JP3859845B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP3859845B2
JP3859845B2 JP31829897A JP31829897A JP3859845B2 JP 3859845 B2 JP3859845 B2 JP 3859845B2 JP 31829897 A JP31829897 A JP 31829897A JP 31829897 A JP31829897 A JP 31829897A JP 3859845 B2 JP3859845 B2 JP 3859845B2
Authority
JP
Japan
Prior art keywords
heat
exhaust
coating
heat exchanger
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31829897A
Other languages
Japanese (ja)
Other versions
JPH11148723A (en
Inventor
正徳 榎本
祐明 秋葉
新悟 木村
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP31829897A priority Critical patent/JP3859845B2/en
Publication of JPH11148723A publication Critical patent/JPH11148723A/en
Application granted granted Critical
Publication of JP3859845B2 publication Critical patent/JP3859845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料を燃焼させた際に生じる排気の流れる排気経路内に配置され、前記排気の熱を吸収して受熱管の中を流れる被加熱流体を加熱する熱交換器に関する。
【0002】
【従来の技術】
メタン、プロパン、ブタンなどの燃料を燃焼させた際に生じる熱を吸収して、給水等を加熱する熱交換器では、排気の潜熱を吸収する際に生じる凝縮水が熱交換器の表面に付着することがある。この凝縮水は、燃焼空気が高温で酸化して生成された窒素酸化物(NOx)やガス漏れ検知のために燃焼ガスに添加された付臭剤が酸化することで生成された硫黄酸化物(SOx)等が溶解し、硝酸と硫酸との溶融したpH2〜3の酸性の水滴になっている。
【0003】
このような酸性の凝縮水によって熱交換器の受熱管やフィンが腐食されると、内部の流体が漏れ出たり、錆によってフィンとフィンの間が詰まって熱交換効率が低下するので、従来の熱交換器では、受熱管や熱交換用のフィンの表面を耐酸性の塗料などの被膜で被覆する等の対策が施されていた。
【0004】
【発明が解決しようとする課題】
しかしながら、熱交換器のうち200℃以上等の高温の排気が当たる箇所では、受熱管やフィンの表面温度が被膜の耐熱温度を越えてしまい、当該箇所の被膜が熱で分解して破損し、凝縮水によって腐食されてしまうという問題があった。特に、熱交換器のうち排気の潜熱を主として回収する部分では、多量の凝縮水が発生するので、被膜が破損すると短期間のうちにフィンが腐食されて熱交換効率が低下してしまうという問題があった。
【0005】
本発明は、このような従来の技術が有する問題点に着目してなされたもので、凝縮水の付着する箇所に施した防腐用の被膜が高温の排気によって分解し破損することのない熱交換器を提供することを目的としている。
【0006】
【課題を解決するための手段】
かかる目的を達成するための本発明の要旨とするところは、次の各項の発明に存する。
[1]燃料を燃焼させた際に生じる排気の流れる排気経路(15)内に配置され、受熱管(51)の中を流れる被加熱流体を前記排気の熱を吸収して加熱する熱交換器において、
前記熱交換器の表面のうち前記排気の潜熱を吸収することによって生成する凝縮水の付着する部分を当該凝縮水による腐食から保護するための被膜(53)で覆い、
表面温度が前記被膜(53)の耐熱温度以下に収まるように前記被膜(53)で覆った部分のうち他の部分よりも前記排気からの伝熱量を小さくした伝熱量制限箇所(54)を前記被膜(53)で覆った部分のうちの少なくとも前記排気経路(15)の上流側に設けたことを特徴とする熱交換器。
【0007】
[2]燃料を燃焼させた際に生じる排気の流れる排気経路(15)内に配置され、受熱管(51)の中を流れる被加熱流体を前記排気の熱を吸収して加熱する熱交換器において、
前記熱交換器の表面のうち前記排気の潜熱を吸収することによって生成する凝縮水の付着する部分を当該凝縮水による腐食から保護するための被膜(53)で覆い、
表面温度が前記被膜(53)の耐熱温度以下に収まるように前記被膜(53)で覆った部分のうち他の部分よりも前記排気からの伝熱量を小さくした伝熱量制限箇所(54)を前記被膜(53)で覆った部分のうちの前記排気経路(15)の上流側に設け、
表面温度が前記被膜(53)の耐熱温度以下に収まる範囲内で前記排気からの伝熱量が前記伝熱量制限箇所(54)より大きい箇所を当該伝熱量制限箇所(54)よりも下流側に設けたことを特徴とする熱交換器。
【0008】
[3]前記排気経路(15)の下流側ほど前記伝熱量が大きくなるようにしたことを特徴とする[1]または[2]記載の熱交換器。
【0009】
[4]燃料を燃焼させた際に生じる排気の流れる排気経路(15)内に配置され、受熱管(51)の中を流れる被加熱流体を前記排気の熱を吸収して加熱する熱交換器において、
前記排気の顕熱を主として吸収する顕熱回収用熱交換部(40)とこれよりも前記排気経路(15)の下流側に配置され前記排気の潜熱を主として吸収する潜熱回収用熱交換部(50)とを有し、
前記潜熱回収用熱交換部(50)の表面を前記排気の潜熱を吸収することによって生成する凝縮水による腐食から保護するための被膜(53)で覆い、
表面温度が前記被膜(53)の耐熱温度以下に収まるように前記被膜(53)で覆った部分のうち他の部分よりも前記排気からの伝熱量を小さくした伝熱量制限箇所(54)を前記潜熱回収用熱交換部(50)のうちの前記顕熱用熱交換部(40)に近い前記排気経路(15)の上流側に設けたことを特徴とする熱交換器。
【0010】
[5]前記受熱管(51)の外周面に立設された熱交換用のフィン(52)の高さを前記被膜(53)で覆った部分のうち他の部分よりも前記伝熱量制限箇所(54)で低くすることにより、前記排気からの伝熱量を小さくしたことを特徴とする[1]、[2]、[3]または[4]記載の熱交換器。
【0011】
[6]前記伝熱量制限箇所(54)の受熱管(51)をその外周面に熱交換用のフィン(52)の立設されない裸管にすることで当該箇所における伝熱量を小さくしたことを特徴とする[1]、[2]、[3]または[4]記載の熱交換器。
【0012】
[7]結露した凝縮水の蒸発によって前記表面温度が前記被膜(53)の耐熱温度以下に抑制されない部分を前記伝熱量制限箇所(54)に設定したことを特徴とする[1]、[2]、[3]、[4]、[5]または[6]記載の熱交換器。
【0013】
前記本発明は次のように作用する。
熱交換器の表面のうち、排気の潜熱を吸収することによって生成する凝縮水の付着する部分を当該凝縮水による腐食から保護するための被膜(53)で覆っているので、被膜(53)が熱で分解等して破損しない限り、凝縮水による熱交換器の腐食が防止される。また、表面温度が被膜(53)の耐熱温度以下に収まるように排気からの伝熱量を小さくした伝熱量制限箇所(54)を、被膜(53)で覆った部分のうちの少なくとも排気経路(15)の上流側に設けることで、高温の排気にさらされる当該上流側の箇所における被膜(53)の破損が防止される。
【0014】
すなわち、受熱管(51)の中を低温の被加熱流体が流れているので、当該被加熱流体に近い部分の温度はあまり上昇せず、被加熱流体から遠ざかるに従って排気の温度に近づいて高温になる。したがって、受熱管(51)の周囲に立設した熱交換用のフィン(52)の高さを、高温の排気にさらされる上流側の箇所において低くしたり、あるいは当該上流側の箇所の受熱管(51)をフィン(52)の立設されない裸管にして排気からの伝熱量を小さくすることで、高さの低いローフィン(52a)や裸管の表面温度がそれらを被覆する被膜(53)の耐熱温度以下に抑えられる。これにより、高温の排気にさらされる上流側の箇所においても被膜(53)が熱で分解して破損することがなく、凝縮水による腐食を防止することができる。
【0015】
なお、ローフィン(52a)や裸管にすることによって伝熱量を小さく抑えた上流側の伝熱量制限箇所(54)において、ある程度の熱量が吸収されるので、当該箇所よりも下流側では排気の温度が低下している。このため、伝熱量制限箇所(54)よりも下流側では、ローフィン(52)や裸管にして伝熱量を小さく制限する必要はない。そこで、表面温度が被膜(53)の耐熱温度以下に収まる範囲内で、排気からの伝熱量が伝熱量制限箇所(54)における伝熱量よりも大きい箇所を当該伝熱量制限箇所(54)の下流側に設けることで、排気の熱を効率良く回収することができる。
【0016】
また、伝熱量制限箇所(54)の伝熱量を、当該箇所の表面温度が被膜(53)の耐熱温度以下に収まるように小さくするとともに、排気経路(15)の下流側に進むにしたがって排気からの伝熱量を大きくすることで、被膜(53)の分解を防止しつつ、排気の熱をより一層効率良く回収することができる。たとえば、伝熱量制限箇所(54)のフィン(52)の高さを低くし、下流側ほどフィン(52)の高さを高くすれば、下流側に進むにしたがって伝熱量を次第に大きくすることができる。
【0017】
排気の顕熱を主として吸収する顕熱回収用熱交換部(40)とこれよりも排気経路(15)の下流側に配置され排気の潜熱を主として吸収する潜熱回収用熱交換部(50)とを有するものにおいては、潜熱回収用熱交換部(50)の表面を被膜(53)で覆う。そして当該潜熱回収用熱交換部(50)の上流側の箇所における伝熱量を、当該箇所のフィンをローフィン(52)にしたり、受熱管を裸管にすることで小さくする。
【0018】
顕熱回収用熱交換部(40)では主として排気の顕熱を回収するので、ほとんど凝縮水が生成しない。したがって、潜熱を主として回収することで、凝縮水が多量に生成される潜熱回収用熱交換部(50)を被膜(53)で被覆すれば、凝縮水による腐食から熱交換器を保護することができる。また、潜熱回収用熱交換部(50)に到達した排気の温度は、エポキシ系の塗料等から成る被膜(53)の耐熱温度よりもまだ高いので、顕熱回収用熱交換部(40)を経由した後の排気と最初に触れる、潜熱回収用熱交換部(50)の上流側の箇所の伝熱量を小さくして伝熱量制限箇所(54)とすることで、当該箇所の被膜(53)が熱で分解して破損せず、凝縮水による腐食を防止することができる。なお、伝熱量制限箇所(54)よりも下流側の部分において潜熱回収用熱交換部(50)の伝熱量を、伝熱量制限箇所(54)のそれよりも大きくすることで、排気の熱を効率的に回収することができる。
【0019】
【発明の実施の形態】
以下、図面に基づき本発明の一実施の形態を説明する。
各図は、本発明の一実施の形態を示している。
本実施の形態は、本発明にかかる熱交換器を給湯器10に適用したものである。図2に示すように、給湯器10は、燃焼室11を備えており、当該燃焼室11の下部には、バーナー12が配置されている。バーナー12の上方には、主として排気の顕熱を回収する顕熱回収用熱交換器40が、さらにその上方には主として排気の潜熱を回収する潜熱回収用熱交換器50が配置されている。
【0020】
顕熱回収用熱交換器40と潜熱回収用熱交換器50の間には、潜熱回収用熱交換器50で生成した凝縮水を受け止め、当該凝縮水が顕熱回収用熱交換器40の上に落下することを防止するための受け皿13が取り付けられている。受け皿13は、燃焼室11を右端の一部を除いて上下に仕切るものであり、顕熱回収用熱交換器40を経由した後の排気は、受け皿13の無い燃焼室11右端の開口部14を通じて潜熱回収用熱交換器50の配置されている排気通路部15に流れ込むようになっている。
【0021】
受け皿13は、開口部14側から燃焼室11の左端側に向けて下り傾斜しており、傾斜の下端部分には、受け皿13によって回収された凝縮水を一時的に溜めるドレン受け16が設けられている。ドレン受け16の底部には、凝縮水の排出通路17が接続され、当該排出通路17の途中には、酸性の凝縮水を中和するための中和処理器18が取り付けられている。
【0022】
潜熱回収用熱交換器50の入側には給水の流入する給水水管21が接続され、潜熱回収用熱交換器50の出側は、連結水管22によって顕熱回収用熱交換器40の入側と接続されている。顕熱回収用熱交換器40の出側には、加熱後の給水の流れ出る給湯水管23が接続されている。
【0023】
給水水管21の入口部近傍には、供給される給水の温度を検知するための入水サーミスタ24が、またその下流側には、通水の有無や通水量を検知するための水量センサー25が取り付けられている。給湯水管23には、その出口部近傍に、出湯される湯の温度を検知するための出湯サーミスタ26が、またその下流側には、出湯される湯の流量を制限するための水量制御弁27が設けられている。
【0024】
燃焼室11の左下方には、給気をバーナー12に向けて送り込むための燃焼ファン28が配置されている。またバーナー12に燃焼ガスを送り込むガス供給管31の途中には、燃焼ガスの供給をオンオフ制御するガス電磁弁32、元ガス電磁弁33と、バーナー12へ供給する燃焼ガスの供給量を調整するガス比例弁34が取り付けられている。
【0025】
給湯器10は、その動作を統括制御する回路部品を収めた電装基板35を有し、当該電装基板35には、たとえば、台所等に配置され、湯温の設定操作等の受け付けや、各種の状態表示を行うリモコン36が接続されている。
【0026】
図1は、顕熱回収用熱交換器40および潜熱回収用熱交換器50をより詳細に示したものである。顕熱回収用熱交換器40は、加熱すべき給水の通る顕熱受熱管41と、排気の熱の回収効率を高めるためのフィン42とを備えている。顕熱回収用熱交換器40の顕熱受熱管41およびフィン42はともに熱伝導率の良好な銅で形成されている。
【0027】
潜熱回収用熱交換器50は、加熱すべき給水の通る潜熱受熱管51と、フィン52とから構成されている。潜熱受熱管51の周囲に立設されたフィン52は、排気通路部15の上流側に配置されている潜熱受熱管51a、51bの周囲部分において、他の部分よりもその高さの低いローフィン52aになっている。ここでは、上下2段にそれぞれ5本ずつ配置された潜熱受熱管51のうち上段の上流側にある2本の潜熱受熱管51a、51bの周囲のフィンを潜熱受熱管51の外周面からの高さが約2ミリのローフィン52aにすることで、伝熱量の小さい伝熱量制限箇所54を潜熱回収用熱交換器の上流側上段に形成している。
【0028】
潜熱受熱管51およびフィン52はともに銅で形成されているとともに、排気と触れるそれらの表面は、耐酸性の被膜53でコーティングされている。当該被膜53としては、エポキシ、テフロン、ポリサルファイド、フッ素樹脂、シリコン樹脂、フェノール樹脂等を用いることができる。ここでは、エポキシ系の有機塗料によって被膜53を形成している。
【0029】
なお、顕熱回収用熱交換器40は、排気の顕熱を主として回収し、凝縮水がほとんど発生しないので、その表面をエポキシ系の有機塗料等からなる被膜で覆うことは行っていない。また、顕熱回収用熱交換器40および潜熱回収用熱交換器50の母材として、銅のほか、ステンレス鋼(SUS)、アルミニウムまたはこれらの合金を用いてもよい。
【0030】
次に作用を説明する。
給湯器10は、顕熱回収用熱交換器40と潜熱回収用熱交換器50の双方によって熱交換し、これらを合わせた熱交換効率が90パーセント以上になるようになっている。顕熱回収用熱交換器40側での効率は、75パーセント程度に抑えられ、潜熱回収用熱交換器50側で残る15パーセント程度の効率を得るようにフィン42、52の枚数や大きさ等が設定されている。
【0031】
顕熱回収用熱交換器40側で、85パーセント程度の熱交換効率を得るようにすると、潜熱の回収が進んで凝縮水が発生する。ここでは、顕熱回収用熱交換器40側の効率を75パーセント程度に抑え、排気の顕熱を主として回収するようにしているので、顕熱回収用熱交換器40側で凝縮水はほとんど発生しない。
【0032】
一方、潜熱回収用熱交換器50に到達した排気の温度は、200℃〜280℃程度に下がっているので、潜熱回収用熱交換器50は、排気の潜熱を主として回収することになる。このため、潜熱回収用熱交換器50側では、たとえば、毎分50mlから70ml程度の多量の凝縮水が生成する。生成した凝縮水は、燃焼空気が高温で酸化して生成された窒素酸化物(NOx)やガス漏れ検知のために燃焼ガスに添加された付臭剤が酸化することで生成された硫黄酸化物(SOx)等が溶解し、硝酸と硫酸の溶融したpH2〜3の酸性の水滴になっている。
【0033】
潜熱回収用熱交換器50は、このような酸性の凝縮水による腐食から保護するために被膜53で被覆されているが、顕熱回収用熱交換器40側から開口部14を通過して到来する排気の温度は、先にも述べたように200℃〜280℃程度あり、被膜53の耐熱温度(たとえば、エポキシ系の場合、約200℃)よりも高い。そこで、潜熱回収用熱交換器50のうち、このような高温の排気にさらされる部分のフィン52を背の低いローフィン52aにして排気からの伝熱量を小さくし、その表面温度が被膜53の耐熱温度を越えないようにしている。
【0034】
図3は、潜熱受熱管51の外周面からの距離と各距離におけるフィン等の表面温度との関係を示している。フィン52は排気に触れることで加熱されるが、潜熱受熱管51の中を低温の給水が流れているので、図3に示すように、潜熱受熱管51に近いほどフィン52の温度61やその雰囲気温度63は上昇せず、潜熱受熱管51から遠くなるに従ってそれらは高温になっている。
【0035】
すなわち、フィン52の温度61は、潜熱受熱管51の近傍部分では、ほぼ潜熱受熱管51内を流れる水温に近い状態にあり、潜熱受熱管51から遠ざかるに従って、次第に上昇し、潜熱受熱管51からの鉛直距離がr1の位置で、被膜53の耐熱温度62に達している。このように、潜熱受熱管51から離れるにつれて、フィン52の表面温度が上昇するので、フィン52の高さを低くすれば、それだけ、フィン52の表面温度を低く抑えることができる。
【0036】
図1に示した潜熱回収用熱交換器50では、開口部14を通じて到来する高温の排気にさらされる上流寄りの伝熱量制限箇所54におけるフィンの高さを、r1よりも低い約2ミリにして、排気からの伝熱量を小さくしているので、伝熱量制限箇所54におけるフィン52aの表面温度は、被膜53の耐熱温度以下に抑えられている。このため、潜熱回収用熱交換器50のうち高温の排気にさらされる上流側の伝熱量制限箇所54においても、その表面を覆う被膜53が熱で分解して破損するようなことがなく、凝縮水による腐食から保護される。
【0037】
開口部14から到来した排気は、伝熱量制限箇所等の上流側の部分で、ある程度吸熱されるので、伝熱量制限箇所54よりも下流側では、排気の温度は、被膜53の耐熱温度以下に低下している。したがって、伝熱量制限箇所54よりも下流側では、フィン52の高さを低くして、表面温度の上昇を制限する必要はない。そこで、図1に示した潜熱回収用熱交換器50では、伝熱量制限箇所54よりも下流側におけるフィンの高さを高くして、熱交換効率を高めている。
【0038】
図4は、潜熱回収用熱交換器50の上流部分のフィンをローフィンにしない場合に、被膜が熱で破損して腐食する部分を表している。このように、潜熱回収用熱交換器50の上流側であっても腐食の生じる部分71は、上段の潜熱受熱管51の近傍のみであり、下段の潜熱受熱管51では腐食は見られない。これは、上段の潜熱受熱管51で生成した凝縮水が、下段の潜熱受熱管51にたれ落ちて下段の潜熱受熱管51で蒸発し、熱を奪うので、下段側では表面温度が被膜53の耐熱温度以上に上昇しないことによる。すなわち、上流部下段の潜熱受熱管51の存する箇所は、最も上流側ではあるが、付着した凝縮水により排気が直接フィンにあたらず、排気の熱がフィンの温度に直接用いられず、大きな温度上昇がない。
【0039】
一方、上段側では、その上方から凝縮水が落下して蒸発するようなことが無いので、上段側のフィン52aの温度は、排気の熱によって直接フィンが加熱され、被膜53が熱で分解して破損が生じる。
【0040】
そこで、図1に示した潜熱回収用熱交換器50では、上段の上流側にある2本の潜熱受熱管51a、51bの周囲部分、すなわち、排気の熱によって直接フィンの加熱される部分だけをローフィン52aにし、結露した凝縮水の蒸発によって温度上昇が小さく抑えられる下段の潜熱受熱管51cの周囲部分については、最も上流側に位置しているが、下流側と同様に通常の大きさのフィン52bを設けてある。これにより、下段側での熱交換効率が低くならず、効率良く熱の回収を行うことができる。
【0041】
なお、エポキシ系の被膜53の場合には、伝熱量制限箇所54のフィン52aの高さを2ミリ程度まで低くしなければ、その表面温度を被膜53の耐熱温度以下に抑えることができなかったが、テフロンで被膜を形成した場合には、フィン52aの高さを5ミリにしても、異常がなかった。したがって、テフロンで被膜53を形成すれば、それだけ熱の回収効率を高くすることができる。
【0042】
また、潜熱回収用熱交換器50の下方に受け皿13を配置しているので、潜熱回収用熱交換器50から顕熱回収用熱交換器40の上に凝縮水が落下することが防止され、顕熱回収用熱交換器40が潜熱回収用熱交換器50で生成した凝縮水によって腐食されることがない。
【0043】
以上説明した実施の形態では、伝熱量制限箇所54のフィンをローフィン52aにすることで当該箇所の伝熱量を小さくしたが、図5に示すように伝熱量制限箇所54の潜熱受熱管51をフィンを備えていない裸管にすることで、当該箇所の伝熱量を小さくし、その表面温度を低く抑えるようにしてもよい。
【0044】
また潜熱回収用熱交換器50の上流側の部分だけを、ローフィンや裸管にして伝熱量を小さくしたが、上流側の部分の伝熱量さえ小さく抑えられていれば良いので、上流側から下流側まで潜熱回収用熱交換器50の全ての部分における伝熱量を小さくしても良く、また図6に示すように中間部分のみフィン81の高さを高くして、当該部分の伝熱量を大きくしても差し支えない。ただし、下流側は、フィンの高さを高くしてその伝熱量を大きくしても、被膜が熱によって分解され破損することが無いので、下流側の伝熱量を大きくすれば、熱の回収効率をそれだけ高めることができる。
【0045】
さらに、図7に示すように、上流側のフィン82の高さを低くし、下流側ほどフィンの高さが高くなるようにしてもよい。排気の温度は、下流側ほど低下するので、下流に行くほど、表面温度が被膜の耐熱温度以下に収まるフィンの高さが高くなる。そこで、上流部のフィンの高さを低くするとともに、下流側に行くほどフィンの背を高くすることで、熱による被膜の破損を防止しつつ、熱の回収を効率良く行うことができる。
【0046】
なお、実施の形態では、顕熱回収用熱交換器40と潜熱回収用熱交換器50とを個別に設けたものを示したが、連続する1つの熱交換器であってもよい。すなわち、1つの熱交換器のうち、排気の潜熱が主として回収されて凝縮水の付着する下流側の部分を被膜で被覆し、被覆した部分の中で上流側の箇所の伝熱量を小さくしたようなものであってもよい。
【0047】
たとえば、バーナーを燃焼室の上部に配置し、その下方に上述のような熱交換器を被覆した方が下方になるようにして配置し、燃焼ファンによって排気を燃焼室の上部側から下方に向けて強制的に送るようにする。これにより、被覆した部分で生じた凝縮水が、上方に位置する被覆されていない部分にかかることがないので、被膜が熱で破損しないようさえすれば、一体型の熱交換器であっても、凝縮水により腐食されることを適切に防止することができる。
【0048】
また本実施の形態では、燃料として燃焼ガスを用いたガス給湯器を例に説明したが、燃料は、石油や灯油などでも良く、また器具は、風呂の湯沸かしや暖房等を行うものであってもよい。
【0049】
【発明の効果】
本発明にかかる熱交換器によれば、熱交換器の表面のうち排気の潜熱を吸収して生じる凝縮水の付着する部分を、当該凝縮水による腐食から保護するための被膜で被覆するとともに、被覆した部分のうち排気経路の上流側に当たる箇所の伝熱量をフィンの高さを低くする等によって小さくしたので、比較的高温の排気にさらされる当該上流側の箇所においてもフィン等の表面温度が被膜の耐熱温度以下に抑えられ、被膜が熱で分解して破損するようなことがなく、凝縮水による腐食から熱交換器を保護することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る熱交換器を示す説明図である。
【図2】本発明の一実施の形態に係る熱交換器を適用した給湯器を示す説明図である。
【図3】受熱管からの距離と表面温度との関係を示す説明図である。
【図4】上流側の伝熱量を小さくしない場合に、凝縮水によって腐食される箇所を示した説明図である。
【図5】伝熱量制限箇所の受熱管を裸管にした熱交換器を示す説明図である。
【図6】下流側に上流側よりも伝熱量の大きい箇所を設けた熱交換器の一例を示す説明図である。
【図7】下流側ほど伝熱量の大きくなる熱交換器の一例を示す説明図である。
【符号の説明】
10…給湯器
11…燃焼室
12…バーナー
13…受け皿
14…開口部
15…排気通路部
16…ドレン受け
28…燃焼ファン
40…顕熱回収用熱交換器
41…顕熱受熱管
42、52…フィン
50…潜熱回収用熱交換器
51…潜熱受熱管
52a…ローフィン
53…被膜
54…伝熱量制限箇所
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger that is disposed in an exhaust path through which exhaust gas generated when fuel is burned and that heats a fluid to be heated that flows through a heat receiving pipe by absorbing heat of the exhaust gas.
[0002]
[Prior art]
In heat exchangers that absorb heat generated when fuel such as methane, propane, or butane is burned to heat feed water, etc., condensed water generated when absorbing the latent heat of the exhaust adheres to the surface of the heat exchanger. There are things to do. This condensed water is composed of nitrogen oxides (NOx) produced by oxidizing combustion air at high temperatures and sulfur oxides produced by oxidizing odorants added to the combustion gas for gas leak detection ( SOx) and the like are dissolved to form acidic water droplets having a pH of 2 to 3 in which nitric acid and sulfuric acid are melted.
[0003]
If the heat exchanger tubes and fins of the heat exchanger are corroded by such acidic condensate, the internal fluid leaks out, or rust clogs the fins and fins, reducing the heat exchange efficiency. In heat exchangers, measures have been taken such as covering the surfaces of heat receiving tubes and heat exchange fins with a coating such as acid-resistant paint.
[0004]
[Problems to be solved by the invention]
However, in the heat exchanger where the high-temperature exhaust such as 200 ° C. or more hits, the surface temperature of the heat receiving pipe or the fin exceeds the heat-resistant temperature of the coating, and the coating of the portion is decomposed and damaged by heat, There was a problem of being corroded by condensed water. In particular, in the part of the heat exchanger that mainly recovers the latent heat of the exhaust, a large amount of condensed water is generated, so that when the coating breaks, the fins are corroded in a short period of time and the heat exchange efficiency decreases. was there.
[0005]
The present invention was made by paying attention to such problems of the conventional technology, and the heat-preserving film in which the antiseptic coating applied to the portion where the condensed water adheres is not decomposed and damaged by the high-temperature exhaust gas. The purpose is to provide a vessel.
[0006]
[Means for Solving the Problems]
The gist of the present invention for achieving the object lies in the inventions of the following items.
[1] A heat exchanger that is disposed in an exhaust path (15) through which exhaust gas generated when fuel is burned flows and that heats a fluid to be heated flowing in a heat receiving pipe (51) by absorbing the heat of the exhaust gas In
Covering a portion of the surface of the heat exchanger to which condensed water generated by absorbing the latent heat of the exhaust adheres with a coating (53) for protecting against corrosion by the condensed water,
The heat transfer amount limiting portion (54) in which the heat transfer amount from the exhaust gas is made smaller than the other portions of the portion covered with the coating (53) so that the surface temperature falls below the heat resistance temperature of the coating (53 ) is described above. A heat exchanger characterized in that it is provided at least upstream of the exhaust passage (15) in the portion covered with the coating (53).
[0007]
[2] A heat exchanger that is disposed in the exhaust path (15) through which exhaust gas generated when the fuel is burned flows and that heats the fluid to be heated flowing in the heat receiving pipe (51) by absorbing the heat of the exhaust gas In
Covering a portion of the surface of the heat exchanger to which condensed water generated by absorbing the latent heat of the exhaust adheres with a coating (53) for protecting against corrosion by the condensed water,
The heat transfer amount limiting portion (54) in which the heat transfer amount from the exhaust gas is made smaller than the other portions of the portion covered with the coating (53) so that the surface temperature falls below the heat resistance temperature of the coating (53 ) is described above. Provided on the upstream side of the exhaust path (15) of the portion covered with the coating (53),
A location where the heat transfer amount from the exhaust gas is larger than the heat transfer amount restriction portion (54) is provided downstream of the heat transfer amount restriction portion (54) within a range where the surface temperature falls below the heat resistance temperature of the coating film (53). A heat exchanger characterized by that.
[0008]
[3] The heat exchanger according to [1] or [2], wherein the heat transfer amount is increased toward the downstream side of the exhaust path (15).
[0009]
[4] A heat exchanger that is disposed in the exhaust path (15) through which exhaust gas generated when the fuel is burned flows and that heats the fluid to be heated flowing in the heat receiving pipe (51) by absorbing the heat of the exhaust gas. In
A sensible heat recovery heat exchanger (40) that mainly absorbs sensible heat of the exhaust, and a latent heat recovery heat exchanger (40) that is disposed downstream of the exhaust path (15) and mainly absorbs the latent heat of the exhaust ( 50)
Covering the surface of the heat exchange section (50) for recovering latent heat with a coating (53) for protecting against corrosion by condensed water generated by absorbing the latent heat of the exhaust;
The heat transfer amount limiting portion (54) in which the heat transfer amount from the exhaust gas is made smaller than the other portions of the portion covered with the coating (53) so that the surface temperature falls below the heat resistance temperature of the coating (53 ) is described above. A heat exchanger characterized by being provided upstream of the exhaust path (15) close to the sensible heat exchange section (40) of the latent heat recovery heat exchange section (50).
[0010]
[5] The heat transfer amount restriction portion more than the other portion of the portion where the height of the heat exchange fin (52) provided on the outer peripheral surface of the heat receiving pipe (51) is covered with the coating (53). by low in (54), characterized in that to reduce the amount of heat transfer from the exhaust [1], [2], [3] or [4] the heat exchanger as claimed.
[0011]
[6] The heat transfer amount at the location is reduced by making the heat receiving tube (51) of the heat transfer amount restriction location (54) a bare tube without a heat exchange fin (52) on its outer peripheral surface. The heat exchanger according to [1], [2], [3] or [4], which is characterized.
[0012]
[7] A portion where the surface temperature is not suppressed below the heat resistant temperature of the coating film (53) by evaporation of condensed water condensed is set as the heat transfer amount restriction portion (54) [1], [2 ], [3], [4], [5] or [6].
[0013]
The present invention operates as follows.
Of the surface of the heat exchanger, the portion to which condensed water generated by absorbing the latent heat of the exhaust adheres is covered with a coating (53) for protecting against corrosion by the condensed water. Corrosion of the heat exchanger due to condensed water is prevented as long as the heat exchanger is not damaged by decomposition. In addition, at least the exhaust path (15) of the portion where the heat transfer amount restriction portion (54) where the heat transfer amount from the exhaust gas is reduced so that the surface temperature falls below the heat resistance temperature of the film (53) is covered with the film (53). ) Is prevented from being damaged at the upstream location exposed to high-temperature exhaust.
[0014]
That is, since the low temperature fluid to be heated flows in the heat receiving pipe (51), the temperature of the portion close to the fluid to be heated does not rise so much, and as it gets away from the fluid to be heated, it approaches the temperature of the exhaust gas and becomes high. Become. Accordingly, the height of the heat exchanging fin (52) erected around the heat receiving pipe (51) is lowered at the upstream side exposed to the high-temperature exhaust, or the heat receiving pipe at the upstream side. (51) is a bare pipe in which fins (52) are not erected, and the amount of heat transfer from the exhaust gas is reduced, so that the surface temperature of low fins (52a) and the bare pipe covers them (53) Can be kept below the heat-resistant temperature. Accordingly, the coating (53) is not decomposed and damaged by heat even at the upstream side exposed to the high-temperature exhaust gas, and corrosion due to condensed water can be prevented.
[0015]
In addition, since a certain amount of heat is absorbed in the upstream heat transfer amount restriction portion (54) in which the heat transfer amount is suppressed to be small by using a low fin (52a) or a bare pipe, the temperature of the exhaust gas is further downstream than the portion. Has fallen. For this reason, it is not necessary to restrict the heat transfer amount to a low fin (52) or a bare pipe on the downstream side of the heat transfer amount restriction point (54). Therefore, within a range where the surface temperature falls below the heat resistance temperature of the coating (53), a portion where the heat transfer amount from the exhaust is larger than the heat transfer amount at the heat transfer amount restriction portion (54) is downstream of the heat transfer amount restriction portion (54). By providing it on the side, the heat of the exhaust can be efficiently recovered.
[0016]
Further, the heat transfer amount of the heat transfer amount restriction point (54) is reduced so that the surface temperature of the point is kept below the heat resistance temperature of the coating (53), and from the exhaust gas as it goes downstream of the exhaust path (15). By increasing the amount of heat transfer, the heat of the exhaust can be recovered more efficiently while preventing the coating (53) from being decomposed. For example, if the height of the fin (52) of the heat transfer amount restriction portion (54) is lowered and the height of the fin (52) is made higher toward the downstream side, the heat transfer amount can be gradually increased as it goes downstream. it can.
[0017]
A sensible heat recovery heat exchange section (40) that mainly absorbs sensible heat of exhaust gas, and a latent heat recovery heat exchange section (50) that is arranged downstream of the exhaust path (15) and mainly absorbs latent heat of exhaust gas. The surface of the heat exchange part for latent heat recovery (50) is covered with a film (53). The amount of heat transfer at the upstream side of the latent heat recovery heat exchanging section (50) is reduced by making the fin at the location a low fin (52) or by making the heat receiving tube a bare tube.
[0018]
Since the sensible heat recovery heat exchange section (40) mainly recovers the sensible heat of the exhaust, almost no condensed water is generated. Therefore, by recovering the latent heat mainly, the heat exchanger for latent heat recovery (50) where a large amount of condensed water is generated is covered with the coating (53), so that the heat exchanger can be protected from corrosion by the condensed water. it can. Further, the temperature of the exhaust gas that has reached the latent heat recovery heat exchange section (50) is still higher than the heat resistance temperature of the coating film (53) made of epoxy-based paint or the like, so that the sensible heat recovery heat exchange section (40) By reducing the amount of heat transfer at a location upstream of the latent heat recovery heat exchanging section (50), which first contacts with the exhaust after passing through, to form a heat transfer limit portion (54), the coating (53) at that location Is decomposed by heat and is not damaged, and corrosion by condensed water can be prevented. Note that the heat transfer amount of the latent heat recovery heat exchanging portion (50) is made larger than that of the heat transfer amount restriction portion (54) at the downstream side of the heat transfer amount restriction portion (54), thereby reducing the heat of the exhaust. It can be recovered efficiently.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
Each figure shows an embodiment of the present invention.
In the present embodiment, the heat exchanger according to the present invention is applied to a water heater 10. As shown in FIG. 2, the water heater 10 includes a combustion chamber 11, and a burner 12 is disposed in the lower portion of the combustion chamber 11. Above the burner 12, a sensible heat recovery heat exchanger 40 that mainly recovers sensible heat of exhaust gas is disposed, and further above that, a latent heat recovery heat exchanger 50 that mainly recovers latent heat of exhaust gas is disposed.
[0020]
Between the sensible heat recovery heat exchanger 40 and the latent heat recovery heat exchanger 50, the condensed water generated by the latent heat recovery heat exchanger 50 is received, and the condensed water is placed on the sensible heat recovery heat exchanger 40. A saucer 13 is attached to prevent falling. The saucer 13 divides the combustion chamber 11 vertically except for a part of the right end, and the exhaust gas after passing through the sensible heat recovery heat exchanger 40 is an opening 14 at the right end of the combustion chamber 11 without the saucer 13. Through the exhaust passage 15 where the latent heat recovery heat exchanger 50 is disposed.
[0021]
The saucer 13 is inclined downward from the opening 14 side toward the left end side of the combustion chamber 11, and a drain receptacle 16 for temporarily storing condensed water collected by the saucer 13 is provided at the lower end portion of the slope. ing. A condensed water discharge passage 17 is connected to the bottom of the drain receiver 16, and a neutralization processor 18 for neutralizing acidic condensed water is attached to the middle of the discharge passage 17.
[0022]
A feed water pipe 21 into which feed water flows is connected to the inlet side of the latent heat recovery heat exchanger 50, and the outlet side of the latent heat recovery heat exchanger 50 is connected to the inlet side of the sensible heat recovery heat exchanger 40 by the connecting water pipe 22. Connected with. A hot water supply pipe 23 from which heated water flows is connected to the outlet side of the sensible heat recovery heat exchanger 40.
[0023]
An inlet thermistor 24 for detecting the temperature of the supplied water is installed near the inlet of the feed water pipe 21, and a water amount sensor 25 for detecting the presence / absence of water flow and the amount of water flow are attached downstream thereof. It has been. The hot water supply pipe 23 has a hot water thermistor 26 for detecting the temperature of hot water to be discharged near the outlet portion thereof, and a water amount control valve 27 for limiting the flow rate of the hot water to be discharged downstream thereof. Is provided.
[0024]
A combustion fan 28 for sending supply air toward the burner 12 is disposed at the lower left of the combustion chamber 11. Further, in the middle of the gas supply pipe 31 for sending the combustion gas to the burner 12, a gas electromagnetic valve 32 for controlling on / off of the supply of the combustion gas, an original gas electromagnetic valve 33, and a supply amount of the combustion gas supplied to the burner 12 are adjusted. A gas proportional valve 34 is attached.
[0025]
The water heater 10 includes an electrical board 35 containing circuit components for overall control of the operation. The electrical board 35 is disposed in, for example, a kitchen and receives a hot water temperature setting operation and the like. A remote controller 36 for displaying a status is connected.
[0026]
FIG. 1 shows the sensible heat recovery heat exchanger 40 and the latent heat recovery heat exchanger 50 in more detail. The sensible heat recovery heat exchanger 40 is provided with a sensible heat receiving pipe 41 through which water to be heated passes and fins 42 for increasing the efficiency of exhaust heat recovery. Both the sensible heat receiving pipe 41 and the fins 42 of the sensible heat recovery heat exchanger 40 are made of copper having a good thermal conductivity.
[0027]
The latent heat recovery heat exchanger 50 includes a latent heat receiving pipe 51 through which water to be heated passes and fins 52. The fins 52 erected around the latent heat receiving pipe 51 are low fins 52a having a lower height than the other parts in the peripheral parts of the latent heat receiving pipes 51a and 51b arranged on the upstream side of the exhaust passage portion 15. It has become. Here, the fins around the two latent heat receiving pipes 51a and 51b on the upstream side of the upper stage among the five latent heat receiving pipes 51 arranged in the upper and lower two stages are arranged to be high from the outer peripheral surface of the latent heat receiving pipe 51. By using the low fin 52a having a length of about 2 mm, the heat transfer amount restriction portion 54 having a small heat transfer amount is formed in the upper stage upstream of the latent heat recovery heat exchanger.
[0028]
Both the latent heat receiving pipe 51 and the fin 52 are made of copper, and their surfaces that come into contact with the exhaust are coated with an acid-resistant film 53. As the coating 53, epoxy, Teflon, polysulfide, fluorine resin, silicon resin, phenol resin, or the like can be used. Here, the film 53 is formed of an epoxy organic paint.
[0029]
The sensible heat recovery heat exchanger 40 mainly recovers the sensible heat of the exhaust gas and generates almost no condensed water. Therefore, the surface is not covered with a coating made of an epoxy organic paint or the like. In addition to copper, stainless steel (SUS), aluminum, or alloys thereof may be used as the base material of the sensible heat recovery heat exchanger 40 and the latent heat recovery heat exchanger 50.
[0030]
Next, the operation will be described.
The water heater 10 exchanges heat with both the sensible heat recovery heat exchanger 40 and the latent heat recovery heat exchanger 50, and the combined heat exchange efficiency is 90% or more. The efficiency on the sensible heat recovery heat exchanger 40 side is suppressed to about 75%, and the number and size of the fins 42, 52, etc. so as to obtain the remaining 15% efficiency on the latent heat recovery heat exchanger 50 side. Is set.
[0031]
When the heat exchange efficiency of about 85% is obtained on the sensible heat recovery heat exchanger 40 side, the recovery of latent heat proceeds and condensed water is generated. Here, the efficiency on the sensible heat recovery heat exchanger 40 side is suppressed to about 75%, and the sensible heat of the exhaust is mainly recovered, so almost all condensed water is generated on the sensible heat recovery heat exchanger 40 side. do not do.
[0032]
On the other hand, since the temperature of the exhaust gas that has reached the latent heat recovery heat exchanger 50 has dropped to about 200 ° C. to 280 ° C., the latent heat recovery heat exchanger 50 mainly recovers the latent heat of the exhaust gas. For this reason, a large amount of condensed water of about 50 ml to 70 ml per minute is generated on the latent heat recovery heat exchanger 50 side, for example. Condensate produced is generated by oxidation of nitrogen oxides (NOx) produced by oxidation of combustion air at high temperatures and odorants added to combustion gases for gas leak detection. (SOx) and the like are dissolved, and acidic water droplets of pH 2 to 3 in which nitric acid and sulfuric acid are melted are formed.
[0033]
The latent heat recovery heat exchanger 50 is covered with a coating 53 in order to protect it from corrosion caused by such acidic condensed water. However, the latent heat recovery heat exchanger 50 comes from the sensible heat recovery heat exchanger 40 side through the opening 14. As described above, the temperature of exhaust gas is about 200 ° C. to 280 ° C., which is higher than the heat resistance temperature of the coating 53 (for example, about 200 ° C. in the case of an epoxy system). Therefore, in the latent heat recovery heat exchanger 50, the fins 52 that are exposed to such high-temperature exhaust are used as the low fins 52a having a short height to reduce the amount of heat transfer from the exhaust, and the surface temperature is the heat resistance of the coating 53. The temperature is not exceeded.
[0034]
FIG. 3 shows the relationship between the distance from the outer peripheral surface of the latent heat receiving pipe 51 and the surface temperature of the fins and the like at each distance. The fin 52 is heated by touching the exhaust gas. However, since low-temperature feed water flows through the latent heat receiving pipe 51, as shown in FIG. 3, the closer to the latent heat receiving pipe 51, the temperature 61 of the fin 52 and its The ambient temperature 63 does not rise, and the temperature increases as the distance from the latent heat receiving pipe 51 increases.
[0035]
That is, the temperature 61 of the fin 52 is almost in the state near the water temperature flowing in the latent heat receiving pipe 51 in the vicinity of the latent heat receiving pipe 51, and gradually increases as the distance from the latent heat receiving pipe 51 increases. The vertical temperature of the film 53 reaches the heat resistant temperature 62 of the film 53 at the position of r1. As described above, the surface temperature of the fins 52 increases as the distance from the latent heat receiving pipe 51 increases. Therefore, if the height of the fins 52 is decreased, the surface temperature of the fins 52 can be suppressed accordingly.
[0036]
In the latent heat recovery heat exchanger 50 shown in FIG. 1, the height of the fin in the upstream heat transfer amount limiting portion 54 exposed to the high-temperature exhaust coming through the opening 14 is set to about 2 mm lower than r1. Since the heat transfer amount from the exhaust is reduced, the surface temperature of the fins 52a at the heat transfer amount restriction portion 54 is suppressed to the heat resistant temperature of the coating 53 or less. For this reason, even in the upstream heat transfer amount restriction portion 54 exposed to the high-temperature exhaust in the heat exchanger 50 for recovering latent heat, the coating 53 covering the surface is not decomposed and damaged by heat, and is condensed. Protected from water corrosion.
[0037]
The exhaust gas that has arrived from the opening 14 absorbs heat to some extent in the upstream portion such as the heat transfer amount restriction portion, and therefore, the exhaust temperature is lower than the heat resistance temperature of the coating 53 on the downstream side of the heat transfer amount restriction portion 54. It is falling. Therefore, it is not necessary to limit the rise of the surface temperature by lowering the height of the fin 52 on the downstream side of the heat transfer amount restriction portion 54. Therefore, in the latent heat recovery heat exchanger 50 shown in FIG. 1, the height of the fins on the downstream side of the heat transfer amount restriction portion 54 is increased to increase the heat exchange efficiency.
[0038]
FIG. 4 shows a portion where the coating is damaged by heat and corroded when the fin in the upstream portion of the latent heat recovery heat exchanger 50 is not a low fin. Thus, even on the upstream side of the latent heat recovery heat exchanger 50, the portion 71 where corrosion occurs is only in the vicinity of the upper latent heat receiving pipe 51, and no corrosion is observed in the lower latent heat receiving pipe 51. This is because the condensed water produced in the upper latent heat receiving pipe 51 falls on the lower latent heat receiving pipe 51 and evaporates in the lower latent heat receiving pipe 51 to take heat away. This is because the temperature does not rise above the heat-resistant temperature. That is, the location where the lower-stage latent heat receiving pipe 51 is located on the most upstream side, but the exhaust does not directly hit the fins due to the condensed water attached, and the heat of the exhaust is not directly used for the temperature of the fins. There is no rise.
[0039]
On the other hand, since the condensed water does not fall and evaporate from the upper stage side, the fin 52a on the upper stage side is heated directly by the heat of the exhaust, and the coating 53 is decomposed by heat. Damage.
[0040]
Therefore, in the latent heat recovery heat exchanger 50 shown in FIG. 1, only the peripheral portion of the two latent heat receiving pipes 51a and 51b on the upstream side of the upper stage, that is, the portion where the fins are directly heated by the heat of the exhaust gas. The lower fin 52a and the surrounding portion of the lower latent heat receiving pipe 51c, in which the temperature rise is suppressed by evaporation of condensed water condensed, are located on the most upstream side, but the fins of the normal size as in the downstream side 52b is provided. Thereby, the heat exchange efficiency on the lower side is not lowered, and heat can be efficiently recovered.
[0041]
In the case of the epoxy coating 53, the surface temperature could not be kept below the heat resistance temperature of the coating 53 unless the height of the fins 52a of the heat transfer restriction point 54 was reduced to about 2 mm. However, when the film was formed with Teflon, there was no abnormality even if the height of the fin 52a was 5 mm. Therefore, if the coating 53 is formed of Teflon, the heat recovery efficiency can be increased accordingly.
[0042]
Further, since the tray 13 is arranged below the latent heat recovery heat exchanger 50, it is prevented that condensed water falls from the latent heat recovery heat exchanger 50 onto the sensible heat recovery heat exchanger 40, The sensible heat recovery heat exchanger 40 is not corroded by the condensed water generated by the latent heat recovery heat exchanger 50.
[0043]
In the embodiment described above, the heat transfer amount of the heat transfer amount restriction portion 54 is reduced to the low fin 52a, so that the heat transfer amount of the portion is reduced. However, as shown in FIG. By using a bare tube that does not include the above, the amount of heat transfer at the location may be reduced and the surface temperature may be kept low.
[0044]
Further, only the upstream part of the latent heat recovery heat exchanger 50 is made low fins or bare pipes to reduce the heat transfer amount, but it is only necessary to keep the heat transfer amount of the upstream part small. The heat transfer amount in all portions of the latent heat recovery heat exchanger 50 may be reduced to the side, and the height of the fin 81 is increased only in the intermediate portion to increase the heat transfer amount in the portion as shown in FIG. It doesn't matter. However, on the downstream side, even if the height of the fins is increased to increase the heat transfer amount, the coating will not be decomposed and damaged by heat, so if the downstream heat transfer amount is increased, the heat recovery efficiency Can only increase it.
[0045]
Further, as shown in FIG. 7, the height of the fin 82 on the upstream side may be decreased, and the height of the fin may be increased toward the downstream side. Since the temperature of the exhaust gas decreases toward the downstream side, the height of the fin where the surface temperature falls below the heat resistant temperature of the coating increases as it goes downstream. Therefore, by reducing the height of the fins in the upstream portion and increasing the height of the fins toward the downstream side, heat can be efficiently recovered while preventing damage to the coating film due to heat.
[0046]
In the embodiment, the sensible heat recovery heat exchanger 40 and the latent heat recovery heat exchanger 50 are individually provided. However, one continuous heat exchanger may be used. That is, in one heat exchanger, the downstream part where the latent heat of the exhaust gas is mainly recovered and the condensed water adheres is covered with the coating, and the heat transfer amount at the upstream part in the covered part is reduced. It may be anything.
[0047]
For example, a burner is arranged at the upper part of the combustion chamber, and the lower part is covered with the heat exchanger as described above, and the exhaust is directed downward from the upper side of the combustion chamber by the combustion fan. Force it to be sent. As a result, the condensed water generated in the coated part does not reach the uncoated part located above, so even if it is an integrated heat exchanger as long as the film is not damaged by heat. It is possible to appropriately prevent corrosion by condensed water.
[0048]
In this embodiment, a gas water heater using combustion gas as a fuel has been described as an example. However, the fuel may be oil, kerosene, etc., and the appliance is for heating a bath, heating, etc. Also good.
[0049]
【The invention's effect】
According to the heat exchanger according to the present invention, the part of the surface of the heat exchanger to which condensed water generated by absorbing the latent heat of the exhaust adheres is coated with a coating for protecting against corrosion by the condensed water, Since the amount of heat transfer at the location on the upstream side of the exhaust path in the coated part is reduced by reducing the height of the fins, the surface temperature of the fins and the like is also increased at the upstream location exposed to the relatively high temperature exhaust. The temperature is kept below the heat-resistant temperature of the coating, and the coating does not break and break due to heat, and the heat exchanger can be protected from corrosion by condensed water.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a heat exchanger according to an embodiment of the present invention.
FIG. 2 is an explanatory view showing a water heater to which a heat exchanger according to an embodiment of the present invention is applied.
FIG. 3 is an explanatory diagram showing a relationship between a distance from a heat receiving tube and a surface temperature.
FIG. 4 is an explanatory view showing a portion corroded by condensed water when the amount of heat transfer on the upstream side is not reduced.
FIG. 5 is an explanatory view showing a heat exchanger in which a heat receiving pipe at a heat transfer amount restriction portion is a bare pipe.
FIG. 6 is an explanatory diagram showing an example of a heat exchanger in which a portion having a larger amount of heat transfer than the upstream side is provided on the downstream side.
FIG. 7 is an explanatory diagram showing an example of a heat exchanger in which the amount of heat transfer increases toward the downstream side.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Hot water heater 11 ... Combustion chamber 12 ... Burner 13 ... Receptacle 14 ... Opening part 15 ... Exhaust passage part 16 ... Drain receiver 28 ... Combustion fan 40 ... Heat exchanger 41 for sensible heat recovery ... Sensible heat receiving pipes 42, 52 ... Fin 50 ... Heat exchanger 51 for recovering latent heat ... Latent heat receiving pipe 52a ... Low fin 53 ... Film 54 ... Heat transfer restriction point

Claims (7)

燃料を燃焼させた際に生じる排気の流れる排気経路内に配置され、受熱管の中を流れる被加熱流体を前記排気の熱を吸収して加熱する熱交換器において、
前記熱交換器の表面のうち前記排気の潜熱を吸収することによって生成する凝縮水の付着する部分を当該凝縮水による腐食から保護するための被膜で覆い、
表面温度が前記被膜の耐熱温度以下に収まるように前記被膜で覆った部分のうち他の部分よりも前記排気からの伝熱量を小さくした伝熱量制限箇所を前記被膜で覆った部分のうちの少なくとも前記排気経路の上流側に設けたことを特徴とする熱交換器。
In a heat exchanger that is disposed in an exhaust path through which exhaust gas generated when fuel is burned and that heats a heated fluid flowing in a heat receiving pipe by absorbing heat of the exhaust gas,
Covering the surface of the heat exchanger where the condensed water generated by absorbing the latent heat of the exhaust adheres with a coating for protecting against corrosion by the condensed water,
At least one of the portions covered with the coating at a heat transfer amount limiting portion in which the amount of heat transfer from the exhaust gas is made smaller than the other portion of the portion covered with the coating so that the surface temperature falls below the heat resistant temperature of the coating. A heat exchanger provided on the upstream side of the exhaust path.
燃料を燃焼させた際に生じる排気の流れる排気経路内に配置され、受熱管の中を流れる被加熱流体を前記排気の熱を吸収して加熱する熱交換器において、
前記熱交換器の表面のうち前記排気の潜熱を吸収することによって生成する凝縮水の付着する部分を当該凝縮水による腐食から保護するための被膜で覆い、
表面温度が前記被膜の耐熱温度以下に収まるように前記被膜で覆った部分のうち他の部分よりも前記排気からの伝熱量を小さくした伝熱量制限箇所を前記被膜で覆った部分のうちの前記排気経路の上流側に設け、
表面温度が前記被膜の耐熱温度以下に収まる範囲内で前記排気からの伝熱量が前記伝熱量制限箇所より大きい箇所を当該伝熱量制限箇所よりも下流側に設けたことを特徴とする熱交換器。
In a heat exchanger that is disposed in an exhaust path through which exhaust gas generated when fuel is burned and that heats a heated fluid flowing in a heat receiving pipe by absorbing heat of the exhaust gas,
Covering the surface of the heat exchanger where the condensed water generated by absorbing the latent heat of the exhaust adheres with a coating for protecting against corrosion by the condensed water,
Of the portion covered with the coating, the amount of heat transfer limited where the amount of heat transfer from the exhaust gas is smaller than the other portion of the portion covered with the coating so that the surface temperature falls below the heat resistance temperature of the coating. Provided upstream of the exhaust path,
A heat exchanger characterized in that a portion where the heat transfer amount from the exhaust is larger than the heat transfer amount restriction portion is provided on the downstream side of the heat transfer amount restriction portion within a range where the surface temperature falls below the heat resistance temperature of the coating. .
前記排気経路の下流側ほど前記伝熱量が大きくなるようにしたことを特徴とする請求項1または2記載の熱交換器。  The heat exchanger according to claim 1 or 2, wherein the heat transfer amount increases toward the downstream side of the exhaust path. 燃料を燃焼させた際に生じる排気の流れる排気経路内に配置され、受熱管の中を流れる被加熱流体を前記排気の熱を吸収して加熱する熱交換器において、
前記排気の顕熱を主として吸収する顕熱回収用熱交換部とこれよりも前記排気経路の下流側に配置され前記排気の潜熱を主として吸収する潜熱回収用熱交換部とを有し、
前記潜熱回収用熱交換部の表面を前記排気の潜熱を吸収することによって生成する凝縮水による腐食から保護するための被膜で覆い、
表面温度が前記被膜の耐熱温度以下に収まるように前記被膜で覆った部分のうち他の部分よりも前記排気からの伝熱量を小さくした伝熱量制限箇所を前記潜熱回収用熱交換部のうちの前記顕熱用熱交換部に近い前記排気経路の上流側に設けたことを特徴とする熱交換器。
In a heat exchanger that is disposed in an exhaust path through which exhaust gas generated when fuel is burned and that heats a heated fluid flowing in a heat receiving pipe by absorbing heat of the exhaust gas,
A sensible heat recovery heat exchange part that mainly absorbs the sensible heat of the exhaust, and a latent heat recovery heat exchange part that is arranged downstream of the exhaust path and absorbs the latent heat of the exhaust mainly.
Covering the surface of the heat exchange part for recovering latent heat with a coating for protecting against corrosion by condensed water generated by absorbing the latent heat of the exhaust;
Of the portion covered with the coating so that the surface temperature falls below the heat-resistant temperature of the coating, a heat transfer amount restriction portion in which the amount of heat transfer from the exhaust is made smaller than other portions of the heat exchange portion for the latent heat recovery A heat exchanger provided on the upstream side of the exhaust path close to the sensible heat exchange section.
前記受熱管の外周面に立設された熱交換用のフィンの高さを前記被膜で覆った部分のうち他の部分よりも前記伝熱量制限箇所で低くすることにより、前記排気からの伝熱量を小さくしたことを特徴とする請求項1、2、3または4記載の熱交換器。The amount of heat transfer from the exhaust by reducing the height of the heat exchanging fins erected on the outer peripheral surface of the heat receiving pipe at the heat transfer amount restriction portion from the other portions of the portion covered with the coating. The heat exchanger according to claim 1, 2, 3, or 4, wherein 前記伝熱量制限箇所の受熱管をその外周面に熱交換用のフィンの立設されない裸管にすることで当該箇所における伝熱量を小さくしたことを特徴とする請求項1、2、3または4記載の熱交換器。  The heat transfer amount in the said location is made small by making the heat-receiving pipe of the said heat transfer amount restriction | limiting part into the bare pipe in which the fin for heat exchange is not standingly arranged in the outer peripheral surface. The described heat exchanger. 結露した凝縮水の蒸発によって前記表面温度が前記被膜の耐熱温度以下に抑制されない部分を前記伝熱量制限箇所に設定したことを特徴とする請求項1、2、3、4、5または6記載の熱交換器。  The portion where the surface temperature is not suppressed below the heat-resistant temperature of the coating film by evaporation of condensed water condensed is set as the heat transfer amount restriction point, according to claim 1, 2, 3, 4, 5 or 6. Heat exchanger.
JP31829897A 1997-11-19 1997-11-19 Heat exchanger Expired - Fee Related JP3859845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31829897A JP3859845B2 (en) 1997-11-19 1997-11-19 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31829897A JP3859845B2 (en) 1997-11-19 1997-11-19 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH11148723A JPH11148723A (en) 1999-06-02
JP3859845B2 true JP3859845B2 (en) 2006-12-20

Family

ID=18097648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31829897A Expired - Fee Related JP3859845B2 (en) 1997-11-19 1997-11-19 Heat exchanger

Country Status (1)

Country Link
JP (1) JP3859845B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030090911A (en) * 2002-05-23 2003-12-01 주식회사 경동보일러 Condensing gas boiler
JP3944147B2 (en) * 2002-10-02 2007-07-11 株式会社慶東ナビエン Condensing gas boiler with corrosion prevention structure by dissimilar metals
DE112005000642T5 (en) 2004-03-25 2007-02-22 Noritz Corporation, Kobe heater
JP2011002110A (en) * 2009-06-16 2011-01-06 Dainippon Printing Co Ltd Latent heat recovery type heat exchanger
JP5972594B2 (en) * 2012-02-13 2016-08-17 三菱重工業株式会社 Heat transfer tube having a corrosion-resistant coating layer, heat exchanger provided with the heat transfer tube, and method for manufacturing the heat transfer tube

Also Published As

Publication number Publication date
JPH11148723A (en) 1999-06-02

Similar Documents

Publication Publication Date Title
CN101221021B (en) Flue gas condenser
CN201170696Y (en) Novel flue gas condenser
JP4935324B2 (en) Water heater
JP4099141B2 (en) Hot water equipment
CN101903711A (en) Heat exchanger of upward combustion type condensing boiler
US11828461B2 (en) Corrosion resistant air preheater with lined tubes
CN108826688A (en) condensing boiler
EP2041500A1 (en) Storage type boiler heat exchanging structure for preventing condensation
EP0405621B1 (en) Recuperative furnace
JP2006275367A (en) Reverse combustion type water heating system
JP3859845B2 (en) Heat exchanger
KR100257573B1 (en) Heat exchanger of gas boiler
JP2002267273A (en) Hot water supply apparatus
KR0132742B1 (en) Heat exchanger apparatus
JP3871920B2 (en) Heat exchanger
CN109297312A (en) A kind of separated phase transition smoke heat exchanging system
JP3848765B2 (en) Heat exchanger, cathodic protection device, and cathodic protection method for heat exchanger
JPH11148720A (en) Heat exchanger
JP4301718B2 (en) Water heater
RU2333432C1 (en) Condensation universal water-heating installation of external accommodation
JP3844574B2 (en) Heat exchanger
JPH0114502B2 (en)
JP3992420B2 (en) Heat exchange device and hot water supply device
JPH11183083A (en) Heat exchanger
JPH09126554A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees