JPH11183083A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH11183083A
JPH11183083A JP9353575A JP35357597A JPH11183083A JP H11183083 A JPH11183083 A JP H11183083A JP 9353575 A JP9353575 A JP 9353575A JP 35357597 A JP35357597 A JP 35357597A JP H11183083 A JPH11183083 A JP H11183083A
Authority
JP
Japan
Prior art keywords
heat
receiving tube
heat exchanger
heat receiving
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9353575A
Other languages
Japanese (ja)
Inventor
Masanori Enomoto
正徳 榎本
Sukeaki Akiba
祐明 秋葉
Shingo Kimura
新悟 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gastar Co Ltd
Original Assignee
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gastar Co Ltd filed Critical Gastar Co Ltd
Priority to JP9353575A priority Critical patent/JPH11183083A/en
Publication of JPH11183083A publication Critical patent/JPH11183083A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger in which the heat exchange efficiency is not lowered even when a fin a corroded by condensed water while preventing the corrosion of a heat receiving pipe as caused by the condensed water. SOLUTION: A latent heat receiving pipe 51 is fitted into a hole made in each of fins 52 for heat exchange to be fixed without soldering. The fin 52 is made of metal higher in ionization tendency than that of the latent heat receiving pipe 51. As a result, even when acid condensed water is accumulated in a gap at a joint part of the latent heat receiving pipe 51 and the fin 52, a larger ionization tendency than that of the latent heat receiving pipe 51 causes the fin 52 to elude as cations thereby preventing the corrosion of the latent heat receiving pipe 51. The use of a stainless based material for the fin 52 or the like eliminates drop in the heat exchange efficiency to be caused by the clogging of the fin 52 with a corrosion product.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料を燃やした際
に生じた熱を吸収して熱交換を行う熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for performing heat exchange by absorbing heat generated when burning fuel.

【0002】[0002]

【従来の技術】メタン、プロパン、ブタンあるいは石油
や灯油などの燃料を燃焼させた際に生じる熱を吸収し
て、給水等の被加熱流体を加熱する熱交換器では、銅な
ど熱伝導率の良好な金属をその母材として用いるととも
に、被加熱流体の通る受熱管と熱交換用のフィンとの双
方を、同一種類の金属で形成していた。
2. Description of the Related Art A heat exchanger that absorbs heat generated when fuel such as methane, propane, butane or petroleum or kerosene is heated to heat a fluid to be heated, such as water supply, has a heat conductivity of copper or the like. A good metal is used as the base material, and both the heat receiving tube through which the fluid to be heated passes and the fins for heat exchange are formed of the same type of metal.

【0003】[0003]

【発明が解決しようとする課題】燃料を燃やした際に生
じた排気の潜熱を吸収することによって、熱交換器の表
面には凝縮水の結露することがある。この凝縮水は、燃
焼空気が高温で酸化して生成された窒素酸化物(NO
x)やガス漏れ検知のために燃焼ガスに添加された付臭
剤が酸化することで生成された硫黄酸化物(SOx)等
が溶解し、硝酸と硫酸との溶融したpH2〜3の酸性の
水滴になっており、熱交換器を腐食する。
Condensed water may condense on the surface of the heat exchanger by absorbing the latent heat of the exhaust gas generated when burning fuel. This condensed water is composed of nitrogen oxides (NO
x) and sulfur oxides (SOx) produced by oxidizing the odorant added to the combustion gas for gas leak detection are dissolved, and the acidified acid of pH 2-3 dissolved with nitric acid and sulfuric acid is dissolved. Water droplets corrode the heat exchanger.

【0004】しかしながら、従来の熱交換器は、銅など
熱伝導率の良好な同一の金属で受熱管とフィンの双方を
形成しているので、フィンと受熱管のいずれもが腐食さ
れ、受熱管側に孔が空いて、内部の流体が漏れ出てしま
う場合があった。
However, in the conventional heat exchanger, since both the heat receiving tube and the fin are formed of the same metal having good thermal conductivity such as copper, both the fin and the heat receiving tube are corroded, and the heat receiving tube is corroded. There was a case where a hole was made on the side and the fluid inside leaked out.

【0005】また、銅など腐食によって錆の出る金属を
用いていたので、錆の発生によってフィンとフィンの隙
間が詰まり、熱交換効率が低下してしまうという問題が
あった。
Further, since a metal such as copper that rusts due to corrosion is used, there is a problem that the gap between the fins is clogged by the rust and the heat exchange efficiency is reduced.

【0006】本発明は、このような従来の技術が有する
問題点に着目してなされたもので、凝縮水による受熱管
の腐食を防止するとともに、凝縮水によってフィンが腐
食されても熱交換効率の低下しない熱交換器を提供する
ことを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and prevents the heat receiving tube from being corroded by condensed water. It is an object of the present invention to provide a heat exchanger that does not reduce the temperature.

【0007】[0007]

【課題を解決するための手段】かかる目的を達成するた
めの本発明の要旨とするところは、次の各項の発明に存
する。 [1]燃料を燃やした際に生じた熱を吸収して熱交換を
行う熱交換器において、加熱すべき流体を通す金属製の
受熱管(51)と熱交換用のフィン(52)とを備え、
前記熱交換用のフィン(52)は、前記受熱管(51)
の外径とほぼ等しい内径の穴を有し、これに前記受熱管
(51)をはめ込むことで当該受熱管(51)に固定さ
れるとともに、前記受熱管(51)よりもイオン化傾向
の大きい金属で形成され、前記燃料を燃やした排気の潜
熱を吸収することで生じる酸性の凝縮水が前記フィン
(52)と前記受熱管(51)との接合部の隙間に溜ま
った際に、前記受熱管(51)よりもイオン化傾向の大
きい前記フィン(52)が陽イオンになって溶け出すこ
とで前記受熱管(51)の腐食を防止したことを特徴と
する熱交換器。
The gist of the present invention to achieve the above object lies in the following inventions. [1] In a heat exchanger that performs heat exchange by absorbing heat generated when burning fuel, a metal heat receiving tube (51) through which a fluid to be heated passes and a fin (52) for heat exchange. Prepared,
The fins (52) for heat exchange are connected to the heat receiving tubes (51).
A hole having an inner diameter substantially equal to the outer diameter of the heat receiving tube (51), and being fixed to the heat receiving tube (51) by being fitted therein, and having a greater ionization tendency than the heat receiving tube (51). When acidic condensed water generated by absorbing the latent heat of the exhaust gas burning the fuel accumulates in the gap between the fin (52) and the heat receiving tube (51), the heat receiving tube A heat exchanger characterized in that the fins (52), which have a greater ionization tendency than (51), become positive ions and dissolve, thereby preventing corrosion of the heat receiving tube (51).

【0008】[2]フィン(52)および受熱管(5
1)はいずれもステンレス系の材料で形成されているこ
とを特徴とする[1]記載の熱交換器。
[2] Fins (52) and heat receiving tubes (5)
The heat exchanger according to [1], wherein 1) is formed of a stainless steel-based material.

【0009】[3]前記フィン(52)を、前記受熱管
(51)よりも熱伝導率の高い材料で形成することを特
徴とする[1]または[2]記載の熱交換器。
[3] The heat exchanger according to [1] or [2], wherein the fins (52) are formed of a material having higher thermal conductivity than the heat receiving tube (51).

【0010】[4]前記熱交換器は、排気の顕熱を主と
して吸収する顕熱回収用熱交換器とこれよりも排気通路
の下流側に配置され排気の潜熱を主として吸収する潜熱
回収用熱交換器との双方を有するものにおける前記潜熱
回収用熱交換器であることを特徴とする[1]、[2]
または[3]記載の熱交換器。
[4] The heat exchanger is a sensible heat recovery heat exchanger that mainly absorbs the sensible heat of the exhaust gas, and a latent heat recovery heat exchanger that is arranged downstream of the heat exchanger and mainly absorbs the latent heat of the exhaust gas. [1], [2] characterized in that it is the latent heat recovery heat exchanger having both the heat exchanger and the heat exchanger.
Or the heat exchanger according to [3].

【0011】前記本発明は次のように作用する。熱交換
用のフィン(52)は、受熱管(51)よりもイオン化
傾向の大きい金属で形成されているので、排気の潜熱を
吸収することで生じた酸性の凝縮水がフィン(52)と
受熱管(51)との接合部の隙間に溜まったとき、受熱
管(51)よりもイオン化傾向の大きいフィン(52)
が陽イオンになって凝縮水に溶け出し、受熱管(51)
が腐食されて孔が空き、孔食されることを防止する。
The present invention operates as follows. Since the heat exchange fin (52) is formed of a metal having a higher ionization tendency than the heat receiving tube (51), acidic condensed water generated by absorbing the latent heat of exhaust gas is received by the fin (52). Fins (52) having a greater ionization tendency than the heat receiving tube (51) when accumulated in the gap at the joint with the heat tube (51).
Becomes cations and dissolves in condensed water, and heat receiving tubes (51)
Prevents corrosion and pitting and pitting.

【0012】すなわち、フィン(52)と受熱管(5
1)の隙間に溜まった凝縮水は、フィン(52)と受熱
管(51)の双方に触れる状態になる。ここでフィン
(52)が受熱管(51)よりもイオン化傾向の大きい
金属で形成されているので、フィン(52)が陽イオン
と電子とに分離する。また受熱管(51)とフィン(5
2)とは、隙間部分以外の箇所で電気的に導通している
ので、フィン(52)に生じた電子は受熱管(51)側
に流れ、フィン(52)は正に帯電し、凝縮水中の硝酸
イオンや硫酸イオン等の陰イオンを引きつけるととも
に、フィン(52)で生じた陽イオンが凝縮水中に溶け
出すという反応が起こる。
That is, the fins (52) and the heat receiving tubes (5)
The condensed water accumulated in the gap 1) comes into contact with both the fins (52) and the heat receiving tubes (51). Here, since the fins (52) are formed of a metal having a higher ionization tendency than the heat receiving tube (51), the fins (52) are separated into cations and electrons. The heat receiving tube (51) and the fin (5)
2) means that the fins (52) are electrically conducted at locations other than the gaps, so that the electrons generated in the fins (52) flow toward the heat receiving tube (51), the fins (52) are positively charged, and the condensed water A reaction occurs in which anions such as nitrate ions and sulfate ions are attracted and cations generated in the fins (52) dissolve into the condensed water.

【0013】一方、受熱管(51)側に集まった電子
は、排気中の窒素酸化物や硫黄酸化物が凝縮水に溶けた
際に生じた水素イオン等の陽イオンと結合する反応が生
じる。このようにして、受熱管(51)よりもイオン化
傾向の大きいフィン(52)が陽イオンとなってこれら
の隙間に溜まった凝縮水中に溶け出すので、隙間に溜ま
った凝縮水によって受熱管(51)が腐食されて孔の空
くようなことが防止される。またフィン(52)から溶
け出した陽イオンが凝縮水中の硝酸イオンなどの陰イオ
ンと結合し、凝縮水を中和する効果を得ることができ
る。
On the other hand, the electrons collected on the heat receiving tube (51) side undergo a reaction to combine with cations such as hydrogen ions generated when nitrogen oxides and sulfur oxides in the exhaust are dissolved in the condensed water. In this manner, the fins (52) having a greater ionization tendency than the heat receiving tube (51) become cations and dissolve into the condensed water accumulated in these gaps. ) Is prevented from corroding and opening holes. In addition, the cations dissolved from the fins (52) combine with anions such as nitrate ions in the condensed water, and an effect of neutralizing the condensed water can be obtained.

【0014】また熱交換用のフィン(52)は、受熱管
(51)の外径とほぼ等しい内径の穴を有し、これに受
熱管(51)をはめ込むことで当該受熱管(51)に固
定されているので、これらをロウ付けした場合のよう
に、ロウ材のイオン化傾向に受熱管(51)の防腐効果
等が左右されない。
The heat exchange fin (52) has a hole having an inner diameter substantially equal to the outer diameter of the heat receiving tube (51), and the heat receiving tube (51) is fitted into the hole so as to be inserted into the heat receiving tube (51). Since they are fixed, the antiseptic effect of the heat receiving tube (51) does not depend on the ionization tendency of the brazing material as in the case where these are brazed.

【0015】すなわち、ロウ材のイオン化傾向が大きい
場合には、ロウ材が溶け出して受熱管(51)からフィ
ン(52)が外れてしまう。逆に受熱管(51)よりも
ロウ材のイオン化傾向が小さい場合には、受熱管(5
1)が溶け出して腐食されてしまう。しかしながら、ロ
ウ付けせずに受熱管(51)とフィン(52)とを互い
に接合し固定することで、このような事態の生じること
がない。
That is, when the ionization tendency of the brazing material is large, the brazing material melts out and the fins (52) come off from the heat receiving tube (51). Conversely, when the ionization tendency of the brazing material is smaller than that of the heat receiving tube (51), the heat receiving tube (5)
1) is melted out and corroded. However, such a situation does not occur by joining and fixing the heat receiving tube (51) and the fin (52) to each other without brazing.

【0016】また、フィン(52)および受熱管(5
1)をいずれもステンレス系の材料で形成することによ
り、受熱管(51)よりもイオン化傾向の大きいフィン
(52)が溶け出した場合であっても、銅のように腐食
物よってフィンとフィンの間が目詰まりするようなこと
が無く、熱交換効率が低下しない。
The fins (52) and the heat receiving tubes (5)
By forming each of the fins 1) from a stainless steel material, even if the fins (52) having a higher ionization tendency than the heat receiving tube (51) melt out, the fins and the fins are corroded by copper or the like. There is no clogging of the space, and the heat exchange efficiency does not decrease.

【0017】さらに、フィン(52)を受熱管(51)
よりも耐食性は低いが熱伝導率の高い部材で形成する。
たとえば、受熱管(51)としてSUS304やSUS
316のような耐食性のあるオーステナイト系のステン
レスを用い、フィン(52)としてこれよりも耐食性は
低いが熱伝導率の良好なSUS430やSUS410の
ようなフェライト系ステンレスを用いる。
Further, the fin (52) is connected to the heat receiving tube (51).
It is formed of a member having lower corrosion resistance but higher thermal conductivity.
For example, SUS304 or SUS is used as the heat receiving tube (51).
Austenitic stainless steel having corrosion resistance such as 316 is used, and ferrite stainless steel such as SUS430 or SUS410 having lower corrosion resistance but better thermal conductivity is used as the fin (52).

【0018】このように、受熱管(51)においては熱
伝導率よりも耐食性を優先させ、フィン(52)におい
ては耐食性よりも熱伝導率を優先させることで、受熱管
(51)の腐食を防止しつつ良好な熱交換効率を得るこ
とができる。
As described above, the corrosion resistance of the heat receiving tube (51) is reduced by giving priority to the corrosion resistance over the thermal conductivity in the heat receiving tube (51) and giving priority to the thermal conductivity over the corrosion resistance in the fin (52). Good heat exchange efficiency can be obtained while preventing.

【0019】排気の顕熱を主として吸収する顕熱回収用
熱交換器とこれよりも排気通路の下流側に配置され排気
の潜熱を主として吸収する潜熱回収用熱交換器との双方
で構成された熱交換器では、下流側に配置された潜熱回
収用熱交換器を通過する際に、排気の温度が200℃〜
280℃程度に比較的低くなっている。このため、潜熱
回収用熱交換器には多量の凝縮水が結露するとともに、
熱伝導率の高い材料で潜熱回収用熱交換器を形成するこ
とが望ましい。そこで、上述のようにフィン(52)を
受熱管(51)よりもイオン化傾向の大きい耐食性に優
れた金属で構成したものを潜熱回収用熱交換器として用
いるようにすればよい。
A sensible heat recovery heat exchanger mainly absorbing the sensible heat of the exhaust gas and a latent heat recovery heat exchanger arranged downstream of the exhaust passage and mainly absorbing the latent heat of the exhaust gas. In the heat exchanger, when passing through the latent heat recovery heat exchanger disposed on the downstream side, the temperature of the exhaust gas is 200 ° C.
It is relatively low at about 280 ° C. As a result, a large amount of condensed water condenses on the latent heat recovery heat exchanger,
It is desirable to form the latent heat recovery heat exchanger with a material having high thermal conductivity. Therefore, a fin (52) made of a metal having a higher ionization tendency than the heat receiving tube (51) and excellent in corrosion resistance as described above may be used as the heat exchanger for latent heat recovery.

【0020】顕熱回収用熱交換器側では、排気の温度が
高いので潜熱の回収が少なく凝縮水がほとんど結露しな
い。このため、顕熱回収用熱交換器として、フィンや受
熱管を銅、鉄、アルミニウム、ステンレスなどの材料で
形成し、かつフィンと受熱管とをロウ付けで固定したも
のを用いることができる。
On the sensible heat recovery heat exchanger side, the temperature of the exhaust gas is high, so that latent heat is recovered little and condensed water hardly forms dew. Therefore, as the sensible heat recovery heat exchanger, a fin or a heat receiving tube formed of a material such as copper, iron, aluminum, or stainless steel and having the fins and the heat receiving tube fixed by brazing can be used.

【0021】なお、熱交換器を加熱するための燃料は、
ブタン、メタン等の燃焼ガスのほか、石油や灯油などの
液体燃料であってもよい。
The fuel for heating the heat exchanger is as follows:
In addition to combustion gas such as butane and methane, liquid fuel such as petroleum and kerosene may be used.

【0022】[0022]

【発明の実施の形態】以下、図面に基づき本発明の一実
施の形態を説明する。各図は、本発明の一実施の形態を
示している。本実施の形態は、本発明にかかる熱交換器
を給湯器10に適用したものである。図2に示すよう
に、給湯器10は、排気中の顕熱を主として吸収する顕
熱回収用熱交換器40と、これよりも排気の流れで下流
側に配置され、主として排気の潜熱を吸収する潜熱回収
用熱交換器50とを備えている。このうちフィンのイオ
ン化傾向を大きくすることによる防食は潜熱回収用熱交
換器50側に施される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Each drawing shows an embodiment of the present invention. In the present embodiment, a heat exchanger according to the present invention is applied to a water heater 10. As shown in FIG. 2, the water heater 10 is provided with a sensible heat recovery heat exchanger 40 that mainly absorbs sensible heat in the exhaust gas, and is disposed downstream of the sensible heat by the flow of the exhaust gas. And a latent heat recovery heat exchanger 50. Among them, the anticorrosion by increasing the ionization tendency of the fin is performed on the latent heat recovery heat exchanger 50 side.

【0023】給湯器10は、燃焼室11を備えており、
当該燃焼室11の下部には、バーナー12が配置されて
いる。バーナー12の上方には、顕熱回収用熱交換器4
0が、さらに上方には潜熱回収用熱交換器50が配置さ
れている。顕熱回収用熱交換器40と潜熱回収用熱交換
器50の間には、潜熱回収用熱交換器50に生成する凝
縮水を受け止め、凝縮水が顕熱回収用熱交換器40に落
下するのを防止するための受け皿13が取り付けられて
いる。
The water heater 10 has a combustion chamber 11,
A burner 12 is arranged below the combustion chamber 11. Above the burner 12, the sensible heat recovery heat exchanger 4
0, and a latent heat recovery heat exchanger 50 is disposed further above. Between the sensible heat recovery heat exchanger 40 and the latent heat recovery heat exchanger 50, the condensed water generated in the latent heat recovery heat exchanger 50 is received, and the condensed water falls into the sensible heat recovery heat exchanger 40. A saucer 13 for preventing the occurrence of the problem is attached.

【0024】受け皿13は、燃焼室11を右端の一部を
除いて上下に仕切るものであり、顕熱回収用熱交換器4
0を経由した後の排気は、受け皿13が無い燃焼室11
右端の開口部14を通じて潜熱回収用熱交換器50の配
置されている排気通路部15に流れ込むようになってい
る。
The tray 13 partitions the combustion chamber 11 up and down except for a part of the right end, and the heat exchanger 4 for sensible heat recovery.
Exhaust gas after passing through the combustion chamber 11 without the pan 13
The gas flows into the exhaust passage 15 in which the latent heat recovery heat exchanger 50 is disposed through the opening 14 at the right end.

【0025】受け皿13は、開口部14側から燃焼室1
1の左端側に向けて下り傾斜しており、傾斜の下端部分
には、受け皿13によって回収された凝縮水を一時的に
溜めるドレン受け16が設けられている。ドレン受け1
6の底部には、凝縮水の排出通路17が接続され、当該
排出通路17の途中には、酸性の凝縮水を中和するため
の中和処理器18が取り付けられている。
The receiving tray 13 is connected to the combustion chamber 1 from the opening 14 side.
1, a drain receiver 16 for temporarily storing condensed water collected by the tray 13 is provided at a lower end portion of the slope. Drain receiver 1
A discharge passage 17 for condensed water is connected to the bottom of 6, and a neutralization treatment device 18 for neutralizing acidic condensed water is attached in the middle of the discharge passage 17.

【0026】潜熱回収用熱交換器50の入側には給水の
流入する給水水管21が接続され、潜熱回収用熱交換器
50の出側は、連結水管22によって顕熱回収用熱交換
器40の入側と接続されている。顕熱回収用熱交換器4
0の出側には、加熱後の給水の流れ出る給湯水管23が
接続されている。
The inlet of the latent heat recovery heat exchanger 50 is connected to a feed water pipe 21 into which feed water flows, and the outlet of the latent heat recovery heat exchanger 50 is connected to the sensible heat recovery heat exchanger 40 by a connecting water pipe 22. Is connected to the input side. Heat exchanger for sensible heat recovery 4
A hot water supply pipe 23 from which the supply water after heating flows out is connected to the outlet side of 0.

【0027】給水水管21の入口部近傍には、供給され
る給水の温度を検知するための入水サーミスタ24が、
またその下流側には、通水の有無や通水量を検知するた
めの水量センサー25が取り付けられている。給湯水管
23には、その出口部近傍に、出湯される湯の温度を検
知するための出湯サーミスタ26が、またその下流側に
は、出湯される湯の流量を制限するための水量制御弁2
7が設けられている。
In the vicinity of the inlet of the water supply pipe 21, a water input thermistor 24 for detecting the temperature of the supplied water is provided.
On the downstream side, a water flow sensor 25 for detecting the presence or absence of water flow and the amount of water flow is attached. A hot water supply thermistor 26 for detecting the temperature of hot water to be discharged is provided near the outlet of the hot water supply pipe 23, and a water flow control valve 2 for limiting the flow rate of hot water to be discharged is provided downstream thereof.
7 are provided.

【0028】燃焼室11の左下方には、給気をバーナー
12に向けて送り込むための燃焼ファン28が配置され
ている。またバーナー12に燃焼ガスを送り込むガス供
給管31の途中には、燃焼ガスの供給をオンオフ制御す
るガス電磁弁32、元ガス電磁弁33と、バーナー12
へ供給する燃焼ガスの供給量を調整するガス比例弁34
が取り付けられている。
At the lower left of the combustion chamber 11, a combustion fan 28 for feeding supply air toward the burner 12 is arranged. Further, in the middle of a gas supply pipe 31 for feeding the combustion gas to the burner 12, a gas solenoid valve 32 for controlling the supply of the combustion gas on and off, an original gas solenoid valve 33, and a burner 12
Proportional valve 34 that regulates the amount of combustion gas supplied to the
Is attached.

【0029】給湯器10は、給湯器10の動作を統括制
御する回路部品を収めた電装基板35を有し、当該電装
基板35には、たとえば、台所等に配置され、湯温の設
定操作等の受け付けや、各種の状態表示を行うリモコン
36が接続されている。
The water heater 10 has an electric board 35 containing circuit components for controlling the operation of the water heater 10. The electric board 35 is disposed, for example, in a kitchen or the like, and is used to set a hot water temperature. And a remote controller 36 for performing various status displays.

【0030】図3は、顕熱回収用熱交換器40および潜
熱回収用熱交換器50をより詳細に示したものである。
顕熱回収用熱交換器40は、加熱すべき給水の通る顕熱
受熱管41と、排気の熱の回収効率を高めるためのフィ
ン42とを備えている。ここでは、顕熱受熱管41およ
びフィン42は、ともに熱伝導率の良好な銅で形成され
ている。また、顕熱受熱管41とフィン42とは、銀
(Ag)やニッケル(Ni)等のロウ材でロウ付けする
ことで互いが接合されている。顕熱受熱管41、フィン
42を構成する材料として、銅のほか、鉄、アルミニウ
ム、ステンレス(SUS)等を用いてもよい。
FIG. 3 shows the heat exchanger for sensible heat recovery 40 and the heat exchanger for latent heat recovery 50 in more detail.
The sensible heat recovery heat exchanger 40 includes a sensible heat heat receiving tube 41 through which feed water to be heated passes, and fins 42 for increasing the efficiency of recovering the heat of the exhaust gas. Here, the sensible heat receiving tube 41 and the fins 42 are both formed of copper having a good thermal conductivity. The sensible heat receiving tube 41 and the fins 42 are joined to each other by brazing with a brazing material such as silver (Ag) or nickel (Ni). As a material constituting the sensible heat receiving tube 41 and the fins 42, iron, aluminum, stainless steel (SUS) or the like may be used in addition to copper.

【0031】顕熱回収用熱交換器40は、バーナー12
の近傍に配置されており、排気の顕熱を主として回収
し、凝縮水がほとんど結露しないように、その熱交換効
率が約75〜80パーセントに設定されている。
The sensible heat recovery heat exchanger 40 includes a burner 12
The heat exchange efficiency is set to about 75 to 80% so that the sensible heat of the exhaust gas is mainly recovered and the condensed water hardly forms dew.

【0032】潜熱回収用熱交換器50は、加熱すべき給
水の通る潜熱受熱管51と、フィン52とから構成され
ている。このうち潜熱受熱管51は、耐食性を優先さ
せ、SUS444、SUS316等のステンレスを材料
としている。フィン52は、熱伝導率が良好で、かつ潜
熱受熱管51よりもイオン化傾向の大きいSUS41
0、SUS421、SUS430等のフェライト系ステ
ンレスを用いている。
The latent heat recovery heat exchanger 50 is composed of a latent heat receiving tube 51 through which feed water to be heated passes, and fins 52. Among these, the latent heat receiving tube 51 is made of stainless steel such as SUS444 and SUS316, giving priority to corrosion resistance. The fins 52 are made of SUS 41 having good thermal conductivity and a higher ionization tendency than the latent heat receiving tube 51.
0, SUS421, SUS430, or other ferritic stainless steel.

【0033】図1は、潜熱回収用熱交換器50の断面の
一部を示したものである。潜熱回収用熱交換器50で
は、フィン52に開設した穴に潜熱受熱管51をはめ込
むことで、潜熱受熱管51とフィン52とを互いに固定
しており、ロウ付けは行っていない。なお、ここでは、
潜熱回収用熱交換器50での熱交換効率を約15パーセ
ントに設定してある。
FIG. 1 shows a part of a cross section of a heat exchanger 50 for latent heat recovery. In the latent heat recovery heat exchanger 50, the latent heat receiving tube 51 and the fin 52 are fixed to each other by fitting the latent heat receiving tube 51 into a hole formed in the fin 52, and no brazing is performed. Here,
The heat exchange efficiency in the latent heat recovery heat exchanger 50 is set to about 15%.

【0034】次に作用を説明する。バーナー12からの
熱は、まず、バーナー12の近傍に配置された顕熱回収
用熱交換器40によって吸収される。この際、顕熱回収
用熱交換器40の熱交換効率が約75〜80パーセント
程度に抑えられているので、顕熱回収用熱交換器40で
はほとんど結露が生じない。顕熱回収用熱交換器40に
よって顕熱の回収された排気は、開口部14を通って潜
熱回収用熱交換器50に到達する。
Next, the operation will be described. The heat from the burner 12 is first absorbed by the sensible heat recovery heat exchanger 40 arranged near the burner 12. At this time, since the heat exchange efficiency of the sensible heat recovery heat exchanger 40 is suppressed to about 75 to 80%, dew condensation hardly occurs in the sensible heat recovery heat exchanger 40. The exhaust gas whose sensible heat has been recovered by the sensible heat recovery heat exchanger 40 reaches the latent heat recovery heat exchanger 50 through the opening 14.

【0035】潜熱回収用熱交換器50に到達した排気
は、200℃〜280℃程度までその温度が低下してい
るので、潜熱回収用熱交換器50は、主として排気の潜
熱を回収し、多量(毎分50mlほど)の凝縮水が潜熱
回収用熱交換器50に結露する。
Since the temperature of the exhaust gas that has reached the latent heat recovery heat exchanger 50 has dropped to about 200 ° C. to 280 ° C., the latent heat recovery heat exchanger 50 mainly recovers the latent heat of the exhaust gas, Condensed water (about 50 ml per minute) is condensed on the latent heat recovery heat exchanger 50.

【0036】結露した凝縮水は、潜熱回収用熱交換器5
0から落下して受け皿13に受け止められ、ドレン受け
16、排出通路17、中和処理器18を通じて排出され
る。潜熱回収用熱交換器50に結露した凝縮水を受け皿
13によって受け止めるので、顕熱回収用熱交換器40
の上に凝縮水が落下せず、自身で結露しないことと相ま
って、顕熱回収用熱交換器40が凝縮水によって腐食さ
れることはほとんどない。
The condensed water that has condensed forms a latent heat recovery heat exchanger 5.
It falls from 0 and is received by the tray 13, and is discharged through the drain receiver 16, the discharge passage 17, and the neutralization device 18. Since the condensed water condensed on the latent heat recovery heat exchanger 50 is received by the tray 13, the sensible heat recovery heat exchanger 40
The condensed water does not fall on the surface of the heat exchanger, and the sensible heat recovery heat exchanger 40 is hardly corroded by the condensed water.

【0037】一方、潜熱回収用熱交換器50に結露した
凝縮水は、潜熱受熱管51とフィン52の接合部分の隙
間53に入り込んで溜まる。特に燃焼を停止した後に、
当該隙間に凝縮水が溜まりやすい。この凝縮水は、燃焼
空気が高温で酸化して生成された窒素酸化物(NOx)
やガス漏れ検知のために燃焼ガスに添加された付臭剤が
酸化することで生成された硫黄酸化物(SOx)等が溶
解し、硝酸と硫酸の溶融したpH2〜3の酸性の水滴に
なっている。
On the other hand, the condensed water condensed on the latent heat recovery heat exchanger 50 enters the gap 53 at the joint between the latent heat receiving tube 51 and the fin 52 and accumulates. Especially after stopping the combustion,
Condensed water easily accumulates in the gap. This condensed water is nitrogen oxide (NOx) generated by oxidizing combustion air at high temperature.
Sulfur oxide (SOx) and the like generated by oxidizing the odorant added to the combustion gas to detect gas and gas leaks are dissolved, and nitric acid and sulfuric acid are dissolved to form acidic water drops of pH 2-3. ing.

【0038】隙間53に溜まった凝縮水は、潜熱受熱管
51とフィン52の双方に触れる状態になるとともに、
フィン52のイオン化傾向が潜熱受熱管51よりも大き
いので、フィン52が陽イオンとなって凝縮水中に溶け
出す。このため、潜熱受熱管51が凝縮水によって腐食
されて孔があき、孔食されることはない。
The condensed water accumulated in the gap 53 comes into contact with both the latent heat receiving tube 51 and the fin 52,
Since the ionization tendency of the fins 52 is larger than that of the latent heat receiving tube 51, the fins 52 become positive ions and dissolve into the condensed water. Therefore, the latent heat receiving tube 51 is not corroded by the condensed water to form a hole, thereby preventing pitting.

【0039】図4は、フィン52が陽イオンとなって溶
け出す際の原理を示したものである。これはボルタの電
池と同様の原理である。すなわち、図5に示すように、
潜熱受熱管51とフィン52の隙間に溜まった凝縮水6
1は、潜熱受熱管51とフィン52の双方に触れた状態
になるとともに、接合部分62で潜熱受熱管51とフィ
ン52とが電気的に導通している。したがって、この状
態は、硝酸イオンや硫酸イオンの含まれる凝縮水61の
中に、潜熱受熱管51から成る陰極と、フィン52から
なる陽極とを浸し、潜熱受熱管51とフィン52とを導
線で接続した図4に示す状態に等しい。
FIG. 4 shows the principle when the fins 52 are dissolved as cations. This is the same principle as the battery of Volta. That is, as shown in FIG.
Condensed water 6 accumulated in the gap between the latent heat receiving tube 51 and the fin 52
1 is in a state where both the latent heat receiving tube 51 and the fin 52 are in contact with each other, and the latent heat receiving tube 51 and the fin 52 are electrically connected at the joint portion 62. Therefore, in this state, the cathode composed of the latent heat receiving tube 51 and the anode composed of the fins 52 are immersed in the condensed water 61 containing nitrate ions and sulfate ions, and the latent heat receiving tube 51 and the fins 52 are connected by a conducting wire. This is equivalent to the state shown in FIG.

【0040】ここで、フィン52が受熱管51よりもイ
オン化傾向の大きい金属で形成されているので、フィン
52側が陽イオンと電子とに分離する。また受熱管51
とフィン52とが導通しているので、フィン52で生じ
た電子は接合部分62を通じて受熱管51側に流れ、フ
ィン52は、正に帯電する。これにより、凝縮水61中
の硝酸イオンや硫酸イオン等の陰イオンがフィン52側
に引きつけられるとともに、フィン52から生じた陽イ
オンが凝縮水61中に溶け出すという反応が起こる。
Since the fins 52 are formed of a metal having a higher ionization tendency than the heat receiving tube 51, the fins 52 are separated into cations and electrons. The heat receiving tube 51
Since the fins 52 and the fins 52 are conducting, the electrons generated at the fins 52 flow toward the heat receiving tube 51 through the joint portions 62, and the fins 52 are positively charged. As a result, a reaction occurs in which anions such as nitrate ions and sulfate ions in the condensed water 61 are attracted to the fins 52, and cations generated from the fins 52 are dissolved in the condensed water 61.

【0041】電子は、接合部分62を通じて受熱管51
側に集まり、排気中の窒素酸化物(NOx)や硫黄酸化
物(SOx)が凝縮水61に溶けた際に生じた水素イオ
ン等の陽イオンと潜熱受熱管51側で結合する。このよ
うに、受熱管51よりもイオン化傾向の大きいフィン5
2が陽イオンとなって凝縮水61中に溶け出すので、受
熱管51とフィン52の隙間53に凝縮水が溜まって
も、図5に示すようにフィン52側が溶け出し、図6に
示すように、潜熱受熱管51に小さい孔が空く、いわゆ
るピッティング64の生じることがない。またフィン5
2から溶け出した陽イオンが凝縮水61の中の硝酸イオ
ン等の陰イオンと結合し、凝縮水61を中和する効果も
得ることができる。
The electrons are transferred to the heat receiving tube 51 through the joint 62.
And collects on the latent heat receiving tube 51 side with cations such as hydrogen ions generated when nitrogen oxides (NOx) and sulfur oxides (SOx) in the exhaust gas are dissolved in the condensed water 61. Thus, the fin 5 having a greater ionization tendency than the heat receiving tube 51
2 becomes cations and dissolves into the condensed water 61, so that even if condensed water accumulates in the gap 53 between the heat receiving tube 51 and the fins 52, the fins 52 are melted out as shown in FIG. In addition, a small hole is not formed in the latent heat receiving tube 51, and so-called pitting 64 does not occur. Also fin 5
The cations dissolved from 2 can be combined with anions such as nitrate ions in the condensed water 61 to obtain an effect of neutralizing the condensed water 61.

【0042】このように、受熱管51よりもイオン化傾
向の大きい金属でフィン52を形成したので、潜熱受熱
管51とフィン52の接合部分の隙間に凝縮水61が溜
まっても、潜熱受熱管51が腐食されないので、潜熱受
熱管51側に孔が空き、給水の漏れるような事態を防止
することができる。なお、フィン52は腐食されても給
水が漏れ出るようなことがないので、問題にならない。
As described above, since the fins 52 are formed of a metal having a higher ionization tendency than the heat receiving tubes 51, even if the condensed water 61 accumulates in the gap between the joining portions of the latent heat receiving tubes 51 and the fins 52, the latent heat receiving tubes 51 can be used. Is not corroded, so that a hole is provided on the latent heat receiving tube 51 side, and it is possible to prevent a situation in which water supply leaks. It should be noted that the fins 52 do not cause a problem because the supply water does not leak even if they are corroded.

【0043】またフィン52に開設された穴に潜熱受熱
管51をはめ込むことで互いを固定しているので、これ
らをロウ付けした場合のように、ロウ材のイオン化傾向
によって潜熱受熱管51の防腐効果等が左右されること
がない。すなわち、ロウ材のイオン化傾向が大きい場合
には、ロウ材が溶け出して潜熱受熱管51からフィン5
2が外れてしまう障害が生じる。逆に潜熱受熱管51よ
りもロウ材のイオン化傾向が小さい場合には、潜熱受熱
管51が溶け出し腐食されて孔が空いてしまう。
Since the latent heat receiving tubes 51 are fixed to each other by fitting them into holes formed in the fins 52, the latent heat receiving tubes 51 are preserved due to the ionization tendency of the brazing material as in the case of brazing. The effect is not affected. In other words, when the brazing material has a high ionization tendency, the brazing material melts out and the fin 5
2 will be disengaged. Conversely, when the brazing material has a smaller ionization tendency than the latent heat receiving tube 51, the latent heat receiving tube 51 is melted and corroded, resulting in a hole.

【0044】ここでは、潜熱受熱管51とフィン52と
をロウ付けせずにはめ込むことで互いを機械的に固定し
ているので、このような障害が起こらず、潜熱受熱管5
1よりもイオン化傾向の大きい金属でフィン52を形成
することによって、潜熱受熱管51側の腐食が適切に防
止されている。
Here, since the latent heat receiving tube 51 and the fins 52 are mechanically fixed to each other by being fitted without brazing, such a failure does not occur, and the latent heat receiving tube 5
By forming the fins 52 with a metal having a greater ionization tendency than 1, corrosion on the latent heat receiving tube 51 side is properly prevented.

【0045】また、フィン52および潜熱受熱管51を
いずれもステンレス系の材料で形成することにより、受
熱管よりもイオン化傾向の大きいフィンが溶け出した場
合であっても、銅のように腐食物よってフィンとフィン
の間が目詰まりすることが無く、腐食により熱交換効率
は低下しない。
Further, by forming both the fins 52 and the latent heat receiving tubes 51 from a stainless steel material, even if the fins having a higher ionization tendency than the heat receiving tubes melt out, corrosive substances such as copper are used. Therefore, there is no clogging between the fins, and the heat exchange efficiency does not decrease due to corrosion.

【0046】さらに、フィン52を、SUS430、S
US421、SUS410等、SUSの中では比較的熱
伝導率の良好な部材で形成しているので、排気通路の下
流側の低温の排気から潜熱を回収するのに適している。
一方、これらは耐食性が低く腐食されやすいので、潜熱
受熱管51に用いることはできない。そこで、潜熱受熱
管51としては、耐食性があり、かつフィン52よりも
イオン化傾向の小さい金属であるSUS304やSUS
316等を用いている。
Further, the fins 52 are made of SUS430, S
Since it is formed of a member having relatively good thermal conductivity in SUS such as US421 and SUS410, it is suitable for recovering latent heat from low-temperature exhaust gas downstream of the exhaust passage.
On the other hand, since these have low corrosion resistance and are easily corroded, they cannot be used for the latent heat receiving tube 51. Therefore, as the latent heat receiving tube 51, SUS304 or SUS which is a metal having corrosion resistance and a smaller ionization tendency than the fin 52 is used.
316 or the like is used.

【0047】このように、潜熱受熱管51には熱伝導率
よりも耐食性を優先させた材料を用い、フィン52には
耐食性よりも熱伝導率を優先させた材料を用いたので、
潜熱受熱管51のピッティングを防止しつつ良好な熱交
換効率が得られている。
As described above, the material having higher corrosion resistance than the thermal conductivity is used for the latent heat receiving tube 51, and the material having higher thermal conductivity than the corrosion resistance is used for the fins 52.
Good heat exchange efficiency is obtained while preventing pitting of the latent heat receiving tube 51.

【0048】以上説明した実施の形態では、フィンをS
US430、421,410等で、また受熱管をSUS
304,316等で形成したが、フィンのイオン化傾向
が受熱管よりも大きくなるようにすれば、他の金属やス
テンレスを用いてもよい。また、フィンのイオン化傾向
を受熱管のそれよりも大きくすることによる防食を、顕
熱回収用熱交換器と潜熱回収用の熱交換器とを有するも
のにおいて潜熱回収用熱交換器に施したが、熱交換器は
必ずしも2つに分かれている必要はなく、凝縮水の結露
する可能性のある熱交換器であれば、本発明を適用する
効果がある。
In the embodiment described above, the fin is
US430, 421, 410, etc.
Although it is formed of 304, 316, etc., other metals or stainless steel may be used as long as the ionization tendency of the fin is made larger than that of the heat receiving tube. In addition, anticorrosion by making the ionization tendency of the fin larger than that of the heat receiving tube was applied to the latent heat recovery heat exchanger in the case of having the sensible heat recovery heat exchanger and the latent heat recovery heat exchanger. However, the heat exchanger does not necessarily have to be divided into two parts, and the present invention has an effect of applying the present invention as long as the heat exchanger has a possibility of dew condensation of the condensed water.

【0049】なお、実施の形態では燃料としてブタンや
メタンなどの燃焼ガスを用いたが、石油や灯油などの燃
料であってもよい。
In the embodiment, a combustion gas such as butane or methane is used as a fuel, but a fuel such as petroleum or kerosene may be used.

【0050】[0050]

【発明の効果】本発明にかかる熱交換によれば、フィン
を受熱管よりもイオン化傾向の大きい金属で形成したの
で、フィンと受熱管の接合部の隙間に凝縮水が溜まって
も、フィンが陽イオンとなって溶け出し、受熱管の腐食
が防止される。
According to the heat exchange of the present invention, since the fins are formed of a metal having a higher ionization tendency than the heat receiving tube, even if condensed water accumulates in the gap between the fin and the heat receiving tube, the fins are not removed. It melts as cations and prevents corrosion of the heat receiving tube.

【0051】またフィンと受熱管とをロウ付けせずに固
定したので、ロウ材のイオン化傾向の大きさによって受
熱管が溶け出したり、凝縮水にロウ材が溶け出てフィン
が外れてしまうようなことがない。
Further, since the fins and the heat receiving tube are fixed without being brazed, the heat receiving tube may be melted out depending on the degree of ionization tendency of the brazing material, or the fin may come off due to the melting of the brazing material in condensed water. There is nothing.

【0052】さらに、フィン等をステンレス系の材料で
形成したので、フィンが溶けても、腐食物がフィンとフ
ィンの間に詰まって熱交換効率を低下させるようなこと
が無い。
Further, since the fins and the like are formed of a stainless steel material, even if the fins are melted, there is no possibility that corrosive substances are clogged between the fins to lower the heat exchange efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に熱交換器を示す断面図
である。
FIG. 1 is a sectional view showing a heat exchanger according to an embodiment of the present invention.

【図2】本発明の一実施施の形態に係る熱交換器を適用
した給湯器を示す説明図である。
FIG. 2 is an explanatory diagram showing a water heater to which the heat exchanger according to one embodiment of the present invention is applied.

【図3】図2に示した給湯器の有する顕熱回収用熱交換
器および潜熱回収用熱交換器を示す説明図である。
3 is an explanatory view showing a sensible heat recovery heat exchanger and a latent heat recovery heat exchanger included in the water heater shown in FIG. 2;

【図4】本発明の一実施の形態に係る熱交換器における
防腐の原理を示す説明図である。
FIG. 4 is an explanatory diagram showing the principle of preservation in the heat exchanger according to one embodiment of the present invention.

【図5】凝縮水によってフィンの腐食された状態を示す
説明図である。
FIG. 5 is an explanatory view showing a state in which fins are corroded by condensed water.

【図6】凝縮水によって受熱管にピッティングの生じた
状態を示す説明図である。
FIG. 6 is an explanatory diagram showing a state in which pitting has occurred on a heat receiving tube due to condensed water.

【符号の説明】[Explanation of symbols]

10…給湯器 11…燃焼室 12…バーナー 13…受け皿 14…開口部 16…ドレン受け 17…排出通路 18…中和処理器 28…燃焼ファン 40…顕熱回収用熱交換器 41…顕熱受熱管 42、52…フィン 50…潜熱回収用熱交換器 51…潜熱受熱管 53…隙間 61…凝縮水 62…接合部分 DESCRIPTION OF SYMBOLS 10 ... Hot water supply 11 ... Combustion chamber 12 ... Burner 13 ... Receiving tray 14 ... Opening 16 ... Drain receiver 17 ... Discharge passage 18 ... Neutralization treatment device 28 ... Combustion fan 40 ... Sensible heat recovery heat exchanger 41 ... Sensible heat reception Heat pipes 42, 52 Fins 50 Latent heat recovery heat exchanger 51 Latent heat receiving pipe 53 Gap 61 Condensed water 62 Joint

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】燃料を燃やした際に生じた熱を吸収して熱
交換を行う熱交換器において、 加熱すべき流体を通す金属製の受熱管と熱交換用のフィ
ンとを備え、 前記熱交換用のフィンは、前記受熱管の外径とほぼ等し
い内径の穴を有し、これに前記受熱管をはめ込むことで
当該受熱管に固定されるとともに、前記受熱管よりもイ
オン化傾向の大きい金属で形成され、前記燃料を燃やし
た排気の潜熱を吸収することで生じる酸性の凝縮水が前
記フィンと前記受熱管との接合部の隙間に溜まった際
に、前記受熱管よりもイオン化傾向の大きい前記フィン
が陽イオンになって溶け出すことで前記受熱管の腐食を
防止したことを特徴とする熱交換器。
1. A heat exchanger for performing heat exchange by absorbing heat generated when a fuel is burned, comprising: a metal heat receiving tube through which a fluid to be heated is passed; and fins for heat exchange. The replacement fin has a hole having an inner diameter substantially equal to the outer diameter of the heat receiving tube, and is fixed to the heat receiving tube by fitting the heat receiving tube into the hole, and has a greater ionization tendency than the heat receiving tube. When acidic condensed water generated by absorbing the latent heat of the exhaust gas burning the fuel accumulates in the gap between the joint between the fin and the heat receiving tube, it has a greater ionization tendency than the heat receiving tube. A heat exchanger wherein the fins become cations and melt out to prevent corrosion of the heat receiving tube.
【請求項2】フィンおよび受熱管はいずれもステンレス
系の材料で形成されていることを特徴とする請求項1記
載の熱交換器。
2. The heat exchanger according to claim 1, wherein both the fin and the heat receiving tube are made of a stainless steel material.
【請求項3】前記フィンを、前記受熱管よりも熱伝導率
の高い材料で形成することを特徴とする請求項1または
2記載の熱交換器。
3. The heat exchanger according to claim 1, wherein the fin is formed of a material having a higher thermal conductivity than the heat receiving tube.
【請求項4】前記熱交換器は、排気の顕熱を主として吸
収する顕熱回収用熱交換器とこれよりも排気通路の下流
側に配置され排気の潜熱を主として吸収する潜熱回収用
熱交換器との双方を有するものにおける前記潜熱回収用
熱交換器であることを特徴とする請求項1、2または3
記載の熱交換器。
4. A heat exchanger for recovering sensible heat, which mainly absorbs sensible heat of exhaust gas, and a heat exchanger for recovering latent heat, which is mainly disposed downstream of the exhaust passage and mainly absorbs latent heat of exhaust gas. 4. The heat exchanger for latent heat recovery in a device having both a heat exchanger and a heat exchanger.
The heat exchanger as described.
JP9353575A 1997-12-22 1997-12-22 Heat exchanger Pending JPH11183083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9353575A JPH11183083A (en) 1997-12-22 1997-12-22 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9353575A JPH11183083A (en) 1997-12-22 1997-12-22 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH11183083A true JPH11183083A (en) 1999-07-06

Family

ID=18431775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9353575A Pending JPH11183083A (en) 1997-12-22 1997-12-22 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH11183083A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184731A (en) * 2010-03-08 2011-09-22 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent corrosion resistance in condensed water environment generated from hydrocarbon combustion exhaust gas
KR101153881B1 (en) 2010-08-23 2012-06-18 (주)디케이티 Method for manufacturing fin tube using in the heat recovery steam generator
KR101153875B1 (en) 2010-08-23 2012-06-18 (주)디케이티 Method for manufacturing fin tube using in the heat recovery steam generator
KR101153878B1 (en) 2010-08-23 2012-06-18 (주)디케이티 Method for manufacturing fin tube using in the heat recovery steam generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184731A (en) * 2010-03-08 2011-09-22 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent corrosion resistance in condensed water environment generated from hydrocarbon combustion exhaust gas
KR101153881B1 (en) 2010-08-23 2012-06-18 (주)디케이티 Method for manufacturing fin tube using in the heat recovery steam generator
KR101153875B1 (en) 2010-08-23 2012-06-18 (주)디케이티 Method for manufacturing fin tube using in the heat recovery steam generator
KR101153878B1 (en) 2010-08-23 2012-06-18 (주)디케이티 Method for manufacturing fin tube using in the heat recovery steam generator

Similar Documents

Publication Publication Date Title
US10010984B2 (en) Method for the production of a heat exchanger, particularly a sorption heat exchanger
EP3663689A1 (en) Heat exchanger
JP2020003108A (en) Heat exchanger and water heater
WO1983000380A1 (en) Heat pipe heat exchanger
JPH11183083A (en) Heat exchanger
JP2000292010A (en) Heat-exchange device
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
JP2002267273A (en) Hot water supply apparatus
JP3859845B2 (en) Heat exchanger
JP2005061712A (en) Latent heat recovering economizer with enhanced corrosion resistance
JP3848765B2 (en) Heat exchanger, cathodic protection device, and cathodic protection method for heat exchanger
JP3935256B2 (en) Heat exchanger, cathodic protection device, and cathodic protection method for heat exchanger
JP2006292316A (en) Heat exchanger and combustion device provided therewith
JP2007271098A (en) Heat medium heating device
JP3844574B2 (en) Heat exchanger
JP2009236374A (en) Heat transfer tube for hot water supply
JP2006046757A (en) Anticorrosive heat transfer tube with fin and exhaust gas heater
JP2000356497A (en) Heat exchanger and fluid heater
JP2000146305A (en) Waste heat recovering heat exchanger for hot-water supplier
JP2003139400A (en) Heat exchanger
JP2006057988A (en) Heat exchanger for recovering waste heat of combustion type heat source machine
JP2007107776A (en) Heat exchanger for recovering waste heat of combustion type heat source machine
JP2971685B2 (en) Heat exchanger and method of manufacturing the same
JPH04306494A (en) Heat exchanger
CN211823961U (en) Dual-purpose heat exchanger for ammonia absorption and evaporation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016