JPH11183006A - Freezer - Google Patents

Freezer

Info

Publication number
JPH11183006A
JPH11183006A JP35029097A JP35029097A JPH11183006A JP H11183006 A JPH11183006 A JP H11183006A JP 35029097 A JP35029097 A JP 35029097A JP 35029097 A JP35029097 A JP 35029097A JP H11183006 A JPH11183006 A JP H11183006A
Authority
JP
Japan
Prior art keywords
temperature
evaporator
refrigerator
fan
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35029097A
Other languages
Japanese (ja)
Other versions
JP3317222B2 (en
Inventor
Makoto Tokuno
誠 徳野
Akitoshi Ueno
明敏 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP35029097A priority Critical patent/JP3317222B2/en
Publication of JPH11183006A publication Critical patent/JPH11183006A/en
Application granted granted Critical
Publication of JP3317222B2 publication Critical patent/JP3317222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To protect an article against damage due to freeze by preventing overcooling in a freezer. SOLUTION: Refrigerant circulates through a compressor 31, a condenser 32, an expansion valve 34 and an evaporator 35 coupled sequentially wherein the evaporator 35 comprises a freezing circuit 20 equipped with an evaporator fan F2 and cooling the inside of a freezer. When the temperature in the freezer reaches a low switching temperature based on a set temperature, cooling of the evaporator 35 is stopped by stopping the compressor 31 before stopping the evaporator fan F2. When the temperature in the freezer drops below an overcooling temperature, the evaporator fan F2 is stopped and undue temperature drop in the freezer is suppressed by stopping circulation of air in the freezer. When the temperature in the freezer reaches a reset temperature higher by a specified level than the overcooling temperature, driving of the evaporator fan F2 is resumed. When the temperature in the freezer further increases to reach a high switching temperature, driving of the compressor 31 is resumed to cool the inside of the freezer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍装置に関し、
特に、過冷却の防止対策に係るものである。
[0001] The present invention relates to a refrigeration apparatus,
In particular, it relates to measures for preventing supercooling.

【0002】[0002]

【従来の技術】従来より、冷凍装置には、特開平7−1
9620号公報に開示されているように、圧縮機と凝縮
器と膨張弁と蒸発器とが冷媒配管によって順に接続され
てなる冷凍回路を備えているものがある。更に、上記凝
縮器は凝縮器ファンを、蒸発器は蒸発器ファンをそれぞ
れ備え、該蒸発器及び蒸発器ファンが、冷凍庫又は冷蔵
庫などの庫内に設置されている。
2. Description of the Related Art Conventionally, refrigeration systems have been disclosed in
As disclosed in Japanese Patent Application Publication No. 9620, there is one provided with a refrigeration circuit in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected by refrigerant piping. Further, the condenser includes a condenser fan, and the evaporator includes an evaporator fan, and the evaporator and the evaporator fan are installed in a refrigerator or a refrigerator.

【0003】そして、上記圧縮機から吐出したガス冷媒
は、凝縮器で外気と熱交換を行って凝縮し、その後、膨
張弁で減圧し、蒸発器で庫内空気と熱交換を行って蒸発
する。これにより、庫内空気を所定温度にまで冷却す
る。
[0003] The gas refrigerant discharged from the compressor is condensed by exchanging heat with the outside air in a condenser, then decompressed by an expansion valve, and is evaporated by exchanging heat with the air in the compartment by an evaporator. . Thereby, the inside air is cooled to a predetermined temperature.

【0004】[0004]

【発明が解決しようとする課題】上述した冷凍装置にお
いて、従来、冷蔵庫などの庫内を冷却するものであるの
で、冷却運転を休止する場合はあっても運転自体を停止
する場合は少なく、庫内が必要以上に低温となって過冷
却状態になるという問題があった。
In the above-mentioned refrigerating apparatus, since the inside of a refrigerator such as a refrigerator is conventionally cooled, there are few cases where the cooling operation is stopped but the operation itself is stopped even when the cooling operation is stopped. There is a problem that the temperature in the inside becomes excessively low and becomes a supercooled state.

【0005】つまり、予め庫内を所定温度に保持するた
めの設定温度が設定されており、冷凍装置は、例えば、
庫内温度として蒸発器の吸込空気温度が設定温度になる
と、圧縮機を停止し、いわゆるサーモオフし、冷却停止
状態になる。その後、上記吸込空気温度が設定温度より
所定温度だけ高い再開温度にまで上昇すると、圧縮機を
駆動し、いわゆるサーモオンし、冷却運転を再開するよ
うにしている。
That is, a set temperature for maintaining the inside of the refrigerator at a predetermined temperature is set in advance.
When the suction air temperature of the evaporator reaches the set temperature as the internal temperature, the compressor is stopped, so-called thermo-off is performed, and the cooling is stopped. Thereafter, when the suction air temperature rises to a restart temperature higher by a predetermined temperature than the set temperature, the compressor is driven, so-called thermo-on is performed, and the cooling operation is restarted.

【0006】しかしながら、上記従来の冷凍回路におい
ては、サーモオフしても蒸発器ファンを駆動したままに
制御し、庫内空気を循環させて所定温度を保持するよう
にしている。したがって、外気温度が低い場合などにお
いては、庫内への侵入熱が少ない一方、庫内の構造部品
などが冷却されていることから、庫内空気を循環させる
と、必要以上に過冷却される場合があった。この結果、
庫内の物品が凍結するして損傷するなどという問題があ
った。
However, in the above-described conventional refrigeration circuit, even when the thermostat is turned off, the evaporator fan is controlled to be driven, and the internal air is circulated to maintain a predetermined temperature. Therefore, for example, when the outside air temperature is low, the heat entering the refrigerator is small, but the structural components and the like in the refrigerator are cooled. There was a case. As a result,
There was a problem that the articles in the refrigerator were frozen and damaged.

【0007】本発明は、斯かる点に鑑みてなされたもの
で、庫内の過冷却を防止して物品の凍結などによる損傷
を防止することを目的とするものである。
[0007] The present invention has been made in view of the above, and an object of the present invention is to prevent the inside of a refrigerator from being overcooled and to prevent damage due to freezing of articles and the like.

【0008】[0008]

【課題を解決するための手段】−発明の概要− 本発明は、庫内温度が過冷却温度以下に低下すると、圧
縮機(31)の停止に加えて蒸発器ファン(F2)を停止し
た運転停止状態に冷凍回路(20)を制御するようにした
ものである。
Means for Solving the Problems-Summary of the Invention- The present invention provides an operation in which, when the temperature in the refrigerator falls below the supercooling temperature, the evaporator fan (F2) is stopped in addition to the stop of the compressor (31). The refrigeration circuit (20) is controlled in a stopped state.

【0009】−解決手段− 具体的に、図1に示すように、本発明が講じた第1の解
決手段は、先ず、圧縮機(31)と凝縮器(32)と減圧機
構(34)と蒸発器(35)とが順に接続されて冷媒が循環
すると共に、蒸発器(35)が蒸発器ファン(F2)を備え
て庫内を冷却するように構成された冷凍回路(20)を備
えている。加えて、庫内温度が予め設定された過冷却温
度以下に低下すると、蒸発器ファン(F2)を停止した運
転停止状態に冷凍回路(20)を制御する一方、上記庫内
温度が過冷却温度より所定温度だけ高い復帰温度になる
と、蒸発器ファン(F2)の駆動を再開した運転状態に冷
凍回路(20)を制御するファン停止手段(62)を備えて
いる。
-Solution Means- Specifically, as shown in FIG. 1, a first solution means taken by the present invention is as follows: a compressor (31), a condenser (32), a pressure reducing mechanism (34) The evaporator (35) is connected in order and the refrigerant circulates, and the evaporator (35) includes a refrigeration circuit (20) configured to cool the inside of the refrigerator with the evaporator fan (F2). I have. In addition, when the temperature in the refrigerator falls below the preset supercooling temperature, the refrigeration circuit (20) is controlled to the operation stop state in which the evaporator fan (F2) is stopped, and the temperature in the refrigerator becomes the supercooling temperature. A fan stop means (62) for controlling the refrigeration circuit (20) in an operation state in which the drive of the evaporator fan (F2) is resumed when the return temperature becomes higher by a predetermined temperature.

【0010】この第1の解決手段では、先ず、圧縮機
(31)を駆動すると、高圧の冷媒が凝縮器(32)で凝縮
した後、減圧機構(34)で減圧して蒸発器(35)に流
れ、庫内空気と熱交換して蒸発し、圧縮機(31)に戻
り、この動作を繰り返す。上記庫内空気は、蒸発器ファ
ン(F2)の駆動によって蒸発器(35)で冷却されると共
に、庫内を循環し、該庫内が冷却される。
In the first solution, first, when the compressor (31) is driven, the high-pressure refrigerant is condensed in the condenser (32) and then decompressed by the decompression mechanism (34) to evaporate the evaporator (35). And the heat exchanges with the air in the refrigerator, evaporates, returns to the compressor (31), and repeats this operation. The air in the refrigerator is cooled by the evaporator (35) by driving the evaporator fan (F2), circulates through the refrigerator, and cools the refrigerator.

【0011】上記運転時において、ファン停止手段(6
2)は、庫内温度が予め設定された過冷却温度以下に低
下すると、蒸発器ファン(F2)を停止した運転停止状態
に冷凍回路(20)を制御し、庫内空気の循環を停止して
庫内温度の過低下を抑制する。また、上記ファン停止手
段(62)は、庫内温度が過冷却温度より所定温度だけ高
い復帰温度になると、蒸発器ファン(F2)の駆動を再開
した運転状態に冷凍回路(20)を制御する。
In the above operation, the fan stop means (6
2) When the inside temperature falls below the preset supercooling temperature, the refrigeration circuit (20) is controlled to the operation stop state in which the evaporator fan (F2) is stopped, and the circulation of the inside air is stopped. To prevent the internal temperature from dropping too low. Further, when the internal temperature reaches a return temperature higher than the subcooling temperature by a predetermined temperature, the fan stopping means (62) controls the refrigeration circuit (20) to an operation state in which the driving of the evaporator fan (F2) is restarted. .

【0012】また、第2の解決手段は、上記第1の解決
手段において、庫内温度がファン停止手段(62)の過冷
却温度以上の温度で且つ設定温度に基づいて定められた
低温側切換え温度になると、圧縮機(31)を停止した冷
却停止状態に冷凍回路(20)を制御する一方、上記庫内
温度が低温側切換え温度より所定温度だけ高く且つファ
ン停止手段(62)の復帰温度より高い高温側切換え温度
になると、圧縮機(31)の駆動を再開した冷却運転状態
に冷凍回路(20)を制御する冷却運転手段(61)を備え
た構成としている。
A second solution is the low-temperature side switch according to the first solution, wherein the internal temperature is equal to or higher than the supercooling temperature of the fan stopping means (62) and determined based on the set temperature. When the temperature is reached, the refrigerating circuit (20) is controlled to a cooling stop state in which the compressor (31) is stopped, while the internal temperature is higher than the low-side switching temperature by a predetermined temperature and the return temperature of the fan stopping means (62). A cooling operation means (61) for controlling the refrigeration circuit (20) in a cooling operation state in which the driving of the compressor (31) is resumed when the temperature of the high-temperature side switching becomes higher is provided.

【0013】この第2の解決手段では、庫内温度が設定
温度に基づく低温側切換え温度になると、冷却運転手段
(61)が、圧縮機(31)を停止した冷却停止状態に冷凍
回路(20)を制御する。つまり、上記ファン停止手段
(62)による蒸発器ファン(F2)の停止と同時又は蒸発
器ファン(F2)の停止の前に蒸発器(35)の冷却を停止
する。また、上記庫内温度が低温側切換え温度より所定
温度だけ高く且つファン停止手段(62)の復帰温度より
高い高温側切換え温度になると、冷却運転手段(61)
が、圧縮機(31)の駆動を再開して庫内を冷却する。
In the second solution, when the temperature in the refrigerator reaches the low-side switching temperature based on the set temperature, the cooling operation means (61) switches the refrigeration circuit (20) to the cooling stopped state in which the compressor (31) is stopped. ) Control. That is, the cooling of the evaporator (35) is stopped at the same time as the stop of the evaporator fan (F2) by the fan stop means (62) or before the stop of the evaporator fan (F2). When the inside temperature reaches a high-side switching temperature higher than the low-side switching temperature by a predetermined temperature and higher than a return temperature of the fan stopping means (62), the cooling operation means (61).
However, the compressor (31) is restarted to cool the inside of the refrigerator.

【0014】また、第3の解決手段は、上記第1又は第
2の解決手段において、蒸発器(35)の吸込空気温度又
は吹出空気温度を検出し、庫内温度として吸込空気温度
又は吹出空気温度の温度信号を出力する温度センサ(Th
-2又はTh-1)を備えた構成としている。
[0014] The third solution is the first or second solution, wherein the temperature of the intake air or the temperature of the blown air of the evaporator (35) is detected, and the temperature of the suction air or the blown air is detected as the internal temperature. Temperature sensor that outputs a temperature signal (Th
-2 or Th-1).

【0015】この第3の解決手段では、温度センサ(Th
-2又はTh-1)が、蒸発器(35)の吸込空気温度又は吹出
空気温度を検出し、この吸込空気温度又は吹出空気温度
に基づいてファン停止手段(62)又は冷却運転手段(6
1)が冷凍回路(20)を制御することになる。
In the third solution, a temperature sensor (Th
-2 or Th-1) detects the intake air temperature or the blow-off air temperature of the evaporator (35), and based on the suction air temperature or the blow-off air temperature, the fan stopping means (62) or the cooling operation means (6).
1) controls the refrigeration circuit (20).

【0016】[0016]

【発明の効果】したがって、本発明によれば、庫内温度
が過冷却温度まで低下すると、蒸発器ファン(F2)の運
転を停止して運転停止状態に冷凍回路(20)を制御する
ようにしたために、庫内空気の循環を停止して庫内を所
定温度を保持することができる。この結果、庫内を必要
以上に過冷却することを確実に防止することができるの
で、庫内の物品が凍結等して損傷することを確実に防止
することができる。
Therefore, according to the present invention, when the temperature in the refrigerator drops to the supercooling temperature, the operation of the evaporator fan (F2) is stopped to control the refrigeration circuit (20) to the operation stop state. Therefore, the circulation of the air in the refrigerator can be stopped to maintain a predetermined temperature in the refrigerator. As a result, it is possible to reliably prevent the inside of the refrigerator from being overcooled more than necessary, so that it is possible to reliably prevent the articles in the refrigerator from being damaged by freezing or the like.

【0017】特に、第2の解決手段によれば、上記庫内
を冷却停止状態に切り換えてなおかつ庫内温度が低下す
る場合に蒸発器ファン(F2)を停止することができるの
で、庫内の温度低下を正確に判定して過冷却を防止する
ことができる。
In particular, according to the second solution, the evaporator fan (F2) can be stopped when the inside of the refrigerator is switched to the cooling stop state and the temperature inside the refrigerator is lowered. It is possible to accurately determine the temperature drop and prevent overcooling.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0019】図2に示すように、本実施形態の冷凍装置
(10)は、冷蔵庫に設けられて庫内を冷却するものであ
って、冷凍回路(20)を備えている。
As shown in FIG. 2, the refrigeration apparatus (10) of this embodiment is provided in a refrigerator to cool the inside of the refrigerator, and has a refrigeration circuit (20).

【0020】上記冷凍回路(20)は、メイン回路(30)
の他、リキッドインジェクション回路(40)と均圧回路
(50)を備えている。上記メイン回路(30)は、圧縮機
(31)と凝縮器(32)と庫内電磁弁(33)と減圧機構で
ある膨張弁(34)と蒸発器(35)とが順に冷媒配管(3
6)によって接続されて冷媒が循環するように構成され
ている。そして、上記圧縮機(31)と凝縮器(32)とが
庫外ユニット(1A)に収納される一方、上記庫内電磁弁
(33)と膨張弁(34)と蒸発器(35)とが庫内ユニット
(1B)に収納されている。
The refrigeration circuit (20) includes a main circuit (30)
In addition, a liquid injection circuit (40) and a pressure equalizing circuit (50) are provided. The main circuit (30) includes a compressor (31), a condenser (32), an internal solenoid valve (33), an expansion valve (34) serving as a pressure reducing mechanism, and an evaporator (35).
6) so that the refrigerant circulates. The compressor (31) and the condenser (32) are housed in the external unit (1A), while the internal solenoid valve (33), the expansion valve (34), and the evaporator (35) are connected to each other. It is stored in the unit (1B).

【0021】上記凝縮器(32)には、凝縮器ファン(F
1)が設けられ、該凝縮器ファン(F1)が駆動して冷媒
と庫外空気とが熱交換するように構成されている。一
方、上記蒸発器(35)には、蒸発器ファン(F2)が設け
られ、該蒸発器ファン(F2)が駆動して冷媒と庫内空気
とが熱交換するように構成され、該庫内空気が蒸発器フ
ァン(F2)によって庫内を循環する。
A condenser fan (F) is provided in the condenser (32).
1) is provided, and the condenser fan (F1) is driven to exchange heat between the refrigerant and the outside air. On the other hand, the evaporator (35) is provided with an evaporator fan (F2), and is configured such that the evaporator fan (F2) is driven to exchange heat between the refrigerant and the air in the refrigerator. Air is circulated in the refrigerator by the evaporator fan (F2).

【0022】上記膨張弁(34)は、感温筒(3t)を備え
た感温式自動膨張弁であって、該感温筒(3t)が蒸発器
(35)の冷媒出口側に設けられている。そして、上記膨
張弁(34)は、蒸発器(35)の出口の冷媒過熱度が所定
値になるように開度を調節している。
The expansion valve (34) is a temperature-sensitive automatic expansion valve having a temperature-sensitive cylinder (3t). The temperature-sensitive cylinder (3t) is provided on the refrigerant outlet side of the evaporator (35). ing. The opening of the expansion valve (34) is adjusted so that the degree of superheat of the refrigerant at the outlet of the evaporator (35) becomes a predetermined value.

【0023】尚、上記庫外ユニット(1A)の冷媒配管
(36)には、庫内ユニット(1B)との間にサービスポー
ト付の閉鎖弁(2v,2v)が設けられている。
The refrigerant pipe (36) of the outside unit (1A) is provided with a closing valve (2v, 2v) with a service port between the unit and the inside unit (1B).

【0024】上記リキッドインジェクション回路(40)
は、インジェクション用電磁弁(41)とキャピラリチュ
ーブ(42)とを備え、一端が凝縮器(32)の冷媒出口側
の冷媒配管(36)に接続され、他端が圧縮機(31)に接
続されている。該リキッドインジェクション回路(40)
は、圧縮機(31)の吐出側冷媒温度が上昇すると、イン
ジェクション用電磁弁(41)を開き、液冷媒を圧縮機
(31)に供給して吐出側冷媒温度を低下させるようにし
ている。
The above liquid injection circuit (40)
Has an injection solenoid valve (41) and a capillary tube (42), one end of which is connected to the refrigerant pipe (36) on the refrigerant outlet side of the condenser (32), and the other end of which is connected to the compressor (31). Have been. The liquid injection circuit (40)
When the discharge-side refrigerant temperature of the compressor (31) rises, the injection solenoid valve (41) is opened, and liquid refrigerant is supplied to the compressor (31) to lower the discharge-side refrigerant temperature.

【0025】上記均圧回路(50)は、均圧用電磁弁(5
1)を備え、一端が圧縮機(31)の吐出側の冷媒配管(3
6)に接続され、他端が圧縮機(31)の吸込側の冷媒配
管(36)に接続されている。そして、上記均圧回路(5
0)は、運転開始時の均圧制御時に、均圧用電磁弁(5
1)を開き、圧縮機(31)の吐出側と吸込側とを連通さ
せるようにしている。
The equalizing circuit (50) is provided with an equalizing solenoid valve (5).
1), one end of which is connected to the refrigerant pipe (3
6), and the other end is connected to a refrigerant pipe (36) on the suction side of the compressor (31). And the equalizing circuit (5
0) is a pressure equalizing solenoid valve (5
1) is opened to allow the discharge side and the suction side of the compressor (31) to communicate with each other.

【0026】上記冷凍回路(20)には、各種のセンサ等
が設けられている。具体的に、上記圧縮機(31)の吐出
側の冷媒配管(36)には、高圧冷媒圧力を検出する高圧
圧力センサ(HS)が、圧縮機(31)の吸込側の冷媒配管
(36)には、低圧冷媒圧力を検出する低圧圧力センサ
(LS)がそれぞれ設けられると共に、上記圧縮機(31)
の吐出側の冷媒配管(36)には、高圧冷媒圧力が所定値
以上の高圧になるとオフする高圧圧力開閉器(BS)が設
けられている。更に、上記蒸発器(35)の庫内空気の吸
込側には、庫内温度として蒸発器(35)の吸込空気温度
Tsを検出する温度検出手段としての吸込温度センサ
(Th-1)が設けられている。
The refrigeration circuit (20) is provided with various sensors and the like. Specifically, the refrigerant pipe (36) on the discharge side of the compressor (31) has a high-pressure pressure sensor (HS) for detecting the high-pressure refrigerant pressure, and the refrigerant pipe (36) on the suction side of the compressor (31). Is provided with a low-pressure pressure sensor (LS) for detecting the low-pressure refrigerant pressure, and the compressor (31)
A high-pressure switch (BS) that is turned off when the high-pressure refrigerant pressure becomes higher than a predetermined value is provided in the refrigerant pipe (36) on the discharge side. Further, a suction temperature sensor (Th-1) as a temperature detecting means for detecting a suction air temperature Ts of the evaporator (35) as a temperature inside the refrigerator is provided on a side of the evaporator (35) that sucks air in the refrigerator. Have been.

【0027】上記高圧センサ(HS)、低圧圧力センサ
(LS)、高圧圧力開閉器(BS)及び吸込温度センサ(Th
-1)の各検知信号は、コントローラ(60)に入力されて
いる。該コントローラ(60)は、図示しないが、リモコ
ンから操作信号等を受けて冷凍運転を制御するように構
成され、この操作信号及び各検知信号等に基づいて圧縮
機(31)や凝縮器ファン(F1)及び蒸発器ファン(F2)
等を制御する。
The above high pressure sensor (HS), low pressure pressure sensor (LS), high pressure switch (BS) and suction temperature sensor (Th
Each detection signal of -1) is input to the controller (60). Although not shown, the controller (60) is configured to control the refrigeration operation by receiving an operation signal or the like from a remote controller, and based on the operation signal and each detection signal and the like, the compressor (31) and the condenser fan ( F1) and evaporator fan (F2)
And so on.

【0028】上記コントローラ(60)には、本発明の特
徴として、冷却運転手段(61)とファン停止手段(62)
とが設けられている。
The controller (60) includes a cooling operation means (61) and a fan stopping means (62) as features of the present invention.
Are provided.

【0029】該冷却運転手段(61)は、吸込温度センサ
(Th-1)からの検知信号を受けて、吸込空気温度Tsが
リモコンから設定された庫内温度の設定温度SPに基づ
く低温側切換え温度になると、蒸発器ファン(F2)を駆
動したまま圧縮機(31)を停止し、冷却停止状態である
サーモオフ状態に冷凍回路(20)を制御する。この低温
側切換え温度は、例えば、設定温度SPに設定されてい
る。更に、該冷却運転手段(61)は、吸込空気温度Ts
が低温側切換え温度より所定温度だけ高い高温側切換え
温度になると、圧縮機(31)の駆動を再開し、冷却運転
を再開して冷却運転状態であるサーモオン状態に冷凍回
路(20)を制御する。この高温側切換え温度は、例え
ば、設定温度SPより2℃だけ高い温度(SP+2℃)
に設定されている。
The cooling operation means (61) receives the detection signal from the suction temperature sensor (Th-1) and switches the suction air temperature Ts to the low temperature side based on the set temperature SP of the internal temperature set by the remote controller. When the temperature reaches the temperature, the compressor (31) is stopped while the evaporator fan (F2) is driven, and the refrigeration circuit (20) is controlled to be in a thermo-off state in which cooling is stopped. This low-side switching temperature is set, for example, to the set temperature SP. Further, the cooling operation means (61) is provided with a suction air temperature Ts.
When the temperature reaches the high-side switching temperature higher by a predetermined temperature than the low-side switching temperature, the compressor (31) is restarted, the cooling operation is restarted, and the refrigeration circuit (20) is controlled to the thermo-on state which is the cooling operation state. . The high temperature side switching temperature is, for example, a temperature (SP + 2 ° C.) higher than the set temperature SP by 2 ° C.
Is set to

【0030】上記ファン停止手段(62)は、吸込空気温
度Tsが設定温度SPより所定温度だけ低い予め設定さ
れた過冷却温度以下に低下すると、蒸発器ファン(F2)
を停止した運転停止状態に冷凍回路(20)を制御する。
更に、上記ファン停止手段(62)は、吸込空気温度Ts
が過冷却温度より所定温度だけ高い復帰温度になると、
蒸発器ファン(F2)の駆動を再開した運転状態に冷凍回
路(20)を制御する。上記過冷却温度は、例えば、設定
温度SPより1℃だけ低い温度(SP−1℃)に設定さ
れ、上記復帰温度は、設定温度SPと同じ温度(SP)
に設定されている。
When the suction air temperature Ts falls below a preset supercooling temperature lower than the set temperature SP by a predetermined temperature, the fan stopping means (62) turns on the evaporator fan (F2).
The refrigeration circuit (20) is controlled in the operation stop state where the operation is stopped.
Further, the fan stopping means (62) is provided with a suction air temperature Ts.
When the return temperature is higher than the supercooling temperature by a predetermined temperature,
The refrigeration circuit (20) is controlled in an operation state in which the driving of the evaporator fan (F2) is restarted. The supercooling temperature is set, for example, to a temperature (SP-1 ° C) lower than the set temperature SP by 1 ° C, and the return temperature is the same temperature (SP) as the set temperature SP.
Is set to

【0031】−冷凍運転動作− 次に、上述した冷凍装置(10)の運転動作について説明
する。
-Refrigeration operation- Next, the operation of the refrigeration system (10) will be described.

【0032】先ず、圧縮機(31)を駆動すると、該圧縮
機(31)から吐出した高圧の冷媒は、凝縮器(32)に流
れ、該凝縮器(32)において、庫外空気と熱交換して凝
縮する。この凝縮した液冷媒は、膨張弁(34)で減圧し
た後に蒸発器(35)に流れ、該蒸発器(35)において、
庫内空気と熱交換して蒸発する。そして、この蒸発した
ガス冷媒は圧縮機(31)に戻り、この動作を繰り返すこ
とになる。
First, when the compressor (31) is driven, the high-pressure refrigerant discharged from the compressor (31) flows to the condenser (32), where the refrigerant exchanges heat with the outside air. And condense. The condensed liquid refrigerant flows to the evaporator (35) after being decompressed by the expansion valve (34), and in the evaporator (35),
It evaporates by exchanging heat with the air in the refrigerator. Then, the evaporated gas refrigerant returns to the compressor (31), and this operation is repeated.

【0033】上記庫内空気は、蒸発器ファン(F2)の駆
動によって蒸発器(35)に流入して冷媒と熱交換して冷
却され、この冷却された庫内空気が蒸発器(35)より庫
内に吹き出して庫内を循環する。この結果、上記庫内空
気の循環によって庫内が冷却される。
The internal air flows into the evaporator (35) by driving the evaporator fan (F2), exchanges heat with the refrigerant and is cooled, and the cooled internal air is discharged from the evaporator (35). It blows out into the refrigerator and circulates through the refrigerator. As a result, the interior of the refrigerator is cooled by the circulation of the air in the refrigerator.

【0034】次に、本発明の特徴とする運転制御につい
て図3の制御フローに基づき説明する。
Next, the operation control characteristic of the present invention will be described with reference to the control flow of FIG.

【0035】運転が開始された後、先ず、ステップST1
において、吸込温度センサ(Th-1)が検出する蒸発器
(35)の吸込空気温度Ts(庫内温度)が設定温度SP
以下か否かを判定する。つまり、この設定温度SPがサ
ーモオフ状態に切り換わる低温側切換え温度(SP)に
設定されているので、サーモオフ状態に切り換えるか否
かを判定する。
After the operation is started, first, in step ST1
, The suction air temperature Ts (inside temperature) of the evaporator (35) detected by the suction temperature sensor (Th-1) is equal to the set temperature SP.
It is determined whether or not: That is, since the set temperature SP is set to the low-side switching temperature (SP) at which the thermostat is switched to the thermo-off state, it is determined whether to switch to the thermo-off state.

【0036】そして、上記吸込空気温度Tsが設定温度
SP以上の場合、該ステップST1に待機して冷却運転を
継続する。つまり、上記冷凍回路(20)の圧縮機(31)
を駆動して冷媒を循環させる一方、蒸発器ファン(F2)
を駆動して庫内空気を蒸発器(35)で冷却すると共に、
該庫内空気を循環させる。
If the suction air temperature Ts is equal to or higher than the set temperature SP, the process waits at step ST1 to continue the cooling operation. That is, the compressor (31) of the refrigeration circuit (20)
Drive to circulate the refrigerant while evaporator fan (F2)
To cool the air inside the chamber with the evaporator (35),
The air in the refrigerator is circulated.

【0037】一方、上記吸込空気温度Tsが設定温度S
Pより低下した場合、上記ステップST1からステップST
2に移り、サーモオフ状態に冷凍回路(20)を切り換え
て冷却運転を停止する。つまり、上記冷凍回路(20)の
圧縮機(31)を停止して冷媒の循環を停止し、蒸発器
(35)における冷媒と庫内空気の熱交換を停止する。こ
のサーモオフ状態においては、蒸発器ファン(F2)は駆
動し、庫内空気は、蒸発器(35)で冷却されないもの庫
内を循環している。
On the other hand, the suction air temperature Ts is equal to the set temperature S.
If it is lower than P, the above steps ST1 to ST
The operation moves to 2 and the refrigeration circuit (20) is switched to the thermo-off state to stop the cooling operation. That is, the compressor (31) of the refrigeration circuit (20) is stopped to stop the circulation of the refrigerant, and the heat exchange between the refrigerant and the air in the refrigerator in the evaporator (35) is stopped. In the thermo-off state, the evaporator fan (F2) is driven, and the air in the refrigerator circulates through the refrigerator that is not cooled by the evaporator (35).

【0038】その後、上記ステップST2からステップST
3に移り、吸込空気温度Tsが過冷却温度以下か否かを
判定する。該吸込空気温度Tsが過冷却温度まで低下し
ていない場合(Ts>SP−1℃)、該ステップST3の
判定がNOとなってステップST4に移り、上記吸込空気
温度Tsが高温側切換え温度以上か否かを判定する。つ
まり、この高温側切換え温度(SP+2℃)がサーモオ
ン状態に切り換える温度に設定されているので、サーモ
オフ状態に切り換えるか否かを判定する。
Thereafter, from the above-mentioned step ST2 to step ST2
Then, it is determined whether the suction air temperature Ts is equal to or lower than the supercooling temperature. If the suction air temperature Ts has not decreased to the supercooling temperature (Ts> SP-1 ° C.), the determination in step ST3 is NO, and the process proceeds to step ST4, where the suction air temperature Ts is equal to or higher than the high-side switching temperature. It is determined whether or not. That is, since the high-side switching temperature (SP + 2 ° C.) is set to the temperature at which the thermostat is switched on, it is determined whether or not the thermostat is switched off.

【0039】上記庫内温度が高温側切り換え温度より低
い場合(Ts<SP+2℃)、庫内が十分に冷却された
状態であるので、上記ステップST3に戻り、上述の動作
を繰り返し、つまり、圧縮機(31)が停止したまま蒸発
器ファン(F2)を駆動したサーモオフ状態を継続する。
If the inside temperature is lower than the high-side switching temperature (Ts <SP + 2 ° C.), the inside of the inside is sufficiently cooled, and the process returns to step ST3 to repeat the above-described operation, that is, to perform compression. The thermo-off state in which the evaporator fan (F2) is driven is continued with the machine (31) stopped.

【0040】また、上記ステップST4において、庫内温
度が高温側切り換え温度以上に高くなると(Ts≧SP
+2℃)、ステップST5に移り、圧縮機(31)の運転を
再開してサーモオン状態に切り換え、上記ステップST1
に戻り、上述の動作を繰り返す。つまり、冷凍回路(2
0)の冷却運転を再開して庫内温度が設定温度SPにな
るように庫内を冷却する。
In step ST4, when the temperature in the refrigerator becomes higher than the high-side switching temperature (Ts ≧ SP)
+ 2 ° C.), the process proceeds to step ST5, and the operation of the compressor (31) is restarted to switch to the thermo-on state.
And the above operation is repeated. In other words, the refrigeration circuit (2
The cooling operation of 0) is restarted to cool the inside of the refrigerator so that the inside temperature becomes the set temperature SP.

【0041】一方、上記ステップST3において、吸込空
気温度Tsが過冷却温度まで低下した場合(Ts≦SP
−1℃)、判定がYESとなってステップST6に移り、
上記蒸発器ファン(F2)の運転を停止して冷却運転を停
止する。つまり、このステップST3の状態においては、
サーモオフ状態であり、圧縮機(31)の運転が停止して
いるのものの蒸発器ファン(F2)は回転して庫内空気が
循環している状態である。
On the other hand, in step ST3, when the intake air temperature Ts drops to the supercooling temperature (Ts ≦ SP
-1 ° C.), the determination becomes YES and the process moves to Step ST6.
The operation of the evaporator fan (F2) is stopped to stop the cooling operation. That is, in the state of step ST3,
In the thermo-off state, the operation of the compressor (31) is stopped, but the evaporator fan (F2) is rotating and the air in the refrigerator is circulating.

【0042】この状態において、外気温度が低い場合な
どでは、庫内への侵入熱が少ないこと、庫内の構造
部品などが十分に冷却されていることなどの理由から、
庫内空気を循環させると、蒸発器(35)における熱交換
は行われないが、上記庫内空気が庫内の構造部品などに
よって過冷却温度よりも低温に冷却されることになる。
In this state, when the outside air temperature is low, for example, the heat intrusion into the refrigerator is small and the structural components in the refrigerator are sufficiently cooled.
When the air in the refrigerator is circulated, heat exchange in the evaporator (35) is not performed, but the air in the refrigerator is cooled to a temperature lower than the supercooling temperature by structural components in the refrigerator.

【0043】そこで、上記蒸発器ファン(F2)の運転を
停止した後、ステップST7に移り、吸込空気温度Tsが
復帰温度である設定温度SPより低いか否かを判定す
る。そして、上記吸込空気温度Tsが設定温度SPにま
で上昇するまで該ステップST7で待機し、運転停止状態
を維持する。
Therefore, after the operation of the evaporator fan (F2) is stopped, the process proceeds to step ST7, and it is determined whether or not the suction air temperature Ts is lower than the set temperature SP which is the return temperature. Then, the process stands by in the step ST7 until the suction air temperature Ts rises to the set temperature SP, and maintains the operation stop state.

【0044】その後、上記吸込空気温度Tsが設定温度
SPにまで上昇すると(Ts≧SP)、上記ステップST
7の判定がYESとなってステップST8に移り、蒸発器
ファン(F2)の運転を復帰させてサーモオフ状態に戻
り、圧縮機(31)が停止したまま蒸発器ファン(F2)を
駆動させ、庫内空気の循環を再開させる。
Thereafter, when the suction air temperature Ts rises to the set temperature SP (Ts ≧ SP), the above-described step ST
7 is YES, the process proceeds to step ST8, in which the operation of the evaporator fan (F2) is returned to the thermo-off state, and the evaporator fan (F2) is driven while the compressor (31) is stopped. Restart the internal air circulation.

【0045】その後、上記ステップST8からステップST
4に移り、上述したようにサーモオン状態に切り換える
か否かを判定し、上述の動作を繰り返す。
Thereafter, from the above-mentioned step ST8 to step ST8
Then, it is determined whether or not to switch to the thermo-on state as described above, and the above operation is repeated.

【0046】−実施形態の効果− 以上のように、本実施形態によれば、庫内温度である吸
込空気温度Tsが過冷却温度まで低下すると、蒸発器フ
ァン(F2)の運転を停止して運転停止状態に冷凍回路
(20)を制御するようにしたために、庫内空気の循環を
停止して庫内を所定温度を保持することができる。この
結果、庫内を必要以上に過冷却することを確実に防止す
ることができるので、庫内の物品が凍結等して損傷する
ことを確実に防止することができる。
-Effects of Embodiment- As described above, according to the present embodiment, when the suction air temperature Ts, which is the internal temperature, decreases to the supercooling temperature, the operation of the evaporator fan (F2) is stopped. Since the refrigeration circuit (20) is controlled in the operation stop state, the circulation of the air in the refrigerator can be stopped to maintain a predetermined temperature in the refrigerator. As a result, it is possible to reliably prevent the inside of the refrigerator from being overcooled more than necessary, so that it is possible to reliably prevent the articles in the refrigerator from being damaged by freezing or the like.

【0047】特に、上記庫内をサーモオフ状態に切り換
えてなおかつ吸込空気温度Tsが低下する場合に蒸発器
ファン(F2)を停止するので、庫内の温度低下を正確に
判定して過冷却を防止することができる。
In particular, the evaporator fan (F2) is stopped when the inside of the refrigerator is switched to the thermo-off state and the intake air temperature Ts drops, so that the temperature inside the refrigerator is accurately determined to prevent overcooling. can do.

【0048】[0048]

【発明の他の実施の形態】本実施形態における冷凍回路
(20)は、1つの膨張弁(34)と1つの蒸発器(35)と
を設けたが、本発明は、第1の蒸発回路部と第2の蒸発
回路部とを設けるようにしてもよい。この第1の蒸発回
路部は、液側比例制御弁と第1の蒸発器とが順に接続さ
れて成り、第2の蒸発回路部は、感温式膨張弁と第2の
蒸発器とガス側比例制御弁と有する第2の蒸発回路部と
が順に接続されて成り、この第1の蒸発回路部と第2の
蒸発回路部とが互いに並列に接続されている。そして、
上記液側比例制御弁及びガス側比例制御弁は、庫内温度
と設定温度との差温に基づく負荷に対応して開度が制御
される。
Another embodiment of the present invention The refrigeration circuit (20) in this embodiment is provided with one expansion valve (34) and one evaporator (35). Section and a second evaporating circuit section. The first evaporating circuit section includes a liquid side proportional control valve and a first evaporator connected in order, and the second evaporating circuit section includes a temperature-sensitive expansion valve, a second evaporator, and a gas side. The proportional control valve and a second evaporating circuit section having the same are connected in order, and the first and second evaporating circuit sections are connected in parallel with each other. And
The opening of the liquid-side proportional control valve and the gas-side proportional control valve is controlled in accordance with the load based on the temperature difference between the internal temperature and the set temperature.

【0049】また、本実施形態においては、蒸発器(3
5)の庫内空気の吸込側に吸込温度センサ(Th-1)を設
け、庫内温度として蒸発器(35)の吸込空気温度Tsを
検出するようにしたが、本発明は、図2の鎖線で示すよ
うに、蒸発器(35)の庫内空気の吹出側に吹出温度セン
サ(Th-2)を設け、庫内温度として蒸発器(35)の吹出
空気温度Toを検出するようにしてもよい。その際、冷
却運転手段(61)は、低温側切換え温度が、例えば、設
定温度SPより1℃だけ低い温度(SP−1℃)に設定
され、高温側切換え温度が、例えば、設定温度SPより
2℃だけ高い温度に設定されている(SP+2℃)。ま
た、ファン停止手段(62)は、上記実施形態と同様に、
過冷却温度が、例えば、設定温度SPより1℃だけ低い
温度に設定され(SP−1℃)、復帰温度が、設定温度
SPと同じ温度(SP)に設定されている。
In this embodiment, the evaporator (3
5) A suction temperature sensor (Th-1) is provided on the suction side of the inside air to detect the suction air temperature Ts of the evaporator (35) as the inside temperature. As shown by the dashed line, an outlet temperature sensor (Th-2) is provided on the outlet side of the air inside the evaporator (35) to detect the outlet air temperature To of the evaporator (35) as the internal temperature. Is also good. At this time, the cooling operation means (61) sets the low-side switching temperature to, for example, a temperature (SP-1 ° C.) lower by 1 ° C. than the set temperature SP, and sets the high-side switching temperature to, for example, the set temperature SP. The temperature is set higher by 2 ° C. (SP + 2 ° C.). In addition, the fan stopping means (62) is similar to the above embodiment,
For example, the supercooling temperature is set to a temperature lower by 1 ° C. than the set temperature SP (SP-1 ° C.), and the return temperature is set to the same temperature (SP) as the set temperature SP.

【0050】したがって、庫内温度である吹出空気温度
Toが低下し、設定温度SPより1℃だけ低い温度(T
o≦SP−1℃)になると、圧縮機(31)が停止してサ
ーモオフ状態に切り換わると同時に、蒸発器ファン(F
2)は停止して運転停止状態になる。一方、吹出空気温
度Toが上昇する場合、設定温度SPになると(To≧
SP)、蒸発器ファン(F2)のみが運転を再開してサー
モオフ状態となり、その後、設定温度SPより2℃だけ
高くなると(To≧SP+2℃)、圧縮機(31)の運転
が再開されてサーモオン状態に切り換わる。
Accordingly, the blown air temperature To, which is the internal temperature, decreases, and the temperature (T
o ≦ SP-1 ° C.), the compressor (31) stops and switches to the thermo-off state, and at the same time, the evaporator fan (F
2) is stopped and the operation is stopped. On the other hand, when the blown air temperature To rises and reaches the set temperature SP (To ≧
SP), only the evaporator fan (F2) resumes operation and enters the thermo-off state. When the temperature rises by 2 ° C. from the set temperature SP (To ≧ SP + 2 ° C.), the operation of the compressor (31) is resumed and thermo-on is performed. Switch to state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】本発明の実施形態を示す冷凍回路図である。FIG. 2 is a refrigeration circuit diagram showing an embodiment of the present invention.

【図3】本発明の運転制御を示す制御フロー図である。FIG. 3 is a control flowchart showing the operation control of the present invention.

【符号の説明】[Explanation of symbols]

10 冷凍装置 20 冷凍回路 30 メイン回路 31 圧縮機 32 凝縮器 34 膨張弁(減圧機構) 35 蒸発器 F1 凝縮器ファン F2 蒸発器ファン 60 コントローラ 61 冷却運転手段 62 ファン停止手段 Th-1 吸込温度センサ Th-2 吹出空気センサ 10 Refrigerator 20 Refrigeration circuit 30 Main circuit 31 Compressor 32 Condenser 34 Expansion valve (Decompression mechanism) 35 Evaporator F1 Condenser fan F2 Evaporator fan 60 Controller 61 Cooling operation means 62 Fan stop means Th-1 Suction temperature sensor Th -2 Outlet air sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(31)と凝縮器(32)と減圧機構
(34)と蒸発器(35)とが順に接続されて冷媒が循環す
ると共に、蒸発器(35)が蒸発器ファン(F2)を備えて
庫内を冷却するように構成された冷凍回路(20)と、 庫内温度が予め設定された過冷却温度以下に低下する
と、蒸発器ファン(F2)を停止した運転停止状態に冷凍
回路(20)を制御する一方、上記庫内温度が過冷却温度
より所定温度だけ高い復帰温度になると、蒸発器ファン
(F2)の駆動を再開した運転状態に冷凍回路(20)を制
御するファン停止手段(62)とを備えていることを特徴
とする冷凍装置。
1. A compressor (31), a condenser (32), a decompression mechanism (34), and an evaporator (35) are connected in this order to circulate a refrigerant, and the evaporator (35) is connected to an evaporator fan ( A refrigeration circuit (20) configured to cool the inside of the refrigerator with F2), and a shutdown state in which the evaporator fan (F2) is stopped when the temperature in the refrigerator falls below the preset supercooling temperature. While the refrigeration circuit (20) is being controlled, the refrigeration circuit (20) is controlled to an operating state in which the operation of the evaporator fan (F2) is resumed when the temperature in the refrigerator reaches a return temperature higher than the subcooling temperature by a predetermined temperature. And a fan stopping means (62).
【請求項2】 請求項1記載の冷凍装置において、 庫内温度がファン停止手段(62)の過冷却温度以上の温
度で且つ設定温度に基づいて定められた低温側切換え温
度になると、圧縮機(31)を停止した冷却停止状態に冷
凍回路(20)を制御する一方、上記庫内温度が低温側切
換え温度より所定温度だけ高く且つファン停止手段(6
2)の復帰温度より高い高温側切換え温度になると、圧
縮機(31)の駆動を再開した冷却運転状態に冷凍回路
(20)を制御する冷却運転手段(61)を備えていること
を特徴とする冷凍装置。
2. The refrigeration system according to claim 1, wherein when the temperature in the refrigerator is equal to or higher than the supercooling temperature of the fan stopping means (62) and reaches a low-temperature-side switching temperature determined based on the set temperature, the compressor. While the refrigeration circuit (20) is controlled to the cooling stop state in which (31) is stopped, the inside temperature of the refrigerator is higher than the low-side switching temperature by a predetermined temperature and the fan stop means (6
A cooling operation means (61) for controlling the refrigeration circuit (20) in a cooling operation state in which the driving of the compressor (31) is resumed when the high-side switching temperature becomes higher than the return temperature of 2). Refrigeration equipment.
【請求項3】 請求項1又は2記載の冷凍装置におい
て、 蒸発器(35)の吸込空気温度又は吹出空気温度を検出
し、庫内温度として吸込空気温度又は吹出空気温度の温
度信号を出力する温度センサ(Th-2又はTh-1)を備えて
いることを特徴とする冷凍装置。
3. The refrigerating apparatus according to claim 1, wherein the temperature of the suction air or the temperature of the blown air of the evaporator (35) is detected, and a temperature signal of the temperature of the suction air or the temperature of the blown air is output as the internal temperature of the refrigerator. A refrigeration apparatus comprising a temperature sensor (Th-2 or Th-1).
JP35029097A 1997-12-19 1997-12-19 Refrigeration equipment Expired - Fee Related JP3317222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35029097A JP3317222B2 (en) 1997-12-19 1997-12-19 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35029097A JP3317222B2 (en) 1997-12-19 1997-12-19 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH11183006A true JPH11183006A (en) 1999-07-06
JP3317222B2 JP3317222B2 (en) 2002-08-26

Family

ID=18409500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35029097A Expired - Fee Related JP3317222B2 (en) 1997-12-19 1997-12-19 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3317222B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174470A (en) * 2000-12-08 2002-06-21 Daikin Ind Ltd Freezer
JP2003097858A (en) * 2001-09-21 2003-04-03 Mitsubishi Heavy Ind Ltd Refrigeration unit for land transportation, and method for controlling operation thereof
JP2009257759A (en) * 2002-04-08 2009-11-05 Daikin Ind Ltd Refrigerator
JP2011220658A (en) * 2010-04-05 2011-11-04 Toru Nagano Radiative cooling type quick-freezing machine
CN110553439A (en) * 2019-08-29 2019-12-10 浙江中广电器股份有限公司 Control method for preventing freezing during refrigeration start of air source variable frequency heat pump (cold water) unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174470A (en) * 2000-12-08 2002-06-21 Daikin Ind Ltd Freezer
JP2003097858A (en) * 2001-09-21 2003-04-03 Mitsubishi Heavy Ind Ltd Refrigeration unit for land transportation, and method for controlling operation thereof
JP4745567B2 (en) * 2001-09-21 2011-08-10 三菱重工業株式会社 Refrigeration system for land transportation and operation control method thereof
JP2009257759A (en) * 2002-04-08 2009-11-05 Daikin Ind Ltd Refrigerator
JP2011220658A (en) * 2010-04-05 2011-11-04 Toru Nagano Radiative cooling type quick-freezing machine
CN110553439A (en) * 2019-08-29 2019-12-10 浙江中广电器股份有限公司 Control method for preventing freezing during refrigeration start of air source variable frequency heat pump (cold water) unit

Also Published As

Publication number Publication date
JP3317222B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
EP1826513B1 (en) Refrigerating air conditioner
JP5641875B2 (en) Refrigeration equipment
US20040112082A1 (en) Regfrigerating device
JP2008138914A (en) Refrigerating device and method of returning refrigerating machine oil
JP2010101552A (en) Gas injection refrigeration system
JP2011169475A (en) Refrigerator and refrigerating device connected with the same
JP3317222B2 (en) Refrigeration equipment
JP3714348B2 (en) Refrigeration equipment
JP3993540B2 (en) Refrigeration equipment
KR100549062B1 (en) Refrigerator
JPH09210515A (en) Refrigerating device
JP3343915B2 (en) Defrost control device
JP2002228284A (en) Refrigerating machine
JP2001021242A (en) Refrigerator
JP3219040B2 (en) Refrigeration equipment
JP2003214681A (en) Defrosting controller for freezer
JP2927230B2 (en) Binary refrigeration equipment
JP2001280768A (en) Refrigerator
JP3147839B2 (en) Refrigeration equipment
JPH11182950A (en) Refrigerator
JPH10253182A (en) Binary refrigerating device
JP2000249384A (en) Freezer
JP2006064199A (en) Refrigeration device
JP3821162B2 (en) Refrigeration equipment
JPH1038396A (en) Method of controlling freezer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees