JPH11158812A - Hollow floor slab bridge and construction thereof - Google Patents

Hollow floor slab bridge and construction thereof

Info

Publication number
JPH11158812A
JPH11158812A JP9330268A JP33026897A JPH11158812A JP H11158812 A JPH11158812 A JP H11158812A JP 9330268 A JP9330268 A JP 9330268A JP 33026897 A JP33026897 A JP 33026897A JP H11158812 A JPH11158812 A JP H11158812A
Authority
JP
Japan
Prior art keywords
girder
cast
place concrete
bridge
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9330268A
Other languages
Japanese (ja)
Other versions
JP3396610B2 (en
Inventor
Akihisa Imamura
晃久 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DPS Bridge Works Co Ltd
Original Assignee
DPS Bridge Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DPS Bridge Works Co Ltd filed Critical DPS Bridge Works Co Ltd
Priority to JP33026897A priority Critical patent/JP3396610B2/en
Publication of JPH11158812A publication Critical patent/JPH11158812A/en
Application granted granted Critical
Publication of JP3396610B2 publication Critical patent/JP3396610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To prolong a span, and to simplify the temporary construction by dividing one span into three blocks, and forming an intermediate block with the composite structure of the cast-in-place concrete for connecting beam members to each other, forming blocks in both sides of the intermediate block of the cast-in-place concrete, and integrating the whole blocks by a PC cable. SOLUTION: Among bridge beam in one span divided into three blocks, an intermediate block is formed of plural precast concrete beam members 1 prestressed and the cast-in place concrete, and both side blocks are formed of the cast-in place concrete 6. Plural beam members 1 are stretched in the intermediate blocks of the one span with a space in the cross direction, and the beam members 1 adjacent to each other in the cross direction are bonded by the cast-in-place concrete. The adjacent beam members 1 are bonded to each other at upper ends and lower ends thereof, and the intermediate block of the bridge beam is formed so as to have a chained cross section over the whole area. A PC cable 7 is arranged along he tensile side of the bridge beam, and stretched over the full length of the bridge beams.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は鉄筋コンクリート
造の中空床版橋及びその構築方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reinforced concrete hollow slab bridge and a method for constructing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】中空床
版橋は中空断面であることにより橋桁重量が軽量で、躯
体コストが抑えられる他、プレストレスを導入すること
で支間を大きく取れる利点があるが、従来はプレキャス
トコンクリート製の桁部材とその桁部材を互いに接合す
る場所打ちコンクリートの合成構造で、もしくは全長に
亘って場所打ちコンクリート造で構築されるため、支間
の長大化に限界がある。
2. Description of the Related Art Hollow floor slab bridges have the advantage that the bridge girder has a hollow cross-section, so that the bridge girder weight is light, the skeleton cost can be reduced, and the span can be increased by introducing prestress. Conventionally, however, there is a limit to the length of the span because it is constructed by a precast concrete girder member and a cast-in-place concrete composite structure that joins the girder members to each other, or a cast-in-place concrete structure over the entire length. .

【0003】合成構造の場合、場所打ちコンクリートは
桁部材をその幅方向に接合することから、支間は桁部材
の長さで決まるが、桁部材の長さの限界は運搬の都合か
ら20〜25m前後とされるため、支間はそれ以下に制限さ
れる。
In the case of a composite structure, cast-in-place concrete joins the girder members in the width direction, so that the span is determined by the length of the girder members, but the length of the girder members is limited to 20 to 25 m for convenience of transportation. Because it is before and after, the span is limited to less than that.

【0004】全長が場所打ちコンクリート造の場合に
は、支間を拡大する上での制約はないが、支間の全長に
亘って支保工を設置する必要があるため、仮設工事が大
規模化し、工期が長期化する不利がある。
In the case of cast-in-place concrete having a full length, there is no restriction in expanding the span, but since it is necessary to install a shoring along the entire span of the span, temporary construction becomes large-scale and the construction period is shortened. However, there is a disadvantage of prolonged.

【0005】この発明は上記背景より、支間の長大化と
仮設工事の簡素化を図る中空床版橋とその構築方法を提
案するものである。
In view of the above, the present invention proposes a hollow slab bridge and a method of constructing the same, which can increase the length of a span and simplify temporary construction work.

【0006】[0006]

【課題を解決するための手段】本発明では一支間を三区
間に区分し、その内の中間区間を、プレキャストコンク
リート製の桁部材と桁部材を互いに接合する場所打ちコ
ンクリートの合成構造で構築し、中間区間の両側の区間
を場所打ちコンクリートで構築し、全区間をPCケーブ
ルで一体化することにより支間の長大化を可能にすると
共に、仮設工事を簡素化する。
According to the present invention, one span is divided into three sections, and an intermediate section is constructed by a precast concrete girder member and a cast-in-place concrete composite structure for joining the girder members to each other. By constructing the sections on both sides of the intermediate section with cast-in-place concrete and integrating the entire section with PC cables, it is possible to lengthen the spans and simplify temporary construction work.

【0007】中間区間は、予めプレストレスが導入さ
れ、幅方向に間隔をおいて架設される複数本のプレキャ
ストコンクリート製の桁部材と、幅方向に隣接する桁部
材を互いに接合する場所打ちコンクリートから中空断面
で構築され、中間区間の両側の区間は場所打ちコンクリ
ートから中空断面で構築される。
[0007] The intermediate section is made of a plurality of precast concrete girder members which are pre-stressed in advance and are erected at intervals in the width direction and cast-in-place concrete for joining widthwise adjacent girder members to each other. It is constructed with a hollow section, and the sections on both sides of the intermediate section are constructed with a hollow section from cast-in-place concrete.

【0008】PCケーブルは両側の区間と中間区間に亘
って架設され、橋桁の全長にプレストレスが導入され
る。橋桁が請求項2に記載の、少なくとも二径間に跨る
連続桁である場合もPCケーブルは橋桁の全長に架設さ
れる。
[0008] The PC cable is laid over the section on both sides and the intermediate section, and prestress is introduced into the entire length of the bridge girder. In the case where the bridge girder is a continuous girder spanning at least two spans according to claim 2, the PC cable is also laid over the entire length of the bridge girder.

【0009】橋桁が桁部材と場所打ちコンクリートから
なる従来の合成構造の場合、前記の通り、支間は最大で
桁部材の製作上の限界の長さ程度に留まるが、本発明で
は合成構造の中間区間が、その両側の区間の場所打ちコ
ンクリートとPCケーブルによって支間方向に一体化さ
れるため、桁部材の長さの二倍程度の支間を実現するこ
とが可能になる。
In the case of the conventional composite structure in which the bridge girder is composed of a girder member and cast-in-place concrete, as described above, the span is at most about the limit length in the production of the girder member. Since the section is integrated in the span direction by the cast-in-place concrete and the PC cable in the sections on both sides thereof, it is possible to realize a span of about twice the length of the girder member.

【0010】一支間の内の中間区間に、予めプレストレ
スが導入された桁部材を用いることで、プレストレスの
導入がない桁部材を用いる場合より中間区間の桁高が抑
えられる。その結果、全長が合成構造の場合や場所打ち
コンクリートの場合より橋桁の総重量が軽量化され、そ
の面からも支間の長大化が可能になり、従来構造と同一
の支間にした場合には軽量化により躯体コストの低減が
図られる。桁部材の桁高は桁部材のコンクリートに高強
度コンクリートを使用することで一層低減できる。
By using a girder member in which prestress is introduced in advance in the middle section of one span, the height of the girder in the middle section is suppressed as compared with a case where a girder member without introduction of prestress is used. As a result, the total weight of the bridge girder is lighter than in the case of a composite structure or cast-in-place concrete, and the length of the span can be increased from that aspect. This will reduce the frame cost. The girder height of the girder member can be further reduced by using high-strength concrete for the girder member concrete.

【0011】また中間区間では隣接する桁部材を接合す
る場所打ちコンクリートを打設するのみで構築が行われ
るため、中間区間の下方には大規模な支保工を設置する
必要がなくなり、仮設工事が大幅に簡素化され、工期の
短縮が図られる。
In the intermediate section, since construction is performed only by casting cast-in-place concrete for joining adjacent girder members, it is not necessary to install a large-scale shoring below the intermediate section, and temporary construction work is not required. It is greatly simplified, and the construction period is shortened.

【0012】中間区間の下方に大規模な支保工を設置す
る必要がないことから、桁下の空間に支保工を設置でき
ない場所においても橋桁を架設することが可能になる橋
桁が単純桁の場合は支間の中間部における曲げモーメン
トが大きくなる関係から中間区間の桁高の低減に限界が
あるが、請求項2に記載のように橋桁が少なくとも二径
間に跨る連続桁である場合には支間の中間部における曲
げモーメントが小さくなるため、特に中間区間の桁高の
低減が可能になる。
Since it is not necessary to install a large-scale girder below the intermediate section, a bridge girder can be installed even in a place where a girder cannot be installed in the space below the girder. There is a limit to the reduction of the girder height in the middle section because the bending moment in the middle part of the span increases, but if the bridge girder is a continuous girder spanning at least two spans as described in claim 2, , The bending moment in the middle portion of the first portion becomes small, and therefore, the girder height in the middle section can be reduced.

【0013】連続桁の場合、中間区間の桁高の低減効果
により、架設を妨げる制約のある場所においても架設が
可能になる他、立面上、軽快な印象を与える外観を持つ
意匠的効果も生まれる。
In the case of a continuous girder, the effect of reducing the girder height in the middle section enables the eaves to be installed even in a place where there is a restriction that hinders the eaves construction. to be born.

【0014】また請求項2の場合、橋桁が連続する中間
支点を含む区間が場所打ちコンクリートであることで、
この中間支点を含む区間においては曲げモーメントに応
じて支間方向に断面を変化させることができるため、全
長が合成構造の場合より合理的な構造とすることができ
る。
In the case of claim 2, the section including the intermediate fulcrum where the bridge girder is continuous is cast-in-place concrete,
In the section including the intermediate fulcrum, the cross section can be changed in the span direction in accordance with the bending moment, so that the overall length can be more rational than that of the composite structure.

【0015】橋桁の構築は請求項3に記載の通り、中間
区間に、予めプレストレスが導入された複数本のプレキ
ャストコンクリート製の桁部材を、その幅方向に間隔を
おいて架設し、その幅方向両側に場所打ちコンクリート
を打設して幅方向に隣接する桁部材を互いに接合する一
方、中間区間の両側の区間に場所打ちコンクリートを打
設すると共に、両側の区間と中間区間に亘ってPCケー
ブルを架設した後、PCケーブルを緊張して橋桁の全長
にプレストレスを導入することにより行われる。
In the construction of the bridge girder, a plurality of precast concrete girder members in which prestress has been introduced in advance are erected in the intermediate section at intervals in the width direction, and the width of the girder member is set in the middle section. Cast-in-place concrete on both sides in the direction to join the beam members adjacent in the width direction to each other, while cast-in-place concrete on both sides of the intermediate section, and PC over both sections and the intermediate section. After the cable is laid, the PC cable is tensioned to introduce prestress into the entire length of the bridge girder.

【0016】[0016]

【発明の実施の形態】請求項1及び請求項2の中空床版
橋は図1,図2に示すように三区間に区分された一支間
の橋桁の内、中間区間が、プレストレスが導入された複
数本のプレキャストコンクリート製の桁部材1と場所打
ちコンクリート5から構築され、両側の区間が場所打ち
コンクリート6で構築されるものである。図1は単純桁
の場合、図2は二径間の連続桁の場合を示す。
BEST MODE FOR CARRYING OUT THE INVENTION In the hollow floor slab bridge according to the first and second aspects, as shown in FIGS. 1 and 2, a prestress is introduced into an intermediate section of a bridge girder divided into three sections. A plurality of precast concrete girder members 1 and cast-in-place concrete 5 are provided, and sections on both sides are constructed of cast-in-place concrete 6. 1 shows the case of a simple girder, and FIG. 2 shows the case of a continuous girder between two spans.

【0017】桁部材1は図3に示すようにI形やT形,
あるいはH形断面で製作され、引張側に予めプレストレ
スを導入するためのPC鋼材2が挿通し、その位置を除
く引張側の位置に、後から橋桁全長にプレストレスを導
入するPCケーブル7を挿通するためのシース3が配置
される。桁部材1の上端と下端からは場所打ちコンクリ
ート5との一体化のための鉄筋4が幅方向両側に突出す
る。桁部材1の製作時にプレストレスを導入する方法は
プレテンションとポストテンションのいずれでもよい。
As shown in FIG. 3, the girder member 1 has an I shape, a T shape,
Alternatively, a PC cable 2 that is manufactured with an H-shaped cross-section and in which a PC steel material 2 for introducing pre-stress in advance on the tensile side is inserted and a pre-stress is introduced to the entire length of the bridge girder at a position on the tensile side excluding that position. A sheath 3 for insertion is provided. Reinforcing bars 4 for integration with cast-in-place concrete 5 project from both ends in the width direction from the upper and lower ends of the girder member 1. The method of introducing prestress at the time of manufacturing the girder member 1 may be either pretension or posttension.

【0018】図2のx−x線断面図である図4に示すよ
うに複数本の桁部材1は幅方向に間隔をおいて一支間の
中間区間に架設され、幅方向に隣接する桁部材1,1は
場所打ちコンクリート5によって互いに接合され、橋桁
の中間区間は隣接する桁部材1,1間に中空部が形成さ
れる中空断面として構築される。
As shown in FIG. 4, which is a cross-sectional view taken along the line xx of FIG. 2, a plurality of beam members 1 are installed in an intermediate section between the spans at intervals in the width direction, and are adjacent to each other in the width direction. 1, 1 are joined together by cast-in-place concrete 5 and the intermediate section of the bridge girder is constructed as a hollow section in which a hollow is formed between adjacent girder members 1, 1.

【0019】隣接する桁部材1,1は上端と下端におい
て互いに接合され、橋桁の中間区間は全成に亘って閉鎖
断面をすることで、桁部材1,1同士の拘束効果が上が
り、桁部材1の幅方向のせん断剛性と曲げ剛性を保有す
るため、桁部材1の幅方向には格別な緊結を必要としな
い。
The adjacent girder members 1 and 1 are joined to each other at the upper end and the lower end, and the intermediate section of the bridge girder has a closed cross section throughout, thereby increasing the restraining effect between the girder members 1 and 1. Since the shear strength and the bending rigidity in the width direction of the beam member 1 are maintained, no special tightening is required in the width direction of the spar member 1.

【0020】図2のy−y線断面図である図5,z−z
線断面図である図6に示すように中間区間の両側の区間
は中間区間の中空部に、中空部が連続する中空断面とし
て場所打ちコンクリート6によって構築される。連続桁
の場合、図2に示すように端部支点側の区間の断面は同
一のまま支間方向に連続するが、橋桁が連続する中間支
点を含む区間の断面は曲げモーメントに応じて支間方向
に変化し、中間支点上で桁高が最大になる。
FIG. 5 is a sectional view taken along the line y--y of FIG.
As shown in FIG. 6 which is a line sectional view, the sections on both sides of the intermediate section are constructed of cast-in-place concrete 6 as a hollow section in which the hollow section is continuous in the hollow section of the intermediate section. In the case of a continuous girder, as shown in FIG. 2, the section of the section on the end fulcrum side is continuous in the span direction with the same, but the section of the section including the intermediate fulcrum where the bridge girder is continuous in the span direction according to the bending moment. Will change and the girder height will be maximum on the intermediate fulcrum.

【0021】PCケーブル7は図1,図2に示すように
橋桁の引張側に沿って配置され、橋桁の全長に架設され
る。連続桁の場合は全径間に亘って連続して架設され
る。
The PC cable 7 is disposed along the tension side of the bridge girder as shown in FIGS. 1 and 2, and is installed over the entire length of the bridge girder. In the case of a continuous girder, it is erected continuously over the entire span.

【0022】図2に示す二径間連続桁の橋桁を構築する
施工手順を図7〜図11に示す。
The construction procedure for constructing the bridge girder of the continuous span girder shown in FIG. 2 is shown in FIGS.

【0023】橋桁の構築は、場所打ちコンクリート6の
打設区間の下に支保工8を組み立て(図7)、一支間の
中間区間である支保工8,8の端部間に桁部材1を架設
し(図8)、中間区間の両側の区間である各支保工8上
に配筋し、場所打ちコンクリート6を打設する一方(図
9)、幅方向に隣接する桁部材1,1を場所打ちコンク
リート5によって互いに接合すると共に(図10)、全区
間に亘ってPCケーブル7を挿通してこれを緊張し(図
11)、桁部材1と場所打ちコンクリート6にプレストレ
スを導入することにより行われる。
The bridge girder is constructed by assembling the shoring 8 below the casting section of the cast-in-place concrete 6 (FIG. 7), and connecting the girder member 1 between the ends of the shoring 8, 8 which is an intermediate section between the spans. While being erected (FIG. 8), reinforcing bars are arranged on each shoring 8, which is a section on both sides of the intermediate section, and cast-in-place concrete 6 is cast (FIG. 9), while the girder members 1, 1 adjacent in the width direction are attached. While being joined to each other by the cast-in-place concrete 5 (FIG. 10), the PC cable 7 is inserted and tensioned over the entire section (FIG. 10).
11), by introducing prestress into the girder member 1 and the cast-in-place concrete 6.

【0024】支保工8上への配筋時には桁部材1に配置
されているシース3に連続し、PCケーブル7が挿通す
るシースが配置される。PCケーブル7の挿通の時期は
支保工8上への場所打ちコンクリート6の打設の前後を
問わないが、PCケーブル7の緊張は場所打ちコンクリ
ート6,5の硬化を待って行われる。
At the time of arranging reinforcing bars on the support 8, a sheath which is continuous with the sheath 3 arranged on the beam member 1 and through which the PC cable 7 is inserted is arranged. The PC cable 7 may be inserted before or after the casting of the cast-in-place concrete 6 on the support 8, but the tension of the PC cable 7 is performed after the cast-in-place concrete 6 or 5 is hardened.

【0025】図12〜図15に桁部材1,1の接合の要領を
示す。
FIGS. 12 to 15 show the manner of joining the beam members 1 and 1. FIG.

【0026】桁部材1,1の接合は、隣接する桁部材
1,1の下端間に下床版型枠9を跨設し(図12)、その
上に場所打ちコンクリート5を打設した後(図13)、隣
接する桁部材1,1の上端間に上床版型枠10を跨設する
と共に、橋桁の幅方向端部に位置する桁部材1の外側に
張出型枠11を設置し(図14)、両型枠10,11上に場所打
ちコンクリート5を打設することにより行われる。
The joining of the girder members 1 and 1 is performed by laying a lower floor slab form 9 between the lower ends of the adjacent girder members 1 and 1 (FIG. 12), and after casting the cast-in-place concrete 5 thereon. (FIG. 13), the upper deck slab form 10 is laid between the upper ends of the adjacent spar members 1, 1, and the overhang form 11 is installed outside the spar member 1 located at the width direction end of the bridge girder. (FIG. 14), by casting cast-in-place concrete 5 on both formwork 10,11.

【0027】下床版型枠9の設置から下床版型枠9上へ
の場所打ちコンクリート5の打設までの作業は桁部材1
から懸垂する足場12を利用して行われる。
The work from installation of the lower slab form 9 to casting of the cast-in-place concrete 5 on the lower slab form 9 is performed by the girder member 1.
It is performed using the scaffold 12 suspended from the pier.

【0028】[0028]

【発明の効果】一支間を三区間に区分し、その内の中間
区間を、プレキャストコンクリート製の桁部材と桁部材
を互いに接合する場所打ちコンクリートの合成構造で構
築し、中間区間の両側の区間を場所打ちコンクリートで
構築し、全区間をPCケーブルで一体化した構造である
ため、従来の桁部材と場所打ちコンクリートからなる合
成構造の場合の支間拡大上の制限がなくなり、従来構造
より二倍程度の支間を実現することが可能になる。
According to the present invention, a span is divided into three sections, and an intermediate section is constructed by a precast concrete girder member and a cast-in-place concrete composite structure for joining the girder members to each other. Is constructed with cast-in-place concrete, and the entire section is integrated with PC cables, so there is no limit on the expansion of spans in the case of a composite structure consisting of a conventional girder member and cast-in-place concrete, and is twice as large as the conventional structure It is possible to realize a certain span.

【0029】特に一支間の内の中間区間に、予めプレス
トレスが導入された桁部材を用いることで、プレストレ
スの導入がない桁部材を用いる場合より中間区間の桁高
が抑えられるため、全長が合成構造の場合や場所打ちコ
ンクリートの場合より橋桁の総重量が軽量化され、その
面からも支間の長大化が可能になり、従来構造と同一の
支間にした場合には軽量化により躯体コストの低減が図
られる。
In particular, by using a girder member in which prestress has been introduced in advance in the middle section of the span, the height of the girder in the middle section can be suppressed as compared with a case where a girder member without introduction of prestress is used. The total weight of the bridge girder is lighter than that of the composite structure or cast-in-place concrete, and the length of the span can be increased from that aspect. Is reduced.

【0030】また中間区間では隣接する桁部材を接合す
る場所打ちコンクリートを打設するのみで構築が行われ
るため、中間区間の下方には大規模な支保工を設置する
必要がなくなり、仮設工事が大幅に簡素化され、工期の
短縮が図られる。
In the intermediate section, construction is performed only by casting cast-in-place concrete for joining adjacent girder members. Therefore, it is not necessary to install a large-scale shoring below the intermediate section, and temporary construction work is not required. It is greatly simplified, and the construction period is shortened.

【0031】中間区間の下方に大規模な支保工を設置す
る必要がないことで、桁下空間に支保工を設置できない
場所においても橋桁を架設することが可能になる。
Since it is not necessary to install a large-scale shoring below the intermediate section, a bridge girder can be erected even in a place where a shoring cannot be installed under the girder.

【0032】橋桁が少なくとも二径間に跨る連続桁であ
る請求項2では支間の中間部における曲げモーメントが
小さくなるため、特に中間区間の桁高を低減する効果が
高く、その効果によって架設を妨げる制約のある場所に
おいても架設が可能になる他、立面上、軽快な外観を持
つ意匠的効果も得られる。
According to the second aspect, the bridge girder is a continuous girder spanning at least two spans, since the bending moment at the intermediate portion between the supports is reduced, the effect of reducing the height of the girder particularly at the intermediate section is high, and the effect hinders the erection. In addition to being able to be erected in places with restrictions, it is possible to obtain a design effect with a light appearance on the elevation.

【0033】また請求項2の場合、橋桁が連続する中間
支点を含む区間が場所打ちコンクリートであることで、
曲げモーメントに応じて断面を変化させることができる
ため、全長が合成構造の場合より合理的な構造とするこ
とができる。
In the case of claim 2, the section including the intermediate fulcrum where the bridge girder is continuous is cast-in-place concrete,
Since the cross section can be changed according to the bending moment, the overall length can be more rational than in the case of the composite structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】単純桁の橋桁を示した立面図である。FIG. 1 is an elevation view showing a simple girder bridge girder.

【図2】連続桁の橋桁を示した立面図である。FIG. 2 is an elevation view showing a continuous girder bridge girder.

【図3】桁部材の製作例を示した断面図である。FIG. 3 is a cross-sectional view showing an example of manufacturing a girder member.

【図4】図2のx−x線断面図である。FIG. 4 is a sectional view taken along line xx of FIG. 2;

【図5】図2のy−y線断面図である。FIG. 5 is a sectional view taken along line yy of FIG. 2;

【図6】図2のz−z線断面図である。FIG. 6 is a sectional view taken along the line zz of FIG. 2;

【図7】支保工を組み立てた様子を示した立面図であ
る。
FIG. 7 is an elevational view showing a state where the shoring is assembled.

【図8】桁部材を架設した様子を示した立面図である。FIG. 8 is an elevational view showing a state where a girder member is erected.

【図9】支保工上に場所打ちコンクリートを打設した様
子を示した立面図である。
FIG. 9 is an elevational view showing a state in which cast-in-place concrete is cast on a shoring.

【図10】桁部材を接合した様子を示した立面図であ
る。
FIG. 10 is an elevation view showing a state where the beam members are joined.

【図11】PCケーブルを挿通し、緊張した様子を示し
た立面図である。
FIG. 11 is an elevational view showing a state in which a PC cable is inserted and tensioned.

【図12】桁部材の下端間に下床版型枠を跨設した様子
を示した断面図である。
FIG. 12 is a cross-sectional view showing a state in which a lower-floor formwork is straddled between lower ends of the beam members.

【図13】下床版型枠上に場所打ちコンクリートを打設
した様子を示した断面図である。
FIG. 13 is a cross-sectional view showing a state where cast-in-place concrete is cast on the lower floor slab formwork.

【図14】桁部材の上端間に上床版型枠を跨設した様子
を示した断面図である。
FIG. 14 is a cross-sectional view showing a state in which an upper floor slab form is straddled between upper ends of the girder members.

【図15】上床版型枠上に場所打ちコンクリートを打設
した様子を示した断面図である。
FIG. 15 is a cross-sectional view showing a state in which cast-in-place concrete is cast on the upper floor slab formwork.

【符号の説明】[Explanation of symbols]

1……桁部材、2……PC鋼材、3……シース、4……
鉄筋、5……場所打ちコンクリート、6……場所打ちコ
ンクリート、7……PCケーブル、8……支保工、9…
…下床版型枠、10……上床版型枠、11……張出型枠、12
……足場。
1 ... girder member, 2 ... PC steel, 3 ... sheath, 4 ...
Reinforcing bars, 5 Cast-in-place concrete, 6 Cast-in-place concrete, 7 PC cable, 8 Shoring, 9
… Lower formwork, 10 …… Upper formwork, 11… Overhang formwork, 12
……scaffold.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 三区間に区分された一支間の橋桁の内、
中間区間が、予めプレストレスが導入され、幅方向に間
隔をおいて架設される複数本のプレキャストコンクリー
ト製の桁部材と、幅方向に隣接する桁部材を互いに接合
する場所打ちコンクリートから中空断面で構築され、中
間区間の両側の区間が場所打ちコンクリートから中空断
面で構築され、両側の区間と中間区間に亘ってPCケー
ブルが架設され、橋桁の全長にプレストレスが導入され
ている中空床版橋。
Claims: 1. A bridge girder between one branch divided into three sections,
In the middle section, prestress is introduced in advance, and a plurality of precast concrete girder members that are installed at intervals in the width direction and cast-in-place concrete that joins adjacent girder members in the width direction with a hollow cross section Hollow floor slab bridge with built-in, hollow sections made of cast-in-place concrete on both sides of the middle section, PC cables laid across both sections and the middle section, and prestressing introduced into the entire length of the bridge girder .
【請求項2】 橋桁は少なくとも二径間に跨る連続桁で
ある請求項1記載の中空床版橋。
2. The bridge according to claim 1, wherein the bridge girder is a continuous girder spanning at least two spans.
【請求項3】 三区間に区分された一支間の橋桁の内、
中間区間に、予めプレストレスが導入された複数本のプ
レキャストコンクリート製の桁部材を、その幅方向に間
隔をおいて架設し、その幅方向両側に場所打ちコンクリ
ートを打設して幅方向に隣接する桁部材を互いに接合す
る一方、中間区間の両側の区間に場所打ちコンクリート
を打設すると共に、両側の区間と中間区間に亘ってPC
ケーブルを架設した後、PCケーブルを緊張し、橋桁の
全長にプレストレスを導入して請求項1,もしくは請求
項2記載の中空床版橋を構築する中空床版橋の構築方
法。
3. A bridge girder between one branch divided into three sections,
In the middle section, a plurality of precast concrete girder members in which prestress has been introduced in advance are installed at intervals in the width direction, and cast-in-place concrete is cast on both sides in the width direction to adjoin in the width direction. While the girder members are joined to each other, cast-in-place concrete is poured into the sections on both sides of the intermediate section, and the PC is spread over the sections on both sides and the intermediate section.
3. The method of constructing a hollow slab bridge according to claim 1, wherein the PC cable is tensioned after the cable is laid, and prestress is introduced into the entire length of the bridge girder.
JP33026897A 1997-12-01 1997-12-01 Hollow slab bridge and method of construction Expired - Lifetime JP3396610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33026897A JP3396610B2 (en) 1997-12-01 1997-12-01 Hollow slab bridge and method of construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33026897A JP3396610B2 (en) 1997-12-01 1997-12-01 Hollow slab bridge and method of construction

Publications (2)

Publication Number Publication Date
JPH11158812A true JPH11158812A (en) 1999-06-15
JP3396610B2 JP3396610B2 (en) 2003-04-14

Family

ID=18230754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33026897A Expired - Lifetime JP3396610B2 (en) 1997-12-01 1997-12-01 Hollow slab bridge and method of construction

Country Status (1)

Country Link
JP (1) JP3396610B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040012290A (en) * 2002-08-02 2004-02-11 삼성물산 주식회사 shoring structure using prestressed retaining wall and building construction method using the same
WO2004059089A1 (en) * 2002-12-30 2004-07-15 Koo, Min Se Prestressed composite girder, continuous prestressed composite girder structure and methods of fabricating and connecting the same
JP2006348656A (en) * 2005-06-17 2006-12-28 Taisei Corp Girder structure and its construction method
JP2007211552A (en) * 2006-02-13 2007-08-23 Sumitomo Mitsui Construction Co Ltd Continuous viaduct
CN101935983A (en) * 2010-08-27 2011-01-05 郑州大学 Construction method for assembling integral hollow slab bridge
CN103898838A (en) * 2014-04-09 2014-07-02 中交隧道工程局有限公司 Temporary prestressed steel system of No.0 box girder
CN105648911A (en) * 2014-11-25 2016-06-08 中铁二十局集团有限公司 Concrete attached type prestress truss support for cast-in-place beam, cover beam and straining beam in bridge construction
CN106049284A (en) * 2016-06-06 2016-10-26 浙江交工路桥建设有限公司 Hogging moment steel strand bundle penetrating tool and use method thereof
CN106284094A (en) * 2016-09-18 2017-01-04 中铁二十局集团有限公司 A kind of bridge construction concrete adhesion type prestressed girder support
JP2020509274A (en) * 2017-02-24 2020-03-26 パークド リミテッド Building structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425110A (en) * 2011-08-31 2012-04-25 重庆新科建设工程有限公司 Cast-in-situ concrete construction method for full section of urban overpass box girder

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040012290A (en) * 2002-08-02 2004-02-11 삼성물산 주식회사 shoring structure using prestressed retaining wall and building construction method using the same
WO2004059089A1 (en) * 2002-12-30 2004-07-15 Koo, Min Se Prestressed composite girder, continuous prestressed composite girder structure and methods of fabricating and connecting the same
JP2006348656A (en) * 2005-06-17 2006-12-28 Taisei Corp Girder structure and its construction method
JP4527011B2 (en) * 2005-06-17 2010-08-18 大成建設株式会社 Girder structure and its construction method
JP2007211552A (en) * 2006-02-13 2007-08-23 Sumitomo Mitsui Construction Co Ltd Continuous viaduct
JP4607785B2 (en) * 2006-02-13 2011-01-05 三井住友建設株式会社 Continuous viaduct
CN101935983A (en) * 2010-08-27 2011-01-05 郑州大学 Construction method for assembling integral hollow slab bridge
CN103898838A (en) * 2014-04-09 2014-07-02 中交隧道工程局有限公司 Temporary prestressed steel system of No.0 box girder
CN105648911A (en) * 2014-11-25 2016-06-08 中铁二十局集团有限公司 Concrete attached type prestress truss support for cast-in-place beam, cover beam and straining beam in bridge construction
CN105648911B (en) * 2014-11-25 2017-11-24 中铁二十一局集团有限公司 Bridge construction Cast-in-situ Beam, bent cap, binder concrete adhesion type prestressed girder support
CN106049284A (en) * 2016-06-06 2016-10-26 浙江交工路桥建设有限公司 Hogging moment steel strand bundle penetrating tool and use method thereof
CN106049284B (en) * 2016-06-06 2017-10-17 浙江交工路桥建设有限公司 Hogging moment steel stranded wire penetrating adapter instrument and its application method
CN106284094A (en) * 2016-09-18 2017-01-04 中铁二十局集团有限公司 A kind of bridge construction concrete adhesion type prestressed girder support
JP2020509274A (en) * 2017-02-24 2020-03-26 パークド リミテッド Building structure

Also Published As

Publication number Publication date
JP3396610B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
US5305572A (en) Long span post-tensioned steel/concrete truss and method of making same
KR100682794B1 (en) Manufacturing method for prestressed steel composite girder
JPH09221717A (en) Steel-concrete composite floor-slab bridge and construction method thereof
CA2023198C (en) Composite girder construction and method of making same
JPH11158812A (en) Hollow floor slab bridge and construction thereof
KR101242842B1 (en) Construction method for corrugated steel plate web-psc composite beam
KR101582599B1 (en) Bridge construction method for forming continuous point part of pier using copping for connecting girder
KR20140125754A (en) Bridge construction method for forming continuous point part of pier using copping for connecting girder
JP3877995B2 (en) How to build a string string bridge
JPH04228710A (en) Road slab for bridge
KR101734304B1 (en) Manufacturing Method of Efficient Steel-Concrete Composite Girder, Construction Method of Continuous Bridges using such Composite Girder, and Continuous Bridges constructed by such Method
JP3455115B2 (en) Hollow section bridge and method of constructing the same
JP2006322312A (en) Concrete girder bridge and its construction method
KR20140065338A (en) The continuous hybrid girder consist of concrete block and steel block which is can add prestress by gap difference between top and bottom of connection face of blocks
JP2000064222A (en) Elevated bridge
JP4039216B2 (en) Composite truss bridge and its construction method
JP2005155080A (en) Construction method of bridge girder
KR100480471B1 (en) Connecting Structure and Connecting Method of Honeycomb Type Composite Beam Stiffened with Prestressed Concrete Panel
JP2004011300A (en) Pc composite structure, pc bridge and prestressing method
JP2005060964A (en) Construction method for girder bridge
KR20020088472A (en) construction method of composite steel box bridge
KR101182541B1 (en) Multi-Span Continuous Prestressed Concrete I-Girder Bridges and Construction Method of Such Bridges
JPH10183533A (en) Bridge girder, bridge girder component, and work execution method for bridge girder
KR100527601B1 (en) Method for Constructing Composite Beam Stiffened with Prestressed Concrete Panel Using Stepping Prestressing
JP2000087313A (en) Composite floor slab bridge and its erection method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030128

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

EXPY Cancellation because of completion of term