JPH11169645A - Gas decomposing method - Google Patents

Gas decomposing method

Info

Publication number
JPH11169645A
JPH11169645A JP9341542A JP34154297A JPH11169645A JP H11169645 A JPH11169645 A JP H11169645A JP 9341542 A JP9341542 A JP 9341542A JP 34154297 A JP34154297 A JP 34154297A JP H11169645 A JPH11169645 A JP H11169645A
Authority
JP
Japan
Prior art keywords
gas
treated
plasma
electric field
gas decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9341542A
Other languages
Japanese (ja)
Inventor
Motokazu Yuasa
基和 湯浅
Hiromi Komatsu
裕美 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP9341542A priority Critical patent/JPH11169645A/en
Publication of JPH11169645A publication Critical patent/JPH11169645A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable the remarkably excellent gas decomposition efficiently using plasma excitation energy by impressing electric field between counter electrodes provided with a photocatalytically acting body, plasma-exciting a gas passing the counter electrodes to decompose the gas. SOLUTION: An external electrode 1 is formed into a honeycomb structure obtained by combining plural angular cylindrical bodies, an internal electrode 2 is arranged in the center of a cell of the honeycomb structure and the catalytically acting body 3 is formed on the opposite surface of the internal electrode 2. A gas to be treated flowing in the direction of the arrow is plasma excited in the meantime of passing through the honeycomb cell to be converted to a harmless form or an easily collecting form. By the gas decomposing method in the this way, the photocatalytic body receives energy generated by the plasma excitation of the gas to be treated itself to be activated to exert the action to the gas to be treated and the gas, which is in the previously activated form, is treated with very high efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒素酸化物、硫黄
酸化物、揮発性有機化合物等の有害ガスをプラズマ励起
させて分解処理する、ガス分解処理方法及びその装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for decomposing a harmful gas such as nitrogen oxides, sulfur oxides, volatile organic compounds and the like by plasma excitation.

【0002】[0002]

【従来の技術】近年環境配慮の声が高まり、窒素酸化
物、硫黄酸化物、揮発性有機化合物等の有害ガスを分解
処理する方法が多数提案されている。特にコロナ放電、
プラズマ放電等を利用して有害ガスを分解する技術は、
クリ−ンで低濃度の有害ガスにも対応できるものとして
注目されている。一方、上記放電を利用した処理方法
は、高いエネルギ−を投入する必要があり、処理効率の
向上と投入電力のバランスが実用化の鍵となっていた。
2. Description of the Related Art In recent years, environmental concerns have been raised, and many methods for decomposing harmful gases such as nitrogen oxides, sulfur oxides, and volatile organic compounds have been proposed. Especially corona discharge,
The technology to decompose harmful gas using plasma discharge etc.
It is attracting attention as being clean and capable of coping with low-concentration harmful gases. On the other hand, the above-described processing method using discharge requires input of high energy, and the improvement of processing efficiency and the balance of input power have been the keys to practical application.

【0003】例えば、特開平7−26562号にハニカ
ム状電極とワイヤ型電極を組み合わせて用いる方法が、
特開平2−115024号に固体誘電体を用いる技術が
開示されている。しかし、まだ低電力化と処理効率に改
善の必要があった。
[0003] For example, Japanese Patent Application Laid-Open No. 7-26562 discloses a method using a combination of a honeycomb electrode and a wire electrode.
Japanese Patent Application Laid-Open No. HEI 2-15024 discloses a technique using a solid dielectric. However, there was still a need to reduce power consumption and improve processing efficiency.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記問題を
鑑み、分解効率が改善されたガス分解処理方法を提供す
る。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a gas decomposition treatment method with improved decomposition efficiency.

【0005】[0005]

【課題を解決するための手段】本発明のガス分解処理方
法は、対向電極間に電界を印加することにより該対向電
極間を流通している気体をプラズマ励起させてガス分解
処理を行う方法であって、該対向電極間に光触媒作用体
が設けられていることを特徴とする。
The gas decomposition method according to the present invention is a method of performing a gas decomposition process by applying an electric field between opposed electrodes to excite a gas flowing between the opposed electrodes into plasma. Further, a photocatalyst is provided between the opposed electrodes.

【0006】上記光触媒作用体は、TiO2 、CdS、
SrTiO3 、K4 NbO3 、ZrO2 、GaP、Zn
O等の光触媒を含有するものである。これらの光触媒と
他の材料の混合物によって構成されていてもよい。光触
媒作用体の大きさは特に限定されないが、被処理気体に
接触する面積が大きい方が有利であり、光触媒を含有す
る塗料を調整して電極対向面にコ−ティングすることに
より対向電極表面に層状に形成することが好ましい。被
処理気体への接触面積を大きくするために多孔質の層を
形成してもよい。
The photocatalyst is TiO 2, CdS,
SrTiO3, K4 NbO3, ZrO2, GaP, Zn
It contains a photocatalyst such as O. It may be composed of a mixture of these photocatalysts and other materials. The size of the photocatalyst is not particularly limited, but it is advantageous to have a large area in contact with the gas to be treated. It is preferable to form a layer. A porous layer may be formed in order to increase the contact area with the gas to be treated.

【0007】上記対向電極は通常の金属からなるものを
使用できる。また、その形状は特に問わないが、被処理
気体への接触面積を大きくして処理効率を向上させるた
めにハニカム構造の電極を採用すると有利である。
The above-mentioned counter electrode can be made of an ordinary metal. The shape is not particularly limited, but it is advantageous to employ an electrode having a honeycomb structure in order to increase the contact area with the gas to be treated and improve the treatment efficiency.

【0008】[0008]

【実施の態様】図1は本発明の装置例の斜視図である。
外部電極1は断面正六角形の角筒体が複数組み合わされ
てなるハニカム構造の代表例である。内部電極2は外部
電極1がなすハニカム構造のセル中央に位置している。
図2にハニカムセルの断面図を示す。図2(a)では光
触媒作用体3は内部電極2の対向面に形成されている。
図2(b)では、ハニカムセルを構成する角筒体の中央
に六角形の角柱体の形状の内部電極2が位置し、外部電
極1と内部電極2の両方の表面を光触媒作用体3が覆っ
ている。
FIG. 1 is a perspective view of an apparatus according to the present invention.
The external electrode 1 is a representative example of a honeycomb structure formed by combining a plurality of rectangular cylinders having a regular hexagonal cross section. The internal electrode 2 is located at the center of the cell of the honeycomb structure formed by the external electrode 1.
FIG. 2 shows a sectional view of a honeycomb cell. In FIG. 2A, the photocatalyst 3 is formed on the surface facing the internal electrode 2.
In FIG. 2 (b), a hexagonal prism-shaped internal electrode 2 is located at the center of a rectangular cylindrical body constituting a honeycomb cell, and both surfaces of the external electrode 1 and the internal electrode 2 are covered with a photocatalytic substance 3. Covering.

【0009】被処理気体は図1に示した矢印の方向に流
れ、ハニカムセル内を通る間にプラズマ励起され、無害
な形態あるいは捕集されやすい形態に変換される。本発
明の装置中に、アンモニア、石灰等の脱硝脱硫剤、固定
化剤を吹き込んだり、本発明の装置の流路の先にバグフ
ィルタ−を設ける等の公知の手段により有害ガスを固定
化することが出来る。
The gas to be treated flows in the direction of the arrow shown in FIG. 1, is excited by plasma while passing through the honeycomb cell, and is converted into a harmless form or a form easily collected. The harmful gas is fixed by a known means such as blowing a denitrifying desulfurizing agent such as ammonia or lime or a fixing agent into the apparatus of the present invention, or providing a bag filter at the end of the flow path of the apparatus of the present invention. I can do it.

【0010】プラズマ励起された気体は、それ自身が全
波長域に渡って発光する性質を有する。本発明において
は、被処理気体自身がプラズマ励起によって発生するエ
ネルギ−を受けて光触媒体が活性化することにより被処
理気体に作用を及ぼし、さらにこの光触媒作用を受ける
気体は既に活性化された形態にあるため、非常に効率の
高い処理が実現する。
The plasma-excited gas itself has the property of emitting light over the entire wavelength range. In the present invention, the gas to be treated itself acts on the gas to be treated by activating the photocatalyst by receiving the energy generated by the plasma excitation, and the gas to be treated is further activated. , Very efficient processing is realized.

【0011】また、対向電極を構成する金属が直接向か
いあうと放電状態が不安定になり、処理効率が悪くなる
傾向があるため、これを防止する位置に固体誘電体を設
置するとよい。さらに、上記光触媒作用体が固体誘電体
を兼ねてもよい。図2に示した例では光触媒作用体が電
極対向面の一方または双方を覆っており、固体誘電体の
役割を兼ねている。固体誘電体と光触媒作用体が積層さ
れた形態でもよい。
[0011] Further, when the metal constituting the counter electrode directly faces, the discharge state becomes unstable and the processing efficiency tends to be deteriorated. Therefore, it is preferable to dispose a solid dielectric at a position where this is prevented. Further, the photocatalyst may serve also as a solid dielectric. In the example shown in FIG. 2, the photocatalytic substance covers one or both of the electrode facing surfaces, and also serves as a solid dielectric. A form in which a solid dielectric and a photocatalyst are stacked may be used.

【0012】上記固体誘電体としては、ポリテトラフル
オロエチレン、ポリエチレンテレフタレート等のプラス
チック、ガラス、二酸化珪素、酸化アルミニウム、二酸
化ジルコニウム、二酸化チタン等の金属酸化物、チタン
酸バリウム等の複酸化物等が挙げられる。上記固体誘電
体の比誘電率(25°C環境下、以下同)は2以上であ
ることが好ましく、より好ましくは10以上である。特
に好ましい例として、酸化チタニウム5〜50重量%、
酸化アルミニウム50〜95重量%で混合された金属酸
化物皮膜、又は、酸化ジルコニウムを含有する金属酸化
物皮膜が挙げられる。上記被膜の厚みは10〜1000
μmであるものが好ましい。
Examples of the solid dielectric include plastics such as polytetrafluoroethylene and polyethylene terephthalate, glass, metal oxides such as silicon dioxide, aluminum oxide, zirconium dioxide and titanium dioxide, and double oxides such as barium titanate. No. The relative permittivity of the solid dielectric (at 25 ° C., hereinafter the same) is preferably 2 or more, more preferably 10 or more. Particularly preferred examples are titanium oxide 5 to 50% by weight,
A metal oxide film mixed with 50 to 95% by weight of aluminum oxide or a metal oxide film containing zirconium oxide may be used. The thickness of the coating is 10 to 1000
Those having a size of μm are preferred.

【0013】図2中lで示した電極対向面の間隔(上記
光触媒作用体や後述の固体誘電体が存在する場合は、そ
れらの間隔)は5〜30mmが好ましい。5mm未満で
は被処理気体の流路として効率が悪く、30mmを超え
ると長時間安定化した放電状態を維持しにくく、省電力
化の観点からも好ましくない。
The distance between the electrode-facing surfaces indicated by 1 in FIG. 2 (when the photocatalyst and the solid dielectric described below are present) is preferably 5 to 30 mm. If it is less than 5 mm, the efficiency of the flow path of the gas to be treated is poor, and if it exceeds 30 mm, it is difficult to maintain a stable discharge state for a long time, which is not preferable from the viewpoint of power saving.

【0014】本発明では、上記対向電極間に電界を印加
することにより、該対向電極間を流通している気体をプ
ラズマ励起させてガス分解処理を行う。この際の電界と
しては、放電状態を安定させ、長時間連続した処理を行
うという観点から、電圧立ち上がり時間が100μs以
下、電界強度が1〜100kV/cm、周波数が1〜1
00kHzであるパルス電界を印加することが好まし
い。パルス電圧波形はインパルス型、方形パルス型、変
調型、正又は負のいずれかの極性側に電圧を印加する片
波状パルス型等が挙げられ、特に限定されない。
In the present invention, the gas decomposition treatment is performed by applying an electric field between the opposed electrodes to excite the gas flowing between the opposed electrodes into plasma. As the electric field at this time, the voltage rising time is 100 μs or less, the electric field strength is 1 to 100 kV / cm, and the frequency is 1 to 1 from the viewpoint of stabilizing the discharge state and performing continuous processing for a long time.
It is preferable to apply a pulse electric field of 00 kHz. Examples of the pulse voltage waveform include, but are not particularly limited to, an impulse type, a square pulse type, a modulation type, and a single-wave pulse type in which a voltage is applied to either the positive or negative polarity side.

【0015】上記パルス立ち上がり時間、電界強度、周
波数を満たすような高速パルス電界を用いることは放電
状態の安定化とガス分解効率の向上に極めて効果的であ
る。なお、ここでいう立ち上がり時間とは、電圧変化が
連続して正である時間を指すものとする。
The use of a high-speed pulse electric field that satisfies the pulse rise time, electric field strength, and frequency is extremely effective in stabilizing the discharge state and improving the gas decomposition efficiency. Here, the rise time refers to a time during which the voltage change is continuously positive.

【0016】また、上記パルス電界におけるパルス継続
時間は、500μs以下であることが好ましい。500
μsを超えると放電状態が安定しにくくなる。より好ま
しくは、3μs〜200μsである。上記パルス継続時
間とは、ON、OFFの繰り返しからなるパルス電界に
おける、連続するON時間を言う。
The pulse duration in the above-mentioned pulse electric field is preferably 500 μs or less. 500
If the time exceeds μs, it becomes difficult to stabilize the discharge state. More preferably, it is 3 μs to 200 μs. The pulse duration refers to a continuous ON time in a pulse electric field formed by repetition of ON and OFF.

【0017】図3に、このようなパルス電界を印加する
際の電源の等価回路図を示す。図3にSWと記されてい
るのはスイッチとして機能する半導体素子である。上記
スイッチとして500ns以下のターンオン時間及びタ
ーンオフ時間を有する半導体素子を用いることにより、
上記のような電界強度が1〜100kV/cmであり、
かつ、パルス立ち上がり時間が100μs以下であるよ
うな高電圧かつ高速のパルス電界を実現することが出来
る。
FIG. 3 shows an equivalent circuit diagram of a power supply when such a pulsed electric field is applied. SW in FIG. 3 is a semiconductor element functioning as a switch. By using a semiconductor device having a turn-on time and a turn-off time of 500 ns or less as the switch,
The electric field strength as described above is 1 to 100 kV / cm,
In addition, a high-voltage and high-speed pulse electric field having a pulse rise time of 100 μs or less can be realized.

【0018】(実施例)酸化チタン(石原産業社製「S
TS−01」)を蒸留水によって希釈することにより酸
化チタン濃度10重量%のゾル溶液を調整した。テトラ
エトキシシラン3.47g、エタノ−ル6.53gを混
合した溶液中に上記ゾル溶液10gを滴下しながら加水
分解を行わせることにより、固形分濃度10%の皮膜形
成用組成物を得た。内径2cm、長さ20cmのガラス
管の内面に皮膜形成用組成物を塗布して110度で1時
間硬化させることにより、光触媒作用体が内面コ−トさ
れたガラス(固体誘電体)管を得た。このガラス管内部
に銅製の棒状電極(径2mm)を位置させ、ガラス管外
周にアルミホイルを巻き付けた。ガラス管内に0.5%
NO/Arガスを100l/分で流通させた状態で、棒
状電極とアルミホイル間に波高値9kV、周波数15k
Hz、パルス立ち上がり時間5μs、パルス幅10μs
のインパルス型波形のパルス電界を印加することによ
り、処理を行った。FT−IRにより処理前後のNO、
NO2 ガスのピ−クを評価したところ、分解率は97.
5%であった。
(Example) Titanium oxide (“S” manufactured by Ishihara Sangyo Co., Ltd.)
TS-01 ") was diluted with distilled water to prepare a sol solution having a titanium oxide concentration of 10% by weight. Hydrolysis was performed while dropping 10 g of the above sol solution into a solution obtained by mixing 3.47 g of tetraethoxysilane and 6.53 g of ethanol to obtain a film-forming composition having a solid content of 10%. A glass (solid dielectric) tube coated with a photocatalyst is coated on the inner surface of a glass tube having an inner diameter of 2 cm and a length of 20 cm by applying the film-forming composition to the inner surface and curing the composition at 110 ° C. for 1 hour. Was. A copper rod-shaped electrode (diameter: 2 mm) was positioned inside the glass tube, and an aluminum foil was wound around the glass tube. 0.5% in glass tube
With the NO / Ar gas flowing at 100 l / min, a peak value of 9 kV and a frequency of 15 k are applied between the rod-shaped electrode and the aluminum foil.
Hz, pulse rise time 5μs, pulse width 10μs
The treatment was performed by applying a pulsed electric field having an impulse type waveform. NO before and after treatment by FT-IR,
When the peak of NO2 gas was evaluated, the decomposition rate was 97.
5%.

【0019】(比較例)酸化チタンによる内面処理を行
っていないガラス管を用いて実施例と同様の処理を行っ
た。同様に評価したところ、分解率は83.6%であ
り、光触媒による効果が明らかになった。
(Comparative Example) The same treatment as in the example was performed using a glass tube that had not been subjected to the inner surface treatment with titanium oxide. As a result of the same evaluation, the decomposition rate was 83.6%, and the effect of the photocatalyst became clear.

【0020】[0020]

【発明の効果】本発明では、対向電極間に光触媒作用体
が設けられている装置中でプラズマ処理を行うことによ
り、プラズマ励起エネルギーを効率的に使って非常に優
れたガス分解処理を可能とする。これによって投入する
電気的エネルギ−を最小限に抑えて実用レベルのガス分
解処理を行うことが出来る。さらに、特定の周波数で立
ち上がりの早い高速パルス電界を用いることにより、よ
り一層放電状態が安定し、高い分解効率で長時間安定し
た処理を行うことが出来る。
According to the present invention, by performing plasma processing in an apparatus in which a photocatalytic substance is provided between the opposed electrodes, it is possible to use a plasma excitation energy efficiently to perform a very excellent gas decomposition processing. I do. As a result, it is possible to perform a gas decomposition process at a practical level while minimizing the electric energy to be supplied. Furthermore, by using a high-speed pulsed electric field having a rapid rise at a specific frequency, the discharge state can be further stabilized, and a stable process can be performed with high decomposition efficiency for a long time.

【0021】[0021]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ガス分解処理装置例の斜視図FIG. 1 is a perspective view of an example of a gas decomposition processing apparatus.

【図2】 ガス分解処理装置における固体誘電体設置例
の説明図
FIG. 2 is an explanatory diagram of an example of setting a solid dielectric in a gas decomposition processing apparatus.

【図3】 パルス電界を発生させる電源の等価回路図FIG. 3 is an equivalent circuit diagram of a power supply that generates a pulse electric field.

【符号の説明】[Explanation of symbols]

1 外部電極 2 内部電極 3 光触媒作用体 4 電源 1 external electrode 2 internal electrode 3 photocatalyst 4 power supply

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 35/02 B01D 53/36 ZABJ 102C ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 35/02 B01D 53/36 ZABJ 102C

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 対向電極間に電界を印加することにより
該対向電極間を流通している気体をプラズマ励起させて
ガス分解処理を行う方法であって、該対向電極間に光触
媒作用体が設けられていることを特徴とするガス分解処
理方法。
1. A method for performing gas decomposition treatment by applying an electric field between opposed electrodes to excite a gas flowing between the opposed electrodes into plasma, wherein a photocatalytic substance is provided between the opposed electrodes. A gas decomposition treatment method.
【請求項2】 光触媒作用体が、酸化チタンを含有して
なるものであることを特徴とする請求項1に記載のガス
分解処理方法。
2. The gas decomposition treatment method according to claim 1, wherein the photocatalyst comprises titanium oxide.
【請求項3】 光触媒作用体が、対向電極表面に層状に
形成されてなることを特徴とする請求項1又は2に記載
のガス分解処理方法。
3. The gas decomposition treatment method according to claim 1, wherein the photocatalyst is formed in a layer on the surface of the counter electrode.
【請求項4】 対向電極間に、電圧立ち上がり時間が1
00μs以下、電界強度が1〜100kV/cm、周波
数が1〜100kHzであるパルス電界を印加すること
を特徴とする請求項1から3のいずれかに記載のガス分
解処理方法。
4. A voltage rising time between the opposing electrodes is 1
4. The gas decomposition treatment method according to claim 1, wherein a pulse electric field having an electric field intensity of 1 to 100 kV / cm and a frequency of 1 to 100 kHz is applied for 00 [mu] s or less.
JP9341542A 1997-12-11 1997-12-11 Gas decomposing method Withdrawn JPH11169645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9341542A JPH11169645A (en) 1997-12-11 1997-12-11 Gas decomposing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9341542A JPH11169645A (en) 1997-12-11 1997-12-11 Gas decomposing method

Publications (1)

Publication Number Publication Date
JPH11169645A true JPH11169645A (en) 1999-06-29

Family

ID=18346883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9341542A Withdrawn JPH11169645A (en) 1997-12-11 1997-12-11 Gas decomposing method

Country Status (1)

Country Link
JP (1) JPH11169645A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068153A1 (en) * 1999-05-06 2000-11-16 Japan Science And Technology Corporation Apparatus for oxidatively destructing trace injurious substance
WO2001019515A1 (en) * 1999-09-09 2001-03-22 Hitachi Zosen Corporation Catalyst with discharge electrode or carrier
JP2003080034A (en) * 2001-09-10 2003-03-18 Mitsubishi Heavy Ind Ltd Oxidation apparatus and method for maintaining the same
EP1669331A1 (en) * 2004-12-09 2006-06-14 Flabeg GmbH & Co. KG Process for production of an anti-fogging element and device for activation of this element
JP2017096927A (en) * 2007-12-12 2017-06-01 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インク.University Of Florida Reseatch Foundation,Inc. Electric-field enhanced performance in catalysis and solid-state devices
CN112316679A (en) * 2020-10-20 2021-02-05 中国科学院地球环境研究所 Low-temperature plasma VOCs purification device and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068153A1 (en) * 1999-05-06 2000-11-16 Japan Science And Technology Corporation Apparatus for oxidatively destructing trace injurious substance
US6896790B1 (en) 1999-05-06 2005-05-24 Japan Science & Technology Corporation Apparatus for oxidatively destructing trace injurious substance
WO2001019515A1 (en) * 1999-09-09 2001-03-22 Hitachi Zosen Corporation Catalyst with discharge electrode or carrier
JP2003080034A (en) * 2001-09-10 2003-03-18 Mitsubishi Heavy Ind Ltd Oxidation apparatus and method for maintaining the same
EP1669331A1 (en) * 2004-12-09 2006-06-14 Flabeg GmbH & Co. KG Process for production of an anti-fogging element and device for activation of this element
JP2017096927A (en) * 2007-12-12 2017-06-01 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インク.University Of Florida Reseatch Foundation,Inc. Electric-field enhanced performance in catalysis and solid-state devices
CN112316679A (en) * 2020-10-20 2021-02-05 中国科学院地球环境研究所 Low-temperature plasma VOCs purification device and method
CN112316679B (en) * 2020-10-20 2022-02-25 中国科学院地球环境研究所 Low-temperature plasma VOCs purification device and method

Similar Documents

Publication Publication Date Title
KR100522515B1 (en) Discharge electrode and photonic catalyst reactor
EP2072471B1 (en) Sterilization method, sterilizer and air conditioner, hand drier, and humidifier using the sterilizer
EP1945330B1 (en) Combined treatment of gaseous effluents by cold plasma and photocatalysis
US6767434B1 (en) Method of treating substance and apparatus for carrying out the same
JPH11169645A (en) Gas decomposing method
JPH11156145A (en) Gas decomposition disposal method and apparatus for the same
KR101407444B1 (en) Decomposition/elimination method using a photocatalytic material
JP3504165B2 (en) Photocatalytic reaction device and photocatalytic reaction method
JP2006187766A (en) Gas treatment apparatus and gas treatment cartridge
CA2506787C (en) Industrial equipment for environmental protection by random streamer discharge plasmas and its applications
JP2001276561A (en) Discharge apparatus equipped with honeycomb structure
JP4253480B2 (en) Photocatalytic reactor
KR100472751B1 (en) Mixture and one-body type purification apparatus with dielectric barrier structure
JP2000300650A (en) Photocatalyst type air purifying device
JP3389187B2 (en) Film type photocatalyst
KR100654277B1 (en) Plasma discharge device
KR100338253B1 (en) Air cleaner using photocatalysis
JP2002273208A (en) Discharge electrode formed by supporting photocatalyst, discharge reaction apparatus using the same and gas decomposition method using discharge reaction apparatus
RU2071816C1 (en) Method of cleaning air from organic impurities
JP2000195645A (en) Discharging electrode and ozonizer with it
JP2002361037A (en) Method and apparatus for decomposing n2o gas
JP3582379B2 (en) Discharge gas treatment method
JPH0699030A (en) Method for denitrifying low concentration nitrogen oxide containing gas
KR100643753B1 (en) Plasma discharge device and method for manufacturing thereof
JP2006164592A (en) Ion generating element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051130

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20051227