圧軸受け48で保持する。可動ガ
イド44をまたぐようにして配置した移動ステージ47
は静圧軸受け50によって支持している。この移動ステ
ージ47は、上記説明したいずれかの構成を持ったリニ
アモータ46によって、可動ガイド44を基準にステー
ジ47が紙面左右方向に移動する。ステージ47の動き
はステージ47に固設したミラー51及びレーザー干渉
系52を用いて計測する。ステージ47に搭載したチャ
ックでウエハ48を保持しており、このウエハ48に回
路パターンを露光転写するために、光源53及び投影光
学系54によって、レチクル55上の回路パターンをウ
エハ48上に縮小転写する。上記説明したような特性の
リニアモータを用いることで、優れたステージ装置ひい
ては露光装置を達成している。
In the figure, a guide 42 and a stator for a linear motor 43 are fixed on a surface plate 41. The linear motor 43 has a multi-phase electromagnetic coil on a stator and a permanent magnet group on a mover. The movable element of the linear motor 43 is connected to the movable part 45 and the movable guide 44, and the movable guide is moved in the normal direction of the drawing by driving the linear motor 43. Movable part 4
Reference numeral 5 denotes a static pressure bearing 49 based on the upper surface of the surface plate 41, and is held by a static pressure bearing 48 based on the side surface of the guide 42. Moving stage 47 arranged so as to straddle movable guide 44
Are supported by a static pressure bearing 50. The moving stage 47 is moved by the linear motor 46 having any one of the above-described configurations in the left-right direction of the drawing with respect to the movable guide 44. The movement of the stage 47 is measured using a mirror 51 fixed to the stage 47 and a laser interference system 52. A wafer 48 is held by a chuck mounted on a stage 47, and a circuit pattern on a reticle 55 is reduced and transferred onto the wafer 48 by a light source 53 and a projection optical system 54 in order to expose and transfer a circuit pattern on the wafer 48. I do. By using a linear motor having the above-described characteristics, an excellent stage device and, consequently, an exposure device are achieved.

【0026】<実施例4>次に上記説明した露光装置又
は露光方法を利用したデバイス製造方法の実施形態を説
明する。
<Embodiment 4> Next, an embodiment of a device manufacturing method using the above-described exposure apparatus or exposure method will be described.

【0027】図11は微小デバイス(ICやLSI等の
半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、
マイクロマシン等)の製造のフローを示す。ステップ1
(回路設計)ではデバイスのパターン設計を行なう。ス
テップ2(マスク製作)では設計したパターンを形成し
たマスクを製作する。一方、ステップ3(ウエハ製造)
ではシリコンやガラス等の材料を用いてウエハを製造す
る。ステップ4(ウエハプロセス)は前工程と呼ばれ、
上記用意したマスクとウエハを用いて、リソグラフィ技
術によってウエハ上に実際の回路を形成する。次のステ
ップ5(組み立て)は後工程と呼ばれ、ステップ4によ
って作製されたウエハを用いて半導体チップ化する工程
であり、アッセンブリ工程(ダイシング、ボンディン
グ)、パッケージング工程(チップ封入)等の工程を含
む。ステップ6(検査)ではステップ5で作製された半
導体デバイスの動作確認テスト、耐久性テスト等の検査
を行なう。こうした工程を経て半導体デバイスが完成
し、これが出荷(ステップ7)される。
FIG. 11 shows a micro device (a semiconductor chip such as an IC or an LSI, a liquid crystal panel, a CCD, a thin film magnetic head,
2 shows a flow of manufacturing a micromachine or the like. Step 1
In (Circuit Design), a device pattern is designed. Step 2 is a process for making a mask on the basis of the designed pattern. Step 3 (wafer manufacturing)
Then, a wafer is manufactured using a material such as silicon or glass. Step 4 (wafer process) is called a pre-process,
An actual circuit is formed on the wafer by lithography using the prepared mask and wafer. The next step 5 (assembly) is called a post-process, and is a process of forming a semiconductor chip using the wafer produced in step 4, and includes processes such as an assembly process (dicing and bonding) and a packaging process (chip encapsulation). including. In step 6 (inspection), inspections such as an operation confirmation test and a durability test of the semiconductor device manufactured in step 5 are performed. Through these steps, a semiconductor device is completed and shipped (step 7).

【0028】図12は上記ウエハプロセスの詳細なフロ
ーを示す。ステップ11(酸化)ではウエハの表面を酸
化させる。ステップ12(CVD)ではウエハ表面に絶
縁膜を形成する。ステップ13(電極形成)ではウエハ
上に電極を蒸着によって形成する。ステップ14(イオ
ン打込み)ではウエハにイオンを打ち込む。ステップ1
5(レジスト処理)ではウエハにレジストを塗布する。
ステップ16(露光)では上記説明した露光装置又は露
光方法によってマスクの回路パターンをウエハの複数の
ショット領域に並べて焼付露光する。ステップ17(現
像)では露光したウエハを現像する。ステップ18(エ
ッチング)では現像したレジスト像以外の部分を削り取
る。ステップ19(レジスト剥離)ではエッチングが済
んで不要となったレジストを取り除く。これらのステッ
プを繰り返し行なうことによって、ウエハ上に多重に回
路パターンが形成される。
FIG. 12 shows a detailed flow of the wafer process. Step 11 (oxidation) oxidizes the wafer's surface. Step 12 (CVD) forms an insulating film on the wafer surface. Step 13 (electrode formation) forms electrodes on the wafer by vapor deposition. In step 14 (ion implantation), ions are implanted into the wafer. Step 1
In step 5 (resist processing), a resist is applied to the wafer.
Step 16 (exposure) uses the above-described exposure apparatus or exposure method to print the circuit pattern of the mask on a plurality of shot areas of the wafer by printing. Step 17 (development) develops the exposed wafer. In step 18 (etching), portions other than the developed resist image are removed. In step 19 (resist stripping), unnecessary resist after etching is removed. By repeating these steps, multiple circuit patterns are formed on the wafer.

【0029】本実施例の生産方法を用いれば、従来は製
造が難しかった大型のデバイスを低コストに製造するこ
とができる。
By using the production method of this embodiment, a large-sized device, which has been conventionally difficult to produce, can be produced at low cost.

【0030】[0030]

【発明の効果】以上説明したように、駆動手段の分割し
た領域をそれぞれ冷却することで、駆動手段、駆動手段
周囲の構造体、雰囲気などの温度分布の不均一をなく
し、かつ温度変化を従来よりも抑えることが出来るた
め、構造体の熱変形、温度変化や温度分布の不均一に起
因する測長誤差を少なくし、駆動装置のナノメートルオ
ーダーの位置決め精度をさらに向上させることができ
る。
As described above, by cooling each of the divided areas of the driving means, the temperature distribution of the driving means, the structure around the driving means, the atmosphere, and the like can be eliminated, and the temperature change can be reduced. Therefore, the length measurement error caused by the thermal deformation of the structure, the temperature change, and the non-uniform temperature distribution can be reduced, and the positioning accuracy of the nanometer order of the driving device can be further improved.

【0031】また、駆動手段の分割された冷却部の温度
もしくはその近傍の温度を計測し、その温度に基づいて
前記分割された各冷却部に対する冷媒の温度又は流量を
制御することで、任意の駆動パターンに対しても駆動手
段の温度分布を一定にすることができ、さらなる高精度
化が達成できる。
Further, by measuring the temperature of the divided cooling section of the driving means or the temperature in the vicinity thereof, and controlling the temperature or the flow rate of the refrigerant to each of the divided cooling sections based on the measured temperature, an arbitrary temperature can be obtained. The temperature distribution of the driving means can be kept constant with respect to the driving pattern, and higher accuracy can be achieved.

【0032】また、このような駆動装置にリニアモータ
を用いたステージ装置を構成することにより、優れた位
置決め精度を有するステージ装置を提供することができ
る。
Further, by configuring a stage device using a linear motor for such a driving device, a stage device having excellent positioning accuracy can be provided.

【0033】また、前記ステージを有する露光装置によ
り優れた露光装置やデバイス製造方法を提供することが
出来る。
Further, it is possible to provide an excellent exposure apparatus and a device manufacturing method using the exposure apparatus having the stage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】駆動装置の実施形態を示す構成図FIG. 1 is a configuration diagram showing an embodiment of a driving device.

【図2】リニアモータの構成図FIG. 2 is a configuration diagram of a linear motor.

【図3】固定側の駆動手段の温度分布を示す図FIG. 3 is a diagram illustrating a temperature distribution of a fixed-side driving unit.

【図4】固定側の駆動手段の発熱分布の一例を示す図FIG. 4 is a diagram showing an example of a heat generation distribution of a fixed-side drive unit.

【図5】図4に対する比較図FIG. 5 is a diagram comparing with FIG. 4;

【図6】固定側の駆動手段の発熱分布の一例を示す図FIG. 6 is a diagram illustrating an example of a heat generation distribution of a fixed-side driving unit.

【図7】図6に対する比較図FIG. 7 is a diagram comparing with FIG. 6;

【図8】固定側の駆動手段の発熱分布の一例を示す図FIG. 8 is a diagram illustrating an example of a heat generation distribution of a fixed-side driving unit.

【図9】図8に対する比較図FIG. 9 is a diagram comparing with FIG.

【図10】リニアモータを用いたステージ装置を有する
露光装置の構成図
FIG. 10 is a configuration diagram of an exposure apparatus having a stage device using a linear motor.

【図11】デバイスの製造フローを示す図FIG. 11 is a view showing a device manufacturing flow.

【図12】ウエハプロセスの詳細なフローを示す図FIG. 12 is a diagram showing a detailed flow of a wafer process.

【図13】駆動装置の従来例を示す構成図FIG. 13 is a configuration diagram showing a conventional example of a driving device.

【符号の説明】[Explanation of symbols]

1a 固定側の駆動手段 1b 可動側の駆動手段 2 温度計測手段 3,3A3b,3c 冷媒 4 温度制御手段 5,5a,5b,5c 温度センサ 6 冷却手段 10 位置決め対象 11 位置基準 12 位置計測手段 13 計測する長さ 14 コントローラ 15 ドライバ 23a,23b,23c コイル 24 コイル支持具 30 設定温度 31,32,33,34 固定側の駆動手段1aにおけ
る温度分布 41 定盤 42 ガイド 43 リニアモータ 44 可動ガイド 45 可動部 46 リニアモータ 47 移動ステージ 48 ウエハ 49 静圧軸受け 50 静圧軸受け 51 ミラー 52 レーザー干渉系 53 光源 54 投影光学系 55 レチクル ΔT1 本実施形態での駆動装置での最高温度と最低温
度との差 ΔT0a,ΔT0b,ΔT0c 従来例装置での最高温度
と最低温度との差 A1,A2,A3 駆動手段の各発熱部
1a Fixed-side drive unit 1b Movable-side drive unit 2 Temperature measurement unit 3, 3A3b, 3c Refrigerant 4 Temperature control unit 5, 5a, 5b, 5c Temperature sensor 6 Cooling unit 10 Positioning target 11 Position reference 12 Position measurement unit 13 Measurement Length 14 controller 15 driver 23a, 23b, 23c coil 24 coil support 30 set temperature 31, 32, 33, 34 temperature distribution in fixed-side drive means 1a 41 platen 42 guide 43 linear motor 44 movable guide 45 movable part 46 the difference between the maximum and minimum temperatures of the drive device for a linear motor 47 moves the stage 48 the wafer 49 hydrostatic bearing 50 hydrostatic bearing 51 mirrors 52 laser interferometer system 53 light source 54 projecting optical system 55 reticle [Delta] T 1 present embodiment [Delta] T 0 a, ΔT 0 b, ΔT 0 c Maximum temperature in conventional device Difference between temperature and minimum temperature A 1 , A 2 , A 3 Each heating part of driving means

フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/68 H01L 21/68 Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/68 H01L 21/68

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 位置決めを行うための駆動力を発生する
駆動手段と、前記駆動手段から生じる熱を冷媒を用いて
回収する冷却手段とを備える駆動装置において、前記冷
却手段が冷却範囲を分割して冷却することを特徴とする
駆動装置。
1. A driving apparatus comprising: a driving unit for generating a driving force for performing positioning; and a cooling unit for recovering heat generated from the driving unit by using a refrigerant, wherein the cooling unit divides a cooling range. A drive device characterized by cooling by cooling.
【請求項2】 前記駆動手段の発熱部もしくはその近傍
の温度を計測する温度計測手段と、前記温度計測手段に
より得られた温度に基づいて前記冷却手段が循環させる
冷媒の温度又は流量を制御する制御手段とを有すること
を特徴とする請求項1記載の駆動装置。
2. A temperature measuring means for measuring a temperature at or near a heat generating portion of the driving means, and controlling a temperature or a flow rate of a refrigerant circulated by the cooling means based on the temperature obtained by the temperature measuring means. The drive device according to claim 1, further comprising a control unit.
【請求項3】 請求項1もしくは2記載の駆動装置にお
いて、前記駆動手段がリニアモータであること特徴とす
る駆動装置。
3. The drive device according to claim 1, wherein said drive means is a linear motor.
【請求項4】 請求項1〜3のいずれか記載の駆動装置
によってステージを移動することを特徴とするステージ
装置。
4. A stage device, wherein the stage is moved by the driving device according to claim 1.
【請求項5】 請求項4記載のステ−ジ装置を有するこ
とを特徴とする露光装置。
5. An exposure apparatus comprising the stage device according to claim 4.
【請求項6】 請求項5記載の露光装置を利用してデバ
イスを製造することを特徴とするデバイス製造方法。
6. A device manufacturing method, wherein a device is manufactured using the exposure apparatus according to claim 5.
JP35501997A 1997-12-24 1997-12-24 Driving device and stage device and exposure device using it Withdrawn JPH11184539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35501997A JPH11184539A (en) 1997-12-24 1997-12-24 Driving device and stage device and exposure device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35501997A JPH11184539A (en) 1997-12-24 1997-12-24 Driving device and stage device and exposure device using it

Publications (1)

Publication Number Publication Date
JPH11184539A true JPH11184539A (en) 1999-07-09

Family

ID=18441430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35501997A Withdrawn JPH11184539A (en) 1997-12-24 1997-12-24 Driving device and stage device and exposure device using it

Country Status (1)

Country Link
JP (1) JPH11184539A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100492476B1 (en) * 2001-07-09 2005-06-03 캐논 가부시끼가이샤 Exposure apparatus
US7177007B2 (en) 2000-04-07 2007-02-13 Canon Kabushiki Kaisha Temperature adjustment apparatus, exposure apparatus having the temperature adjustment apparatus, and semiconductor device manufacturing method
JP2008288357A (en) * 2007-05-17 2008-11-27 Hitachi High-Technologies Corp Substrate support device, and substrate support method
WO2009155090A3 (en) * 2008-06-03 2010-03-11 Applied Materials, Inc. Fast substrate support temperature control
JP2010194638A (en) * 2009-02-24 2010-09-09 Ihi Corp Lubricating method of inverting table device and lubricating system thereof
JP2012048165A (en) * 2010-08-30 2012-03-08 Hitachi High-Technologies Corp Exposure device, stage temperature control method for exposure device, and display panel substrate manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7177007B2 (en) 2000-04-07 2007-02-13 Canon Kabushiki Kaisha Temperature adjustment apparatus, exposure apparatus having the temperature adjustment apparatus, and semiconductor device manufacturing method
KR100492476B1 (en) * 2001-07-09 2005-06-03 캐논 가부시끼가이샤 Exposure apparatus
JP2008288357A (en) * 2007-05-17 2008-11-27 Hitachi High-Technologies Corp Substrate support device, and substrate support method
WO2009155090A3 (en) * 2008-06-03 2010-03-11 Applied Materials, Inc. Fast substrate support temperature control
CN102903654A (en) * 2008-06-03 2013-01-30 应用材料公司 Temperature control of fast substrate support
US8596336B2 (en) 2008-06-03 2013-12-03 Applied Materials, Inc. Substrate support temperature control
CN102903654B (en) * 2008-06-03 2015-11-25 应用材料公司 For controlling equipment and the method for the temperature of substrate support
JP2010194638A (en) * 2009-02-24 2010-09-09 Ihi Corp Lubricating method of inverting table device and lubricating system thereof
JP2012048165A (en) * 2010-08-30 2012-03-08 Hitachi High-Technologies Corp Exposure device, stage temperature control method for exposure device, and display panel substrate manufacturing method

Similar Documents

Publication Publication Date Title
US6552773B2 (en) Stage system with driving mechanism, and exposure apparatus having the same
US20060007415A1 (en) Exposure system and device production process
JP3155936B2 (en) Linear motor and stage apparatus, and scanning exposure apparatus and device manufacturing method using the same
JP2006287014A (en) Positioning apparatus and linear motor
EP1580604A2 (en) Stage device and exposure apparatus
JP2002291219A (en) Electromagnetic actuator, linear motor, aligner, semiconductor device manufacturing method, semiconductor manufacturing factory, and maintenance method of aligner
JPH11191585A (en) Stage device and aligner using it and/or device manufacture
US8184261B2 (en) Exposure apparatus
JP2001007015A (en) Stage device
JP2004146492A (en) Euv aligner
JP2001025227A (en) Linear motor, and stage system and aligner provided with the motor
JPH11184539A (en) Driving device and stage device and exposure device using it
US7312848B2 (en) Positioning apparatus, exposure apparatus, and device manufacturing method
US7460213B2 (en) Alignment apparatus, exposure apparatus, and device manufacturing method using exposure apparatus
JP2994203B2 (en) Drive
JPH10127035A (en) Linear motor and stage device using the motor, and aligner
JPH11122900A (en) Positioning table apparatus and manufacture of device
JP2008311595A (en) Stage apparatus, aligner, and device manufacturing method
JP2007067193A (en) Exposure device
JP2003195476A (en) Pattern forming device and its method
TW201928526A (en) Motor, dual stroke stage and lithographic apparatus
JPH1197339A (en) Aligner
JP2000036453A (en) Aligner and manufacture of device
JP2004187498A (en) Linear motor, stage arrangement using this, exposure device, and manufacturing methdo of device
US20220214626A1 (en) Object positioner, method for correcting the shape of an object, lithographic apparatus, object inspection apparatus, device manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301